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I. Introduction

Number theoretic transforms are Discrete Fourier Trans-
forms (DFTs) de�ned over �nite rings or �elds and can, for
certain applications, be a viable alternatives to the DFT
de�ned over the (in�nite) complex �eld C . Introduction to
�nite rings and �elds can be found in e.g. [1], here we shall
have to be content with a few brief remarks.
Roughly speaking, a �nite ring is an algebraic structure

that supports addition and multiplication, while a �nite
�eld in addition also supports division. Note that sub-
traction is equivalent to addition with an additive inverse
element and that division is equivalent to multiplication
with a multiplicative inverse element. When all elements
in a �nite ring have inverse elements the ring becomes a �-
nite �eld, also called a Galois Field (GF). Finite �elds and
rings are closed; that is, given a ring, or �eld, R and two
elements a; b 2 R, then a � b 2 R, where the operation � is
either addition or multiplication. The fact that �nite �elds
and rings are closed allows exact arithmetic, i.e. arithmetic
without round-o� errors, to be carried out. In the sequel a
�nite ring with M elements will be denoted RM . All arith-
metic in such a �nite structure must be carried out modulo
M , which will be indicated by the notation h�iM .
A generic NTT is de�ned as

X(k) = h
N�1X
n=0

x(n)�kniM ; (1)

k = 0; 1; : : : ; N � 1;

where N is the transform length, M is the modulus and
� is a root of unity of order N in the ring RM . Note the
close relationships with the DFT; the root of unity � plays
the same role as e�j(2�=N)(a root of unity of order N in
C ) in the DFT. Unlike the DFT de�ned over C , however,
the NTT-domain sequenceX(k) has no amplitude or phase
associated with it.
The inverse NTT (INNT) is likewise de�ned as

x(n) = hN�1
N�1X
k=0

X(k)��nkiM ; (2)

n = 0; 1; : : : ; N � 1:

NTTs share several properties with the DFT de�ned over
C . In particular, they possess the cyclic convolution prop-
erty (CCP):

y = T�1(T (h(n) � T (x(n))); (3)

where x(n) and h(n) are the two sequences to be convolved,
� denote element by element multiplication and T and T�1

are the forward and inverse transforms, respectively.
The modulus M can be a prime M = p, a power of a

prime M = pm or a composite number M =
QK
i=1Mi =QK

i=1 p
mi

i , resulting in NTT pairs de�ned over a Galois
Field (GF), an extension �eld GF (pm) or a �nite ring
RM . Generally, a NTT of length N and with modu-
lus M =

QK
i=1 p

mi

i and possessing the Cyclic Convolution
Property (CCP), exists in a �nite ring RM , provided that
[2], [?], [4]:
1. a root of unity � of order N exists in RM ,
with gcd(�;M) = gcd(N;M) = 1.
2. N j gcd(pi � 1; pj � 1) 8 i; j 2 [1;K]; i 6= j.
3. gcd((�i � 1);M) = 1 8 i 2 [1; N � 1].
The simplest case is when the modulus M is a prime p,

as the �nite ring RM then becomes a Galois �eld GF (p),
so condition 2 above simpli�es to N j(p� 1).
The incentive for using NTTs for audio processing steam

from the promise of error-free computation, as well as the
potential for reduced computational complexity. For the
latter to be achieved, it is required that: i) the transform
length is highly composite, so that fast divide and conquer
FFT-type algorithms can be employed, ii) that a simple
root of unity � is used, so that multiplications with pow-
ers of � may be carried out with barrel-shifters, which are
much less area-demanding than general multipliers. The el-
ement by element multiplications in the NTT-domain still
calls for general multiplication though.
Booth those properties can be achieved by choosing a

Fermat number, i.e. M = Ft = 22
t

+ 1, as modulus, which
results in a so-called Fermat Number Transform (FNT).
FNTs have for this reason been among the most frequently
employed NTTs and numerous implementations have been
reported [5], [6], [7], [8], [9], [10]. Table 1 lists the possible
combinations of N , M and � for M equal to F4, F5 and
F6 and root of unity � = 2 and � =

p
2. From a complex-

ity point of view � = 2 is the most attractive, as it allows
multiplications with powers of � may be carried out with
barrel-shifters. The latter case, i.e. � =

p
2 simply means

the element � 2 RFt , such that �2 = 2, which turns out

to be equal to 22
t�2

(22
t�1 � 1) = 23�2

t�2 � 22
t�2

. Multipli-
cation with � =

p
2 can therefore be carried out by two

shifts and one addition. Addition mod Ft is only slightly
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more expensive than normal 2's-complement addition [11].
Table 1 shows that for a given modulus M only two trans-
forms lengths are available when � 2 [2;

p
2]. Although

longer transforms do exist, they do not have a simple �,
and hence multiplication with powers of � calls for general
multiplications. Note that when the �lter coe�cient vector
h(n) is �xed, H(k) = NTT (h(n)) can be precomputed and
pre-multiplied with N�1: Explicit multiplication with N�1

in the INTT can thus be avoided.

M = 22
t

+ 1 t B Beff N

� = 2 � =
p
2

F4 4 17 16 16 32
F5 5 33 32 32 64
F6 6 65 64 64 128

Table 1:Some combinations of �, N and M for FNTs.

II. Dynamic Range

The input sequence bx(n) will often consist of bipolar el-
ements belonging to a sub-set S of the ring Z of integers,
i.e. S � Z. It is therefore generally necessary to map the
elements bx 2 S into elements x 2 RM , i.e. � : bx! x:

x = f bx for bx 2 [0;M=2)bx+M otherwise.
(4)

At the end of the computation the inverse mapping ��1 :
y ! by must be carried out. When the convolution is carried
out in another ring, or �eld RM , this ring/�eld is often
referred to as a surrogate ring/�eld.
It is imperative that the dynamic ranges of the input and

output sequences are bounded, that is jx(n)jmax; jh(n)jmax

and jy(n)jmax 6 M . When both input sequences are un-
known, which generally is the case for e.g. correlation, the
modulus M must be large enough to ensure that

jy(n)jmax 6 N jx(n)jmaxjh(n)jmax: (5)

In cases where one of the input sequences is knows, such
as for example when it consists of a �xed �lter coe�cient
vector, this bound is too pessimistic and should be replaced
with

jy(nj 6 jx(njmax

Lh�1X
k=0

jh(k)j; (6)

where Lh is the length of the �lter coe�cient vector. Since
the amplitude of the output sequence jy(n)j, must be
limited to the interval [0;M), the corresponding e�ective
wordlengths Beff become

Beff = log2N + log2 jh(n)jmax + log2 jx(n)jmax: (7)

and

Beff = log2

 
L�1X
k=0

jh(k)j
!
+ log2 jx(n)jmax; (8)

respectively. Note from (4) that for bipolar sequences
jx(n)jmax = 2jbx(n)jmax; likewise for h(n) and y(n):
Failure to satisfy these bounds will result in y(n) wrap-

ping around and rendering the result meaningless. The
minimum size of the modulus M therefore becomes pro-
portional to the dynamic range of the two sequences to be
convolved, as well as to the length Lh of the �lter coe�cient
vector.
For high-quality audio the wordlengths of the input se-

quence x(n) will lie between 16 and 24 bits. As seen from

(6), log2(
PLh�1

k=0 jh(k)j) bits must be added, to account
for the dynamic range increase during the convolution. It
should be appreciated, however, that relation (6) might
be very di�erent from relation (5). A typical example oc-
curs when h(n) consists of a long room impulse response
sequence, in which case the tail of the impulse response
consists of very small values.

III. Segmented Convolution

High-quality audio processing calls for a large dynamic
range, which means that a large modulus M must be em-
ployed. In order to achieve a low computational complex-
ity, however, a NTT with a simple root of unity � and a
highly composite length N must be used. Although the
structure of �nite �elds and rings allows a large number of
NTTs to be de�ned, only a handful come close to satisfy-
ing all these requirements. Fermat Number Transforms
(FNTs) [?], i.e. NTTs with M a Fermat number, are
among the more interesting candidates. However, the large
dynamic range required for high-quality audio processing
means that the only Fermat moduli of interest (for single-
modulus NTTs) are F5 and F6; with e�ective wordlength
of 32 and 64 bits, respectively. As seen from Table 1, the
corresponding transform lengths with simple roots of unity,
i.e. � = 2 or � =

p
2, are limited to 32 and 64 for M = F5

and 64 and 128 for M = F6, respectively.
However, many applications in audio, such as e.g. convo-

lution with room impulse responses, result in very long �l-
ter coe�cient vectors; much longer than the available trans-
form lengths. In order to be able to employ NTTs with rel-
atively short lengths, therefore, the �lter coe�cient vector
h(n), of length Lh, must be partitioned into Q = dLh=Ke
short blocks, each of length K, where K < N (the trans-
form length), thus h(n) = h0(n)jh1(n)j : : : jhQ�1(n), where
j denotes concatenation. Each segment hj(n), of length
K, is then padded with N� K zeros and convolved sepa-
rately with a delayed version of the input sequence x(n),
thus hjK(n)�xjK(n), where the sub-scripts jK on h(n) and
x(n) denotes the delay relative to the �rst input sample in
the current block. The output sequence is then obtained
as

yjK(n) =

Q�1X
j=0

hjK(n) � xjK (n). (9)

Although the Q short convolutions can now be carried out
by any e�cient convolution algorithm, here we shall only
be concerned with the use of NTTs, according to (3).
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As is well known, when the FFT is used for fast convo-
lution, the arithmetic complexity decreases as the length
of the transform increases. However, when NTTs are used
the transform length N is dictated by the choice of mod-
ulus M and root of unity � and will usually be shorter
than if FFTs were employed. This apparent loss of e�-
ciency, however, is recuperated by the absence of general
multiplications in the transforms (provided a simple root
of unity is employed). The minimum transform length for
transform domain processing to be more e�ective than di-
rect form implementations will therefore be less than when
FFTs (implementing the DFT de�ned over C ) are used.

For real-time applications such partitioning will usually
be necessary in any case, in order to reduce the input-
output delay. A scheme proposed in [12] employs trans-
forms (FFTs) of varying lengths, in order to reduce the
arithmetic complexity as much as possible. The use of re-
mainder arithmetic and unusual wordlengths (such as 33
and 65 bits), means that NTTs are only attractive when
implemented as an Application Speci�c Integrated Circuits
(ASICs), or Field Programmable Gate Arrays (FPGAs).
Hence, it will usually be expedient to standardize on a
single transform length, even though at least two di�er-
ent transform lengths might be available. In cases where
the tail of the coe�cient sequence h(n) is very low in am-
plitude, the dynamic range requirements will decrease to-
wards the end of h(n). Dynamic range might then be
traded for longer segments, by varying the blocl-length K.

Coe�cient vector partitioning and processing of short
blocks will directly lead to a signi�cant reduction of the
input-output delay. The delay can be further reduced all
the way down to one sample-interval if the �rst block is
processed separately in the form of a direct form FIR �lter,
as suggested in [12]. The running FIR �lter for the �rst
block can then be computed with �xed-point arithmetic,
in which case round-o� errors will be incurred.

If it is deemed important that also the �rst block be
computet without errors, the direct form FIR �lter may
be implemented by means of the RNS [13]. The drawback
of that approach is that if arithmetic units di�erent from
those used in the NTTs must be incorporated in an ASIC,
those units might be under-utilised. If, on the other hand,
the �rst section is convolved by means of so-called sliding
NTTs [14] this expense can be avoided, since in this case
no additional arithmetic units are required. The price to
be paid for eliminating the delay of the �rst block is in any
case increased computational complexity.

Even though the short convolutions of (9) are carried out
in a surrogate ring, or �eld, RM the additions in (9) may
be computed either in RM or in the set S � Z, with e.g.
2's complement addition. Since the dynamic range of the
output sequence y(n) eventually has to be reduced back to
that of the input sequence x(n), performing exact addition
in a �nite �eld/ring does not bring any bene�ts compared
to the use of e.g. 2's complement addition with rounding.
Although such a hybrid scheme relay of lossy addition for
the recombination of the output sequence, the short block
convolutions in (9) are error-free. As the round-o� noise is
largely caused be multiplication round-o� errors [15], the

bulk of the round-o� errors are still avoided.

IV. Residue Number System Implementation

Single modulus NTTs with the required dynamic range
for high quality audio processing are not abundant. One
way to increase the
exibility with respect to dynamic
range is to map the input sequences x(n) and h(n) into r
smaller �elds, GF (p1), GF (p2); : : : ; GF (pr). Thus, given
a sub-moduli set fp1; p2; : : : ; prg, such that M =

Qr
j=1 pj ,

gcd(pi; pj) = 1 8 i 6= j 2 [1; r], the two input sequences
x(n) and h(n) can be mapped into r separate channels by
means of the Chinese Remainder Theorem (CRT).
The CRT [16] states that given a composite integerM =Qr
j=1 pj , where pj are primes and gcd(pi; pj) = 1 8 i 6= j,

the system of linear congruencies

x � xj mod pj ; j = 1; 2; : : : ; r (10)

has the unique simultaneous solution mod M :

x =

*
rX

j=1

xj(Mp�1j )'(pj)

+
M

; (11)

where '(x) is Euler's totient function [16], i.e. the number
of positive integers not exceeding x that are relative prime
to x.
When the CRT is used to map the two input sequences

x(n) and h(n) into r independent channels the scheme is
usually referred to as the Residue Number System (RNS).
We now proceed as follows [17]:
1. Input mapping: xj(n) = x(n)mod pj and hj(n) =
h(n)mod pj .
2. Sub-channel convolution:

Xj(k) =

*Nj�1X
n=0

xj(n)�
nk
j

+
Mj

; j = 1; 2; : : : ; r; (12)

Hj(k) =

*Nj�1X
n=0

hj(n)�
nk
j

+
Mj

; j = 1; 2; : : : ; r: (13)

Yj = hXj(k)Hj(k)iMj
; k = 0; : : : ; Nj � 1; j = 1; : : : ; r;

(14)

yj(k) =

*
N�1
j

Nj�1X
n=0

Yj(k)�
�nk
j

+
Mj

; j = 1; 2; : : : ; r;

(15)

3 Output mapping by the CRT:

y(n) =

*
rX

j=1

yj(n)(Mp�1j )'(pj)

+
M

; n = 0; 1; : : : ; NE;

(16)
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where NE is the e�ective block-length (see below).
Since the transform lengths Nj will generally be di�er-

ent for each channel, condition 2 in the introduction seems
to require that N j gcd(pi � 1; pj � 1): However, there is
really no need to insist on a NTT of length N de�ned
over a composite ring RM . It su�ces that the r NTTs
de�ned over GF (pj); j = 1; 2; : : : ; r, exists in their respec-
tive �elds. [17]. The input map then merely dissects the in-
put sequence x(n) into sub-sequences xj(n); j = 1; 2; : : : ; r,
and the output map (12) in turn reassembles the sequence
y(n) from the r independent channel-sequences yj(n); j =
1; 2; : : : ; r. The e�ective block-length NE is therefore given
by min(Nj); j = 1; 2; : : : ; r. As a consequence, all channel
blocks, apart from the block in the channel with the small-
est Nj , must be zero-padded. The individual transform
lengths should therefore be as similar as possible, in order
to maximize e�ciency.
One of the advantages of this scheme is that the dy-

namic range may be tailored to a particular requirement
by adjusting the number of sub-moduli. Note that the
convolutions in the r individual channels are completely
independent of each other. The r convolutions may there-
fore be computed with any e�cient NTT pair. There are
nevertheless several factors to be considered when closing
the sub-moduli pj :
1. if short carry-propagation paths are deemed important,
the individual sub-moduli should be relatively small
2. they should preferably not be too di�erent, as the clock-
ing rate will be limited by the slowest channel
3. e�cient NTTs should exist in the r �elds GF (pj); :j =
1; 2; : : : ; r.
Requirement 3 above means that preferably all r NTTs

should have booth simple roots of unity �j and highly com-
posite lengths Nj . However, this is not always easy to sat-
isfy. In practise, therefore, a compromise might have to
be struck. Since only NTTs de�nes over �nite �elds are
used, the largest Fermat number moduli that can be used
is F4 (larger Fermat numbers are composite). Choosing
� =

p
2, results in a FNT of length N = 32, which is the

most promising candidate in such a multi-moduli scheme.
For the r�1 remaining channels other suitable NTTs must
be found. Promising candidates with lengths a power of
two have been listed in e.g. [18], [19]. It is generally not
possible to �nd simple (i.e. powers of 2) roots of unity.
However, other methods are available for avoiding general
multiplications. On of these methods consists of various
combinations of look-up tables [17], [18], [19]. This method
is only suited for small moduli, though, as the tables tend
to consume too much area for large moduli. An alternative
method is provided by performing a basis-conversion [20].
That is, the arithmetic is carried out in a number repre-
sentation which admit simple multiplication by powers of
�.

V. Conclusion

The question of whether or not NTTs represent a viable
alternative for audio processing cannot be answered with a
simple yes or no. It all depends on the type of processing

to be performed, the number of units one wants to pro-
duce, etc. The need for residue arithmetic and the unusual
wordlengths encountered means that NTTs are not com-
petitive in software implementations. For ASIC implemen-
tations, however, NTTs deserve serious consideration, as
the potential for reduced area and absence of, or reduced,
round-o� noise might for certain applications be turned
into commercial advantages.
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