luametatex

the manual

version 2.11.08

dev id 20260210

Contents

Introduction

1 Engines

1.1 Introduction 10 1.4 Reflections 12
1.2 How it started 10 1.5 Usage 14
1.3 The engines 11 1.6 Dependencies 15
2 Principles

2.1 Introduction 20 2.16 Optimization 30
2.2 Text fonts 20 2.17 Input 30
2.3 Math fonts 23 2.18 Nesting 30
2.4 Rules 25 2.19 Conditions 31
2.5 Paragraphs 26 2.20 Macros 31
2.6 Pages 27 2.21 Keywords 31
2.7 Alignments 27 2.22 Directions 32
2.8 Adjusts 27 2.23 Hooks 33
2.9 Marks 28 2.24 Expressions 33
2.10 Inserts 28 2.25 Units 34
2.11 Boxes 28 2.26 Local control 34
2.12 Language 28 2.27 Overload protection 35
2.13 Math 29 2.28 Specifications 36
2.14 Programming 29 2.29 Tracing 38
2.15 Protection 30

3 Constructions

3.1 Introduction 40 3.6 Math fractions 46
3.2 Boxes 40 3.7 Math radicals 49
3.3 Math style variants 42 3.8 Math accents 50
3.4 Math scripts 43 3.9 Math fences 53
3.5 Skewed fractions 45

4 Assumptions

4.1 Introduction 57 4.2 Virtual fonts 57
5 Internals

5.1 Introduction 60 5.7 Save stack 70
5.2 A few basics 60 5.8 Data types 70
5.3 Memory words 64 5.9 Time flies 71
5.4 Tokens 65 5.10 Keywords 74
5.5 Nodes 66 5.11 Sparse arrays 75
5.6 The hash table 68

6 Primitives

6.1 Introduction 77 6.5 To be checked primitives (new) 333
6.2 Rationale 90 6.6 To be checked primitives (math) 334
6.3 Primitives 92 6.7 To be checked primitives (old) 335

6.4 Syntax 297 6.8 Indexed primitives 336

7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3

9.4
9.5
9.6

10
10.1

10.2
10.3
10.4

11
11.1

11.2
11.3
114

12
12.1

12.2
12.3

13
13.1

13.2
13.3
13.4
13.5
13.6

14
14.1

Callbacks
Introduction

Files
Running
Fonts

Fonts
Introduction

Primitives
Nodes
Loading
Helpers

Languages
Introduction

Evolution

Characters, glyphs and
discretionaries

Controlling hyphenation

The main control loop

Loading patterns and exceptions

Lua
Introduction

Initialization
Lua behaviour
Lua modules

Metapost
Introduction

Instances
Processing
Internals

TEX
Introduction

Status information
Everything TgX

Math
Introduction

Traditional alongside OpenType
Intermezzo

Unicode math characters

Math classes

Setting up the engine

PDF
Introduction

351
353
355
360

381
382
386
387
392

400
400

401
407
407
409

419
419
421
422

430
430
437
439

449
449
460

496
496
497
501
501
501

523

7.5
7.6
7.7

8.6
8.7
8.8
8.9

9.7
9.8
9.9
9.10
9.11
9.12

10.5
10.6
10.7

11.5
11.6
11.7
11.8

12.4
12.5

13.7
13.8
13.9
13.10
13.11

14.2

Typesetting
Tracing
Math

Virtual fonts
Callbacks
Protrusion
Spaces

Applying hyphenation
Applying ligatures and kerning
Breaking paragraphs into lines
The language library

Math
Tracing

Files
Testing
Helpers

Information
Methods
Scanners
Injectors

The configuration
Input and output

Math styles
Math parameters
Math spacing
Fonts

Scripts

Lua interfaces

361
370
377

395
397
397
397

411
412
413
413
416
416

423
423
423

441
441
442
444

491
492

503
507
515
517
518

523

15
15.1

15.2
15.3

16
16.1

16.2

17
17.1

17.2
17.3

18
18.1

18.2
18.3
18.4
18.5

Nodes
Introduction

Lua node representation
Main text nodes

Tokens
Introduction

Lua token representation

Libraries
Introduction

Third party
Core

Security
Introduction

Primitives
Macros
Tokens
Nodes

532
533
534

635
635

670
670
670

719
719
720
720
720

154
15.5

16.3

17.4
17.5

18.6
18.7
18.8
18.9
18.10

Math nodes
Helpers

Helpers

Auxiliary
Optional

Lua

Files
Callbacks
Libraries
Execution

558
573

635

671
695

721
721
721
723
723

introduction

Introduction

The LuaMetaTgX manual that is a variant of the LuaTgX manual provides an overview similar to its
parent. Instead of adding more and more to that one, an alternative take is provided. Here we start
less from a historic perspective and treat the engine as independent development. The main reason
for this is that we want to focus on ConTgXt, if only because that is the macro package that uses it and
also drives the development.

In LuaMetaTgX we go further than in LuaTgX. We extend the language, refactor most subsystems and
assume that the macro package adapts to that. Of course we are compatible as much as possible with
predecessors but we also take the freedom to tune some default behavior. For instance, moving on
with math rendering means that we can make assumptions with respect to fonts and because the math
fonts have issues that never will be solved, in ConTgXt we just tweak the fonts before we feed them
to the engine so that we can achieve the best result possible (in our opinion of course). The same is
true for more mechanism, like for instance the par builder, where we introduce multiple paragraph
line break passes using features not present in other engines and ConTgXt supports that. Although
extensions like these are not discussed here we do have to describe the underlying mechanisms and
interfaces and thereby assume usage as in ConTgXt.

A manual like this evolves over time and will take years to complete. These are volunteer efforts unless
some project makes it possible to spend more time on it. In practice most work on TgX development
is unpaid for and therefore mostly driven by the joy of playing with typesetting and coming up with
solutions for problems that users present us. Keep that in mind when reading and wondering why
the focus is not on what you expect or what is best for marketing. If you’'re annoyed by (the lack of)
documentation, just don’t waste time in LuaMetaTgX.

This manual replaces the older LuaMetaTgX manual. It has some less and some more than its prede-
cessor which was derived from the LuaTgX manual. It will take some time to ‘complete’. Eventually
I might add a few indices but it makes only sense when the manual is more stable and I have to be
in the mood to spend time on it. Because many mechanisms have been extended we also have more
parameters to control matters. Add to that additional font parameters (as in math) and it will be clear
that it’s hard to be complete, especially when control features only kick in when needed. Often the
names of primitives and options give a clue. But when you're in for a bit of trial and error, looking at
visual results might bring you to options that can be of help to get it better. Just ignore what doesn’t
make sense till you need something.

Disclaimer. I don’t use ‘artificial intelligence’ tools for development and have no plans to do that either. If I can’t manage
without, I should not go on with developments anyway. I don’t want to use tools that rip-off code (and basically abuse whatever
people put on the internet for others to enjoy), pretty much aim at control and advertising (its all about money), infringe
copyright, depend on other peoples originality and efforts, and frankly spoken, bring very little to my table, while consuming
extreme amount of energy world-wide. I've nothing against expert systems applied wisely but that’s a different story than
today’s big tech, commerce and dominance driven Al fashion. I also don’t jump on every new language bandwagon because
in the end there is little to gain, and all these software religious claims don’t impress in the end. It's a waste of time and
energy. Typesetting is very much also a human thing: look and feel, perception, joy and human interaction. I like to see what
(challenges) users come up with, in results and demands; that is what drives me. Therefore, an important main point here is
that all errors and hallucinations in this manual are mine.

Author Hans Hagen & friends
ConTgXt 2026.02.10 16:39
LuaMetaTgX 2.11.08 (devid: 20260210)
Support contextgarden.net & tug.org

10

1 Engines

Contents

1.1 Introduction
1.2 How it started
1.3 The engines
1.4 Reflections
1.5 Usage

1.6 Dependencies

1.1 Introduction

There are good reasons why we initialized the LuaTgX and later LuaMetaTgX projects. Here I will go
into some of them. It is just short wrap up of how it started, how other engines influenced the process
and how we see usage. There are plenty of documents out there that go into more detail. The main
objective of this section is to put documentation into perspective.

1.2 How it started

When we started with ConTgXt, hardware was rather limited compared to what we have today. A per-
sonal computer had some 640kB memory, possibly bumped to 1MB with help from a memory extender.
This put some restrictions to how macro packages could be defined, also because that memory had
to be shared with the baseline operating system. However, over time, memory and runtime became
less of an issue and the TgX engine could be configured to use whatever was available. Extending the
program other than increasing the available memory became more feasible.

As with any program, there is always something to wish for which is why the e-TgX variant came into
view. Before those extensions could be used, pdfTgX showed up. That variant simplified the “TgX plus
separate backend driver’ model to a one-step process. Eventually e-TgX was merged into pdfTgX, and
that became the de facto standard engine. There was never a follow up on e-TgX, and more drastic
deviations like Omega were never ready for production. At some point X§IEX came around but that was
mostly a font specific extension. We were kind of stuck with a wish-list that never would be fulfilled
but we occasionally pondered a follow up. We drafted an extended e-IgX proposal, played with some
features related to pdf, improved a few things but that was it.

Having some experiences with Lua as extension language in SciTE, I wondered what something like
that would bring to TgX and after discussing this with Hartmut he made variant of pdfTgX that has
some basic interfaces: we could access properties of registers and print something to TgX as if it came
from file. As is common with some variant, a new name was coined and LuaTgX came into existence.
We’'re talking 2005.

Because Idris wanted to typeset high quality scholar manuscripts mixing Arabic and Latin we dis-
cussed how to do that in ConTEXt and his experiences with Omega were such that alternatives had to
be considered: the Oriental TEX project was started and LualgX was the starting point. Taco merged
some parts of Aleph (a somewhat stable variant of Omega) into the code base and stepwise some

11

primitives were added. It was overall a rather large and serious project that took a lot of our time. It
was not commercially driven, mostly for ConTEXt users and therefore also a lot of fun to do. As often
with such projects, early adapters keep things going.

It took a while before LuaTgX was stable in the sense that nothing more was added. Because the
engine was developed alongside what is called ConTgXt MKIV, we could easily adapt both to each other.
Even better: users could use both in production. However, in order for other macro packages to use
LuaTgX (per request) it had to be frozen, and that happened around 2015, some 10 years after we
started. However, we were not done yet and in order not to violate this stability principle the follow
up was called LuaMetaTgX. Because it was a more drastic extension project, and also a somewhat
drastic separation of the code base from the complex LuaTgX one, the related ConTgXt code was also
separated, this time tagged MkXL, or LMTX when we talk about the combination. The project started
around 2019 and soon again entered a state of combined development and use in production and most
users switched to this variant.

There are more complete wrap ups of these developments and we systematically reported on them in
various documents that are available in the distribution and/or published in user group journals.

1.3 The engines

Of course all starts with original TgX. We want to be compatible so we keep that functionality. However,
for practical reasons LuaMetaTgX omits two core components. Font loading is not present in the
frontend and there is no backend. Both are supposed to be provided via Lua plugins. This makes
sense because in the meantime font technologies have changed and keep changing and backend also
are a moving target. In ConTgXt we already did all that in Lua, so there was no need to keep that font
and pdf generation code around in the engine. There are a few more deviations, like dropping some
system specific features (terminal related) and in former times practical features like outer and long
macros that no longer made sense and complicated integrating new features unnecessarily.

As mentioned in the introduction, pdfIgX is the basis for LuaTgX and LuaTgX is where we started with
LuaMetaTgX. If we compare pdfTgX with traditional TeX the main additions are:

» There is an integrated pdf backend that also supports for instance hyperlinks and various annota-
tions.

* Expansion of glyphs (aka hz) has been added to the engine and integrated in the par builder. The
same is true for character protrusion (in the margin).

» There is, to some extend, support for inter-character kerning.

» There are some handy helpers, for instance for calculating hashes, randomization, etc.

* There is an extension to injection between lines (adjust).

* We have few more conditionals (like testing for a csname and absolute values).

» A few helpers like \quitvmode (that we liked to have in ConTgXt) were added.

Because pdfIgX was actively developed and maintained over many years, extensions showed up step-
wise, also depending on usage and needs. That is also why the e-TgX extensions were included:

* More that 256 registers, including marks.

* Access to discarded material in the vertical splitting code.

* Protection against expansion of macros (the \protected prefix).
* A simple right to left typesetting mechanism.

* Access to some states, a limited set of last nodes, etc.

12

* There are some additional tracing features.
* One can reprocess tokens and produce detokenized lists.

In LuaTgX we also looked at what Omega could bring:

* More that 256 registers.

* Multi-directional typesetting.
e Local boxes (in lines).

e Input processing.

If we combine these lists, we see font expansion and protrusion coming back in LuaMetaTgX. However,
already in LuaTgX expansion and protrusion were dealt with a bit differently and even more so in Lua-
MetaTgX, while protection in LuaMetaTgX is implemented differently. We also kept injection of vertical
material but in LuaMetaTgX that done quite differently. Most of e-TgX is there but not right to left
typesetting and the register approach. Of course we kept the additional conditionals but implemented
them a bit different.

In LuaTgX we took the Omega enlarged register approach and directional typesetting although that
has been stripped down and redone to right to left only. Local boxes are there but redone in LuaMeta-
TgX. There was no need for input processing because we have Lua. In the end there is little that we
kept from the other engines which also means that one cannot take the manuals that come with these
engines and simply assume that it is there.

We should of course mention MetaPost. That graphical subsystem was integrated in LuaTgX and on the
one hand stripped down (less backend) and on the other extended (remove bottlenecks and add some
functionality) in LuaMetaTgX. With respect to Lua we moved to more recent versions and dropped
support for just in time compilation. This also means that in ConTEXt MkXL we have more MetaFun
and therefore talk LuaMetaFun.

There is of course a lot in LuaTgX that can be found also in LuaMetaTgX but the later one goes way
beyond its predecessor. It actually provides what we always wanted (as ConTgXt developers) but never
showed up. And this brings us to a next topic.

1.4 Reflections

The previous section, somewhat derived from the LuaTgX manual, might suggest that LuaTgX and
therefore LuaMetaTgX provides most of what pdfTgX, e-TgX, X4IgX and Omega provide but here I must
disappoint the reader. So in addition to or variation on the above here are some reflections.

We were quite involved in the early days of pdfTEX development, so some features of that program
we kept in LuaTgX, like expansion, protrusion, basic pdf features like annotations, destinations, out-
lines and literals, transformations, image inclusion, plus a few handy extensions like \vadjust pre,
\insertht and \quitvmode that were introduced for ConTgXt, as well as positioning that when brought
into pdfTEX made that we no longer needed the indirect method using specials that we used (first with
a post processing script filtering specials and providing positional information, later that became a
the dvipos program). Experimental features (at that time introduced for ConTgXt) like snapping lines
could make sense but were easier to handle in Lua so even those were dropped. We never used the
features that were introduced for other macro packages, like color stacks and (un)escaping because
we already did that otherwise. We also didn’t want to burden the evolving LuaTgX engine with the
other kerning features because they lacked control anyway. Even the mentioned adjust and insert
extensions were redone and much more was added in those departments.

13

Because we started in 2005 (with a first release in 2006) the pdfTgX of that time is of course not the
same as of today. I'm not sure what the last version is that ConTgXt MKII is targeting at because
the version numbering changed a bit; at some point versions like 14e became 140.XX, so it might be
around140.17 or so. It might even be that recent versions break MKII without us noticing. For LuaTgX
we basically only took what we needed for ConTgXt at that time and assumed that Lua could fill in the
gaps. Because ConTgXt didn’t really use much of the LuaTgX backend in the end what we kept from
pdfTEX in LuaMetaTgX was a follow up on expansion and protrusion, for which that engine set the
standard. If it wasn’t for pdfTEX the TEX community would not be where it was now.

For as much as they make sense e-TgX extensions are mostly there but that project was basically
stopped after the first major release. In fact because pdfIgX has these extensions, we never implicitly
had to include e-TEX. When we started with LuaTEX we actually kept in mind the ideas we had at that
time because before we started with LuaTgX we already had plans for extensions (flagged eetex) but
those never came to fruit, just as we had some ideas about extending dvi which were superseded by
the arrival of pdf. The token prepend and append primitives actually were examples of that. The e-TgX
project demonstrated that extending TgX was an option. In that sense, LuaTgX and LuaMetaTgX were
very much unavoidable from the perspective of those involved in ConTgXt.

Then there is XqIgX. It is supported by MKII but only the font mechanism was extended to handle
OpenType fonts. For a while LuaTgX had some compatible math character definition primitives but
none of its features. We can assume that its internals are quite different when it comes to fonts
from LuaTgX because LuaTgX basically provides support for traditional fonts and delegates everything
OpenType to Lua. In LuaTgX we used font loader code from FontForge and some backend code from
dvipdfmx, although ConTEXt eventually did all loading in Lua. But anyway this program demonstrated
that a Unicode engine supporting publicly available (fancy) fonts was possible by adapting TgX so
XgIEX introduced TgXies to the at that point still evolving world of OpenType. And if someone is a
happy XqIEX user, there is no need to switch to LuaTgX.

In Omega there were input translation mechanisms that some ConTgXt users used but that I never
looked into myself. These are of course not present in LuaTgX because we can use Lua for input
processing. In the end a bit of the directionality is all that we kept, most noticeably the initial parnode
and dirnode but we made them first class nodes instead of whatsits and in LuaMetaTgX the first one
serves different purposes. It got us started with directions. Comparing the paragraph nodes of LuaTgX
and LuaMetaTEX makes little sense: they are too different.

Over the last decades other engines showed up, most noticeably those for e.g. Japanese but I never
looked into these. I'm not sure if LuaTEX can do the same with help from Lua, but LuaMetaTgX has
some more features so maybe it can. These engines serve a specific (language and script audience)
but if Japanese ConTgXt user need something more than we provide they can ask. One reason why
we have for instance an orientation feature in boxes is that we can support vertical typesetting with
rotated glyphs and boxes.

In the end the extensions in LuaMetaTgX come from our own demands combined with trying to be
complete but of course I might have missed something. It also means that flaws in the design are
just mine (or ours in the case of LuaTgX). Of course quite some are common sense additions, often
based what we need and what makes macro programming easier, but if users depend on some feature
present in the other engines that cannot be handled by Lua, they might ask for something similar
but then we need details and examples and not some reference to a manual or macros that we are
unaware of, have never seen, never used or haven’t catched up with.

There is very little overlap and common ground to cover between macro packages so if someone
thinks that LuaMetaTgX is a ConTgXt thing, they might be right. Of course LuaMetaTgX has plenty

14

of what LuaTgX has and the core of LuaTgX is pretty much original TgX. However, in LuaMetaTgX
nearly all mechanism have been extended, optimized, and in the process made a bit more C-ish. The
original documentation describes what happens, the principles behind TgX, so to say. More details
will be added but can also found in numerous documents in the ConTgXt distribution, articles and
presentations. In the end we owe most to Don Knuth, who gave is the (very original) original that we
can build upon.

An important decision we made when we started with LuaTgX is that we don’t lock ourselves in specific
solutions: callbacks are the way to go. Of course in LuaMetaTEX we have some more helpers, and in
the extended MetaPost library we do implement some features in C after having prototyped them
in Lua, but there runtime performance was important. But in general Lua solutions work out fine.
Good examples are the font loading and processing code and the MetaPost backend. We can easily
adapt, have complete control, can meet specific demands, and as with more plugins we just needed
them right from the start. And that is an important consideration: we want to be able to experiment
without constraints. There are always the other engines: pdfTEX for eight bit speed and XqTEX for
hard coded solutions and if they suit you, why not use them. We don’t have to cover every niche out
there.

1.5 Usage

Why is it that there has been little fundamental development around TgX engines? One of the reasons
is that macro packages have to be stable. New features can be added but if they are only available
in one engine (and there are a few more around now, like X4TEX and the cjk specific ones) a macro
package has to provide ways around them when they are not available. Risking some criticism I dare
to say that in order to use LuaTgX to its full potential, macro package has to be set up such that this is
possible and ConTgXt does just that. When we talk backends it’s relatively easy, and when we talk fonts
it’s doable. But if you are not willing to adapt the core of your code dramatically (and conceptually)
all you get from LuaTgX is a built-in scripting language and some occasional messing around with
node lists. In ConTEXt we could transition rather well because the user interfaces permitted to do so
without users noticing. Of course there were changes, for instance because encodings matter less,
which is also true for e.g. XqTEX, and font technologies changed. But for macro packages other than
ConTgXt just the availability of Lua might be enough reasons to use that engine. That also means that
documentation of the more intricate features is less important: one can just learn by example and
ConTgXt is that example.

With LuaMetaTEX we go further because here one really has to make some fundamental choices. Again
this could be done within the existing user interfaces, but here we are not only talking of fundamen-
tal improvements, like rendering math or breaking paragraphs into lines, but also of more flexible
handling of alignments, inserts, adjusts, marks, par and page building, etc. Basically all mechanism
got extended and opened up. In order to profit from this you have to be able to throw away existing
solution and use these extensions to come up with better ones. If one can put sentiments aside, this
also takes quite some time. This also means that where LuaMetaTgX is fine for the current ConTgXt,
it might be less so for other macro packages. For instance, a font frontend and pdf backend in Lua
comes at a performance penalty. Some can be gained back elsewhere, and actually the engine itself
is more efficient too, but there are no guarantees that it also works out for others.

A very important aspect (at least for me) is that I want the macro code to look nice and in that respect
stick to the TgX syntax as much as possible. That means that we have more programming related
primitives, enhanced macro argument parsing, more (flexible) conditionals, additional registers, extra
expansion related features and so on. Instead of some intermediate layer (like the helpers in ConTgXt)

15

we can stick closer to the language itself. Of course this is not something that most users will notice.
What users might notice, is that on the average ConTgXt with LuaMetaTgX performs better than with
LuaTgX or even LuaMetaTgX. Even with more performance critical components delegated to Lua (like
the backend pdf generation) we gain and often can compete performance wise well with the faster
eight bit pdfTEX engine.

The fact that one has to make (and/or cannot make) drastic choices has a consequence for documen-
tation. Most of what is new and interesting is discussed in articles and low level manuals. However, it
is often discussed in the perspective of ConTgXt. Although we do discuss and show generic solutions
it makes little sense to go into details there, simply because in the end only ConTgXt might use them
as intended. It’s just a waste of time to implement variants that are more generic because they will
never be used elsewhere, especially in situations where the solutions are considered ‘standard’ and
will not change. In ConTEXt we always followed the principle that if we can do better, we will do better,
and interfaces are such that this can be done.

Of course that brings up the question “How do you know that these are the best solutions” and the
answer is that we don’t. However, we’'re not talking of quick and dirty solutions. For instance it
took years to enhance math support: experiments, discussion, reconsideration, documenting, writing
articles, looking at usage, fonts, etc. A wider discussion would not have brought better solutions, if
at all. If that were the case, there would already have been successors. The same is true for most
extensions: there was little need for them outside the ConTgXt community. So in the end that’s what
those interested should look at: how is LuaMetaTgX used in ConTgXt. It is the combined development
together with acceptance by users that makes this possible.

1.6 Dependencies

When we started using LuaTgX in ConTgXt we needed to add support for locating and reading files
as well as for OpenType processing. We also had to provide a backend driver especially when we
diverted from the pdfIEX approach. In MKII locating files is delegated to kpse but we already had
code in the runners that made it more efficient because nested lookup calls (as we have for starting
up and running MetaPost) have quite some overhead. In a full blown TgXLive installation we could
measure multiple seconds overhead. So, we carried these optimizations into the MkIV code base
and replaced kpse completely. This why we could remove it from LuaMetaTgX, which also removed
a complex dependency. When a kpse library is present you can, at your own risk, use the optional
library which (as with any optional) provides a minimal set of runtime bindings.

When it comes to fonts, in LuaTgX we also had to test plain TgX, so we made the font loader and
processing code generic, which also is the reason why Kai Eigner is involved in maintaining it. We are
aware of usage in I“TgX but as far as we know it is a patched version (likely with limited functionality)
and there using a library is the recommended way anyway. The font loader and processor in MkXL is
extended and tuned for LuaMetaTgX and because we have no reason to support plain (it can if needed
be emulated in ConTEXt) we don’t need to make that variant generic. We could implement the base
mode (native) font engine in Lua but the built-in one is fine and we see no reason to cripple TgX too
much, but you need to load the font via Lua.

The same is true for the (pdf) backend. We already did most in Lua and prototyped in MkIV before
we moved on to LuaMetaTgX. A disadvantage of not having a hard coded backend is that it increases
runtime. The first versions of LuaMetaTEX took between 10 and 20 percent more runtime and partly
that was due to the backend. Because the engine became faster and a few more primitive features
were added we could gain back performance and currently MkXL is outperforming MKIV, for various

16

reasons. A backend is only partially doing pure textual output. There are images to be dealt with,
fonts to be embedded (which can also involve virtual fonts), specific features involved (like color or
hyperlinks), etc. Most of that is actually macro package specific. One could argue that a generic
backend makes sense, but there is little use in that when it is only used by ConTgXt. I could code a
LuaTgX compatible backend but I would not be able to test it, unless I made a setup for it, which is a
waste of time.

So, these three components, although we could provide them, are currently very ConTgXt specific
so if you want to use LuaMetaTgX elsewhere you need to come up with something like that. Given
history, changes are slim that any agreement can be reached on a generic approach.! This is no real
problem because in order to use LuaMetaTgX to its full potential you probably need to rewrite a lot and
therefore likely end up in the ConIgXt mindset. If someone needs specific features that LuaMetaTEX
seems to offer, just give ConTgXt a try.?

1 We also have to be realistic. Apart maybe from fonts and hyphenation patterns there is little that macro packages have in
common. The only package that from the perspective of ConIgXt qualifies as ‘generic’ is TikZ as that was designed with
multiple macro packages in mind. We therefore try to keep supporting it in the ConTgXt ecosystem.

2 This is why we have no LuaMetaTEX specific mailing list, we use the ConTgXt mailing list(s) for that. The official source
distribution is the ConTgXt distribution where it is included in order to enable users to compile binaries if needed. This also
fits into the open source ‘source included’ paradigm. If your ConTgXt installation doesn’t ship with sources it is likely not an
official one!

17

principles

18

2 Principles

Contents

2.1 Introduction
2.2 Text fonts

2.3 Math fonts
2.4 Rules

2.5 Paragraphs
2.6 Pages

2.7 Alignments
2.8 Adjusts

2.9 Marks

2.10 Inserts

2.11 Boxes

2.12 Language
2.13 Math

2.14 Programming
2.15 Protection
2.16 Optimization
2.17 Input

2.18 Nesting

2.19 Conditions
2.20 Macros

2.21 Keywords
2.22 Directions
2.23 Hooks

2.24 Expressions
2.25 Units

2.26 Local control
2.27 Overload protection

2.28 Specifications

20

2.29 Tracing

2.1 Introduction

This is a bit odd manual but needed anyway. In the process of adding features to LuaMetaTEX and
adapting ConTgXt accordingly some decisions were made. On the one hand generic flexibility is a
criterion used when the extending engine, on the other hand practical usability in ConTgXt is used
to decide where to draw a line or make some choices. It makes no sense to complicate the already
complex engine even more, or cripple ConTgXt when cleaner (low level) solutions are possible.

Here I will collect some of the considerations and mention the choices made. These are mostly mine
but some result from discussions and experiments. This overview is not complete, new primitives are
discussed elsewhere and the ConTgXt low level manuals explain how to use these. Consider this to be
a teaser.

This summary is work in progress.

2.2 Text fonts

Plenty has been written about fonts in TgX, so here I will only mention a few aspects. Traditionally
the TgX engines works with copies of fonts at given sizes. For large fonts that is kind of inefficient.
This is why in LuaMetaTgX we can scale a font on-the-fly using \glyphscale, \glyphxscale and \gly-
physcale. This feature is also used to implement a more efficient (although not 100% metric compat-
ible) compact font mode. It works okay in text as well as math although it comes at a price: many
more calculations are needed at the engine end.

One way to get an expanded, squeezed, emboldened or slanted font in ConTgXt is to use the effects
mechanism. It is quite flexible but again comes at a price because the backend has to do more work
which is measurable, especially because effects can apply to the font or individual glyphs. However,
the advantages out-weight the disadvantages. At the cost of yet a bit more performance a more native
variant is also available using \glyphslant and \glyphweight.

21

@Dg gg

Extending, as seen in the second renderings, scales the shapes horizontally, while squeezing, in the
third renderings, does it in the vertical direction. In both cases the dimensions have to be adapted.
This is not the case when we slant. The last two samples in a row have an increased weight, and these
are the more tricky cases because here one can argue how to scale and reposition a shape. When a
shape is above the baseline we increase the height, and when it goes below we increase the depth.
The engine is capable to increase the width, height and depth and shift the shape a little. It only makes
sense to adapt the height and depth when they are non-zero. It will never be perfect, but this feature
is not perfect anyway.

The way fonts are set up in a TgX macro package often originates in the past, if only because it came
with fonts. The Computer Modern fonts are among the few that have multiple design sizes. However,
the collection is pretty much based on a ten point design. For math there are seven and five point
variants for the script sizes, for footnotes an eight point makes sense and section heads can use the
larger twelve point plus the few larger sizes. Setting up a twelve point body font environment, as we
have in ConTgXt, is quite doable with the fonts but for an eleven point body font more compromised
have to be made.

One can wonder why in ConTgXt the ten point math setup of 10/7/5 became 12/9/7 instead if 12/8.4/6
and the reason is just that when there were still bitmap fonts one didn’t want too many (intermediate)
sizes. Anyway, we’re sort of stuck with this default setup now, but nothing prevents users to redefine
a body font environment.

Another speciality of TEX (fonts) is that they have italic correction, something that lacks in OpenType
fonts (apart from math btu there it serves a different purpose). We can however emulate it, and in
ConTgXt that is an option. Given that we have to make choices it is clear that the engine can only be
supportive here, especially when we use the \glyphslant method.

A curious case is the following: in Computer Modern we find italic correction in the upright fonts, for
instance between an ‘f” and ‘h’. Dealing with this automatically is impossible because italic correction
is not to be applied between glyph runs of the same font.

By now it will be clear that when we talk fonts, from the perspective of TgX we actually talk glyphs:
the most prominent content item, although it is treated as an abstraction: a blob with dimensions
and other properties. They are always wrapped in a box, often one that comes from the par builder
where lines are packaged. They then travel around with the rest till the backend processes them and
eventually discard the nodes that relate to them: glyph nodes.

When a character is entered it ends up in a list. In a traditional approach it will be packaged (hboxed)
or enter the par builder. Before that happens font processing takes place optionally preceded by
hyphenation. In LuaMetaTgX before and after that callbacks can do all kind of things with the character
(glyph) sequence. Itis for that reason that in ConTEXt we keep them as (either or not private) Unicode,
but other macro packages might decide otherwise. The character value is in the end just a lookup key
for the engine.

22

A glyph node carries a lot of information and most relates not to processing a font but controlling
other actions as well as possible tracing. Because setting and using is up to the macro package we
keep the following simple. One can find examples in ConTEXt and in the descriptions of nodes and Lua
helpers.

A glyph carries the font identifier and a character code. The code is just the character from the input
but any time a callback can change that. But in the end the backend has to know what it gets. Because
the macro package implements the backend it has to be consistent but users don’t need to know what
actually happens, unless they plug in their own code. Of course the character code should relate to
information passed to the engine, like dimensions. There is no standard so just assume that macro
packages behave different. The font identifier combined with the character code that maps into the
characters table passes to the engine provides the par builder and packager what it needs. There
are no dimensions stored in the glyph nodes! But there are helpers that can provide the effective
dimensions of a glyph at the Lua end.

A glyph node carries a state and data, both integers, that have no meaning in the engine. They are
just efficient alternatives for attributes. In ConTgXt they play a role in font rendering but again, there
is no prescribed usage.

The scale, xscale and yscale fields in a glyph node reflect \glyphscale, \glyphxscale, \glyphyscale
as set directly or via a \fontspecdef’'d command. The weight and slant fields relate to \glyphweight
and \glyphslant. These are used in for instance the by now default ConTEXt compact font mode. So
we can have the same font identifier with different scaling. Of course this comes at a price: instead
of just picking up the width, height or depth from the font, the engine has to apply the scales to the
natural dimensions. In practice this performance hit is compensated by savings elsewhere. But it
does for instance means that in order to determine if two neighboring glyphs are from the same font
in the traditional sense, scales as well as states and data fields have to be compared. Here is how that
works in practice:

{\glyphscale 1000 infor}{\glyphscale 1000 mation}
{\glyphscale 1000 infor}{\glyphscale 1200 mation}
{\glyphweight 100 infor}{\glyphweight 120 mation}

We choose a font that has kerns:
-0.150 0.100 -0.150 -0.150 0.100

information information information

When a text gets hyphenated, the process is controlled by all kind of settings, some of which relate to
the language, so we have a language field and for practical reasons also a script field but the engine
only uses the first one. The left and right hyphenation minima (lhmin and rhmin) are also stored in
each glyph so one can control them locally, not that we’ve seen users doing that.

We only mention the control and option fields because they reflect what actually is permitted in various
stages. We also have a protection state, that can be used to prevent duplicate processing. There are
a few state variables that keep track of glyph originating in a pre, post or replacement discretionary
component (discpart and disccode).

The expansion field stores the effective expansion factor as determined by the par builder. The back-
end has to follow up on this. When fonts features are applied kerning (or positioning in OpenType
speak) can be be stored in the left, right and raise fields. This saves injecting kern nodes. The user
applied \glyphxoffset and \glyphyoffset also are reflected in fields: xoffset and yoffset.

23

The final set of fields concern math, because after math has been processed glyphs is what we are left
with. One can set a group, index and/or properties. These can come in handy when interpreting the
stream (think of exporting, verbose math or tagging). Usage is very macro package specific.

The main message here is that in various stages of the rendering glyph fields are consulted, set,
adapted. It definitely means that where in original TgX character nodes were one memory word, in
LuaMetaTgX they are now 15 memory words. (At some point I might add some more details here.)

Closely related to glyph nodes, definitely from the perspective of processing fonts, are discretionary
nodes. When you manually enter them the three components are:

\discretionary {pre break} {post break} {replace}

and when for instance an explicit hyphen - or a sequence of them that becomes a compound hyphen,
is entered that also becomes such a triplet node. Of course the hyphenate machinery produces them
in abundance.

In LuaMetaTgX (as follow up on LuaTgX) we don’t use the traditional TgX approach of only a pre and
post component combined with jumping over the replace. We have explicit pre, post and replace fields
and these can have a list of glyphs (plus some more). A font processor has to look into these three
streams and make decisions based on matches with preceding or following glyphs. Take it from us
that this is a complex and not easy to follow process, especially not for complex fonts with contextual
lookups. A word can have more than one discretionary.

Most room in the 13 memory word node goes to housekeeping these three components and that has
to be managed carefully so from the Lua end control is restricted. In addition we have a penalty and
options field. We also have a math specific class field (so yes, math can have discretionaries) and a
state field orphaned that we use in the line-break routine. Overall it gives us a lot of control over the
process of hyphenation and breaking content over lines.

Eventually these discretionaries disappear from the node list. One can decide to keep them but it
makes little sense. We loose information when the lines are constructed so keeping the inline only
leaves us with an incomplete picture. Instead we store information with the glyphs in the mentioned
disc* fields so that we can to some extend reconstruct hyphenation points and provide visual feedback
to the user on request; in the meantime ConTgXt has a bit of a reputation for that kind of feedback. One
lines are normalized, read: have a well defined final structure with respect to various space related
properties, the fact that there are no longer discretionary nodes makes later processing of such lists
a bit more efficient.

2.3 Math fonts

Support for math in an Unicode aware engine is also driven by the repertoire of characters and their
organization in Unicode, as well as by OpenType math as cooked up by Microsoft with a bit of input
from TgX folk.

The engine is agnostic when it comes to Unicode: there are no character codes interpreted in special
ways. There are math alphabets but these are not special: in a traditional eight bit engine we have
families to deal with them, in a Unicode aware engine there are several solutions. The most important
character property that has some consequence is the math class but for dealing with that we’re on our
own anyway. Everything Unicode related is up to ConTgXt to deal with, and it is the macro package that
drives the engine, using the constructs that are available, like atoms with specific classes, fractions,
accents, delimiters, fences, radicals, operators etc.

24

When it comes to fonts it is more complex. The OpenType math standard is driven by the fact that
MS Word provides a math editor and therefore needs a font. That font is Cambria and it is (at the
time of writing this) the only font that comes from the origin. It has not been extended, nor fixed so
basically what is in there kind of has become the standard. The other OpenType math fonts are a
curious mix of old and new technology and again not much has happened there.

Now, when it comes to choices here, a few can be made based on conclusions drawn during decades
of dealing with these fonts and the assumed technology.

* There has be no real developments so we can just assume that what we got is what we will have
forever. Cambria is and remains the standard, quite some fonts shipped with TgX have issues that
will stay, and new fonts, especially when developed outside TEX’s scope likely also have issues,
because, after all, what is used for testing them?

* Only a few renders support the new technology. It is unlikely that MS Word will change and
basically XqIgX and LuaTgX are also frozen. On the web old school fonts are used, at least till 2023.
Plenty of time went by since the beginning of the century and nothing improved.

* The most important font properties that play a role are parameters, italic correction, variants and
extensibles, anchors for accents, stylistic alternates, script alternates and staircase kerns. There
are some rules of how to apply italic correction, but many fonts make them unapplicable. The same
is true for anchors and kerns. There are only top kerns.

» [Italic correction is a flawed concept and we decided to just ignore them: when specified we add it
to the width and discard them afterwards. The value is translated into a bottom right corner kern.
For large operators we translate them to top and bottom accents.

» Top accents can be flawed so in many cases we can just ignore them. They only make sense for
italic shapes anyway.

» Staircase kerns are a nice idea but make no sense. First of all they concern two characters, nucleus
and script, but we can also have accents, fraction, fenced stuff and other constructs in scripts
so instead we prefer a system of corner kerns. Also, we noticed that staircase kerns are often
implemented partially and even then not that well, probably because there was no way to test
them. Even worse is that when they are inconsistent formulas can look rather inconsistent. So,
we translate staircase kerns into corner kerns and add and/ overload them by corner kerns. These
kerns can then be applied for any reasonable combination.

* Extensible are mixed breed. Rules should be extensibles but aren’t. Some snippets have Unicode
points so they can be used to construct missing glyphs but the repertoire is inconsistent. Because
we don’t expect Unicode to adapt we therefore provide alternative solutions.

* The repertoire of math parameters is on the one hand incomplete and on the other hand less de-
pendent on the font and more on intended usage. So, apart from a few, we end up with adapting
to our needs. It is part of the more granular control that we wish.

* Gaps in alphabet vectors are a pain but the engine is agnostic of them. For some reason the TgX
community let itself down on this so it has to cope at the macro level. It is by now an old problem.

So, to summarize the font part, an alternative standard could discard the concept of italic correction
and go for proper widths, a simplified corner kern model, provide top and bottom accents, prescribe
a repertoire of extensibles and snippets and at least fill the gaps in alphabets instead of relying on

25

shared glyphs. It won’t happen any time soon, but still we do follow that approach and have the engine
ready for it. Because we adapt the fonts runtime to this, we can eventually remove all the code related
to italic correction and staircase kerns, simply because it is not used.

2.4 Rules

The original TEX engine actually has only two graphical elements: glyphs and rules. These have a
width, height and depth and when decisions are made, for instance when deciding where to break a
line, or when boxes are constructed these dimensions have to be known. Actually, TEX doesn’t really
care what these elements are, it’'s the dimensions that matter most. Graphics for instance can be
abstract objects, traditionally injected via so called specials wrapped into a box of given dimensions.
The pdfTEX and later engines added a native representation but basically it acted like a box (or rule
if you like). It’s the backend that turns glyphs, rules and these special boxes into something that one
can see and print.

Rules have the three dimensions we mentioned. There are horizontal and vertical rules, but only at
the primitives level. Once you specified an \hrule or \vrule it became a generic rule with the main
difference being the default dimensions. A rule initializes with so called running dimensions, think of
signals that the final dimension comes from the encapsulating box.

Here we have a vertical rule: _ with width 3cm, height 5mm and depth 2mm. If we

don’t specify a width we get the default thickness of 0.4pt, as in ‘ and when we prefix it with \leaders

When we put on an \hrule on an empty line the running width kicks in:

which is a feature that one can use in for instance tables. However the fact that we only talk rectangles
means that there is only a limited repertoire of applications. In order to frame some text you need four
(disconnected) rules, For a background fill you can use a single rule. There is also an application for
rules that have height and depth but no width: these so called struts that can enforce vertical spacing
and dimensions.

So what does LuaMetaTgX bring to the rules? Because the engine itselfis only interested in dimensions
it’s more about passing information to the backend. For this we have a few more fields in the rule
nodes that can be set from Lua. This permits for instance to hook in MetaPost graphics that adapt like
rules. There are a few more primitives, one for making struts: they can take their dimensions from a
character. In math mode they’re invisible and don’t influence inter-atom spacing but still take their
role in determining dimensions. Then there are the virtual rules that have dimensions (to be used in
the backend) but don’t contribute in the frontend. The \novrule and \nohrule do contribute but are
ignores in the backend so they are cheap alternatives for empty boxes with specific dimensions set.

Some rule subtypes are set by the engine, for instance the math engine marks over, under, fraction
and radical rules. In Lua one can mark outline, user, box and image rules so that node list processors
can take their properties into accounT when needed, the frontend is only interested in the dimensions
and sees them as normal rules.

26

Here we have the following call:
\hrule height \strutht depth \strutdp on 0.04tw off 0.01ltw \relax

The on and of f are among the new keys and they do nothing at the TgX end. It is the backend that will
create the dash pattern. You can achieve the same effect with leaders but while here we have a single
rule, for a leader the engine will make as many rules as are needed for this dash pattern. This is a good
example of adding little to the fontend in order to make the backend do the job. In a similar fashion
outlines are delegated. Other tricks involve offsets and there is room for some additional features but
for now they are on the “Only when I need it.” list, after all we need something to wish for.

Like with glyphs we’ll quickly discuss what information travels with the nine memory word large rule
nodes, but let’s first stress that because they are basically one of the two content items, it makes a
lot of sense to see this blob with dimensions as more than rules. The fact that they have dimensions,
means that routines that look at those, like a packager or line break routine, has only glyphs, rules
and boxes to take into account when it comes to for instance height and depth. Adding a rule subtype
is way cheaper than adding a new node type with dimensions because that would demand adaption of
places where dimensions come into play but also Lua code that operates on lists.

This might be a good moment to mention that in TgX engines traditionally fields like width, height and
depth were kept in equivalent places in the memory word set so that macros could be used to access
them. In LuaMetaTgX we went more verbose and every node has its own accessors. This permits
extending and makes for less potential errors. We leave it to the compiler to deal with the (a bit) more
code that is needed.

Because we use rules as template for possible extensions but also for some control over typesetting we
have more fields than the three dimensions. For instance we have xoffset and yoffset for a displacement
and left and right for margins. Because rules are mode sensitive (horizontal vs. vertical) these last
two can also result in top and bottom margins.

We have a rulethickness that can be used in the backend; the engine just passes it around. The same
is true for the data field but some of the options in options are there for the engine.

There are also shared fields, think extra 1 and extra 2, but their convenient names depend on the
subtype, so we have lineon and lineoff for user rules that permit implementing a dashed rule. Strut
rules provide font and character. A virtual rule overloads the two margin fields and thereby can
provide the virtual dimensions while the engine calculates with zero dimensions in the usual fields.
The discardable field is there for internal purposes (the balancing mechanism). For sure there will be
be more in due time.

2.5 Paragraphs

A lot can be said about paragraphs but we keep it short here. Much more can be found in for instance
the articles that we wrote on the subject. When you enter (or generate) text it will be added to a list
(of nodes). That list can become a horizontal box, vertical box, or end up in the main vertical list.
When we go vertical the list will be split in lines and the process is called line breaking. Between
the lines we can get penalties that tell the machinery how a paragraph of lines can be split over page
boundaries.

When breaking the engine can use up to three passes: a first pass that uses \pretolerance as crite-
rion, a tolerant pass with hyphenation enabled using \tolerance and an emergency pass that kicks

27

in \emergencystretch when set. In LuaMetaTgX we can have additional passes that come online
depending on criteria and/or thresholds; search for \parpasses to learn more about this.

The par builder in LuaMetaTgX has more features that users can control and also normalized the
resulting lines so that later on from the Lua end they can be manipulated easier. There are also ways
to let embedded inserts, marks and (v)adjusts migrate to the outer level. All this takes more runtime
than in original TEX but in practice one won'’t really notice this because we gain in other places.

Most or what is new is available as features in ConTEXt, most noticeably in extra keys to \setupalign.
It is also good to know that we have ways to hook specific features in what is called ‘wrapping up para-
graph’. Also, contrary to traditional TgX we configured ConTgXt to use the mechanism that freezes
paragraph specific parameters with the current paragraph so that there is no (or at least less) inter-
ference with grouping.

2.6 Pages

The page builder is less complex than the par builder as it doesn’t really optimize. When the target
size overflows it backtracks to the last best break. The main complication is in handling the inserts:
these need to stay with the content and therefore can break over a page boundary.

In LuaMetaTgX we added only a few features like \pageextragoal for some slack in calculations and
we also added the more explicit \pagevsize and a few state access primitives. We might at some
point extend this builder a bit although the ‘balance’ mechanism (that for instance in ConTgXt is used
in column sets) already provides a multi-pass solution.

2.7 Alignments

Alignments are on the one hand an independent builder but because cells in tables are kind of inde-
pendent snippets this mechanism is also very much mixed in the parser. The engine is, when it comes
to processing content, in text mode, math mode and both these states can happen inside alignments.
When the alignment (group) is finished the table will be constructed from the snippets which happens
in a few steps because the dimensions can depend on the content of a whole row of column.

This mechanism is rather straightforward if we forget about possible look-ahead issues in the ‘pre-
amble parsing’ and ‘determining if we’re done’. This issue is a bit less problematic in LuaMetaTgX
because we can define macros as being \noaligned which instructs the scanner to not expand but
assume we’'re still doing table (cells).

Compared to LuaTgX there are some extras, like setting attributes on cells, as well as optimizations,
like ignoring zero \tabskip which makes tables that span hundreds of pages and many columns less
memory hungry.

2.8 Adjusts

You can put stuff before and after lines using \vadjust and at the edges using \localleftbox and
alike. Both are seen in the par builder, where the boxes contribute to the dimensions and the adjusted
material is inserted when the paragraph is wrapped up and contributed to the current list. In Lua-
MetaTgX these mechanism have been extended so that we can actually uses them in am meaningful
way.

28

2.9 Marks

These signals in the text are used for managing (for instance) running headers and a few extra features
have been added, like migration to an outer level and resets. In MKkIV we handled marks in Lua but
with LuaMetaTgX it makes sense to use the engine.

2.10 Inserts

Inserts are signals that end up in lines and migrate to the outer level, that is the main vertical list. An
example of usage is footnotes. In the main vertical list they are bound to the line they relate to so that
the page builder can make sure that they end up on the same page. In LuaMetaTgX they can bubble
up from deeply nested boxes. Contrary to the traditional binding of an insert class to various registers
in LuaMetaTgX they can be managed independently which means that they have more properties.

2.11 Boxes

Boxes are one of the most important structures. Eventually the result is a bunch of nested boxes with
glyphs, kerns, glue and so called whatsits that the backend will convert into something, like a pdf file.
We have a low level manual on boxes and their many properties.

.Where glyphs are the visual elements, boxes are invisible wrappers. A line is a box that groups (col-
lects) glyphs and spacing but we don’t really see that box. In this paragraph we enable the ConTEXt
.visualizer so we do see the boxes when you zoom in. Every line is a \hbox with a height and depth
.depending on the content but a width determined by the \hsize. Of course we can have also boxes in
the line, as we see with the IgX logo, where the lowered E is moved down boxed. |

In a traditional engine box nodes have a width, height and depth field for dimensions but also a shift
field that signal a displacement. Moving a box while still keeping its dimensions is used in the math
builder and post line break routine but in LuaMetaTgX we did away with that in most places. The
reason is that where in original TgX no one is confronted with these engine imposed/applied shifts, in
an opened up LuaMetaTgX it can be confusing. Of course the field is still there, also because it’s used
in \moveleft and friends. In addition we can set offsets, orientation in four ways, anchor the box on
corners and such. As a result we have more keywords to check when we set a box which actually was
one of the reasons to optimize the keyword scanner.

2.12 Language

The language model in LuaMetaTgX is similar to LuaTgX. A glyph node has a language field that is
used by the engine for hyphenation. There are some fields in the glyph node that carry states related
to hyphenation and in LuaMetaTEX we have more control options. There are some text codes that
one can see as related to languages, like \lccode and \uccode and even \sfcode but especially in a
Unicode environment the macro package likely will do some independent of these shared vectors.

Hyphenation patterns are loaded at runtime which saves on the size of the format file; after all we
seldom need more than one, and pre-loading dozens makes little sense. The hyphenate and exception
handlers provide features for compound words and penalties and also have callbacks to add additional
functionality. Users will not directly mess with these and trust the macro package to do the right thing.

29

2.13 Math

Plenty has been written about the multi-year project of opening up and extending the math engine.
Opening up and providing full control is part of supporting and experimenting with OpenType math
fonts but we already discussed this in a previous section. Another aspect of opening up is making
hard coded properties configureable, even if that feature will hardly be used, simply because the
built-in defaults make sense. Then there is all kind of control over rendering that can be controlled by
keywords to the math specific elements like atoms, fractions, operators, accents, radicals and fences.

Because traditional fonts are phased out in favour of (often flawed) OpenType variants much of what
is new is also controlled by fonts, be it that we have our own extensions. In ConTgXt mathfonts are
tweaked to fit our model. Inter atom spacing, penalties, discretionaries, continuation scripts (think
multiscripts, pre and post), additional classes, dictionaries, linebreaks, carrying properties over math
groups, are all features that make it possible to renderer more precise math without the need for
manual intervention. It often looks, for instance from posts on support platforms, that the more or
less standard math has to come with tweaking your source; it has become an accepted practice. In
ConTgXt we always had structure and we added some more of that and because the math engine
carries more information around we could eventually simplify some code otherwise done in Lua.

By looking at what ConTgXt actually needs, we could decide to strip down the math engine (old as well
as new features). We can also decide to eventually just assume wide fonts to be used and drop old font
support. After all, because one has to load the fonts with Lua, it’s not hard to map traditional fonts to
(extended) OpenType alternatives, which is actually what we do anyway with for instance Antykwa.

2.14 Programming
There are some major extensions to the way one can program macros, of which we mention a few:

* Macros can have more complex definitions, for instance optional arguments, mandate braces, op-
tional spaces between arguments.

* We have more conditionals and conditionals can be less nested by using \orelse and continued
tests at the same nesting level.

* We have various kind of native loops which makes for more advanced fully expandable solutions.

* There are additional, more advanced, expression scanners for numbers (integers) and dimensions.
In fact, when a value is needed these scanners can kick in (curly braced values).

* There are user units that hook into registers and other properties. Of course this feature is rather
macro package dependent.

* We can have local expansion, a.k.a. ‘local control’ which means that the main loops basically acts
as a function.

* There are more (powerful) input parsers at the Lua end which helps making extensions to the
syntax without bloating the already large set of primitives.

* Macros can have properties that make them more robust in alignment and expansion contexts and
can be protected against overloading.

There are many small extensions that are the result of years of experience with programming in the
TgX language and accumulated observations. Of course most is driven by ConTgXt development. Some
of the new programming features are explained below.

30

2.15 Protection

The idea behind TgX is that users define macros. However, when they do so in the perspective of a
macro package there is the danger that core functionality can be overwritten. Now, one can of course
make all primitives less accessible, for instance by some prefix. But that makes no real sense for
features that belong to the language. When users use Camel Case for their names they’re unlikely to
run into issues, so while internal macros are actually prefixed, we don’t do that with the primitives,
so you can write code that looks TgX.

Over time ConTgXt has been ridiculed by non users for prefixing with \do or \dodo but that’s by folk
who love long (cryptic) names with many underscores and other inaccessible characters. The way
we protect users from accidental overloading is by using the LuaMetaTgX overload protection system.
Macros (and primitives) can be tagged in way so that the engine can issue warning or even error in
case of an undesirable definition.

There is of course some overhead involved in for instance every \def or \let but it is little and the
engine is fast anyway.

2.16 Optimization

There are many places where the engine could be optimized without getting obscure. One reason
is that the memory layout is somewhat different because we snap to 8, 16, 32 or 64 bits and the
engine being a Unicode capable one already has more memory available in some places than what
was needed. Also, knowing usage patterns, it was possible to identify possible bottlenecks and widen
the necks.

Furthermore, it was possible to improve input handling, logging, save stack usage, keyword parsing,
expressions, and much more. On the other hand nodes became larger so there we loose some. The
LuaMetaTgX engine is faster than LuaTgX, although some of the gain is lost on the fact that one needs
to use Lua backend.

2.17 Input

The input can come from files, token lists, macros and Lua which means many places. When it comes
from Lua it can be tokens, nodes, string, and each has its special way of handling and the engine has
to keep track of this when it accumulated the input that pops up after a Lua call. This is done as
efficient as possible without sacrificing performance. The fact that we have utf should not have too
much impact.

2.18 Nesting

When you enter a group a stack boundary is set and when some value changes the original value is
pushed on the stack. After leaving the group values are restored. The engine tries to avoid redundant
actions which improves memory usage and runtime.

Every macro expansion, opened file, expanded token list, etc. pushes the input stack and that comes
with overhead. Again we have tried to minimize the impact and thereby gain a bit over LuaTgX.

Other stacks like those used by math, alignment, conditionals, expressions etc. have also been im-
proved some. On the other hand, by unweaving some shared code there can be a price to pay, but as
with everything usage patterns indicate no penalty here.

31

2.19 Conditions

We already had more conditionals in LuaTgX but again the repertoire of conditionals has been ex-
tended. This permits us to remove some middle-layer helpers and stay closer to the core language. It
also helps to improve performance.

Another important addition has been \orelse than permits us to write test in a way similar to what
other language provide with for instance elseif or else if.

2.20 Macros

Expanding macros happens a lot especially in a more complex macro package. This means that adding
features in that area can have a large impact on runtime. Nevertheless the argument parser now
provides a few handfuls of variants in picking up arguments with out noticeable degradation, especially
because these new features can gain performance.

At the same time there have been some optimizations in storing macro related states, checking and
accessing parameters. There are additional (internal) classes of macros that make for a more natural
implementation; for instance \protected macros are now first class commands.

2.21 Keywords

Some primitives accept one or more keywords and LuaMetaTgX adds some more. In order to deal
with this efficiently the keyword scanner has been optimized, where even the context was taken into
account. As a result the scanner was quite a bit faster. This kind of optimization was a graduate
process the eventually ended up in what we have now. In traditional TgX (and also LuaTgX) the order
of keywords is sometimes mixed and sometimes prescribed. In most cases only one occurrence is
permitted. So, for instance, this is valid in LuaTgX:

\hbox attr 123 456 attr 123 456 spread 10cm { }
\hrule width 10cm depth 3mm
\hskip 3pt plus 2pt minus 1pt

The attr comes before the spread, rules can have multiple mixed dimension specifiers, and in glue
the optional minus part always comes last. The last two commands are famous for look ahead side
effects which is why macro packages will end them with something not keyword, like \relax, when
needed.

In LuaMetaTgX the following is okay. Watch the few more keywords in box and rule specifications.

\hbox reverse to 10cm attr 123 456 orientation 4 xoffset 10pt spread 10cm { }
\hrule xoffset 10pt width 10cm depth 3mm
\hskip 3pt minus 1pt plus 2pt

Here the order is not prescribed and, as demonstrated with the box specifier, for instance dimensions
(specified by to or spread can be overloaded by later settings. In case you wonder if that breaks
compatibility: in some way it does but bad or sloppy keyword usage breaks a run anyway. For instance
minuscule results in minus with no dimension being seen. So, in the end the user should not noticed
it and when a user does, the macro package already had an issue that had to be fixed.

32

2.22 Directions

The directional model in LuaMetaTgX is a simplified version the the model used in LuaTgX. In fact, not
much is happening at all: we only register a change in direction. The approach is that we try to make
node lists balanced but also try to avoid some side effects. What happens is quite intuitive if we forget
about spaces (turned into glue) but even there what happens makes sense if you look at it in detail.
However that logic makes in-group switching kind of useless when no properly nested grouping is
used: switching from right to left several times nested, results in spacing ending up after each other
due to nested mirroring. Of course a sane macro package will manage this for the user but here we
are discussing the low level injection of directional information.

This is what happens:
\textdirection 1 nur {\textdirection 0 run \textdirection 1 NUR} nur
This becomes stepwise:

injected: [push 1]lnur {[push O]run [push 1]NUR} nur
balanced: [push 1]nur {[push O]run [pop 0] [push 1INUR[pop 11} nur[pop O]
result : run {RUNrun } run

And this:
\textdirection 1 nur {nur \textdirection 0 run \textdirection 1 NUR} nur
becomes:

injected: [+TRTInur {nur [+TLT]run [+TRTINUR} nur
balanced: [+TRTInur {nur [+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:
\textdirection 1 nur {{\textdirection 0 run} {\textdirection 1 NUR}} nur
This becomes:
run RUN run run
Compare this to:
\textdirection 1 nur {{\textdirection 0 run }{\textdirection 1 NUR}} nur
Which renders as:
run RUNrun run
So how do we deal with the next?

\def\ltr{\textdirection 0\relax}
\def\rtl1{\textdirection 1\relax}

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

33

It gets typeset as:

run run RUNrun RUNrun run
run run runRUN runRUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir node.
But that way we loose the subtype information that for some applications can be handy to be kept
as-is. This is why we now have a variant of \textdirection which injects the balanced node before
the skip. Instead of the previous definition we can use:

\def\ltr{\linedirection 0\relax}
\def\rt1{\linedirection 1\relax}

and this time:

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run run RUN run RUN run run
run run run RUN run RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be handled
in the input or macro package because there is no way we can predict the expected behavior. In fact,
the \linedirection is just a convenience extra which could also have been implemented using node
list parsing.

Directions are complicated by the fact that they often need to work over groups so a separate grouping
related stack is used. A side effect is that there can be paragraphs with only a local par node followed
by direction synchronization nodes. Paragraphs like that are seen as empty paragraphs and there-
fore ignored. Because \noindent doesn’t inject anything but a \indent injects an box, paragraphs
with only an indent and directions are handles and paragraphs with content. When indentation is
normalized a paragraph with an indentation skip is seen as content.

2.23 Hooks

In many places callbacks are possible that can be used for implementing extensions or extensive trac-
ing. Of course usage is macro package dependent and users should be aware of possible interferences
when callbacks are chained. There are ways to block changes. Compared to LuaTgX, some callbacks
are mandate, like reading from files or dealing with (and even loading) fonts. Some callbacks can
replace built-in functionality but that will probably seldom be done.

Although officially callbacks are the way to extend the engine, we did in many places add functionality,
simply because it integrates better in already complex features (like the par builder) and it is also
faster.

2.24 Expressions

The e-TgX expression scanner has been optimized and extended with a \divide compatible operator.
In addition we have a scanner with more features and another (experimental) one that does operator

34

priorities proper (and internally uses an reverse Polish stack approach). When a number or dimension
is expected a braced value is parsed as extended expression.

2.25 Units

The familiar TgX units like pt and cm are supported but since the 2021 ConTgXt meeting we also
support the Knuthian Potrzebie, cf. en.wikipedia.org/wiki/Potrzebie. The two character acronym
is dk. One dk is 6.43985pt. This unit is particularly suited for offsets in framed examples.

In 2023 we added the Edith (es) and Tove (ts) as metric replacements for the inch (in). As with the
dk more background information can be found in documents that come with ConTgXt and user group
journals. The eu unit starts out as one es but can be scaled with \eufactor.

\localcontrolledloop -5 55 5 {
\eufactor=\currentloopiterator
\dontleavehmode\strut
\vrule height .les depth .25ts width 1ldk\relax\quad
\vrule height .les depth .25ts width leu\relax\quad
\the\currentloopiterator
\par

}

This example code shows all four new units. Watch how \eufactor is clipped to a value in the range
1 — 50. The default factor of 10 makes the European Unit equivalent to ten Toves or one Edith.

-5
0

E T B BB SN EEEENERN
I-
(@)
—_
(@)
—_
o1
N
(e}
N
@)
w
(@)
w
(@)
I
(@)
I
o1
o1 U1
62 BNen]

In addition to these there can be user units but because these are macro package dependent they are
not discussed here.

2.26 Local control

There are a few new primitives that permit what we call local controlled expansion. This permits
for instance expanding non expandable macros and even typesetting inside an expansion context like
\edef. Regular TgXhas a main loop to where it returns after every primitive action, but local control
let the engine go into a nested main loop.

35

2.27 Overload protection

Protection is achieved via prefixes. Depending on the value of the \overloadmode variable warnings or
errors will be triggered. Examples of usage can be found in some documents that come with ConTgXt,
so here we just stick to the basics.

\mutable \def\foo{...
\immutable\def\foo{...
\permanent\def\foo{...
\frozen \def\foo{...
\aliased \def\foof{...

e el el el o

A \mutable macro can always be changed contrary to an \immutable one. For instance a macro that
acts as a variable is normally \mutable, while a constant can best be immutable. It makes sense to
define a public core macro as \permanent. Primitives start out a \permanent ones but with a primitive
property instead.

\let\relaxone \relax 1: \meaningfull\relaxone
\aliased \let\relaxtwo \relax 2: \meaningfull\relaxtwo
\permanent\let\relaxthree\relax 3: \meaningfull\relaxthree

The \meaningfull primitive is like \meaning but report the properties too. The \meaningless com-
panion reports the body of a macro. Anyway, this typesets:

1: \relax
2: primitive \relax
3: permanent \relax

So, the \aliased prefix copies the properties. Keep in mind that a macro package can redefine prim-
itives, but \relax is an unlikely candidate.

There is an extra prefix \noaligned that flags a macro as being valid for \noalign compatible usage
(which means that the body must contain that one. The idea is that we then can do this:

\permanent\protected\noaligned\def\foo{\noalign{...}} % \foo is unexpandable

that is: we can have protected macros that don’t trigger an error in the parser where there is a look
ahead for \noalign which is why normally protection doesn’t work well. So: we have macro flagged
as permanent (overload protection), being protected (that is, not expandable by default) and a valid
equivalent of the noalign primitive. Of course we can also apply the \global and \tolerant prefixes
here. The complete repertoire of extra prefixes is:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant
mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted
enforced all is permitted (but only in zero mode or ini mode)

36

aliased the macro gets the same flags as the original

untraced the macro gets a different treatment in tracing

The not yet discussed \instance is just a flag with no special meaning which can be used as classifier.
The \frozen also protects against overload which brings amount of blockers to four.

To what extent the engine will complain when a property is changed in a way that violates the flags
depends on the parameter \overloadmode. When this parameter is set to zero no checking takes
place. More interesting are values larger than zero. If that is the case, when a control sequence is
flagged as mutable, it is always permitted to change. When it is set to immutable one can never change
it. The other flags determine the kind of checking done. Currently the following overload values are
used:

immutable permanent primitive frozen instance

1 warning * * *

2 error * * *

3 warning * * * *

4 error * * * *

5 warning * * * * *
6 error * * * * *

The even values (except zero) will abort the run. A value of 255 will freeze this parameter. At level
five and above the \instance flag is also checked but no drastic action takes place. We use this to
signal to the user that a specific instance is redefined (of course the definition macros can check for
that too).

The \overloaded prefix can be used to overload a frozen macro. The \enforced is more powerful and
forces an overload but that prefix is only effective in ini mode or when it’s embedded in the body of a
macro or token list at ini time unless of course at runtime the mode is zero.

So far for a short explanation. More details can be found in the ConIgXt documentation where we
can discuss it in a more relevant perspective. It must be noted that this feature only makes sense a
controlled situation, that is: user modules or macros of unpredictable origin will probably suffer from
warnings and errors when de mode is set to non zero. In ConTEXt we're okay unless of course users
redefine instances but there a warning or error is kind of welcome.

There is an extra prefix \untraced that will suppress the meaning when tracing so that the macro
looks more like a primitive. It is still somewhat experimental so what gets displayed might change.

The \letfrozen, \unletfrozen, \letprotected and \unletprotected primitives do as their names
advertise. Of course the \overloadmode must be set so that it is permitted.

2.28 Specifications

We need to discuss specifications and this will be a bit more detailed in terms of mentioning primitives.
In original TgX we have \parshape. This is an array of indentations and widths with a variable number
of entries. The engine manages an array of memory words from which it can take slices called nodes.
The start of such a slice is a node pointer (actually an index in that memory array). A paragraph shape
is stored in such a slice. Once it’s no longer used the node is returned to a pool and can be used again
later. When the engines runs low on memory it can combine pooled nodes and these shape nodes are

37

a good candidate for that as they can be large. But it is suboptimal. The e-TgX engine introduced more
arrays, like \widowpenalties and in

LuaMetaTgX we added for instance \parpasses. We also extended the LuaTgX initial par node with
many more fields, and some of these point to these variable nodes, for instance \linepenalties or
\orphanpenalties and we make copy of these, unless, as we will see, they are defined as constant.
The more extensive usage of these variables nodes made for a change in approach. These arrays are
now small fixed size nodes with a pointer to a dynamically allocated array of data. This comes at some
cost but on a modern machine that is not much. The advantage is that we are less likely to run our of
node memory. The generic node and mechanism that manages are called specifications.

Original TgX has only \parshape, e-TgX added four and LuaMetaTEX went on adding:

\parshape dimension pairs
\interlinepenalties integer pairs
\clubpenalties integer pairs
\widowpenalties integer pairs

\displaywidowpenalties

integer pairs

\adjacentdemerits integer pair
\balancefinalpenalties integer pairs
\balancepasses multiple field sets
\balanceshape multiple field sets
\brokenpenalties integer pairs
\fitnessclasses integers

\mathbackwardpenalties
\mathforwardpenalties

integer pairs
integer pairs

\orphanlinefactors integers
\orphanpenalties integer pairs
\parpassesexception multiple field sets
\parpasses multiple field sets
\toddlerpenalties integer pairs

\specificationdef\count
\specificationdef\dimen
\specificationdef\float

integer (pairs)
dimension (pairs)
posit (pairs)

We set these specification according to their purpose but it always starts with a counter indicating
how many entries to expect, where zero resets the specification.

\somespecification
count
[options]
one or more [single|pair|fieldset]

We can’t set individual fields, it always has to be a whole specification, but we can get fields values.
In e-TgX we have \parshapelength, \parshapeindent and (weirdly named) \parshapedimen which
best can be aliased to \parshapewidth. Of course one can wonder why these are needed. For balanc-
ing shapes we have \balanceshapevsize, \balanceshapetopspace and \balanceshapebottomspace.
The passes don’t have such introspection helpers. In order not to drown in primitives just for the sake
of tracing we added a few generic accessor helpers that can be used like:

\widowpenalties 5 option 2 100 150 200 250 300 350 400 450 500 550

38

o®

here 5

bit 2 set when double
penalty 3 left (300)
penalty 3 right (350)

\the \specificationcount \widowpenalties
\the \specificationoptions \widowpenalties
\the \specificationfirst \widowpenalties 3
\the \specificationsecond \widowpenalties 3

o® o°

o®

We use these primitives to implement a serializer in ConTEXt so that we can say:

\parshape 3 Omm \hsize 20mm {\hsize-20mm} 30mm {\hsize-30mm} \relax
\thespecification\parshape

and get:
3: 0.0pt,513.00317pt 56.9055pt,456.09767pt 85.35826pt,427.64491pt.

When \the is applied to a specification with double entries you need to pass an extra subindex. Per
tradition \the\widowpenalties takes an integer argument as index into the array. A zero value re-
turns the size. A minus one will skip the index scanning and when we have a left- and right page
penalty set we need to pass the subindex. The minus one permits us to overload the singular ones:

\permanent\protected\untraced\def\widowpenalty {\widowpenalties \minusone} % once
\permanent\protected\untraced\def\clubpenalty {\clubpenalties \minusone} % once
\permanent\protected\untraced\def\displaywidowpenalty{\displaywidowpenalties\minusone} % once
\permanent\protected\untraced\def\brokenpenalty {\brokenpenalties \minusone} % singular anyway
\permanent\protected\untraced\def\orphanpenalty {\orphanpenalties \minusone} % once
\permanent\protected\untraced\def\toddlerpenalty {\toddlerpenalties \minusone} % once
\permanent\protected\untraced\def\interlinepenalty {\interlinepenalties \plusone } % repeats
\permanent\protected\untraced\def\adjdemerits {\adjacentdemerits \minusone}

And we can actually at some point to decide to drop the e-IgX ones:

\permanent\protected\untraced\def\parshapelength{\specificationcount \parshape}
\permanent\protected\untraced\def\parshapeindent{\specificationfirst \parshape}
\permanent\protected\untraced\def\parshapewidth {\specificationsecond\parshape}

\aliased\let\parshapedimen\parshapewidth % weird etex name

2.29 Tracing

There is are more tracing options, like in math, alignments and inserts, and tracing can be more
detailed. This is partly a aide effect of the need for exploring new features. Tracing is not always
compatible, if only because there are more possibilities, for instance in the way macros are defined
and can handle arguments.

constructions

39

of text that started out as one long line

this as good as possible is one of TgX's
virtues

40

3 Constructions

Contents
3.1 Introduction
3.2 Boxes

3.3 Math style variants
3.4 Math scripts

3.5 Skewed fractions
3.6 Math fractions

3.7 Math radicals

3.8 Math accents

3.9 Math fences

3.1 Introduction

This is more a discussion of the way some constructs in for instance math work. It will never be
exhausting and mostly is for our own usage. We don’t discuss all the options but many are interfaced
in higher level macros in ConTgXt. This chapter will gradually grow, depending on time and mood.

3.2 Boxes

Boxes are very important in TgX. We have horizontal boxes and vertical boxes. When you look at a
page of text, the page itself is a vertical box, and among other things it packs lines that are themselves
horizontal boxes. The lines that make a paragraph are the result of breaking a long horizontal box in
smaller pieces.

his is a vertical box. It has a few lines

ut has been broken in pieces. Doing

i

There is a low level manual on boxes so here we can limit the discussion to basics. A box is in TgX
speak a node. In traditional TgX it has a width, height, depth and shift.

Here we see a box and the gray line is called the baseline, the height goes up and the depth goes down.
Normally the height and depth are determined by what goes in the box but they can be changed as
we like.

\setbox\scratchboxone\ruledhpack{SHIFT 1}

41

\setbox\scratchboxtwo\ruledhpack{SHIFT 2}
\boxshift\scratchboxtwo lex \dontleavehmode \box\scratchboxone\box\scratchboxtwo

\setbox\scratchboxone\ruledvpack{SHIFT 3}
\setbox\scratchboxtwo\ruledvpack{SHIFT 4}

\boxshift\scratchboxtwo lex \box\scratchboxone\box\scratchboxtwo

In this example you’ll notice that the shift depends on the box being horizontal or vertical. The prim-
itives \raise, \lower, \moveleft and \moveright can be used to shift a box.

SHIFT 3 |

SHIFT 4

The reason why we have the shift property is that it is more efficient than wrapping a box in another box
and shifting with kerns. In that case we also have to go via a box register so that we can manipulate the
final dimensions. Another advantage is that the engine can use shifts to position for instance elements
in a math formula and even the par builder used shifts to deal with positioning the lines according to
shape and margin. In LuaMetaTgX the later is no longer the case.

Inside a box there can be mark (think running headers), insert (think footnotes) and adjust (think
injecting something before or after the current line) nodes. The par builder will move this from inside
the box to between the lines but when boxes are nested too deeply this won’t happen and they get lost.
In LuaMetaTgX these objects do bubble up because we make them box properties. So, in addition to
the dimensions and shift a box also has migration fields.

In the low level manuals you can find examples of accessing various properties of boxes so here we
stick to a short description. The reason for mentioning them is that it gives you an idea of what goes
on in the engine.

field usage

width the (used) width

height the (used) height

depth the (used) depth

shift amount the shift (right or down)

list pointer to the content

glue order the calculated order of glue stretch of shrink
glue sign the determined sign of glue stretch of shrink
glue set the calculated multiplier for glue stretch or shrink
geometry a bit set registering manipulations
orientation positional manipulations

w offset used in horizontal movement calculations

h offset used in vertical movement calculations

d offset used in vertical movement calculations

x offset a horizontal shift independent of dimensions
y offset a vertical shift independent of dimensions
axis the math axis

dir the direction the box goes to (12r or r2l)

42

package state
index

a bitset indicating how the box came to be as it is
a (system dependent) identifier

pre migrated
post migrated
pre adjusted
post adjusted

content bound to the box that eventually will be injected
idem
idem
idem

an identifier bound to the box
idem

source anchor
target anchor

anchor a bitset indicating where and how to anchor
except carried information about additional virtual depth
exdepth additional virtual depth taken into account in the page builder

We have the usual dimension but also extra ones that relate to \boxxoffset and \boxyoffset (these
are virtual) as well as \boxxmove and \boxymove (these influence dimensions). The \boxorientation
also gets registered. The state fields carry information that is used in various places, the pre and post
fields relate to the mentioned embedded content. Anchors are just there so that a macro package can
play with this and excepts refer to an additional dimensions that is looked at in the page builder, for
instance in order to prevent a page break at an unlucky spot. It all gives an indication of what we are
dealing with.

3.3 Math style variants

The LuaMetaTgX math engine is a follow up on the one in LuaTgX. That one gradually became more
configurable in order to deal with both traditional fonts and OpenType fonts. In LuaMetaTgX much
has been redone, opened up and extended. New mechanisms and constructs have been added. In
the process hard coded heuristics with regards to math styles inside constructions were made config-
urable, a feature that is probably not used much, apart from experimenting. A side effect is that we
can show how the engine is set up, so we do that when applicable.

construct value preset name
\Umathoverlinevariant 0x11335577 cramped
\Umathunderlinevariant 0x01234567 normal
\Umathoverdelimitervariant 0x45456767 small
\Umathunderdelimitervariant 0x45456767 small
\Umathdelimiterovervariant 0x01234567 normal
\Umathdelimiterundervariant 0x01234567 normal
\Umathhextensiblevariant 0x01234567 normal
\Umathvextensiblevariant 0x01234567 normal
\Umathfractionvariant 0x11335577 cramped
\Umathradicalvariant 0x11335577 cramped
\Umathaccentvariant 0x11335577 cramped
\Umathdegreevariant 0x67676767 doublesuperscript
\Umathtopaccentvariant 0x11335577 cramped
\Umathbottomaccentvariant 0x11335577 cramped
\Umathoverlayaccentvariant 0x11335577 cramped
\Umathnumeratorvariant 0x23456767 numerator
\Umathdenominatorvariant 0x33557777 denominator
\Umathsuperscriptvariant 0x45456767 small

43

\Umathsubscriptvariant 0x55557777 subscript
\Umathprimevariant 0x45456767 small
\Umathstackvariant 0x23456767 numerator

3.4 Math scripts

The basic components in a math formula are characters, accents, fractions, radicals and fences. They
are represented in the to be processed node list as noads and eventually are converted in glyph, kern,
glue and list nodes. Each noad carries similar but also specific information about its purpose and
intended rendering. In LuaMetaTgX that is quite a bit more than in traditional TgX.

These noads are often called atoms. The center piece in a noad is called the nucleus. The fact that
these noads also can have scripts attached makes them more like molecules. Scripts can be attached
to the left and right, high or low. That makes fours of them: pre/post super/sub scripts. In LuaMeta-
TEX we also have a prime script, which comes on its own, above a post subscript or after the post
superscript, if given.

- -

Here the raised rectangle represents the prime. The large center piece is the nucleus. Four scripts
are attached to the nucleus. The two smaller center pieces indicate follow up atoms. They make it
possible to have multiple pre- and postscripts. For single scripts we get combinations like these:

C d C d

iXp daXp X

C V4 V4 C a V4

iXp dXp X

And for multiple (there can be more that two) we get this assembly:

Cc yaA CcyaA
dXbB DdXbB X
Xa'A DdX;:)B Cch'A

It will be clear that there is quite a bit of code involved in dealing with this because these scripts are
not only to be anchored relative to the nucleus but also to each other. The dimensions of the scripts
determine for instance how close a combined super and subscript are positioned.

X, XP XP

% % %

I T T T S S T N

44

The rendering of scripts involves several parameters, of which some relate to font parameters. In
LuaMetaTgX we have a few more variables and we also overload font parameters, if only because only
a few make sense and it looks like font designers just copy values from the first available fonts so in
the end we can as well use our own preferred values.

The following parameters play a role in rendering the shown assembly, The traditional TEX engine
expects a math font to set quite some parameters for positioning the scripts but has no concept of
prescripts and neither has OpenType. This is why we have extra parameters (and for completeness
we also have them for the post scripts). One can wonder of font parameters make sense here because
in the end we can decide for a better visual result with different ones. After all, assembling scripts is
not really what fonts are about.

engine parameter target open type font tex font
subscriptshiftdrop post SubscriptBaselineDropMin subdrop
subscriptshiftdown post SubscriptShiftDown subl
subscriptsuperscriptshiftdown post SubscriptShiftDown[WithSuperscript] sub?2
subscriptsuperscriptvgap post SubSuperscriptGapMin 4 rulethickness
subscripttopmax post SubscriptTopMax 4/5 xheight
superscriptshiftdrop post SuperscriptBaselineDropMax supdrop
superscriptbottommin post SuperscriptBottomMin 1/4 xheight
superscriptshiftup post SuperscriptShiftUp[Cramped] supl sup2 sup3
superscriptsubscriptbottommax post SuperscriptBottomMaxWithSubscript 4/5 xheight
primeraise prime PrimeRaisePercent

primeraisecomposed prime PrimeRaiseComposedPercent

primeshiftup prime PrimeShiftUp[Cramped]

primeshiftdrop prime PrimeBaselineDropMax

primespaceafter prime PrimeSpaceAfter

spaceafterscript post SpaceAfterScript \scriptspace
spacebeforescript post SpaceBeforeScript

spacebetweenscript multi SpaceBetweenScript

extrasuperscriptshift pre

extrasuperprescriptshift pre

extrasubscriptshift pre

extrasubprescriptshift pre

extrasuperscriptspace post

extrasubscriptspace post

extrasuperprescriptspace pre

extrasubprescriptspace pre

The parameters marked by a * are LuaMetaTgX specific. Some have an associated font parameter but
that is not official OpenType. For a very long time we had only a few math fonts but even today most
of these fonts seem to use values that are similar to the ones TgX uses. In that respect one can as well
turn them into rendering specific ones. After all, changes are slim that a formula rendered by TgX
or e.g. MS Word are metric compatible and with the advanced spacing options in LuaMetaTgX we’'re
even further off. Also keep in mind that the TgX font parameters could be overloaded at the TEX end.

The spacing after a (combination of) postscript(s) is determined by ‘space after script’ and the spacing
before a (combination of) prescript(s) by ‘space before script’. If we have multi-scripts the ‘space
between script’ kicks in and the space after the script is subtracted from it. The given space between
is scaled with the \scriptspacebetweenfactor parameter.

45

The default style mapping that we use are the same as those (hard coded) in regular TgX and those
for prime scripts are the same as for superscripts.

subscriptvariant

current style used style

mapping
display 0x55557777 crampedscript

crampeddisplay 0x55557777 crampedscript
text 0x55557777 crampedscript

crampedtext 0x55557777 crampedscript

script 0x55557777 crampedscriptscript
crampedscript 0x55557777 crampedscriptscript
scriptscript 0x55557777 crampedscriptscript

crampedscriptscript 0x55557777 crampedscriptscript

superscriptvariant

current style used style

mapping
display 0x45456767 script

crampeddisplay 0x45456767 crampedscript
text 0x45456767 script

crampedtext 0x45456767 crampedscript
script 0x45456767 scriptscript
crampedscript 0x45456767 crampedscriptscript
scriptscript 0x45456767 scriptscript

crampedscriptscript 0x45456767 crampedscriptscript

primevariant

current style used style

mapping

display 0x45456767 script
crampeddisplay 0x45456767 crampedscript

text 0x45456767 script

crampedtext 0x45456767 crampedscript
script 0x45456767 scriptscript
crampedscript 0x45456767 crampedscriptscript
scriptscript 0x45456767 scriptscript

crampedscriptscript 0x45456767 crampedscriptscript

3.5 Skewed fractions

Skewed fractions are native in LuaMetaTgX. Such a fraction is a horizontal construct with the numer-
ator and denominator shifted up and down a bit. It looks like this:

46

The rendering is driven by some parameters that determine the horizontal and vertically shifts but
we found that the ones given by the font make no sense (and are not that well defined in the standard
either). The horizontal shift relates to the width (and angle) of the slash and the vertical relates to the
math axis. We don’t listen to ‘skewed fraction hgap’ nor to ‘skewed fraction vgap’ but use the width
of the middle character, normally a slash, that can grow on demand and multiply that with a hfactor
that can be passed with the fraction command. A vfactor is used a multiplier for the vertical shift
over the axis. Examples of (more)) control can be found in the ConTEXt math manual. Here we just
show a few examples that use \vfrac with its default values.

1/2 a/b b/a

XZ/X3 (X+1)/(x+2) X+1/x+2

The quality of the slashes differs per font, some lack granularity in sizes, others have inconsistent
angles between the base character and larger variants.

The following commands are used:

\Uskewed
\Uskewedwithdelims

There are some parameter involved:

\Umathskeweddelimitertolerance
\Umathskewedfractionhgap
\Umathskewedfractionvgap

3.6 Math fractions

Fractions in TgX come in variants: with or without rule in the middle and with or without fences. The
reason for the fenced ones is that they are not spaced like open and close class symbols. So, instead
of open, fraction, close being three things, we have one thing. In LuaMetaTEX we can also use an
extensible instead of the rule.

47

Because the rule is optional, we can have the following, which represents a so called binom construct.
Involved commands:

\Uabove

\Uatop

\Uover

\Ustretched
\Uabovewithdelims
\Uatopwithdelims
\Uoverwithdelims
\Ustretchedwithdelims

Relevant parameters:

\Umathfractionrule
\Umathfractionnumvgap
\Umathfractionnumup
\Umathfractiondenomvgap
\Umathfractiondenomdown
\Umathfractiondelsize

The values that come with the fonts often are sub-optimal so in ConTgXt we adapt them. We also use
different means for spacing, like struts. But it will always be a compromise. We’'ll try to show what
happens but assume that you're familiar with TEX, read: are able to read a macro. If not, just forget
about messing with these parameters.

\starttexdefinition TestRun #1#2

\dontleavehmode
\scale[width=1tw] \bgroup \pushoverloadmode
\def\TestA{$ \showglyphs \Uover {#1}{#2} $}

\def\TestB{$ \showglyphs \Uover vfactor 100 {#1}{#2} $}
\def\TestC{$ \showglyphs \Uover vfactor 2000 {#1}{#2} $}
\def\TestD{$ \showglyphs \Uover vfactor 0 {#1}{#2} $}
\everymath{\fam\zerocount}%

\Umathfractionnumup \allmathstyles\zeropoint
\Umathfractiondenomdown\allmathstyles\zeropoint
\Umathfractionnumvgap \allmathstyles\zeropoint
\Umathfractiondenomvgap\allmathstyles\zeropoint

48

\start
\TestA

\stop \thinspace \start
\Umathfractionnumvgap \allmathstyles 2pt
\TestA

\stop \thinspace \start
\Umathfractiondenomvgap\allmathstyles 2pt
\TestA

\stop \thinspace \start
\Umathfractionnumup \allmathstyles 2pt
\TestA \TestB \TestC \TestD

\stop \thinspace \start
\Umathfractionnumup \allmathstyles 1.1lex
\TestA \TestB \TestC \TestD

\stop \thinspace \start
\Umathfractiondenomdown\allmathstyles 2pt
\TestA \TestB \TestC \TestD

\stop \thinspace \start
\Umathfractiondenomdown\allmathstyles 1.1lex
\TestA \TestB \TestC \TestD

\stop \thinspace \start
\Umathfractionnumvgap\allmathstyles -2pt
\Umathfractionnumup \allmathstyles 2pt
\TestA

\stop \thinspace \start
\Umathfractiondenomvgap\allmathstyles -2pt
\Umathfractiondenomdown\allmathstyles 2pt
\TestA

\stop
\egroup

\stoptexdefinition

o® ® ° o° o° o° o°

o®

We now apply this macro to two different characters, first the often used x:

X3 X BEX xR X%

X

Next we use a character with a descender:

49

g
g99g9gggg9g ggaggg daag
yygmmgyﬂg? g

g

The displacement logic that gets applied in the engine is as follows:

factor up = num up * vfactor
factor _down = denom down * vfactor

delta up = num_vgap - (factor_up - num_depth) - (axis + rule/2)
delta down = denom vgap - (factor down - denom height) + (axis - rule/2)
shift up = factor up + max(0,delta up)

shift down = factor _down + max(0,delta down)

In ConTEXt we only tweak the gaps, so there we effectively have:

delta up = num_vgap + num _depth - (axis + rule/2)
delta down = denom vgap + denom height + (axis - rule/2)
shift up = max(0,delta up)

shift down = max(0,delta_down)

Here, in blue we see what ConTgXt does by default, while in red we see the engine (and font) defaults
in action:

X g
XxTg

3.7 Math radicals

Radicals indeed look like roots. But the radical mechanism basically is a wrapping construct: there’s
something at the left that in traditional TEX gets a rule appended. The left piece is an extensible,
so it first grow with variant glyphs and when we run out if these we get an upward extensible with
a repeated upward rule like symbol that then connect with the horizontal rule. In LuaMetaTgX the
horizontal rule can be an extensible (repeated symbol) and we can also have a symbol at the right,
which indeed can be a vertical extensible too.

50

Here are some aspects to take care of when rendering a radical like this:

* The radical symbol goes below the baseline of what it contains.

* There is some distance between the left symbol and the body.

» There is some distance between the top symbol and the body.

» There is some distance between the right symbol and the body.

* The degree has to be anchored properly and possibly can stick out left.

* The (upto) three elements have to overlap a little to avoid artifacts.

* Multiple radicals might have to be made consistent with respect to heights and depths.

Involved commands:

\Uradical
\Uroot
\Urooted

Relevant parameters:

\Umathradicaldegreeafter
\Umathradicaldegreebefore
\Umathradicaldegreeraise
\Umathradicalextensibleafter
\Umathradicalextensiblebefore
\Umathradicalkern
\Umathradicalrule
\Umathradicalvariant
\Umathradicalvgap

3.8 Math accents

Math accents a bit of a mess. We have for instance \overline and \underlinewhich actually can
be seen as an accent but is a rule because that was easier. It also saved a set of glyph variants and
an extensible in a time where the number of slots in a font was a limiting factor. Of course a square
rule doesn’t match well with shapes that have rounded corners but given the small sizes that often
goes unnoticed. Rules are important in TgX anyway: between fractions and as extender for a radical.
In LuaMetaTgX we can instead fall back on what a font provides (or what we can fake using virtual
assemblies).

Accents, or symbols that go on top or below, can be of a fixed size, go wider in steps or eventually
stretch. A hat for instance comes in sizes and has no stretch variant (that is, no extensible because in
LuaMetaTgX we actually can stretch); the shape is not that suited for it. A brace on the other hand can
at some point be constructed from pieces. Unfortunately fonts are often inconsistent or incomplete,
which is likely a side effect of the repertoire that TgX came with.

51

In OpenType we also have accents but for some reason we only have top anchors. Maybe it is because
TEX had no real anchors, only a so called skew character from which we used a kern between that
one and an accent as shift: a pseudo anchor so to say. In LuaMetaTgX we do support bottom anchors
and also provide more control over placement. Of course one has to use math font that supports this,
which is what we do in ConTEXt, after all we wanted this and had to test it. In OpenType fonts we also
have so called flat accents, so we have ways to choose those variants when needed. They prevent a
formula becoming too high.

In its simplest form, the accent constructor takes a single math character specification but you can
control the location with a keyword. Given the availability of wider variants and/or an extensible the
accent will cover the body. The fixed keyword will force the smallest variant.

\im {\Umathaccent "@ "0 "20D7 {xxx}}
\im {\Umathaccent top "@ "0 "20D7 {xxx}}
\im {\Umathaccent bottom "® "0 "20D7 {xxx}}
\im {\Umathaccent both "@ "0 "20D7 "1 "0 "20D7 {xxx}}
\im {\Umathaccent top fixed "0 "0 "20D7 {xxx}}

— = —— 2
XXX XXX XXX XXX XXX
ey ey —— >

XXX XXX XXX XXX XXX

To what extend the accent will stretch is controlled by keywords. As above, we show what happens
with a font-as-is and with one set up by ConTgXt. The later will always stretch or shrink to fit.

\im {\Umathaccent top "0 "0 "0302 {xxxxxxxx}}
\im {\Umathaccent exact top "0 "0 "0302 {xxxxxxxx}}
\im {\Umathaccent stretch top "0 "0 "0302 {xxxxxxxx}}
\im {\Umathaccent shrink top "0 "0 "0302 {XXXXXXxx}}
\im {\Umathaccent center top "0 "0 "0302 {XXXXXXXX}}
\im {\Umathaccent single top "0 "0 "0302 {xxxxxxxx}}

It’s not so easy to come up with an example for shrink because it will only happen when there is
a reason to do so. Also, it’s kind of hard to see because accents can be shifted based on the italic
correction (or kern). The good news is that the macro package will set up things. Also good news
is that some of these options are just there as left-over from experiments, so you might find no real
reason to apply them.

\im {\Umathaccent top "0 "0 "X {\blue x}}
\im {\Umathaccent shrink top "0 "0 "X {\blue x}}
\im {\Umathaccent top "0 "0 "0302 {\red x}}

\im {\Umathaccent shrink top "0 "0 "0302 {\red x}}

The reason why you see a difference between ConTgXt and the non-tuned variant is that the rendering
is controlled by a lot of options. After this mechanism is set up according to circumstances, font para-
meters, math font options, class options and available glyphs, we eventually end up at the following
steps:

1. When the glyph involved has option 128 the italic correction will be set to zero. In ConTgXt we
always have zero italic corrections anyway.

2. When we don’t stretch or shrink and still have italic correction and italic correction is actually to
be dealt with, we apply it to the accent if \mathfontcontrol has 1024 set. When italic has been
applied we need to position and fall through, otherwise we continue.

52

3. We assume we have an accent with some width, otherwise we quit. The two previous steps are not
applied in ConTgXt.

4. When \mathfontcontrol has the 16777216 bit set and when we have an extensible, it will stretch
when to narrow or shrink when too wide. In that case we will subtract \Umathaccentextendmargin
at both ends before checking. Independent of scaling being applied we then quit further actions.
In ConTgXt we end up here, so we’re done.

5. If the control option is not set, we will do a simple check for under- or overfull and just scale. We
don’t reposition, at least not currently, after all we don’t use this branch so we can’t decide on this.

We now carry on with some more examples. We can add an nooverflow directive just to be compatible
with other mechanisms and to be prepared for future extensions, but as you see, accent placement is
not overflowing due to constraints.

\im {\Umathaccent top "0 "0 "0302 {x}}

\im {\Umathaccent top "0 "0 "0302 {xx}}

\im {\Umathaccent top "0 "0 "0302 {xxx}}
\im {\Umathaccent top "0 "0 "0302 {xxxx}}
\im {\Umathaccent top "0 "0 "0302 {xxxxx}}
\im {\Umathaccent top "0 "0 "0302 {xxxxxx}}

P

AN~ — —— __——

The fraction applied to the target width.

\im {\Umathaccent fraction 100 top "0 "0 "0302 {xxxxx}}
\im {\Umathaccent fraction 200 top "0 "0 "0302 {xxxxx}}
\im {\Umathaccent fraction 300 top "0 "0 "0302 {xxxxx}}
\im {\Umathaccent fraction 400 top "0 "0 "0302 {xxxxx}}
\im {\Umathaccent fraction 500 top "0 "0 "0302 {xxxxx}}
\im {\Umathaccent fraction 600 top "0 "0 "0302 {xxxxx}}

XXXAX XXXXAX XAXXX XXXXX XXXXX XXXXX

XXXXX XXXXX XXXXX XXXAX XXXXX XXXXX

The overlay keyword can be used for special effects. The base keyword shown here doesn’t do much:
it compensate the fonts’ accent base height with the depth of an accent. It’s there to catch suboptional
dimensions.

\im {\Umathaccent overlay "O "0 "a {xxxxxxxx}}
\im {\Umathaccent base overlay "0 "0 "a {XXXXXxxx}}

XXXUXXXX XXXNHXXX

XXXNKEXXX XXXNXXXX

This only part of the story because accent placement is not just a matter of size but also of shifting to
the (normally) right so that it looks beter over the (normally) sloped glyph. Because we started from
OpenType font parameters combined with TEX existing algorithm the code involved it kind of messy.
We might eventually decide to just remove what we don’t need to do a proper job.

53

The shift to the right is in TgX speak called skew. In traditional TgX that value is defined by a kern
between the accent and a bogus skew character, in OpenType we have a top accent value. In Lua-
MetaTgX we also have a bottom accent value. In LuaMetaTgX we also have kerns in all corners. These
are used when we anchor scripts. We can set an permitted overshoot for a character which again is a
LuaMetaTgX feature.

Before the steps above take place we need to resolve the character. The result of the search can be
a single glyph or an assembly made from extensibles. When that is done we can trigger a callback
which makes it possible for the macro package to mess with the result, for instance turn it into a Type3
character.

We also have to deal with so called flat accents, unless that font option is disabled. As more, it’s driven
by font parameters and of course an accent that qualifies should have such a variant. Anyway, there
are all kind of optimizations going on.

We can control the styles applied with \Umathtopaccentvariant, \Umathbottomaccentvariant and
\Umathoverlayaccentvariant. Spacing is influenced by the font parameters \Umathconnectorover-
lapmin, \Umathaccentbaseheight, \Umathaccenttopshiftup, \Umathflattenedaccentbaseheight,
\Umathflattenedaccenttopshiftup, \Umathflattenedaccentbottomshiftdown, \Umathaccentbot-
tomshiftdown. There is actually no need for these and we can let the engine to a nice job without
them. Given the number of times that we find ourselves adapting them indicates their uselessness.
One reason is that for consistent spacing one will use different interfaces.

How we deal with specific situations is also driven by the \mathfontcontrol options ‘accent top skew
with offset’, ‘accent skew half’ and ‘ignore flat accents’. The skew comes from the top accent anchor
value or just is the middle of the accent. We already mentioned left and right margins and overshoot
properties of glyphs. The character can have so called tag bits set: ‘keep base’, ‘extensible’ and ‘inner
bottom’. We only mention them as something that the font loaded needs to set.

We can place accents above (top), below (bottom) and overlay, and we can let them stretch or shrink
as well as play visually safe with a bit of scaling (this factor). We have to deal with attaching scripts
which can be controlled with corner kerns as well as class options ‘left bottom kern’ and ‘right bottom
kern’.

We could have hard coded the way ConTgXt likes it with just the control features that we need which
makes a description easier. But for now we keep what we have.

3.9 Math fences

Fences are glyphs that adapts itself to what if surrounds. In original TEX there were only left and right
fences that always come in pairs, although one can ‘hide’ one by using a bogus fence (often a period is
used for that). The height and depth normally are at least those of the content but it also depends on
what a font provides. A font can provide sizes (in steps) and eventually provide an extensible although
that can only be used when the shape permits it. Although technically not a fence, an integral can be
seen as a left fence and indeed this is why in LuaMetaTgX we implement such a fencing operator.

54

Here we also visualize a middle fence, something that e-TgX introduced. In LuaMetaTgX we are a bit
more tolerant with respect to fences, and we try to compensate for missing ones, which is not always
possible. Fences can have super- and subscripts on the right fence and in LuaMetaTgX prescripts on
the left fence. Here the fences are kind of wide but depending on the shape that can actually be the
case: it the base character is rather curved, the larger sizes also need to follow that design. Font also
differ in the depth of these fencing characters. When we implemented some new features related to
these fences in ConTEXt we also decided to add companion fonts that not only provided more steps but
also did so consistently for various glyphs (parentheses, braces, brackets, etc) and we made sure that
the height and depths were consistently distributed. In case we couldn’t come up with a companion
we tweak dimensions and other properties runtime.

In order to determine the dimensions the content (subformula) has to be processed first. In traditional
TEX we therefore have two passes but in LuaMetaTgX we do more and therefore have more passes.
There are a lot of subtle details, for instance we support specific kerning for scripts attached to fences.
We also have a dedicated middle class so that we can do proper spacing.

One of the more tricky fences is the bar because it serves different purposes and Unicode doesn’t deal
with that. Of course there should have been a left and right bar and maybe even a middle bar but
alas, this is something that we need to deal with in the macro package.

Involved commands:

\Uleft
\Uright
\Umiddle
\Uoperator
\Uvextensible

Relevant parameters:

\Umathfractionrule
\Umathoperatorsize
\Umathdelimitershortfall
\Umathdelimiterpercent

55

assumptions

56

57

4 Assumptions

Contents

4.1 Introduction

4.2 Virtual fonts

4.1 Introduction

Because the engine provides no backend there is also no need to document it. However, in ConTgXt
we assume some features to be supported by its own backend. These will be collected here. This
chapter is rather ConTgXt specific, for instance we have extended what can be done with characters
and that is pretty much up to a macro package to decide.

4.2 Virtual fonts

Virtual fonts are a nice extension to traditional TgX fonts that originally was independent from the
engine, which only needs dimensions from a tfm file. In LuaTgX, because it has a backend built in,
virtual fonts are handled by the engine but here we also can construct such fonts at runtime. The
original set of commands is:

char + chrsx sy
right + amount
down + amount
push +

pop +

font + index
nop +

special - str

rule + vh

The pdfIgX engine added two more but these are not supported in ConTgXt:

pdf - str
pdfmode - n

The LuaTgX engine also added some but these are never found in loaded fonts, only in those con-
structed at runtime. Two are not supported in ConTgXt.

lua + code f(font,char,posh,posv,sx,sy)
image - n

node + n

scale - SXSsy

The LuaMetaTgX engine has nothing on board and doesn’t even carry the virtual commands around.
The backend can just fetch them from the Lua end. An advantage is that we can easily extend the
repertoire of commands:

slot + index chr csx csy
use + index chr ... chr

58

inspect
trace
<plugin>

left + amount
up + amount
offset + hvchr[csx [csyl]
stay + chr (push/pop)
compose + hvchr
frame + wd jt dp line outline advance baseline color
line + wd ht dp color
+
+
+

f(posh,posv,packet)

There are some manipulations that don’t need the virtual mechanism. In addition to the character
properties like width, height and depth we also have:

advance the width used in the backend
scale an additional scale factor
xoffset horizontal shift

yoffset vertical shift

effect slant factor used for tilting

extend horizontal scale

squeeze vertical scale

mode special effects like outline
weight pen stroke width

Originally virtual fonts were ‘a way out’ and the official commands ensure that we can assemble from
existing fonts. However, once we opened up that feature in LuaTgX it also opened up more possibilities.
And with LuaMetaTgX we basically can do whatever we like. So, apart from the standard set we have
top assume that what ConTEXt adds to that is not generic! This is no problem because there are no
virtual font resources using those extras in the TgX ecosystem other that those shipped with ConTEXt
and most are runtime features anyway. This also means that we can extend what we have without the
need to bother about other usage: virtual fonts are really virtual, there is nothing in the engine that
reflects it, contrary to LuaTgX, where command definitions need to be passed to the backend code and
are also can be loaded from vf files when you use the helpers that load tfm files.

59

60

5 Internals

Contents

5.1 Introduction
5.2 A few basics
5.3 Memory words
5.4 Tokens

5.5 Nodes

5.6 The hash table
5.7 Save stack

5.8 Data types

5.9 Time flies

5.10 Keywords

5.11 Sparse arrays

5.1 Introduction

If you look at TgX as a programming language and are familiar with other languages, a natural question
to ask is what data types there are and how is all managed. Here I will give a general overview of
some concepts. The explanation below is not entirely accurate because it tries to avoid the sometimes
messy details. More can be found in the other low level manuals. I assume that one knows at least
how to process a simple document with a few commands.

It is not natural to start an explanation with how memory is laid out but by doing this it is easier to
introduce the concepts. I will focus on what is called hash table, the stack, node memory and token
memory. We leave fonts, languages, character properties, math, etc. out of the picture. There are
details that we skip because it’s the general picture that matters here.

I might add some more to this manual, depending on questions by users at meetings or on the mailing
list. Some details might change over time but the principles remain the same.

5.2 A few basics

This is a reference manual and not a tutorial. This means that we discuss changes relative to traditional
TEX and also present new (or extended) functionality. As a consequence we will refer to concepts that
we assume to be known or that might be explained later. Because the LuaTgX and LuaMetaTEX engines
open up TEX there’s suddenly quite some more to explain, especially about the way a (to be) typeset
stream moves through the machinery. However, discussing all that in detail makes not much sense,
because deep knowledge is only relevant for those who write code not possible with regular TgX and
who are already familiar with these internals (or willing to spend time on figuring it out).

So, the average user doesn’t need to know much about what is in this manual. For instance fonts and
languages are normally dealt with in the macro package that you use. Messing around with node lists

61

is also often not really needed at the user level. If you do mess around, you’d better know what you’'re
dealing with. Reading “The TgX Book” by Donald Knuth is a good investment of time then also because
it’s good to know where it all started. A more summarizing overview is given by “IgX by Topic” by
Victor Eijkhout. You might want to peek in “The e-TgX manual” too.

But ... if you're here because of Lua, then all you need to know is that you can call it from within a
run. If you want to learn the language, just read the well written Lua book. The macro package that
you use probably will provide a few wrapper mechanisms but the basic \directlua command that
does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load that file
with the usual Lua commands. If you don’t know what this means, you definitely need to have a look
at the Lua book first.

If you still decide to read on, then it's good to know what nodes are, so we do a quick introduction
here. If you input this text:

Hi There ...
eventually we will get a linked lists of nodes, which in ascii art looks like:
H<=>1<=> [glue] <=> T <=> h <=> e <=>r <=>¢e ...

When we have a paragraph, we actually get something like this, where a par node stores some meta-
data and is followed by a hlist flagged as indent box:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=>r <=>¢e ...

Each character becomes a so called glyph node, a record with properties like the current font, the
character code and the current language. Spaces become glue nodes. There are many node types and
nodes can have many properties but that will be discussed later. Each node points back to a previous
node or next node, given that these exist. Sometimes multiple characters are represented by one
glyph (shape), so one can also get:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

And maybe some characters get positioned relative to each other, so we might see:

[par] <=> [hlist] <=> H <=> [kern] <=> 1 <=> [glue] <=> Th <=> e <=>r <=>¢e ...
Actually, the above representation is one view, because in LuaMetaTgX we can choose for this:
[par] <=> [glue] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=>r <=> e ...

where glue (currently fixed) is used instead of an empty hlist (think of a \hbox). Options like this are
available because want a certain view on these lists from the Lua end and the result being predicable
is part of that.

It’s also good to know beforehand that TgX is basically centered around creating paragraphs and pages.
The par builder takes a list and breaks it into lines. At some point horizontal blobs are wrapped into
vertical ones. Lines are so called boxes and can be separated by glue, penalties and more. The page
builder accumulates lines and when feasible triggers an output routine that will take the list so far.

62

Constructing the actual page is not part of TEX but done using primitives that permit manipulation of
boxes. The result is handled back to TgX and flushed to a (often pdf) file.

\setbox\scratchbox\vbox\bgroup
line 1\par line 2
\egroup

\showbox\scratchbox

The above code produces the next log lines that reveal how the engines sees a paragraph (wrapped
in a \vbox):

1:4: > \box257=

1:4: \vbox[normal][16=1,17=1,47=1], width 483.69687, height 27.58083, depth 0.1416, direction 12r

1:4: .\list

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction 12r

1:4: ...\list

1:4: ..\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4: ..\glue[left][16=1,17=1,47=1] 0.0pt

1:4: ..\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4: ..\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemerits 10000, linepenalty 10

, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, emergencystretch 12.0,
parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+00006C 1

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+000069 i

1:4:\glyph[32768]1[16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+000031 1

..\penalty[line][16=1,17=1,47=1] 10000
..\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil
..\glue[right][16=1,17=1,47=1] 0.0pt
....\glue[right hang]l[16=1,17=1,47=1] 0.0pt
..\glue[par][16=1,17=1,47=1] 5.44995pt plus 1.81665pt minus 1.81665pt
..\glue[baseline] [16=1,17=1,47=1] 6.79396pt
..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction 12r
A list
..\glue[left hang][16=1,17=1,47=1] 0.0pt
..\glue[left][16=1,17=1,47=1] 0.0pt
..\glue[parfillleft][16=1,17=1,47=1] 0.0pt
..\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemerits 10000, linepenalty 10
, doublehyphendemerlts 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, emergencystretch 12.0,
parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

[e I R R e e o
AR A A BRR SRR RRSR

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768]1[16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+00006C 1

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+00006E n

1:4:\glyph[32768]1[16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,1=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U
+000032 2

1:4 ..\penalty[line][16=1,17=1,47=1] 10000

1:4 ..\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4 ..\glue[right hang][16=1,17=1,47=1] 0.0pt

The LuaMetaTgX engine provides hooks for Lua code at nearly every reasonable point in the process:
collecting content, hyphenating, applying font features, breaking into lines, etc. This means that you
can overload TgX'’s natural behavior, which still is the benchmark. When we refer to ‘callbacks’ we
means these hooks. The TgX engine itself is pretty well optimized but when you kick in much Lua

63

code, you will notices that performance drops. Don’t blame and bother the authors with performance
issues. In ConTEXt over 50% of the time can be spent in Lua, but so far we didn’t get many complaints
about efficiency. Adding more callbacks makes no sense, also because at some point the performance
hit gets too large. There are plenty of ways to achieve goals. For that reason: take remarks about
LuaMetaTgX, features, potential, performance etc. with a natural grain of salt.

Where plain TgX is basically a basic framework for writing a specific style, macro packages like Con-
TeXt and IXTEX provide the user a whole lot of additional tools to make documents look good. They
hide the dirty details of font management, language support, turning structure into typeset results,
wrapping pages, including images, and so on. You should be aware of the fact that when you hook
in your own code to manipulate lists, this can interfere with the macro package that you use. Each
successive step expects a certain result and if you mess around to much, the engine eventually might
bark and quit. It can even crash, because testing everywhere for what users can do wrong is no real
option.

When you read about nodes in the following chapters it’s good to keep in mind what commands relate
to them. Here are a few:

command node explanation

\hbox hlist horizontal box

\vbox vlist vertical box with the baseline at the bottom
\vtop vlist wvertical box with the baseline at the top
\hskip glue horizontal skip with optional stretch and shrink
\vskip glue vertical skip with optional stretch and shrink
\kern kern horizontal or vertical fixed skip
\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdirection dir a change in text direction

Whatever we feed into TEX at some point becomes a token which is either interpreted directly or stored
in a linked list. A token is just a number that encodes a specific command (operator) and some value
(operand) that further specifies what that command is supposed to do. In addition to an interface to
nodes, there is an interface to tokens, as later chapters will demonstrate.

Text (interspersed with macros) comes from an input medium. This can be a file, token list, macro body
cqg. arguments, some internal quantity (like a number), Lua, etc. Macros get expanded. In the process
TEX can enter a group. Inside the group, changes to registers get saved on a stack, and restored
after leaving the group. When conditionals are encountered, another kind of nesting happens, and
again there is a stack involved. Tokens, expansion, stacks, input levels are all terms used in the next
chapters. Don’t worry, they loose their magic once you use TgX a lot. You have access to most of the
internals and when not, at least it is possible to query some state we’re in or level we’re at.

When we talk about pack(ag)ing it can mean two things. When TgX has consumed some tokens that
represent text they are added to the current list. When the text is put into a so called \hbox (for
instance a line in a paragraph) it (normally) first gets hyphenated, next ligatures are build, and finally
kerns are added. Each of these stages can be overloaded using Lua code. When these three stages
are finished, the dimension of the content is calculated and the box gets its width, height and depth.
What happens with the box depends on what macros do with it.

64

The other thing that can happen is that the text starts a new paragraph. In that case some information
is stored in a leading par node. Then indentation is appended and the paragraph ends with some glue.
Again the three stages are applied but this time afterwards, the long line is broken into lines and the
result is either added to the content of a box or to the main vertical list (the running text so to say).
This is called par building. At some point TgX decides that enough is enough and it will trigger the
page builder. So, building is another concept we will encounter. Another example of a builder is the
one that turns an intermediate math list into something typeset.

Wrapping something in a box is called packing. Adding something to a list is described in terms
of contributing. The more complicated processes are wrapped into builders. For now this should be
enough to enable you to understand the next chapters. The text is not as enlightening and entertaining
as Don Knuths books, sorry.

5.3 Memory words

Before we come to know that TEX manages most of it memory itself. It allocates arrays of (pairs of)
32 bit integers because that is what TgX uses all over the place: integers. They store integer numbers
of various ranges values, fixed point floats, pointers (indices in arrays), states, commands, and often
groups of them travel around the system.

integer : mostly 8, 16, 24, 32 but we have odd packing too
fixed point float : 16.16 used to represent dimensions

boolean : simple state variables

enumerations : a choice from a set, like operators and operands
strings : an index in a string pool (character array)

The main memory areas in TgX are therefore arrays integers or pairs of integers as we want to handle
linked lists where in an element one integer has some data and the other points to another element.
Keep in mind that when TgX showed up efficient memory management was best done by the appli-
cation, especially when it had to be portable. This might seem odd now but is actually not that bad
performance wise. One just has to get accustomed to the way TgX handles data.

Such a pair is called a (memory) word and each component is a halfword that itself can have two
quarterwords and four singlewords. In LuaMetaTgX we also can combine them:

65

The eight byte field is used for pointers (to more dynamic structures) and double floats but that can only
happen when multiple words are used as a combined data structure (as in a so called node, explained
below). Quite often the second field is used as pointer to another pair. We could have changed that
model in LuaTgX and LuaMetaTgX but there is little gain in that and we want to stay close to the well
documented original as much as possible. It also has the side effect of simplifying the code and retain
performance.?

5.4 Tokens

A token is a halfword, so a 32 bit integer as mentioned before. Here we use a one plus three model, not
mentioned in the previous section. Sometimes we just look at the whole number, but quite often we
look at the two smaller ones. The single byte is the so called command identifier (cmd), the second one
traditionally is called character (chr), but what we’re really talking about is an operator and operand
kind of model. In a TgX engine source you can find variable names like cur cmd, cur chr and cur tok
were the third one combines the first two.

Tokens travel through the system as integers and when some action is required the command part
is consulted which then triggers some action further defined by the character part. The combination
can either directly trigger some action but often that action has to look ahead in order to get some
more details.

Consider the following input:

\starttext
Hi there!

This is a \hbox{box}.
\stoptext

Every character falls in a category, and there are 16 of them. The H is a ‘letter’, the empty line a
newline. The backslash is an ‘escape’ that tells the parser to scan for a command where the name is
from letters. That command is then looked up and a token is created: in this case a ‘call’ command
with as operand the memory address (an index in the to be discussed hash) where the start of a list
of stored tokens can be found.

3 In the source this is reflected in the names used: vinfo and vlink in these pairs but in LuaMetaTgX we often use more symbolic
names.

66

The characters in the text also become tokens and here we get two ‘letter’ commands (with the Uni-
code slots as operand), one ‘space’ command, five more letter commands and an ‘other’ command,
and so on.

Here every token is fed into the interpreter. The \starttext and \stoptext are macros (control
sequences) so they get expanded and the stored tokens get interpreted. The letters become (to be
discussed) nodes in a linked list of content. In this case the tokens are not stored and discarded as we
read on.

The \hbox is also a control sequence but a built in primitive. The operator is make box and the operand
is hbox. It will trigger making a box of the given kind by reading an optional specification, the left
curly brace (begin group) collects content, and when the right curly brace (end group) is seen wraps
up by packaging the result. Al that is hard coded, contrary to a macro, but one can of course define
\hbox as macro, which normally is a bad idea.

As a side note: quite often TgX reads a token, and then puts if back into the input. For instance, when it
expects a number or keyword it keeps reading till it is satisfied and when it ends up in the unexpected
it has to wrap up and go one step back. However, when we read from file we can’t go back, which
is why TgX has a model of ‘input levels’. Pushing back boils down to creating a token list with this
one token and then starts reading from that list. It is beyond this explanation to go into details but
all you need to know is that TgX has various input sources, for instance files, token lists, arguments to
commands (also token lists) and Lua output, but in the end all provide tokens.*

So to wrap up tokens, we have either singular ones (just 32 bit integers encoding a command and
value aka operator and operand) or a pair where the second one is a link. A token list starts at some
index and the link is zero (end of list) or another index. Token memory is huge array of memory words
like these. When token lists are constructed we take from this pool so there is an index indicating the
first available token. When a list is discarded it gets appended to a list of free tokens. So in practice
we first try to get a free token from this pool. In LuaMetaTgX it the token array will grow on demand
with a configurable chunk size.

5.5 Nodes

We already mentioned nodes. These are slices from an array that hold some values that belong to-
gether. So again we have a large array of memory words but where a token is one pair a node is
multiple. Nodes have different size. The first node starts at index 1 and when it needs four memory
words the second node starts at index 5.

A character in the input that is typeset will become a glyph node of 120 bytes and a paragraph starts
with a par node of 288 bytes. A space becomes a glue node of 64 bytes and every box that you (or TgX)
make is 144 bytes. Most nodes are way larger in LuaMetaTgX than in traditional TEX but we don’t
have the memory constraints of those times.

4 We could use a double linked list in which case we would have a three integer element which is odd for TgX and has no real
benefits as it would change the model completely.

(o220)]

67

Here it is worth noticing that where TgX has a dedicated subsystem for glue which make sharing space
related glue efficient: the so called glue specifications are reference counted. In LuaTgX we made
these normal nodes which is slightly less efficient but fits better in the opened up (Lua) interface and
also has some other advantages (we leave it to reader to guess what).

For instance, a kern node at the time of this writing needs three memory words (as with other nodes
we might add some more fields, like options).

3128 type subtype next

3129 previous attribute

3130 amount expansion

So here we take a slice of three memory words from the node array starting at index 3128. We mention
this detail because sometimes (when tracing) you see these numbers. This doesn’t mean that at that
point we had 3128 nodes, because the next node taken from this pool will have number 3131. The
numbers are indices!

In the source code we access thes enumber like this:

define kern amount(a) vlink(a,?2)
define kern expansion(a) vinfo(a,2)

So when a = 3128 the amount is found in the link field a = 3128 + 2 = 3130. The name link is
somewhat weird here but that’s the way these fields are called: vlink and vinfo. It could as well be
first and second but by using macros we get away by abstraction. So now you can figure out what
these references do:°

define node type(a) vinfo0(a,0)
define node subtype(a) vinfol(a,0)

define node next(a) vlink(a,0)
define node prev(a) vlink(a,1l)
define node attr(a) vinfo(a,l)

Not all nodes end up in a list that results in output, like paragraphs and pages. For instance \parshape
and \widowpenalties also use nodes as storage container. Their common node is a specification node
of 32 but with a pointer to a dynamically memory array.

Because the sizes differ one cannot simply have a list of free nodes (as with tokens) without some
lookup mechanism that combines nodes when needed (they need to be next to each other) or split
larger ones when we run out of nodes. In LuaTgX and LuaMetaTgX we keep a list of free nodes per
size which in practice is more efficient and one seldom runs out of nodes because on the average a
page has a similar distribution and when a page is flushed (or any box for that matter) nodes get freed.
For instance right at this moment, we have 1982 nodes in use and 2391 glyphs in stock.®

In what order these two fields end up in memory depends on the cpu being little or big endian.
And a while later (that is: here) these numbers are 2059 and 2314. These numbers can handly be called dramatic as a page
can only have so many glyph nodes: 2163 and 2210 were the numbers after the colon.

68

5.6 The hash table

The engine has a lot of built-in commands and users can define additional ones. An example is macros,
like the mentioned \starttext and \stoptext that refer to a token list that starts the typesetting
process. When reading the input from file these commands and macros are looked up in a hash table.
There are also built-in commands that generate a hash entry. For instance when you define a counter
or a font, the given name becomes a hash entry that points to a memory location (again an index).

Here it gets more complex. A hash table is used to lookup primitive commands like \hbox and \font
as well as \starttext and \stoptext. The string is converted into an integer within a specific range.
That integer is then an index into a table like we saw before, with two halfwords per slot.

The hash value (integer calculated from string) point to a slot and the string is compared with the
stored string. When the string is different, the next field points to a different slot (outside the hash
range in the same table) and again the string is checked. When there is no next value set (zero), the
index is used to determine what to do.

This table is called the table of equivalents. In LuaMetaTgX this is implemented a bit different than in
the other engines because we combine tables. The fields that you see here keep track of the type (so
that we can optimize some bits and pieces), flags (so that we can implement overload protection), a
level (so that we can restore values after the group ends and of course a value.

That value can be a a pointer to (index of) a token list, or a pointer to (index of) a node. It can also be
just some value, like a dimension, character reference or register entry.

Although there are similarities, the memory mapping in LuaMetaTgX differs from LuaTgX and that one
differs from pdfTEX which again differs from original TgX.

In original TgX table of equivalents is organized in six regions.

1. active characters math codes
hash table category codes
font identifiers lowercase codes

3. glue uppercase codes
muglue space factors

4. token lists 5. integers
boxes delimiter codes
font names 6. dimensions

The internal dimension, integer, skip, muskip, token and box registers are part of this and for users

69

there are 256 registers of each category. There are 256 active characters, and the mentioned codes
and factors also have 256 entries.

In LuaMetaTgX (like in LuaTgX) we use Unicode, so there it makes no sense to store values in the table
of equivalents. We use dedicates hashes instead. So there we have different regions. In LuaTgX we
roughly have this:

1. hash table 6. tokens

2. frozen control sequences 7. boxes

3. font identifiers 8. integers

4. glue 9. attributes
5. muglue 10. dimensions
As we moved forward, LuaMetaTgX has some more:

1. hash table 7. integers

2. frozen control sequences 8. attributes
3. glue 9. dimensions
4. muglue 10. posits

5. tokens 11. units

6. boxes 12. specifications

In case one wonders, on top of built-in units users can define their own. Specifications are for instance
shape and penalty arrays. Fonts are not in here because we manage them in Lua.

In traditional TEX a delimiter code needs two integers so there it uses both fields in a memory word
and saves the state in a parallel array with quarterwords. We don’t need this in LuaMetaTgX because
we store delimiters in a separate hash table (and actually don’t need them at all, because we use
OpenType fonts).

We need to keep some save/restore related state in the table but for integers and delimiter codes we
need all four bytes of the value. Therefore original TgX has a separate parallel table for this, which as
side effect spoils some memory. In LuaTgX we have way more registers so there the waste is larger.

In LuaMetaTEX we got rid of this. We could also use less space for the type and store some extra data.
A side effect is that we keep the type information which is handy for tracing, sparse dumping, and
optimizing save and restore. This is why with more functionality we don’t need less more memory
than one would expect.

The hash table in original TgX is a bit too small for larger macro packages which is why in practice
engines took more than the default couple of thousands slots. But going too large makes no sense
because one ends up with many misses and unused hash and equivalent space. That is why soon after
TEX showed up support for extra hash space was introduced. That space is allocated at the end of
normal hash space and can be configured when the format file is made. This means that the hash
table also grows to the size of the equivalents table:

hash entries hash data hash entries

hash data

other data

other data

extra entries extra data

70

Too much extra hash space also means too much equivalent space as these arrays run in parallel. In
LuaMetaTgX we can let hash memory grow on demand so there the penalty is less.

It makes sense to move the ‘other data’ to the beginning so that we can use a smaller hash but. That
could potentially save 4MB memory, but when we decide to limit the maximum number of registers
to 8K (instead of 64K) we are at 512KB so that might be easier as it avoids using offsets. And who
knows how we can use the yet unused space later. Compared to LuaTgX we already save much memory
elsewhere.

5.7 Save stack

I only mention this here because it relates to the table of equivalents. Whenever a quantity (register,
parameter, macro, you name it) changes the engine registers the old value on the save stack when the
assignment is local. The equivalent is replaced and when found in the save stack restored afterwards.
In order to let the save stack not grow too much we try to only save a state when there is a real change.
We can do that because we have a bit more information available and otherwise do a bit more testing.
This is specific for LuaMetaTgX.

5.8 Data types

The long winding explanation explanation in the previous section shows that we have a curious mix of
data to manage. We already saw tokens and nodes but here we also saw registers. However, integers,
dimensions and attributes are all basically just 32 bit numbers. Even a posit (float) fits into that space.
So if you enter 10pt internally it becomes a so called scaled (dimension). The skip registers point to a
glue node and the token and box registers to a node list and those pointers are also numbers. So, what
the user sees as a data type internally is just a number and its type (the command field in a token)
tells what to do with it.

When tracing is turned on there can be mentioning of save stack, input levels, fonts, languages, hy-
phenation, various character related properties and so on. Here we have specialized data structures
that have their own memory layout and management. Where terms like token, node, integer (count),
dimension and glue indicate something that the user should grasp, the entries in a save stack are
never presented other than in an message.

Manipulating data types is explained in various low level manuals, some relate to programming, and
some to typesetting. It makes no sense to repeat that here. Take for instance macros: then come
in variants (think of \protected and/or \tolerant ones) can take arguments (which effectively are
token lists) and the flags in the mentioned table of equivalents control take care of that.

One aspect of token lists is worth mentioning: they start with a so called head token. So a list of length
one actually has two tokens. The head keeps track of the fact that a list is a copy. Because a macro
is also a token list, in LuaMetaTgX the head also has some information that permits a more efficient
code path. Because token lists are used all over the place in the engine, sharing makes sense.

Attributes attached to a node are node lists themselves and these are also shared which not only
saves memory but also is more performing. There are many places where LuaMetaTgX differs from
its predecessors: there are more primitives, there is more data moved around but it got compensated
by optimizing mechanisms. But as much as possible we stayed within the same paradigms.

71

5.9 Time flies

For those curious about how different the engines are when it comes to memory usage, here is a quote
from TgX the program:

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quar-
terword must contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with
enough 36-bit words you might be able to have mem max as large as 262142, which is eight times
as much memory as anybody had during the first four years of TgX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TgX is compiled by a Pascal that
packs all of the memory word variants into the space of a single integer. This means, for example,
that glue ratio words should be short real instead of real on some computers. Some Pascal

compilers will pack an integer whose subrange is 0 .. 255 into an eight-bit field, but others
insist on allocating space for an additional sign bit; on such systems you can get 256 values into
a quarterword only if the subrange is 128 .. 127.

The present implementation tries to accommodate as many variations as possible, so it makes
few assumptions. If integers having the subrange min quarterword .. max quarterword can
be packed into a quarterword, and if integers having the subrange min halfword .. max half-
word can be packed into a halfword, everything should work satisfactorily.

It is usually most efficient to have min quarterword = min halfword = 0, so one should try to
achieve this unless it causes a severe problem. The values defined here are recommended for
most 32-bit computers.

This still applies to pdfTEX although there a memory word is two 32 bit integer, so each halfword in
there spans 32 bits, and a quarterword 16 bits. So what does that mean for nodes? Here is what the
original code says about char nodes.

A char node, which represents a single character, is the most important kind of node because
it accounts for the vast majority of all boxes. Special precautions are therefore taken to ensure
that a char node does not take up much memory space. Every such node is one word long, and
in fact it is identifiable by this property, since other kinds of nodes have at least two words, and
they appear in mem locations less than hi mem min. This makes it possible to omit the type field
in a char node, leaving us room for two bytes that identify a font and a character within that
font.

Note that the format of a char node allows for up to 256 different fonts and up to 256 characters
per font; but most implementations will probably limit the total number of fonts to fewer than
75 per job, and most fonts will stick to characters whose codes are less than 128 (since higher
codes are more difficult to access on most keyboards).

So, in order to save space these single size nodes use little memory. Even more interesting is the
follow up on that explanation:

Extensions of TgX intended for oriental languages will need even more than 256 x 256 possible
characters, when we consider different sizes and styles of type. It is suggested that Chinese
and Japanese fonts be handled by representing such characters in two consecutive char node
entries: The first of these has font = font base, and its link points to the second; the second
identifies the font and the character dimensions. The saving feature about oriental characters
is that most of them have the same box dimensions. The character field of the first char node

72

is a charext that distinguishes between graphic symbols whose dimensions are identical for

typesetting purposes.
difficult; further details are left to the reader.

(See the MetaFont manual.) Such an extension of TgX would not be

In order to make sure that the character code fits in a quarterword, TgX adds the quantity
min quarterword to the actual code

What if that had been implemented right from the start? What if utf8 had been around at that time?
Of course when 32 bit integers are used we can use these extra bit for a larger code range anyway.

When we flash forward to LuaTgX we don’t see that optimization and there are reasons for it. First of
all content related nodes have an attribute list pointer as well as a prev field; lists are double linked.
That means we don’t reuse the type and subtype fields. The macros that define a glyph are:

define
define
define
define
define
define
define
define
define
define
define

HOH OH OB O OB W OH OB OB R

glyph node size

character(a)
font(a)

lang data(a)
lig ptr(a)
x_displace(a)
y displace(a)
ex_glyph(a)

glyph node data(a)

synctex tag glyph(a)
synctex line glyph(a) vlink

/*

expansion factor (hz) */

Instead of one memory word we use seven, and given the amount of characters on a page that adds

quite a bit compared to the original. Of course it is irrelevant on todays machines.

LuaMetaTgX as of late 20247

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

HOH K OB O OH OH O N OH OH OWH OH H OB OHH WK KRR

glyph node size

glyph character(a)

glyph font(a)
glyph data(a)

glyph state(a

)

glyph language(a)

glyph script(a)
glyph control(a

glyph reserved(a)
glyph options(

glyph _hyphenate
glyph protected
glyph lhmin(a
glyph _rhmin(a

)
)

)
a
a)
(
(

a
a

glyph discpart(a)
glyph _expansion(a)
glyph x scale(a

glyph y scale

glyph scale(a
glyph raise(a
glyph left(a)

(a
a)
a)

)
)

)
)

vinfol
vlink0
vliink1(
v1nf0(a,5)
vlink(a,5)
vinfo00(a,6)
(a,6)
vinfo02(
vinfo03(a
vlink(a, 6)
vinfo(a,7)
vlink(a,7)
vinfo(
(
(a

a,b)
6)

vlink

a, 8)
a,8)
vinfo 9)

/*tex
/*tex
/*tex

/*tex

So how about

can be quarterword */
handy in context */
handy in context */

we store OxXXXX in the |\cccode| */

73

define glyph right(a) vlink(a,9)
define glyph x offset(a) vinfo(a,10)
define glyph y offset(a) vlink(a,10)
define glyph weight(a) vinfo(a,1ll)
define glyph slant(a) vlink(a,11)
define glyph properties(a) vinfoO(a,12) /*tex for math */
define glyph group(a) vinfol(a,12) /*tex for math */
define glyph index(a) vlink(a,12) /*tex for math */
define glyph input file(a) vinfo(a,13)
define glyph input line(a) vlink(a,13)

We carry scaled, offsets, status information and various data around and consume twice what LuaTgX
needs. In both cases there are the common fields:

define node type(a) vinfo0(a,0)
define node subtype(a) vinfol(a,0)

define node next(a) vlink(a,0)
define node prev(a) vlink(a,1)
define node attr(a) vinfo(a,1l)

As you see, we still use the original TgX vinfo and vlink identifications but in LuaMetaTgX we have
node specific verbose accessors because we no longer use the same slots for (for instance) width,
height and depth. This of course has impact on the code base because now width(n) becomes a
different accessor per node it applies to. We get less compact code but gain readability and we often
need to distinguish anyway. Where LuaTgX and predecessors we see:

w += width(n)

that covers boxes, glue and kerns. For glyphs we need to get the width from the font using the font
and char fields. Actually, in TEX82 that can be done directly because we know that these values are
okay. In LuaTgX however these values can be set in Lua and therefore we do need to check if they
reference a loaded font and valid character slot. So in LuaTgX we do need a dedicated function to get
the glyph width.

In LuaMetaTgX we have to be more granular and deal with each node type that has width indepen-
dently:

switch (subtype(n) {

case glyph node:
w += tex glyph width(s);
break;

case hlist node:

case vlist node:
w += box width(n);
break;

case rule node:
w += rule width(n);
break;

case glue node:
w += glue amount(n);
break;

o U A W N

74

case kern _node:
w += kern amount(s);
break;
case math node:
if (tex math glue is zero(s)) {
w += math surround(s);
} else {
w -= math amount(s);
}

break;

}

Because a glyph can have scaled set and similar features exist for glue we need to distinguish need
to distinguish anyway. Watch the math node: we have to deal with either kern or glue.

5.10 Keywords

The e-TEX extension added primitives, pdfTgX did the same, as did Omega and therefore also LuaTgX,
which took from its ancestors and added more. The LuaMetalgX engine again extends the repertoire.
However, in order to control some primitive (functional) behavior instead of using extra primitive
parameters, we use keywords. For instance \hbox accepts multiple attr, direction, (LuaTgX) but
also xoffset, yoffset, orientation and more. This has no impact on compatibility because scanning
keywords stops at the left brace (or its equivalent). The \hrule like primitives also accept more
keywords but here scanning stops at an unknown keyword, which can give interesting side effects
when it’s last in macro followed by text that itself starts with a valid keyword (say height) but not by
a dimensions.

\def\foo{\hrule width 10pt} \foo height or depth, what about it.
\def\foo{\hrule width 10pt\relax} \foo height or depth, what about it.
\def\foo{\hrule width 10pt} \foo what about it.

\hbox to 20pt{x}

\hbox attr 999 1 to 20pt{x}

\hbox to 20pt attr 999 1 {x}

The first line gives an error, the second uses \relax to end the scanning. The last line is wrong in
LuaTgX where order matters while it’s okay in LuaMetaTgX. The third line is okay in LuaTgX where
the what is pushed back but wrong in LuaMetaTgX where it expect w to start a valid keyword. The
last is actually an incompatibility but one should keep in mind that using \relax is the way to go here
anyway. The same is true for scanning glue specifications.

The fact that what gets pushed back (in LuaTgX) into the input add extra overhead. But in this case
it’s little. However, think of this in LuaTgX:

if (scan keyword("width")) {
scan normal dimen();
width(q) = cur val;
goto RESWITCH;

}

if (scan keyword("height")) {
scan normal dimen();

75

height(q) = cur val;
goto RESWITCH;

}

if (scan keyword("depth")) {
scan normal dimen();
depth(q) = cur val;
goto RESWITCH;

}

Here we push back two times when we only specify the depth. This is still not that bad but imagine
many more keywords. This is why in LuaMetaTgX we cascade: we check for the first character and
act on that and if needed do the same with later characters (box specifications take adapt, attr,
anchor and axis so here a second character differentiates. In par passes we have adjustspacingstep,
adjustspacingshrink, adjustspacingstretch so there is no need to push back the adjustspacings
and if you look carefully tep and tretch also cascade. Of course the code looks a bit more messy but
we do gain here due to less push back and therefore input level bumping. In some cases we also need
less further tracing because we already know what is coming. Of course given TgX’s already good
scanning performance it all depends on usage what we gain in practice.

5.11 Sparse arrays

Because original TgX supports 256 characters it can use data structures and ranges in the main equiv-
alent repertoire without too much overhead but with LuaTgX we went Unicode so dedicated sparse
arrays were used instead for \catcode, \lccode, \uccode and \sfcode. The new \hjcode, math char-
acters, delimiters and font character arrays also use this mechanism and in LuaMetaTgX we use them
even more. Although in principle we can use the regular save stack for pushing and popping values
each sparse array comes with its own stack.

In LuaMetaTgX this mechanism has been optimized. Depending on the kind of data we use nibbles,
bytes, shorts, integers or integer pairs. There is also more aggressive optimization of storing the set
values in the format file. Stack management is more efficient too, which mostly has benefits for math
where we use sparse arrays for math parameters of which we have plenty.

The sparse array mechanism is also interfaced to Lua, and we might actually use that feature in Con-
TEXt some day.

primitives

76

77

6 Primitives

Contents

6.1 Introduction

6.2 Rationale

6.3 Primitives
6.4 Syntax
6.5 To be checked primitives (new)

6.6 To be checked primitives (math)
6.7 To be checked primitives (old)

6.8 Indexed primitives

6.1 Introduction

Here I will discuss some of the new primitives in LuaTgX and LuaMetaTgX, the later being a successor
that permits the ConTgXt folks to experiment with new features. The order is arbitrary. When you
compare LuaTgX with pdfTgX, there are actually quite some differences. Some primitives that pdfTgX
introduced have been dropped in LuaTgX because they can be done better in Lua. Others have been
promoted to core primitives that no longer have a pdf prefix. Then there are lots of new primitives,
some introduce new concepts, some are a side effect of for instance new math font technologies, and
then there are those that are handy extensions to the macro language. The LuaMetaTgX engine drops
quite some primitives, like those related to pdfTEX specific f(r)ont or backend features. It also adds
some new primitives, mostly concerning the macro language.

We also discuss the primitives that fit into the macro programming scope that are present in traditional
TEX and e-TgX but there are for sure better of explanations out there already. Primitives that relate to
typesetting, like those controlling math, fonts, boxes, attributes, directions, catcodes, Lua (functions)
etc are not discussed or discussed in less detail here.

There are for instance primitives to create aliases to low level registers like counters and dimensions,
as well as other (semi-numeric) quantities like characters, but normally these are wrapped into high
level macros so that definitions can’t clash too much. Numbers, dimensions etc can be advanced,
multiplied and divided and there is a simple expression mechanism to deal with them. We don’t go
into these details here: it’'s mostly an overview of what the engine provides. If you are new to TgX,
you need to play a while with its mixed bag of typesetting and programming features in order to
understand the difference between this macro language and other languages you might be familiar
with.

6.3.1 \<SPaACE> ... ittt 92 6.3.7 \Uatopwithdelims 93
6.3.2 PR 92 6.3.8 \Udelcodet 93
6.3.3 N 92 6.3.9 \Udelimitedcciiininnn. 93
6.3.4 \Uabove il 92 6.3.10 \Udelimiter 93
6.3.5 \Uabovewithdelims 93 6.3.11 \Udelimiterover 93

6.3.6 \Uatop ..o 93 6.3.12 \Udelimiterunder 93

6.3.13
6.3.14
6.3.15
6.3.16
6.3.17
6.3.18
6.3.19
6.3.20
6.3.21
6.3.22
6.3.23
6.3.24
6.3.25
6.3.26
6.3.27
6.3.28
6.3.29
6.3.30
6.3.31
6.3.32
6.3.33
6.3.34
6.3.35
6.3.36
6.3.37
6.3.38
6.3.39
6.3.40
6.3.41
6.3.42
6.3.43
6.3.44
6.3.45
6.3.46
6.3.47
6.3.48
6.3.49
6.3.50
6.3.51
6.3.52

6.3.53
6.3.54
6.3.55
6.3.56

6.3.57
6.3.58

\Uhextensible
\Uleft
\Umathaccent
\Umathaccentbasedepth
\Umathaccentbaseheight
\Umathaccentbottomovershoot
\Umathaccentbottomshiftdown
\Umathaccentextendmargin
\Umathaccentsuperscriptdrop ...
\Umathaccentsuperscriptpercent
\Umathaccenttopovershoot
\Umathaccenttopshiftup
\Umathaccentvariant
\Umathadapttoleft
\Umathadapttoright
\Umathaxis
\Umathbottomaccentvariant
\Umathchar
\Umathchardef
\Umathcode
\Umathconnectoroverlapmin
\Umathdegreevariant
\Umathdelimiterextendmargin
\Umathdelimiterovervariant
\Umathdelimiterpercent
\Umathdelimitershortfall
\Umathdelimiterundervariant
\Umathdenominatorvariant
\Umathdictdef
\Umathexheight
\Umathextrasubpreshift
\Umathextrasubprespace
\Umathextrasubshift
\Umathextrasubspace
\Umathextrasuppreshift
\Umathextrasupprespace
\Umathextrasupshift
\Umathextrasupspace
\Umathflattenedaccentbasedepth
\Umathflattenedaccent-

baseheight
\Umathflattenedaccentbot-
tomshiftdown
\Umathflattenedaccenttop-
shiftup
\Umathfractiondelsize
\Umathfractiondenomdown
\Umathfractiondenomvgap
\Umathfractionnumup

78

6.3.59
6.3.60
6.3.61
6.3.62
6.3.63
6.3.64
6.3.65
6.3.66
6.3.67
6.3.68
6.3.69
6.3.70
6.3.71
6.3.72
6.3.73
6.3.74
6.3.75
6.3.76
6.3.77
6.3.78
6.3.79
6.3.80
6.3.81
6.3.82
6.3.83
6.3.84
6.3.85
6.3.86
6.3.87
6.3.88
6.3.89
6.3.90
6.3.91
6.3.92
6.3.93
6.3.94
6.3.95
6.3.96
6.3.97
6.3.98
6.3.99
6.3.100
6.3.101
6.3.102
6.3.103
6.3.104
6.3.105

6.3.106

\Umathfractionnumvgap
\Umathfractionrule
\Umathfractionvariant
\Umathhextensiblevariant
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitabovevgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathlimitbelowvgap
\Umathlimits
\Umathnoaxis
\Umathnolimits
\Umathnolimitsubfactor
\Umathnolimitsupfactor
\Umathnumeratorvariant
\Umathopenupdepth

\Umathopenupheight
\Umathoperatorsize
\Umathoverbarkern

\Umathoverbarrule

\Umathoverbarvgap

\Umathoverdelimiterbgap
\Umathoverdelimitervariant ...
\Umathoverdelimitervgap
\Umathoverlayaccentvariant ...
\Umathoverlinevariant
\Umathphantom
\Umathprimeraise
\Umathprimeraisecomposed
\Umathprimeshiftdrop
\Umathprimeshiftup
\Umathprimespaceafter
\Umathprimevariant
\Umathquad
\Umathradicaldegreeafter
\Umathradicaldegreebefore
\Umathradicaldegreeraise
\Umathradicalextensibleafter .
\Umathradicalextensiblebefore
\Umathradicalkern
\Umathradicalrule
\Umathradicalvariant
\Umathradicalvgap
\Umathruledepth

\Umathruleheight
\Umathskeweddelimitertol-
erance
\Umathskewedfractionhgap

6.3.107
6.3.108
6.3.109
6.3.110
6.3.111
6.3.112
6.3.113
6.3.114
6.3.115
6.3.116
6.3.117
6.3.118
6.3.119
6.3.120
6.3.121
6.3.122
6.3.123
6.3.124
6.3.125
6.3.126
6.3.127
6.3.128
6.3.129
6.3.130
6.3.131
6.3.132
6.3.133
6.3.134
6.3.135
6.3.136
6.3.137
6.3.138
6.3.139
6.3.140
6.3.141
6.3.142
6.3.143
6.3.144
6.3.145
6.3.146
6.3.147
6.3.1438
6.3.149
6.3.150
6.3.151
6.3.152
6.3.153
6.3.154
6.3.155

\Umathskewedfractionvgap 102
\Umathsource 102
\Umathspaceafterscript 103
\Umathspacebeforescript 103
\Umathspacebetweenscript 103
\Umathstackdenomdown 103
\Umathstacknumup 103
\Umathstackvariant 103
\Umathstackvgap 103
\Umathsubscriptsnap 103
\Umathsubscriptvariant 103
\Umathsubshiftdown 103
\Umathsubshiftdrop 103
\Umathsubsupshiftdown 103
\Umathsubsupvgap 104
\Umathsubtopmax 104
\Umathsupbottommin 104
\Umathsuperscriptsnap 104
\Umathsuperscriptvariant 104
\Umathsupshiftdrop 104
\Umathsupshiftup 104
\Umathsupsubbottommax 104
\Umathtopaccentvariant 104
\Umathunderbarkern 104
\Umathunderbarrule 104
\Umathunderbarvgap 104
\Umathunderdelimiterbgap 105
\Umathunderdelimitervariant .. 105
\Umathunderdelimitervgap 105
\Umathunderlinevariant 105
\Umathuseaxis 105
\Umathvextensiblevariant 105
\Umathvoid 105
\Umathxscale 105
\Umathyscale 106
\Umiddle 106
\Uoperator 106
\Uover i, 106
\Uoverdelimiter 107
\Uoverwithdelims 107
\Uradical 107
\Urightl 107
\Uroot L, 107
\Urooted 107
\Uskewed 107
\Uskewedwithdelims 107
\Ustartdisplaymath 107
\Ustartmath 107
\Ustartmathmode 107

79

6.3.156
6.3.157
6.3.158
6.3.159
6.3.160
6.3.161
6.3.162
6.3.163
6.3.164
6.3.165
6.3.166
6.3.167
6.3.168
6.3.169
6.3.170
6.3.171
6.3.172
6.3.173
6.3.174
6.3.175
6.3.176
6.3.177
6.3.178
6.3.179
6.3.180
6.3.181
6.3.182
6.3.183
6.3.184
6.3.185
6.3.186
6.3.187
6.3.188
6.3.189
6.3.190
6.3.191
6.3.192
6.3.193
6.3.194
6.3.195
6.3.196
6.3.197
6.3.198
6.3.199
6.3.200
6.3.201
6.3.202
6.3.203
6.3.204

\Ustopdisplaymath 108
\Ustopmath 108
\Ustopmathmode 108
\Ustretched 108
\Ustretchedwithdelims 108
\Uunderdelimiter 108
\Uvextensible 108
\abovel 108
\abovedisplayshortskip 108
\abovedisplayskip 108
\abovewithdelims 108
\accent ... i, 109
\additionalpageskip 109
\adjacentdemerits 109
\adjdemerits 109
\adjustspacing 109
\adjustspacingshrink 109
\adjustspacingstep 109
\adjustspacingstretch 109
\advanceciieiiiiiiiien... 110
\advanceby 110
\afterassigned 110
\afterassignment 110
\aftergroup 110
\aftergrouped 111
\aliasedcccoiiiiiiiinn, 112
\aligncontent 112
\alignloopccvvvvvvvo.... 112
\alignmark 112
\alignmentcellsource 112
\alignmentwrapsource 113
\alignoption 113
\aligntab 113
\allcrampedstyles 113
\alldisplaystyles 113
\allmainstyles 113
\allmathstyles 113
\allscriptscriptstyles 113
\allscriptstyles 113
\allsplitstyles 113
\alltextstyles 114
\alluncrampedstyles 114
\allunsplitstyles 114
\amcodecoiiiiiiiiia., 114
\associateunit 114
\atendoffile 115
\atendoffiled 115
\atendofgroup 115
\atendofgrouped 115

6.3.205
6.3.206
6.3.207
6.3.208
6.3.209
6.3.210
6.3.211
6.3.212
6.3.213
6.3.214
6.3.215
6.3.216
6.3.217
6.3.218
6.3.219
6.3.220
6.3.221
6.3.222
6.3.223
6.3.224
6.3.225
6.3.226
6.3.227
6.3.228
6.3.229
6.3.230
6.3.231
6.3.232
6.3.233
6.3.234
6.3.235
6.3.236
6.3.237
6.3.238
6.3.239
6.3.240
6.3.241
6.3.242
6.3.243
6.3.244
6.3.245
6.3.246
6.3.247
6.3.248
6.3.249
6.3.250
6.3.251
6.3.252
6.3.253

\Natop ..o 116
\atopwithdelims 116
\attribute 116
\attributeboundary 116
\attributedef 116
\automaticdiscretionary 116
\automatichyphenpenalty 116
\automigrationmode 116
\autoparagraphmode 117
\badness ..., 117
\balanceadjdemerits 117
\balancebottomskip 117
\balanceboundary 117
\balancebreakpasses 117
\balancechecks 117
\balanceemergencyshrink 117
\balanceemergencystretch 118
\balancefinalpenalties 118
\balancelineheight 118
\balancelooseness 118
\balancepasses 118
\balancepenalty 118
\balanceshape 118
\balanceshapebottomspace 118
\balanceshapetopspace 118
\balanceshapevsize 119
\balancetolerance 119
\balancetopskip 119
\balancevsize 119
\baselineskip 119
\batchmode 119
\begincsname 119
\begingroup 120
\beginlocalcontrol 120
\beginmathgroup 120
\beginmvl 121
\beginsimplegroup 121
\belowdisplayshortskip 122
\belowdisplayskip 122
\binoppenalty 122
\botmarkoiiiiiiia, 122
\botmarks, 122
\bottomskipoiiiiit, 122
\boundary 122
\DOX i 122
\boxadapt 123
\boxanchor 123
\boxanchors 123
\boxattribute 123

80

6.3.254
6.3.255
6.3.256
6.3.257
6.3.258
6.3.259
6.3.260
6.3.261
6.3.262
6.3.263
6.3.264
6.3.265
6.3.266
6.3.267
6.3.268
6.3.269
6.3.270
6.3.271
6.3.272
6.3.273
6.3.274
6.3.275
6.3.276
6.3.277
6.3.278
6.3.279
6.3.280
6.3.281
6.3.282
6.3.283
6.3.284
6.3.285
6.3.286
6.3.287
6.3.288
6.3.289
6.3.290
6.3.291
6.3.292
6.3.293
6.3.294
6.3.295
6.3.296
6.3.297
6.3.298
6.3.299
6.3.300
6.3.301
6.3.302

\boxdirection 124
\boxfinalize 124
\boxfreeze 124
\boxgeometry 125
\boxinsertsol 125
\boxlimit 125
\boxlimitate 125
\boxlimitmode 125
\boxmaxdepth 125
\boxmigrate 125
\boxorientation 126
\boxrepack 126
\boxshift 126
\boxshrink 126
\boxsnapping 126
\boxsource 126
\boxstretch 127
\boxsubtype 127
\boxtarget 127
\boxtotal 127
\boxvadjust 127
\boxxmove 128
\boxxoffset 128
\boxymove 128
\boxyoffset 128
\breaklasthangindent 128
\breaklasthangleftindent 128
\breaklasthangleftslack 128
\breaklasthangrightindent 128
\breaklasthangrightslack 128
\breaklasthangslack 128
\breaklastlinecount 129
\breaklastlinewidth 129
\brokenpenalties 129
\brokenpenalty 129
\catcode ..., 129
\catcodetable 129
\cccode ... 129
\Ncdef . 130
\cdefcsname 130
\cfcodel 130
\char ... 130
\chardef L. 130
\cleaderscoiiiinnenin.. 130
\clearmarks 130
\clubpenalties 131
\clubpenalty 131
\constant 131
\constrained 131

6.3.303
6.3.304
6.3.305
6.3.306
6.3.307
6.3.308
6.3.309
6.3.310
6.3.311
6.3.312
6.3.313
6.3.314
6.3.315
6.3.316
6.3.317
6.3.318
6.3.319
6.3.320
6.3.321
6.3.322
6.3.323
6.3.324
6.3.325
6.3.326
6.3.327
6.3.328
6.3.329
6.3.330
6.3.331
6.3.332
6.3.333
6.3.334
6.3.335
6.3.336
6.3.337
6.3.338
6.3.339
6.3.340
6.3.341
6.3.342
6.3.343
6.3.344
6.3.345
6.3.346
6.3.347
6.3.348
6.3.349
6.3.350
6.3.351

NCOPY vttt e e 131
\copymathatomrule 131
\copymathparent 131
\copymathspacing 131
\copysplitdiscards 131
\count ... 132
\countdef 132
R P 132
\crampeddisplaystyle 132
\crampedscriptscriptstyle 132
\crampedscriptstyle 132
\crampedtextstyle 133
(ol o O 133
\csactive 133
ANoE=] 1 = 111 = 133
\csnamestring 133
\csstring 133
\currentalignmentcolumn 133
\currentalignmentrow 133
\currentalignmenttabskip 134
\currentgrouplevel 134
\currentgrouptype 134
\currentifbranch 134
\currentiflevel 135
\currentiftype 135
\currentloopiterator 136
\currentloopnesting 136
\currentlysetmathstyle 137
\currentmarks 137
\currentstacksize 137
Nday ..o 138
\dbOX ... 138
\deadcycles 138
\def ... o, 138
\defaulthyphenchar 139
\defaultskewchar 139
\defcsname 139
\deferred 139
\delcodeccciiiiiiiiii.. 140
\delimiter 140
\delimiterfactor 140
\delimitershortfall 140
\detokened 140
\detokenize 141
\detokenized 141
\dimen i, 141
\dimendef 141
\dimensiondef 141
\dimexperimental 142

81

6.3.352
6.3.353
6.3.354
6.3.355
6.3.356
6.3.357
6.3.358
6.3.359
6.3.360
6.3.361
6.3.362
6.3.363
6.3.364
6.3.365
6.3.366
6.3.367
6.3.368
6.3.369
6.3.370
6.3.371
6.3.372
6.3.373
6.3.374
6.3.375
6.3.376
6.3.377
6.3.378
6.3.379
6.3.380
6.3.381
6.3.382
6.3.383
6.3.384
6.3.385
6.3.386
6.3.387
6.3.388
6.3.389
6.3.390
6.3.391
6.3.392
6.3.393
6.3.394
6.3.395
6.3.396
6.3.397
6.3.398
6.3.399
6.3.400

\dimexprccciiiiiiiiiiii.. 142
\dimexpression 142
\directlua 142
\discretionary 143
\discretionaryoptions 143
\displayindent 143
\displaylimits 143
\displaystyle 143
\displaywidowpenalties 144
\displaywidowpenalty 144
\displaywidth 144
\dividel 144
\dividebycoiiiiiiilL 144
\doublehyphendemerits 144
\doublepenaltymode 144
AP e 144
\dpack ... 144
\dsplit ... 145
\NAUMp . 145
\edef i 145
\edefcsname 145
\edividel 145
\edividebyl 146
\efcodel 146
\else .. 146
\emergencyextrastretch 146
\emergencyleftskip 146
\emergencyrightskip 146
\emergencystretch 146
\emptyparagraphmode 146
Nend ... 147
\endcsnameciiiiiiiea., 147
\endgroup ... 147
\endinput s, 147
\endlinechar 148
\endlocalcontrol 148
\endmathgroup 148
\endmvl, 148
\endsimplegroup 148
\enforcedoilL 148
\eofinput 148
\NEONO oottt e 149
\errhelp ..., 149
\errmessagecooeeeeneenn. 149
\errorcontextlines 149
\errorrecoverymode 149
\errorstopmode 149
\escapechar 149
\etexexprmode 149

6.3.401
6.3.402
6.3.403
6.3.404
6.3.405
6.3.406
6.3.407
6.3.408
6.3.409
6.3.410
6.3.411
6.3.412
6.3.413
6.3.414
6.3.415
6.3.416
6.3.417
6.3.418
6.3.419
6.3.420
6.3.421
6.3.422
6.3.423
6.3.424
6.3.425
6.3.426
6.3.427
6.3.428
6.3.429
6.3.430
6.3.431
6.3.432
6.3.433
6.3.434
6.3.435
6.3.436
6.3.437
6.3.438
6.3.439
6.3.440
6.3.441
6.3.442
6.3.443
6.3.444
6.3.445
6.3.446
6.3.447
6.3.4438
6.3.449

\etoks ... 149
\etoksappl. 150
\etoksprel 150
\eufactor 150
\everybeforepar 150
ANCAYZ=] 0V e P 150
\everydisplay 151
\everyeof 151
\everyhbox 151
\everyjob ... il 151
\everymath 151
\everymathatom 151
\eVeryparcooeeeiieiiienennnn. 152
\everyparbegin 152
\everyparend 152
\everytabl 152
\everyvboxl 152
\exapostrophechar 152
\exceptionpenalty 152
\exhyphenchar 152
\exhyphenpenalty 152
\expand ... 152
\expandactive 153
\expandafter 153
\expandafterpars 153
\expandafterspaces 154
\expandcstoken 154
\expandedl 155
\expandedafter 155
\expandeddetokenize 155
\expandedendless 156
\expandedloop 156
\expandedrepeat 156
\expandparameter 156
\expandtoken 157
\expandtoks 157
\explicitdiscretionary 158
\explicithyphenpenalty 158
\explicititaliccorrection 158
\explicitspace 158
Nfam ... 158
N 158
\finalhyphendemerits 158
\firstmark 159
\firstmarks 159
\firstvalidlanguage 159
\fitnessclasses 159
\float il 159
\floatdef 160

82

6.3.450
6.3.451
6.3.452
6.3.453
6.3.454
6.3.455
6.3.456
6.3.457
6.3.458
6.3.459
6.3.460
6.3.461
6.3.462
6.3.463
6.3.464
6.3.465
6.3.466
6.3.467
6.3.468
6.3.469
6.3.470
6.3.471
6.3.472
6.3.473
6.3.474
6.3.475
6.3.476
6.3.477
6.3.478
6.3.479
6.3.480
6.3.481
6.3.482
6.3.483
6.3.484
6.3.485
6.3.486
6.3.487
6.3.488
6.3.489
6.3.490
6.3.491
6.3.492
6.3.493
6.3.494
6.3.495
6.3.496
6.3.497
6.3.498

\floatexpr 160
\floatingpenalty 160
\flushmarks 161
\flushmvl 161
\font 161
\fontcharba 161
\fontchardp 161
\fontcharht 161
\fontcharic 161
\fontcharta 161
\fontcharwd 162
\fontdimen 162
\fontidl 162
\fontidentifier 162
\fontmathcontrol 163
\fontname, 163
\fontspecdef 163
\fontspecid 164
\fontspecifiedname 164
\fontspecifiedsize 164
\fontspecscale 165
\fontspecslant 165
\fontspecweight 165
\fontspecxscale 165
\fontspecyscale 165
\fonttextcontrol 165
\forcedleftcorrection 165
\forcedrightcorrection 165
\formatname 165
\frozenl 166
\futurecsname 166
\futuredef 166
\futureexpand 166
\futureexpandis 167
\futureexpandisap 167
\futurelet 167
\gdef ... 168
\gdefcsname 168
\givenmathstyle 168
\gleadersccoviiiiii... 168
\glet ... 169
\gletcsname 169
\glettonothing 169
\globalcoi it 169
\globaldefs 170
\glueexpr ...cooeiiiiiiiiiinnnan. 170
\glueshrink 170
\glueshrinkorder 170
\gluespecdef 170

6.3.499
6.3.500
6.3.501
6.3.502
6.3.503
6.3.504
6.3.505
6.3.506
6.3.507
6.3.508
6.3.509
6.3.510
6.3.511
6.3.512
6.3.513
6.3.514
6.3.515
6.3.516
6.3.517
6.3.518
6.3.519
6.3.520
6.3.521
6.3.522
6.3.523
6.3.524
6.3.525
6.3.526
6.3.527
6.3.528
6.3.529
6.3.530
6.3.531
6.3.532
6.3.533
6.3.534
6.3.535
6.3.536
6.3.537
6.3.538
6.3.539
6.3.540
6.3.541
6.3.542
6.3.543
6.3.544
6.3.545
6.3.546
6.3.547

\gluestretch 170
\gluestretchorder 170
\gluetomu 170
\glyph ... 170
\glyphdatafield 171
\glyphoptions 171
\glyphscaleout. 171
\glyphscriptfield 171
\glyphscriptscale 172
\glyphscriptscriptscale 172
\glyphslant 172
\glyphstatefield 172
\glyphtextscale 172
\glyphweight 172
\glyphxoffset 172
\glyphxscale 172
\glyphxscaled 172
\glyphyoffset 172
\glyphyscale 173
\glyphyscaled 173
\gtoksappoiiiiL 173
\gtoksprel 173
\halign ciiinaan. 173
\hangafter 174
\hangindent 174
\hbadness 174
\hbadnessmode 174
\hbox 174
\hccode 175
\hfil ... 175
\Nhfill e 175
\hfilnegciiiit, 175
\hfuzz 175
\hjcode 175
\hkerno i, 176
\hmcodel 176
\holdinginserts 176
\holdingmigrations 176
\hpackl 176
\hpenalty 176
\hruleccc i, 177
\hsize i i, 177
\hskip ... 177
\NNSS 177
Nt 178
\hyphenation 178
\hyphenationmin 178
\hyphenationmode 178
\hyphenchar 178

83

6.3.548
6.3.549
6.3.550
6.3.551
6.3.552
6.3.553
6.3.554
6.3.555
6.3.556
6.3.557
6.3.558
6.3.559
6.3.560
6.3.561
6.3.562
6.3.563
6.3.564
6.3.565
6.3.566
6.3.567
6.3.568
6.3.569
6.3.570
6.3.571
6.3.572
6.3.573
6.3.574
6.3.575
6.3.576
6.3.577
6.3.578
6.3.579
6.3.580
6.3.581
6.3.582
6.3.583
6.3.584
6.3.585
6.3.586
6.3.587
6.3.588
6.3.589
6.3.590
6.3.591
6.3.592
6.3.593
6.3.594
6.3.595
6.3.596

\hyphenpenalty 178
N 179
\ifabsdim 179
\ifabsfloat 179
\ifabsnum 180
\ifarguments 180
\ifboolean 180
\ifcase ..., 180
\ifcatc i 180
\ifchkdim 181
\ifchkdimension 181
\ifchkdimexpr 181
\ifchknum 181
\ifchknumber 182
\ifchknumexpr 182
\ifcmpdiml 182
\ifcmpnuml 182
\ifcondition 182
\ifcramped 183
\ifcsname 183
\ifcstokl 184
\ifdefined 184
\ifdim 184
\ifdimexpression 184
\ifdimval 185
\ifempty ... 185
\iffalsecciiiiiiiiii.. 185
\ifflagscoviiiiiiiiiit, 185
\iffloat 186
\iffontchar 186
\ifhaschar 186
\ifhastok 186
\ifhastoks 186
\ifhasxtoks 187
\ifhbox ... il 188
\ifhmode 188
\ifinalignment 188
\ifincsname 188
\ifinner L. 188
\ifinsert 188
\ifintervaldim 188
\ifintervalfloat 189
\ifintervalnum 189
\iflastnamedcs 189
\iflist ... 189
\ifmathparameter 189
\ifmathstyle 189
\ifmmode, 190
\ifnum 190

6.3.597
6.3.598
6.3.599
6.3.600
6.3.601
6.3.602
6.3.603
6.3.604
6.3.605
6.3.606
6.3.607
6.3.608
6.3.609
6.3.610
6.3.611
6.3.612
6.3.613
6.3.614
6.3.615
6.3.616
6.3.617
6.3.618
6.3.619
6.3.620
6.3.621
6.3.622
6.3.623
6.3.624
6.3.625
6.3.626
6.3.627
6.3.628
6.3.629
6.3.630
6.3.631
6.3.632
6.3.633
6.3.634
6.3.635
6.3.636
6.3.637
6.3.638
6.3.639
6.3.640
6.3.641
6.3.642
6.3.643
6.3.644
6.3.645

\ifnumexpression 190
\ifnumval 191
\ifoddciiiiiii 191
\ifparameter 191
\ifparameters 191
\ifrelaxcoooiiiii.. 191
\iftok ... 191
\iftruel 192
\ifvboxl 192
\ifvmode i, 192
\ifvoid 192
\NIfX o 192
\ifzerodim 193
\ifzerofloat 193
\ifzeronum 193
\ignorearguments 193
\ignoredepthcriterion 194
\ignorenestedupto 194
\ignoreparsoiiiiiinnn. 194
\ignorerestoiiiiiiin, 194
\1gnorespaceso..... 195
\ignoretokens 195
\ignoreuptocoiiiiiann 195
\immediate 195
\immutable 195
\indent il 195
\indexedsubprescript 196
\indexedsubscript 196
\indexedsuperprescript 196
\indexedsuperscript 196
\indexofcharacter 197
\indexofregister 197
\inherited 197
\initcatcodetable 198
\initialpageskip 198
\initialtopskip 198
NINPUt o 198
\inputlineno 198
\insert ... 198
\insertboundary 198
\insertbox 198
\insertcategory 198
\insertcopycooiiiiiiii.. 199
\insertdepth 199
\insertdirection 199
\insertdistance 199
\insertheight 199
\insertheights 199
\insertlimit 199

84

6.3.646
6.3.647
6.3.648
6.3.649
6.3.650
6.3.651
6.3.652
6.3.653
6.3.654
6.3.655
6.3.656
6.3.657
6.3.658
6.3.659
6.3.660
6.3.661
6.3.662
6.3.663
6.3.664
6.3.665
6.3.666
6.3.667
6.3.668
6.3.669
6.3.670
6.3.671
6.3.672
6.3.673
6.3.674
6.3.675
6.3.676
6.3.677
6.3.678
6.3.679
6.3.680
6.3.681
6.3.682
6.3.683
6.3.684
6.3.685
6.3.686
6.3.687
6.3.688
6.3.689
6.3.690
6.3.691
6.3.692
6.3.693
6.3.694

\insertlinedepth 199
\insertlineheight 199
\insertmaxdepth 199
\insertmaxplaced 200
\insertmode, 200
\insertmultiplier 200
\insertonlycount 200
\insertoptions 200
\insertpenalties 200
\insertpenalty 200
\insertplaced 200
\insertprogress 200
\insertshrink 201
\insertstorage 201
\insertstoring 201
\insertstretch 201
\insertunbox 201
\insertuncopy 201
\insertwidth 201
\instance ...l 201
\integerdef 201
\interactionmode 202
\interlinepenalties 202
\interlinepenalty 202
\jobnamel 202
\Kern ..o 202
\languageccciiiiiiiin.. 202
\lastalignmentcolumn 203
\lastalignmentrow 203
\lastarguments 203
\lastatomclass 203
\lastboundary 203
\lastbox i, 203
\lastchkdimension 203
\lastchknumber 204
\lastkern 204
\lastleftclass 204
\lastlinefit 204
\lastloopiterator 204
\lastnamedcs 204
\lastnodesubtype 205
\lastnodetype 205
\lastpageextra 205
\lastparcontext 205
\lastpartrigger 205
\lastpenalty 205
\lastrightclass 205
\lastskip ..oovveviiiiiinani... 205
\lccode ...oiiiiiiiiiiii 205

6.3.695
6.3.696
6.3.697
6.3.698
6.3.699
6.3.700
6.3.701
6.3.702
6.3.703
6.3.704
6.3.705
6.3.706
6.3.707
6.3.708
6.3.709
6.3.710
6.3.711
6.3.712
6.3.713
6.3.714
6.3.715
6.3.716
6.3.717
6.3.718
6.3.719
6.3.720
6.3.721
6.3.722
6.3.723
6.3.724
6.3.725
6.3.726
6.3.727
6.3.728
6.3.729
6.3.730
6.3.731
6.3.732
6.3.733
6.3.734
6.3.735
6.3.736
6.3.737
6.3.738
6.3.739
6.3.740
6.3.741
6.3.742
6.3.743

\leaderscccoviiiiiiinnnnn. 206
\left oo 206
\lefthyphenmin 206
\leftmarginkern 206
\leftskipccviviiia.. 206
\lefttwindemerits 206
\legno ..o 206
\let ..o 206
\letcharcode 206
\letcsname 207
\letfrozen 207
\letmathatomrule 207
\letmathparent 207
\letmathspacing 207
\letprotected 208
\lettolastnamedcs 208
\lettonothing 208
\limitso 208
\linebreakchecks 209
\linebreakoptional 209
\linebreakpasses 209
\linedirection 209
\linepenalty 209
\lineskip ...ovvviiviiiiinanan., 209
\lineskiplimit 209
\linesnapping 210
\localbreakpar 210
\localbrokenpenalty 210
\localcontrol 210
\localcontrolled 210
\localcontrolledendless 211
\localcontrolledloop 211
\localcontrolledrepeat 212
\localhangafter 212
\localhangindent 212
\localinterlinepenalty 212
\localleftbox 212
\localleftboxbox 212
\localmiddlebox 212
\localmiddleboxbox 212
\localpretolerance 212
\localrightbox 212
\localrightboxbox 213
\localtolerance 213
\long ..o 213
\loosenessccoiiiiin.. 213
\lower ..o 213
\lowercasecccivveenn.. 213
\lpcodeoiinnan. 213

85

6.3.744
6.3.745
6.3.746
6.3.747
6.3.748
6.3.749
6.3.750
6.3.751
6.3.752
6.3.753
6.3.754
6.3.755
6.3.756
6.3.757
6.3.758
6.3.759
6.3.760
6.3.761
6.3.762
6.3.763
6.3.764
6.3.765
6.3.766
6.3.767
6.3.768
6.3.769
6.3.770
6.3.771
6.3.772
6.3.773
6.3.774
6.3.775
6.3.776
6.3.777
6.3.778
6.3.779
6.3.780
6.3.781
6.3.782
6.3.783
6.3.784
6.3.785
6.3.786
6.3.787
6.3.788
6.3.789
6.3.790
6.3.791
6.3.792

\luaboundary 214
\luabytecode 214
\luabytecodecall 214
\luacopyinputnodes 214
\luadefl 214
\luaescapestring 215
\luafunction 215
\luafunctioncall 215
\luametatexmajorversion 215
\luametatexminorversion 215
\luametatexrelease 216
\luatexbanner 216
\luatexrevision 216
\luatexversion 216
\Mark ..o . 216
\marks ... i 216
\mathaccent 216
\mathatom 216
\mathatomglue 216
\mathatomskip 217
\mathbackwardpenalties 217
\mathbeginclass 217
\mathbin 217
\mathboundary 217
\mathchar 217
\mathcharclass 218
\mathchardef 218
\mathcharfam 218
\mathcharslot 218
\mathcheckfencesmode 218
\mathchoice 218
\mathclass 218
\mathclose 219
\mathcode, 219
\mathdictgroup 219
\mathdictionary 219
\mathdictproperties 219
\mathdirection 220
\mathdiscretionary 220
\mathdisplaymode 220
\mathdisplaypenaltyfactor 220
\mathdisplayskipmode 220
\mathdoublescriptmode 221
\mathendclass 221
\matheqnogapstep 221
\mathfontcontrol 221
\mathforwardpenalties 222
\mathgluemode 222
\mathgroupingmode 222

6.3.793
6.3.794
6.3.795
6.3.796
6.3.797
6.3.798
6.3.799
6.3.800
6.3.801
6.3.802
6.3.803
6.3.804
6.3.805
6.3.806
6.3.807
6.3.808
6.3.809
6.3.810
6.3.811
6.3.812
6.3.813
6.3.814
6.3.815
6.3.816
6.3.817
6.3.818
6.3.819
6.3.820
6.3.821
6.3.822
6.3.823
6.3.824
6.3.825
6.3.826
6.3.827
6.3.828
6.3.829
6.3.830
6.3.831
6.3.832
6.3.833
6.3.834
6.3.835
6.3.836
6.3.837
6.3.838
6.3.839
6.3.840
6.3.841

\mathinlinepenaltyfactor 223
\mathinner 223
\mathleftclass 223
\mathlimitsmode 223
\mathmainstyle 224
\mathopcooiiiiiiiiii.. 224
\mathopen, 224
\mathoptions 225
\mathord 225
\mathparentstyle 225
\mathpenaltiesmode 225
\mathpretolerance 225
\mathpunct 226
\mathrel 226
\mathrightclass 226
\mathrulesfam 226
\mathrulesmode 226
\mathscale 226
\mathscriptsmode 226
\mathslackmode 227
\mathspacingmode 227
\mathstack 227
\mathstackstyle 227
\mathstyle 227
\mathstylefontid 228
\mathsurround 228
\mathsurroundmode 228
\mathsurroundskip 228
\maththreshold 228
\mathtolerance 228
\maxdeadcycles 228
\maxdepth 228
\meaningcciiiiiiiiiian.. 229
\meaningasis 229
\meaningful 229
\meaningfull 229
\meaningles 229
\meaningless 229
\medmuskipoiiiiiii.., 230
\MESSAGE . iiiiiiie it 230
\middleot 230
\mkern ... 230
\month i, 230
\moveleftccooiiiiiiiit, 230
\moveright 230
AN 1157 o 230
AMUEXPE ittt e i eenns 230
\mugluespecdef 230
\multiply ..ooooiiiiiii . 231

86

6.3.842
6.3.843
6.3.844
6.3.845
6.3.846
6.3.847
6.3.848
6.3.849
6.3.850
6.3.851
6.3.852
6.3.853
6.3.854
6.3.855
6.3.856
6.3.857
6.3.858
6.3.859
6.3.860
6.3.861
6.3.862
6.3.863
6.3.864
6.3.865
6.3.866
6.3.867
6.3.868
6.3.869
6.3.870
6.3.871
6.3.872
6.3.873
6.3.874
6.3.875
6.3.876
6.3.877
6.3.878
6.3.879
6.3.880
6.3.881
6.3.882
6.3.883
6.3.884
6.3.885
6.3.886
6.3.887
6.3.888
6.3.889
6.3.890

\multiplyby 231
\MUSKIp ... 231
\muskipdef 231
\mutableiiiil 231
\mutoglue, 231
\mvlcurrentlyactive 231
\nestedloopiterator 231
\newlinechar 232
\noalignoiiiiiin.. 232
\noaligned 232
\noarguments 232
\noatomruling 232
\noboundary 232
\noexpand, 232
\nohrule 233
\noindentl 233
\nolimitsooiiiiiitt, 233
\nomathchar 233
\nonscript 233
\nonstopmode 233
\nooutputboxerror 233
\norelaxcooiiiiiiiiiiiin. 233
\normalizelinemode 234
\normalizeparmode 235
\noscript il 235
\NOSPACES .. viviiiiiieeeeennn. 235
\nosubprescript 235
\nosubscript 235
\nosuperprescript 235
\nosuperscript 235
\notexpanded 235
\novrule il 236
\nulldelimiterspace 236
\nullfont, 236
\number ... 236
\numericscale 236
\numericscaled 236
\numexperimental 237
\NUMEXPT ottt iiiieeee e 237
\numexpression 237
\omit ... 238
\optionalboundary 238
O e e 238
\orelsecoiiiiiiiiiiiin, 238
\orphanlinefactors 240
\orphanpenalties 240
\orunlessccoiiiiiiiiiiin. 241
\outer ... i 241
\output 241

6.3.891
6.3.892
6.3.893
6.3.894
6.3.895
6.3.896
6.3.897
6.3.898
6.3.899
6.3.900
6.3.901
6.3.902
6.3.903
6.3.904
6.3.905
6.3.906
6.3.907
6.3.908
6.3.909
6.3.910
6.3.911
6.3.912
6.3.913
6.3.914
6.3.915
6.3.916
6.3.917
6.3.918
6.3.919
6.3.920
6.3.921
6.3.922
6.3.923
6.3.924
6.3.925
6.3.926
6.3.927
6.3.928
6.3.929
6.3.930
6.3.931
6.3.932
6.3.933
6.3.934
6.3.935
6.3.936
6.3.937
6.3.938
6.3.939

\outputbox 241
\outputpenalty 241
NOVEl it e 241
\overfullrule 241
\overlinecccoiiviiiinn... 241
\overloaded 242
\overloadmode 242
\overshoot 242
\overwithdelims 243
\pageboundary 243
\pagedepth 243
\pagediscards 243
\PageexCessSoveiiiiiiinnn.. 244
\pageextragoal 244
\pagefilllstretch 244
\pagefillstretch 244
\pagefilstretch 244
\pagefistretch 244
\pagegoalt 244
\pagelastdepth 244
\pagelastfilllstretch 244
\pagelastfillstretch 244
\pagelastfilstretch 244
\pagelastfistretch 245
\pagelastheight 245
\pagelastshrink 245
\pagelaststretch 245
\pageshrink 245
\pagestretch 245
\pagetotal 245
\pagevsizeciiiiiia... 245
N 1= 1 PP 245
\parametercount 245
\parameterdef 245
\parameterindex 246
\parametermark 246
\parametermode 246
\parattribute 246
\pardirection 246
\parfillleftskip 246
\parfillrightskip 247
\parfillskip 247
\parindent 247
\parinitleftskip 247
\parinitrightskip 247
\paroptions 247
\parpassesiiiiiiiiiin.. 247
\parpassesexception 247
\parshapecciivin.... 247

87

6.3.940
6.3.941
6.3.942
6.3.943
6.3.944
6.3.945
6.3.946
6.3.947
6.3.948
6.3.949
6.3.950
6.3.951
6.3.952
6.3.953
6.3.954
6.3.955
6.3.956
6.3.957
6.3.958
6.3.959
6.3.960
6.3.961
6.3.962
6.3.963
6.3.964
6.3.965
6.3.966
6.3.967
6.3.968
6.3.969
6.3.970
6.3.971
6.3.972
6.3.973
6.3.974
6.3.975
6.3.976
6.3.977
6.3.978
6.3.979
6.3.980
6.3.981
6.3.982
6.3.983
6.3.984
6.3.985
6.3.986
6.3.987
6.3.988

\parshapedimen 247
\parshapeindent 247
\parshapelength 248
\parshapewidth 248
\PArsKip ..o 248
\patterns i, 248
\pPausingcoiiiiiiiiiiinn.. 248
\penaltyoovviiiiiiiinnnn. 248
\permanent 248
\pettymuskip 248
\positdefl 248
\postdisplaypenalty 249
\postexhyphenchar 249
\posthyphenchar 249
\postinlinepenalty 249
\postshortinlinepenalty 249
\prebinoppenalty 249
\predisplaydirection 249
\predisplaygapfactor 250
\predisplaypenalty 250
\predisplaysize 250
\preexhyphenchar 250
\prehyphenchar 250
\preinlinepenalty 250
\prerelpenalty 250
\preshortinlinepenalty 250
\pretolerance 250
\prevdepth 250
\prevgraf 251
\previousloopiterator 251
\primescript 251
\protected 251
\protecteddetokenize 251
\protectedexpandeddetokenize . 251
\protrudechars 252
\protrusionboundary 252
\pxdimen, 252
\quitloopccoviiiiiiiiinn. 252
\quitloopnow 252
\quitvmode 252
\radicaloiiiiit, 252
\raise ..., 252
\rdivide, 252
\rdivideby, 253
\realign ..., 253
\relaX ... 253
\relpenalty 254
\resetlocalboxes 254
\resetmathspacing 254

6.3.989 \restorecatcodetable 254
6.3.990 \retained 256
6.3.991 \retokenized 257
6.3.992 \rightt 258
6.3.993 \righthyphenmin 258
6.3.994 \rightmarginkern 258
6.3.995 \rightskip il 258
6.3.996 \righttwindemerits 258
6.3.997 \romannumeral 258
6.3.998 \rpcodel 258
6.3.999 \savecatcodetable 258
6.3.1000\savinghyphcodes 258
6.3.1001\savingvdiscards 258
6.3.1002\scaledemwidth 259
6.3.1003\scaledexheight 259
6.3.1004\scaledextraspace 259
6.3.1005\scaledfontcharba 259
6.3.1006\scaledfontchardp 259
6.3.1007\scaledfontcharht 259
6.3.1008\scaledfontcharic 259
6.3.1009\scaledfontcharta 259
6.3.1010\scaledfontcharwd 259
6.3.1011\scaledfontdimen 259
6.3.1012\scaledfontemwidth 260
6.3.1013\scaledfontexheight 260
6.3.1014\scaledfontextraspace 260
6.3.1015\scaledfontinterwordshrink ... 260
6.3.1016\scaledfontinterwordspace 260
6.3.1017\scaledfontinterwordstretch .. 260
6.3.1018\scaledfontslantperpoint 260
6.3.1019\scaledinterwordshrink 260
6.3.1020\scaledinterwordspace 261
6.3.1021\scaledinterwordstretch 261
6.3.1022\scaledmathaxis 261
6.3.1023\scaledmathemwidth 261
6.3.1024\scaledmathexheight 261
6.3.1025\scaledmathstyle 261
6.3.1026\scaledslantperpoint 261
6.3.1027\scantextokens 261
6.3.1028\scantokensl 262
6.3.1029\scriptfont, 262
6.3.1030\scriptscriptfont 262
6.3.1031\scriptscriptstyle 262
6.3.1032\scriptspaceoii.... 262
6.3.1033\scriptspaceafterfactor 262
6.3.1034\scriptspacebeforefactor 262
6.3.1035\scriptspacebetweenfactor 262
6.3.1036\scriptstyle 262
6.3.1037\scrollmode 263

88

6.3.1038\semiexpand
6.3.1039\semiexpanded
6.3.1040\semiprotected
6.3.1041\setbox
6.3.1042\setdefaultmathcodes
6.3.1043\setfontid
6.3.1044\setlanguage
6.3.1045\setmathatomrule
6.3.1046\setmathdisplaypostpenalty ...
6.3.1047\setmathdisplayprepenalty
6.3.1048\setmathignore
6.3.1049\setmathoptions
6.3.1050\setmathpostpenalty
6.3.1051\setmathprepenalty
6.3.1052\setmathspacing
6.3.1053\sfcode
6.3.1054\shapingpenaltiesmode
6.3.1055\shapingpenalty
6.3.1056\shipout
6.3.1057\shortinlinemaththreshold

6.3.1058\shortinlineorphanpenalty
6.3.1059\show
6.3.1060\ showbox
6.3.1061\showboxbreadth
6.3.1062\showboxdepth
6.3.1063\showcodestack
6.3.1064\showgroups
6.3.1065\showifs
6.3.1066\showlists
6.3.1067\shownodedetails
6.3.1068\showstack
6.3.1069\showthe
6.3.1070\showtokens
6.3.1071\singlelinepenalty
6.3.1072\skewchar
6.3.1073\skip
6.3.1074\skipdef
6.3.1075\snapshotpar
6.3.1076\spacechar
6.3.1077\spacefactor
6.3.1078\spacefactormode
6.3.1079\spacefactoroverload
6.3.1080\spacefactorshrinklimit
6.3.1081\spacefactorstretchlimit
6.3.1082\spaceskip
6.3.1083\spaceskipfactor
6.3.1084\span
6.3.1085\specificationcount
6.3.1086\specificationdef

6.3.1087\specificationfirst 272
6.3.1088\specificationoptions 272
6.3.1089\specificationsecond 272
6.3.1090\splitbotmark 272
6.3.1091\splitbotmarks 272
6.3.1092\splitdiscards 273
6.3.1093\splitextraheight 273
6.3.1094\splitfirstmark 273
6.3.1095\splitfirstmarks 273
6.3.1096\splitlastdepth 273
6.3.1097\splitlastheight 273
6.3.1098\splitlastshrink 273
6.3.1099\splitlaststretch 273
6.3.1100\splitmaxdepth 273
6.3.1101\splittopskip ...covvvviiiiina... 273
6.3.1102\srule ..., 273
6.3.1103\string ..., 274
6.3.1104\subprescript 274
6.3.1105\subscript 274
6.3.1106\superprescript 274
6.3.1107\superscript 274
6.3.1108\supmarkmode 274
6.3.1109\swapcsvalues 274
6.3.1110\tabsizeccoiiiii.... 275
6.3.1111\tabskip ..., 275
6.3.1112\textdirection 276
6.3.1113\textfont 276
6.3.1114\textstylecooiina.. 276
6.3.1115\the 276
6.3.1116\thewithoutunit 276
6.3.1117\thickmuskip 276
6.3.1118\thinmuskip 276
6.3.1119\time, 277
6.3.1120\tinymuskip 277
6.3.1121\tocharacter 277
6.3.1122\toddlerpenalties 277
6.3.1123\todimension 277
6.3.1124\tohexadecimal 277
6.3.1125\tointeger 277
6.3.1126\tokenized 277
6.3.1127\toks 278
6.3.1128\toksappcciiiiii 278
6.3.1129\toksdef il 278
6.3.1130\tokspre ..., 278
6.3.1131\tolerancecciiiinn... 279
6.3.1132\tolerant 279
6.3.1133\tolimitedfloat 279
6.3.1134\tomathstyle 280
6.3.1135\topmarko, 280

89

6.3.1136\topmarks i 281
6.3.1137\topskipccoviiiiiii 281
6.3.1138\toscaled 281
6.3.1139\tosparsedimension 281
6.3.1140\tosparsescaled 281
6.3.1141\tpack ... 281
6.3.1142\tracingadjusts 281
6.3.1143\tracingalignments 281
6.3.1144\tracingassigns 281
6.3.1145\tracingbalancing 282
6.3.1146\tracingcommands 282
6.3.1147\tracingexpressions 282
6.3.1148\tracingfitness 282
6.3.1149\tracingfullboxes 282
6.3.1150\tracinggroups 282
6.3.1151\tracinghyphenation 282
6.3.1152\tracingifscccvveiiaa.... 282
6.3.1153\tracinginserts 282
6.3.1154\tracinglevels 282
6.3.1155\tracinglists 283
6.3.1156\tracingloners 283
6.3.1157\tracinglooseness 283
6.3.1158\tracinglostchars 283
6.3.1159\tracingmacros 283
6.3.1160\tracingmarks 283
6.3.1161\tracingmath 283
6.3.1162\tracingmvl 283
6.3.1163\tracingnesting 283
6.3.1164\tracingnodes 283
6.3.1165\tracingonline 284
6.3.1166\tracingorphans 284
6.3.1167\tracingoutput 284
6.3.1168\tracingpages 284
6.3.1169\tracingparagraphs 284
6.3.1170\tracingpasses 284
6.3.1171\tracingpenalties 284
6.3.1172\tracingrestores 284
6.3.1173\tracingsnapping 284
6.3.1174\tracingstats 284
6.3.1175\tracingtoddlers 285
6.3.1176\tsplitl 285
6.3.1177\uccodeo 285
6.3.1178\uchyphl 285
6.3.1179\uleaders ..., 285
6.3.1180\unboundary 287
6.3.1181\undent ...l 287
6.3.1182\underlinecccoiinn... 287
6.3.1183\unexpanded, 287
6.3.1184\unexpandedendless 288

6.3.1185\unexpandedloop 288
6.3.1186\unexpandedrepeat 288
6.3.1187\unhbox i, 289
6.3.1188\unhcopy ..., 289
6.3.1189\unhpack, 289
6.3.1190\unkern i 289
6.3.1191\unless ... 289
6.3.1192\unletfrozen 289
6.3.1193\unletprotected 289
6.3.1194\unpenaltycoiiiia.. 290
6.3.1195\unskip ... 290
6.3.1196\untraced, 290
6.3.1197\unvbox i 290
6.3.1198\uUnNvVCopy ..oviiiii e 290
6.3.1199\unvpack, 290
6.3.1200\uppercaseviiiiiiiiinn.. 291
6.3.1201\vadjust 291
6.3.1202\valignccoiiiiiiiiiinan. 291
6.3.1203\variablefam 291
6.3.1204\vbadness ..., 291
6.3.1205\vbadnessmode 291
6.3.1206\vbalance 291
6.3.1207\vbalancedbox 292
6.3.1208\vbalanceddeinsert 292
6.3.1209\vbalanceddiscard 292
6.3.1210\vbalancedinsert 292
6.3.1211\vbalancedreinsert 293
6.3.1212\vbalancedtop 293
6.3.1213\VvboX ... 293
6.3.1214\vcenter i, 293

90

6.3.1215\vfil 293
6.3.1216 \VFill ...t 293
6.3.1217\vfilnegcciiiiiii.. 293
6.3.1218\vfuzz 293
6.3.1219\virtualhrule 294
6.3.1220\virtualvrule 294
6.3.1221\VKern ... 294
6.3.1222\vpack ... 294
6.3.1223\vpenalty 294
6.3.1224\vrule ... 294
6.3.1225\VS1ZE i 294
6.3.1226\VSKID i 294
6.3.1227\vsplit 294
6.3.1228\vsplitchecks 294
6.3.1229\VSS ... 294
6.3.1230\Vvtop ... 295
6.3.1231\Wd .. e 295
6.3.1232\widowpenalties 295
6.3.1233\widowpenalty 295
6.3.1234\wordboundary 295
6.3.1235\wrapuppariiiiiiiin... 295
6.3.1236\xdef 295
6.3.1237\xdefcsname 295
6.3.1238\xleaders ..., 296
6.3.1239\xspaceskipcoiiiiiiiii... 296
6.3.1240\XtOKS ... 296
6.3.1241\xtoksappccoiiiiiiiiiiin. 296
6.3.1242\xtokspre 296
6.3.1243\year ... 296

In this document the section titles that discuss the original TEX and e-TEX primitives have a different
color those explaining the LuaTgX and LuaMetaTgX primitives.

Primitives that extend typesetting related functionality, provide control over subsystems (like math),
allocate additional data types and resources, deal with fonts and languages, manipulate boxes and
glyphs, etc. are hardly discussed here, only mentioned. Math for instance is a topic of its own. In this
document we concentrate on the programming aspects.

Most of the new primitives are discussed in specific manuals and often also original primitives are
covered there but the best explanations of the traditional primitives can be found in The TgXbook by
Donald Knuth and TgX by Topic from Victor Eijkhout. I see no need to try to improve on those.

6.2 Rationale

Some words about the why and how it came. One of the early adopters of ConTgXt was Taco Hoekwater
and we spent numerous trips to TgX meetings all over the globe. He was also the only one I knew who
had read the TgX sources. Because ConITgXt has always been on the edge of what is possible and at
that time we both used it for rather advanced rendering, we also ran into the limitations. I'm not
talking of TgX features here. Naturally old school TgX is not really geared for dealing with images of

91

all kind, colors in all kind of color spaces, highly interactive documents, input methods like xml, etc.
The nice thing is that it offers some escapes, like specials and writes and later execution of programs
that opened up lots of possibilities, so in practice there were no real limitations to what one could do.
But coming up with a consistent and extensible (multi lingual) user interface was non trivial, because
it had an impact in memory usage and performance. A lot could be done given some programming,
as ConTgXt MKII proves, but it was not always pretty under the hood. The move to LuaTgX and MKIV
transferred some action to Lua, and because LuaTgX effectively was a ConTgXt related project, we
could easily keep them in sync.

Our traveling together, meeting several times per year, and eventually email and intense LuaTgX de-
velopments (lots of Skype sessions) for a couple of years, gave us enough opportunity to discuss all
kind of nice features not present in the engine. The previous century we discussed lots of them, re-
jected some, stayed with others, and I admit that forgot about most of the arguments already. Some
that we did was already explored in eetex, some of those ended up in LuaTgX, and eventually what we
have in LuaMetaTEX can been seen as the result of years of programming in TgX, improving macros,
getting more performance and efficiency out of existing ConTgXt code and inspiration that we got out
of the ConTEXt community, a demanding lot, always willing to experiment with us.

Once I decided to work on LuaMetaTgX and bind its source to the ConTgXt distribution so that we can
be sure that it won’t get messed up and might interfere with the ConTgXt expectations, some more
primitives saw their way into it. It is very easy to come up with all kind of bells and whistles but it is
equally easy to hurt performance of an engine and what might go unnoticed in simple tests can really
affect a macro package that depends on stability. So, what I did was mostly looking at the ConTgXt
code and wondering how to make some of the low level macros look more natural, also because I know
that there are users who look into these sources. We spend a lot of time making them look consistent
and nice and the nicer the better. Getting a better performance was seldom an argument because
much is already as fast as can be so there is not that much to gain, but less clutter in tracing was an
argument for some new primitives. Also, the fact that we soon might need to fall back on our phones to
use TgX a smaller memory footprint and less byte shuffling also was a consideration. The LuaMetaTgX
memory footprint is somewhat smaller than the LuaTgX footprint. By binding LuaMetaTgX to ConTgXt
we can also guarantee that the combinations works as expected.

I'm aware of the fact that ConTgXt is in a somewhat unique position. First of all it has always been
kind of cutting edge so its users are willing to experiment. There are users who immediately update
and run tests, so bugs can and will be fixed fast. Already for a long time the community has an conve-
nient infrastructure for updating and the build farm for generating binaries (also for other engines)
is running smoothly.

Then there is the ConTEXt user interface that is quite consistent and permits extensions with staying
backward compatible. Sometimes users run into old manuals or examples and then complain that
ConTgXt is not compatible but that then involves obsolete technology: we no longer need font and
input encodings and font definitions are different for OpenType fonts. We always had an abstract
backend model, but nowadays pdf is kind of dominant and drives a lot of expectations. So, some of
the MKII commands are gone and MKIV has some more. Also, as MetaPost evolved that department
in ConTgXt also evolved. Think of it like cars: soon all are electric so one cannot expect a hole to poor
in some fluid but gets a (often incompatible) plug instead. And buttons became touch panels. There
is no need to use much force to steer or brake. Navigation is different, as are many controls. And do
we need to steer ourselves a decade from now?

So, just look at TeX and ConTgXt in the same way. A system from the nineties in the previous century
differs from one three decades later. Demands differ, input differs, resources change, editing and

92

processing moves on, and so on. Manuals, although still being written are seldom read from cover
to cover because online searching replaced them. And who buys books about programming? So Lua-
MetaTgX, while still being TgX also moves on, as do the way we do our low level coding. This makes
sense because the original TEX ecosystem was not made with a huge and complex macro package
in mind, that just happened. An author was supposed to make a style for each document. An often
used argument for using another macro package over ConTgXt was that the later evolved and other
macro packages would work the same forever and not change from the perspective of the user. In
retrospect those arguments were somewhat strange because the world, computers, users etc. do
change. Standards come and go, as do software politics and preferences. In many aspects the TgX
community is not different from other large software projects, operating system wars, library devotees,
programming language addicts, paradigm shifts. But, don’t worry, if you don’t like LuaMetaTgX and
its new primitives, just forget about them. The other engines will be there forever and are a safe bet,
although LuaTgX already stirred up the pot I guess. But keep in mind that new features in the latest
greatest ConTEXt version will more and more rely on LuaMetaTgX being used; after all that is where
it’s made for. And this manual might help understand its users why, where and how the low level code
differs between MKII, MKkIV and LMTX.

Can we expect more new primitives than the ones introduced here? Given the amount of time I spent
on experimenting and considering what made sense and what not, the answer probably is “no”, or at
least “not that much”. As in the past no user ever requested the kind of primitives that were added, I
don’t expect users to come up with requests in the future either. Of course, those more closely related
to ConTgXt development look at it from the other end. Because it’s there where the low level action
really is, demands might still evolve.

Basically there are wo areas where the engine can evolve: the programming part and the rendering.
In this manual we focus on the programming and writing the manual sort of influences how details get
filled in. Rendering in more complex because there heuristics and usage plays a more dominant role.
Good examples are the math, par and page builder. They were extended and features were added
over time but improved rendering came later. Not all extensions are critical, some are there (and
got added) in order to write more readable code but there is only so much one can do in that area.
Occasionally a feature pops up that is a side effect of a challenge. No matter what gets added it might
not affect complexity too much and definitely not impact performance significantly!

6.3 Primitives

1 \<space>

This original TgX primitive is equivalent to the more verbose \explicitspace.

2 \-

This original TgX primitive is equivalent to the more verbose \explicitdiscretionary.

3 \/

This original TgX primitive is equivalent to the more verbose \explicititaliccorrection.

4 \Uabove

See \Uover for an introduction.

93

5 \Uabovewithdelims

See \Uover for an introduction.

6 \Uatop

See \Uover for an introduction.

7 \Uatopwithdelims

See \Uover for an introduction.

8 \Udelcode

todo

9 \Udelimited

todo

10 \Udelimiter

todo

11 \Udelimiterover

todo

12 \Udelimiterunder

todo

13 \Uhextensible

todo

14 \Uleft

This command is combined with \Umiddle, which is optional, and \Uright, which is mandate, although
we are tolerant and do some checking. As in traditional TeX’'s \left and \right and e-TgX’s \middle
these fences bound a sub formula and adapt their heights. They are one of the reasons why rendering
math is a multi-pass affair: we first have to calculate the inner sizes in order to decide on the outer
fences.

Although it might nor be clear from the names, \Uoperator and \Uvextensible use the same fencing
mechanism. All of these U commands accept options. Not all options are applied to every fence, at
least not now. Some in the end makes little sense but were part of experiments, so we kept them.

attr

auto

axis
bottom
class
depth
exact
factor
height
leftclass
limits
noaxis
nocheck
nolimits
nooverflow
middle
phantom
rightclass
scale
single
source
symbolattr
top
usecallback
variant
void

In due time more explanation will be added here. The usage is straightforward so when no options

integer integer

dimension
integer
dimension

integer

dimension
integer

integer

integer
integer integer
dimension

integer

are given we can do:

94

\im {\Uleft (x \Umiddle | y \Uright)} and

\im {\Uleft (x \Uright)} and

\im {\Umiddle |} and
\im {x \Uright)} and

\im {{\Uleft nocheck (x }}

and get: (x| y) and (x) and | and x) and (x.

15 \Umathaccent

todo

attr
base
bottom
both
center
class
exact
fraction

integer integer

[fixed] <char>
[fixed] <char> [fixed] <char>

integer

integer

95

fixed char
keepbase

nooverflow

overlay [fixed] char
shrink

single

source integer
stretch

symbolattr integer integer
top [fixed] char
usecallback

16 \Umathaccentbasedepth

todo

17 \Umathaccentbaseheight

todo

18 \Umathaccentbottomovershoot

todo

19 \Umathaccentbottomshiftdown

todo

20 \Umathaccentextendmargin

todo

21 \Umathaccentsuperscriptdrop

todo

22 \Umathaccentsuperscriptpercent

todo

23 \Umathaccenttopovershoot

todo

24 \Umathaccenttopshiftup

todo

96

25 \Umathaccentvariant

The current value of this parameter is 0x67676767 or SS SS' SS SS' SS SS' SS SS'.

26 \Umathadapttoleft

todo

27 \Umathadapttoright

todo

28 \Umathaxis

todo

29 \Umathbottomaccentvariant

The current value of this parameter is 0x11335577 or D' D' T' T' S' S' SS' SS'.

30 \Umathchar

todo

31 \Umathchardef

todo

32 \Umathcode

todo

33 \Umathconnectoroverlapmin

todo

34 \Umathdegreevariant

The current value of this parameter is ©x11335577 or D' D' T' T' S' S' SS' SS'.

35 \Umathdelimiterextendmargin

todo

36 \Umathdelimiterovervariant

The current value of this parameter is 0x01234567 orD D' T T' S S' SS SS'.

97

37 \Umathdelimiterpercent

todo

38 \Umathdelimitershortfall

todo

39 \Umathdelimiterundervariant

The current value of this parameter is 0x01234567 orD D' T T' S S' SS SS'.

40 \Umathdenominatorvariant

The current value of this parameter is 0x33557777 or T' T' S' S' SS' SS' SS' SS'.

41 \Umathdictdef

todo

42 \Umathexheight

todo

43 \Umathextrasubpreshift

todo

44 \Umathextrasubprespace

todo

45 \Umathextrasubshift

todo

46 \Umathextrasubspace

todo

47 \Umathextrasuppreshift

todo

48 \Umathextrasupprespace

todo

98

49 \Umathextrasupshift

todo

50 \Umathextrasupspace

todo

51 \Umathflattenedaccentbasedepth

todo

52 \Umathflattenedaccentbhaseheight

todo

53 \Umathflattenedaccentbottomshiftdown

todo

54 \Umathflattenedaccenttopshiftup

todo

55 \Umathfractiondelsize

todo

56 \Umathfractiondenomdown

todo

57 \Umathfractiondenomvgap

todo

58 \Umathfractionnumup

todo

59 \Umathfractionnumvgap

todo

60 \Umathfractionrule

todo

99

61 \Umathfractionvariant

The current value of this parameter is 0x11335577 or D' D' T' T' S' S' SS' SS'.

62 \Umathhextensiblevariant

The current value of this parameter is 0x01234567 orD D' T T' S S' SS SS'.

63 \Umathlimitabovebgap

todo

64 \Umathlimitabovekern

todo

65 \Umathlimitabovevgap

todo

66 \Umathlimitbelowbgap

todo

67 \Umathlimitbelowkern

todo

68 \Umathlimitbelowvgap

todo

69 \Umathlimits

todo

70 \Umathnoaxis

todo

71 \Umathnolimits

todo

72 \Umathnolimitsubfactor

todo

100

73 \Umathnolimitsupfactor

todo

74 \Umathnumeratorvariant

The current value of this parameter is 0x23456767 or T T' S S' SS SS' SS SS'.

75 \Umathopenupdepth

todo

76 \Umathopenupheight

todo

77 \Umathoperatorsize

todo

78 \Umathoverbarkern

todo

79 \Umathoverbarrule

todo

80 \Umathoverbarvgap

todo

81 \Umathoverdelimiterbgap

todo

82 \Umathoverdelimitervariant

The current value of this parameter is 0x45456767 orS S' S S' SS SS' SS SS'.

83 \Umathoverdelimitervgap

todo

84 \Umathoverlayaccentvariant

The current value of this parameter is 0x11335577 or D' D' T' T' S' S' SS' SS'.

101

85 \Umathoverlinevariant

The current value of this parameter is 0x11335577 or D' D' T' T' S' S' SS' SS'.

86 \Umathphantom

todo

87 \Umathprimeraise

todo

88 \Umathprimeraisecomposed

todo

89 \Umathprimeshiftdrop

todo

90 \Umathprimeshiftup

todo

91 \Umathprimespaceafter

todo

92 \Umathprimevariant

The current value of this parameter is 0x45456767 orS S' S S' SS SS' SS SS'.

93 \Umathquad

todo

94 \Umathradicaldegreeafter

todo

95 \Umathradicaldegreebefore

todo

96 \Umathradicaldegreeraise

todo

102

97 \Umathradicalextensibleafter

todo

98 \Umathradicalextensiblebefore

todo

99 \Umathradicalkern

todo

100 \Umathradicalrule

todo

101 \Umathradicalvariant

The current value of this parameter is 0x11335577 or D' D' T' T' S' S' SS' SS'.

102 \Umathradicalvgap

todo

103 \Umathruledepth

todo

104 \Umathruleheight

todo

105 \Umathskeweddelimitertolerance

todo

106 \Umathskewedfractionhgap

todo

107 \Umathskewedfractionvgap

todo

108 \Umathsource

todo

103

109 \Umathspaceafterscript

todo

110 \Umathspacebeforescript

todo

111 \Umathspacebetweenscript

todo

112 \Umathstackdenomdown

todo

113 \Umathstacknumup

todo

114 \Umathstackvariant

The current value of this parameter is 0x23456767 or T T' S S' SS SS' SS SS'.

115 \Umathstackvgap

todo

116 \Umathsubscriptsnap

todo

117 \Umathsubscriptvariant

The current value of this parameter is 0x55557777 or S' S' S' S' SS' SS' SS' SS'.

118 \Umathsubshiftdown

todo

119 \Umathsubshiftdrop

todo

120 \Umathsubsupshiftdown

todo

104

121 \Umathsubsupvgap

todo

122 \Umathsubtopmax

todo

123 \Umathsupbottommin

todo

124 \Umathsuperscriptsnap

todo

125 \Umathsuperscriptvariant

The current value of this parameter is 0x45456767 orS S' S S' SS SS' SS SS'.

126 \Umathsupshiftdrop

todo

127 \Umathsupshiftup

todo

128 \Umathsupsubbottommax

todo

129 \Umathtopaccentvariant

The current value of this parameter is 0x11335577 orD' D' T' T' S' S' SS' SS'.

130 \Umathunderbarkern

todo

131 \Umathunderbarrule

todo

132 \Umathunderbarvgap

todo

105

133 \Umathunderdelimiterbgap

todo

134 \Umathunderdelimitervariant

The current value of this parameter is 0x45456767 orS S' S S' SS SS' SS SS'.

135 \Umathunderdelimitervgap

todo

136 \Umathunderlinevariant

The current value of this parameter is 0x01234567 orD D' T T' S S' SS SS'.

137 \Umathuseaxis

todo

138 \Umathvextensiblevariant

The current value of this parameter is 0x01234567 orD D' T T' S S' SS SS'.

139 \Umathvoid

todo

140 \Umathxscale

The \Umathxscale and \Umathyscale factors are applied to the horizontal and vertical parameters.
They are set by style. There is no combined scaling primitive.

$\Umathxscale\textstyle 800 a + b + x + d + e = f $\par
$\Umathxscale\textstyle 1000 a + b + x + d + e = f $\par
$\Umathxscale\textstyle 1200 a + b + x + d + e = f $\blank

$\Umathyscale\textstyle 800 \sqrt[2]{x+1}$\quad
$\Umathyscale\textstyle 1000 \sqrt[2]{x+1}$\quad
$\Umathyscale\textstyle 1200 \sqrt[2]{x+1}$\blank

Normally only small deviations from 1000 make sense but here we want to show the effect and use a
20% scaling:

a+b+x+d+e=f
a+b+x+d+e=f

a+b+x+d+e=f

Ix+1 Ix+1 Ix+1

141 \Umathyscale

See \Umathxscale]

142 \Umiddle

See \Uleft for an explanation.

143 \Uoperator

todo

144 \Uover

This command is one of the fraction constructors.” A fraction has a numerator and a denominator
and optionally a rule in between. Another option is left and right fences. You might wonder why this
feature is there instead of using regular left and right fences and the reason is (but I can be mistaken)
in spacing: here the open/close spacing doesn’t apply, which makes sense if you take the application in
mind: binominals, in which case we have what looks like a fraction, without rule but with for instance

parentheses.

Here we show the six more or less traditional vertically stacked variants of fractions. Watch how we
have a syntax where we take two arguments instead of the more operator like approach that \over
and friends use. The atop variants have no rule.

\Uabove
\Uatop
\Uover
\Uskewed
\Ustretched

The relative positioning (like the gap above or below a rule) is partly determined by math font para-

/

1pt {1} {2+x}
{1} {2+x}
{1} {2+x}
{1} {2+x}
{1} {2+x}

1
2+x

1
2+x

1
2+x

1/2+><

1
2+x

106

\Uabovewithdelims
\Uatopwithdelims
\Uoverwithdelims
\Uskewedwithdelims

\Ustretchedwithdelims

/

()

()

meters but there are additional ways to influence the look and feel with options.

attr

class
exact

font
hfactor
noaxis
nooverflow
proportional
style
source
symbolattr
thickness

integer integer
integer

reserved, not used
use font related thickness

integer

reserved, not used

integer or id
integer

integer integer
dimension

The traditional commands like \over, \atop and \above are supported but in for instance ConTgXt they are disabled or have

different meanings.

1pt {1} {2+x}
{1} {2+x}
{1} {2+x}
{1} {2+x}
{1} {2+x}

107

usecallback
vfactor integer

Not all apply to every fraction but it made sense to just accept all. When the thickness is specified,
scanning the formal dimension skipped. In due time these options will be discussed in mode detail.

145 \Uoverdelimiter

todo

146 \Uoverwithdelims

See \Uover for an introduction.

147 \Uradical

todo

148 \Uright

See \Uleft for an explanation.

149 \Uroot

todo

150 \Urooted

todo

151 \Uskewed

See \Uover for an introduction.

152 \Uskewedwithdelims

See \Uover for an introduction.

153 \Ustartdisplaymath

This is equivalent to the first of a pair of $$.

154 \Ustartmath

This is equivalent to the first of a pair of $.

155 \Ustartmathmode

This command starts math mode with a given style.

108

156 \Ustopdisplaymath

This is equivalent to the second of a pair of $$.

157 \Ustopmath

This is equivalent to the second of a pair of $.

158 \Ustopmathmode

This command is the companion of \Ustartmathmode.

159 \Ustretched

See \Uover for an introduction.

160 \Ustretchedwithdelims

See \Uover for an introduction.

161 \Uunderdelimiter

todo

162 \Uvextensible

todo

163 \above

This is a variant of \over that doesn’t put a rule in between.

164 \abovedisplayshortskip

The glue injected before a display formula when the line above it is not overlapping with the formula.
Watch out for interference with \baselineskip. It can be controlled by \displayskipmode.

165 \abovedisplayskip

The glue injected before a display formula. Watch out for interference with \baselineskip. It can be
controlled by \displayskipmode.

166 \abovewithdelims

This is a variant of \atop but with delimiters. It has a more advanced upgrade in \Uabovewithdelims.

109

167 \accent

This primitive is kind of obsolete in wide engines and takes two arguments: the indexes of an accent
and a base character.

168 \additionalpageskip

This quantity will be added to the current page goal, stretch and shrink after which it will be set to
Zero.

169 \adjacentdemerits

This is a more granular variant of \adjdemerits and mostly meant for multipass par building, for
instance:

\adjacentdemerits 8 0 2500 5000 7500 10000 12500 15000 20000

More details can be found in the ‘beyond paragraphs’ chapter of the ‘beyond’ progress report. One can
also discriminate between loose and tight deltas. In these examples we also assume a more granular
fitness classes setup.

\adjacentdemerits 8 double
0 2500 5000 7500 10000 12500 15000 20000

20000 15000 125000 10000 7500 5000 2500 0
170 \adjdemerits
When TgX considers to lines to be incompatible it will add this penalty to its verdict when considering
this breakpoint.
171 \adjustspacing
This parameter controls expansion (hz). A value 2 expands glyphs and font kerns and a value of 3
only glyphs. Expansion of kerns can have side effects when they are used for positioning by OpenType
features.
172 \adjustspacingshrink
When set to a non zero value this overloads the shrink maximum in a font when expansion is applied.
This is then the case for all fonts.
173 \adjustspacingstep
When set to a non zero value this overloads the expansion step in a font when expansion is applied.
This is then the case for all fonts.
174 \adjustspacingstretch

When set to a non zero value this overloads the stretch maximum in a font when expansion is applied.
This is then the case for all fonts.

110

175 \advance
Advances the given register by an also given value:

\advance\scratchdimen 10pt
\advance\scratchdimen by 3pt
\advance\scratchcounterone \zerocount
\advance\scratchcounterone \scratchcountertwo

The by keyword is optional.

176 \advanceby

This is slightly more efficient variant of \advance that doesn’t look for by and therefore, if one is
missing, doesn’t need to push back the last seen token. Using \advance with by is nearly as efficient
but takes more tokens.

177 \afterassigned

The \afterassignment primitive stores a token to be injected (and thereby expanded) after an as-
signment has happened. Unlike \aftergroup, multiple calls are not accumulated, and changing that
would be too incompatible. This is why we have \afterassigned, which can be used to inject a bunch
of tokens. But in order to be consistent this one is also not accumulative.

\afterassigned{done}%
\afterassigned{{\bf done}}%
\scratchcounter=123

results in: done being typeset.

178 \afterassignment

The token following \afterassignment, a traditional TgX primitive, is saved and gets injected (and
then expanded) after a following assignment took place.

\afterassignment !\def\MyMacro {}\quad
\afterassignment !\let\MyMacro ?\quad
\afterassignment !\scratchcounter 123\quad
\afterassignment !%

\afterassignment ?\advance\scratchcounter by 1

The \afterassignments are not accumulated, the last one wins:

P

179 \aftergroup

The traditional TeX \aftergroup primitive stores the next token and expands that after the group has
been closed.

Multiple \aftergroups are combined:

111

before{ ! \aftergroup a\aftergroup f\aftergroup t\aftergroup e\aftergroup r}

before ! after

180 \aftergrouped

The in itself powerful \aftergroup primitives works quite well, even if you need to do more than one
thing: you can either use it multiple times, or you can define a macro that does multiple things and
apply that after the group. However, you can avoid that by using this primitive which takes a list of
tokens.

regular
\bgroup
\aftergrouped{regular}s
\bf bold
\egroup

Because it happens after the group, we’re no longer typesetting in bold.
regular bold regular

You can mix \aftergroup and \aftergrouped. Which one is more efficient depends on how many
tokens are delayed. Picking up one token is faster than scanning a list.

{
\aftergroup A \aftergroup B \aftergroup C

test 1 : }

{
\aftergrouped{What comes next 1}
\aftergrouped{What comes next 2}
\aftergrouped{What comes next 3}

test 2 : }

{
\aftergroup A \aftergrouped{What comes next 1}
\aftergroup B \aftergrouped{What comes next 2}
\aftergroup C \aftergrouped{What comes next 3}

test 3 : }

{
\aftergrouped{What comes next 1} \aftergroup A
\aftergrouped{What comes next 2} \aftergroup B
\aftergrouped{What comes next 3} \aftergroup C

test 4 : }

This gives:

test 1 : ABC

test 2 : What comes next 1What comes next 2What comes next 3
test 3 : AWhat comes next 1BWhat comes next 2CWhat comes next 3
test 4 : What comes next 1AWhat comes next 2BWhat comes next 3C

112

181 \aliased
This primitive is part of the overload protection subsystem where control sequences can be tagged.

\permanent\def\foo{F00}
\let\ofo\foo
\aliased \let\oof\foo

\meaningasis\foo
\meaningasis\ofo
\meaningasis\oof

gives:

\permanent \def \foo {F00}
\def \ofo {FO0}
\permanent \def \oof {F00}

When a something is \let the ‘permanent’, ‘primitive’ and ‘immutable’ flags are removed but the
\aliased prefix retains them.

\let\relaxed\relax

\meaningasis\relax
\meaningasis\relaxed

So in this example the \relaxed alias is not flagged as primitive:
\global \primitive \relax

\relax

182 \aligncontent

This is equivalent to a hash in an alignment preamble. Contrary to \alignmark there is no need to
duplicate inside a macro definition.

183 \alignloop

This is just a convenient (and more clear) variant of the double tab: \aligntab\aligntab or && when
that method is used.

184 \alignmark

When you have the # not set up as macro parameter character cq. align mark, you can use this primitive
instead. The same rules apply with respect to multiple such tokens in (nested) macros and alignments.

185 \alignmentcellsource

This sets the source id (a box property) of the current alignment cell.

113

186 \alignmentwrapsource

This sets the source id (a box property) of the current alignment row (in a \halign) or column (in a
\valign).

187 \alignoption

This is an experimental feature that accepts some of the keywords that one can pass to the alignment
command: firstskip, lastskip, nofirstskip, nolastskip and prune. When given in a cell they will
overload the already set options.

188 \aligntab

When you have the & not set up as align tab, you can use this primitive instead. The same rules apply
with respect to multiple such tokens in (nested) macros and alignments.

189 \allcrampedstyles

A symbolic representation of \crampeddisplaystyle, \crampedtextstyle, \crampedscriptstyle
and \crampedscriptscriptstyle; integer representation: 17.

190 \alldisplaystyles

A symbolic representation of \displaystyle and \crampeddisplaystyle; integer representation: 8.

191 \allmainstyles

A symbolic representation of \displaystyle, \crampeddisplaystyle, \textstyle and \cramped-
textstyle; integer representation: 13.

192 \allmathstyles

A symbolic representation of \displaystyle, \crampeddisplaystyle, \textstyle, \cramped-
textstyle, \scriptstyle, \crampedscriptstyle, \scriptscriptstyleand \crampedscriptscript-
style; integer representation: 12.

193 \allscriptscriptstyles

A symbolic representation of \scriptscriptstyle and \crampedscriptscriptstyle; integer repre-
sentation: 11.

194 \allscriptstyles

A symbolic representation of \scriptstyle and \crampedscriptstyle; integer representation: 10.

195 \allsplitstyles

A symbolic representation of \displaystyle and \textstyle but not \scriptstyle and
\scriptscriptstyle: set versus reset; integer representation: 14.

114

196 \alltextstyles

A symbolic representation of \textstyle and \crampedtextstyle; integer representation: 9.

197 \alluncrampedstyles

A symbolic representation of \displaystyle, \textstyle, \scriptstyle and \scriptscriptstyle;
integer representation: 16.

198 \allunsplitstyles

A symbolic representation of \scriptstyle and \scriptscriptstyle; integer representation: 15.

199 \amcode

200 \associateunit

The TgX engine comes with some build in units, like pt (fixed) and em (adaptive). On top of that a
macro package can add additional units, which is what we do in ConTgXt. In figure 6.1 we show the
current repertoire.

abcdefghijk1mnopagrstuvwXxyz

b be bh bp bw
C cc cd ch ci cm cw cXx
d dd dk
e em es eu ex
f fa fc fd fh fi fo fs ft fw
g gl
h hs
i in
1 lc 1h ir w
m ma mm mq mu mx
p pc ph pi pt pw px
s sd sh sp st
t th ts tw
u uu
v Vs
tex pdftex luametatex context

Figure 6.1 Available units

When this primitive is used in a context where a number is expected it returns the origin of the unit
(in the color legend running from 1 upto 4). A new unit is defined as:

\newdimen\MyDimenZA \MyDimenZA=10pt
\protected\def\MyDimenAB{\dimexpr\hsize/2\relax}

\associateunit za \MyDimenZA
\associateunit zb \MyMacroZB

Possible associations are: macros that expand to a dimension, internal dimension registers, register
dimensions (\dimendef, direct dimensions (\dimensiondef) and Lua functions that return a dimen-
sion.

115

One can run into scanning ahead issues where TgX expects a unit and a user unit gets expanded. This
is why for instance in ConTEXt we define the ma unit as:

\protected\def\mathaxisunit{\scaledmathaxis\mathstyle\norelax}
\associateunit ma \mathaxisunit % or \newuserunit \mathaxisunit ma

So that it can be used in rule specifications that themselves look ahead for keywords and therefore
are normally terminated by a \relax. Adding the extra \norelax will make the scanner see one that
doesn’t get fed back into the input. Of course a macro package has to manage extra units in order to
avoid conflicts.

201 \atendoffile

The \everyeof primitive is kind of useless because you don’t know if a file (which can be a tokenlist
processed as pseudo file) itself includes a file, which then results in nested application of this token
register. One way around this is:

\atendoffile\SomeCommand

This acts on files the same way as \atendofgroup does. Multiple calls will be accumulated and are
bound to the current file.

202 \atendoffiled

This is the multi token variant of \atendoffile. Multiple invocations are accumulated and by default
prepended to the existing list. As with grouping this permits proper nesting. You can force an append
by the optional keyword reverse.

203 \atendofgroup

The token provided will be injected just before the group ends. Because these tokens are collected,
you need to be aware of possible interference between them. However, normally this is managed by
the macro package.

\bgroup
\atendofgroup\unskip
\atendofgroup)%
(but it works okay
\egroup

Of course these effects can also be achieved by combining (extra) grouping with \aftergroup calls,
so this is more a convenience primitives than a real necessity: (but it works okay), as proven here.
204 \atendofgrouped

This is the multi token variant of \atendofgroup. Of course the next example is somewhat naive when
it comes to spacing and so, but it shows the purpose.

\bgroup
\atendofgrouped{\bf QED}%

116

\atendofgrouped{ (indeed)}%
This sometimes looks nicer.
\egroup

Multiple invocations are accumulated: This sometimes looks nicer. QED (indeed).

205 \atop

This one stack two math elements on top of each other, like a fraction but with no rule. It has a more
advanced upgrade in \Uatop.

206 \atopwithdelims

This is a variant of \atop but with delimiters. It has a more advanced upgrade in \Uatopwithdelims.

207 \attribute

The following sets an attribute(register) value:

\attribute 999 = 123

An attribute is unset by assigning -2147483647 to it. A user needs to be aware of attributes being used
now and in the future of a macro package and setting them this way is very likely going to interfere.
208 \attributeboundary

This creates a boundary node with two properties that can be picked up at the Lua end: data and
reserved; after all we had that second field anyway so why now exploit it.

209 \attributedef

This primitive can be used to relate a control sequence to an attribute register and can be used to
implement a mechanism for defining unique ones that won’t interfere. As with other registers: leave
management to the macro package in order to avoid unwanted side effects!

210 \automaticdiscretionary

This is an alias for the automatic hyphen trigger -.

211 \automatichyphenpenalty

The penalty injected after an automatic discretionary -, when \hyphenationmode enables this.

212 \automigrationmode
This bitset determines what will bubble up to an outer level:

0x01 mark
0x02 insert

117

0x04 adjust
0x08 pre
0x10 post

The current value is OxFFFF.

213 \autoparagraphmode

A paragraph can be triggered by an empty line, a \par token or an equivalent of it. This parameter
controls how \par is interpreted in different scenarios:

0Ox01 text
0x02 macro
0x04 continue

The current value is 0x1 and setting it to a non-zero value can have consequences for mechanisms
that expect otherwise. The text option uses the same code as an empty line. The macro option checks
a token in a macro preamble against the frozen \par token. The last option ignores the par token.

214 \badness

This one returns the last encountered badness value.

215 \balanceadjdemerits

These are added to the accumulated demerits depending on the fitness of neighbouring slots in bal-
ancing act.

216 \balancebottomskip

The counterpart of \balancetopskip and ensures that the last depth honors this criterium.

217 \balanceboundary

This boundary is triggering a callback that can itself trigger a try break call. It’s up to the macro
package to come up with a usage scenario.

218 \balancebreakpasses

See (upcoming) ConTEXt documentation for an explanation.

219 \balancechecks

The balance tracer callback gets this paremeter passed.

220 \balanceemergencyshrink

This is a reserved parameter.

118

221 \balanceemergencystretch

When set this will make the balancer more tolerant. It’s comparable to \emergencystretch in the par
builder.

222 \balancefinalpenalties

This is a penalty array which values will be applied to the end of the to be balanced list, starting at
the end. Widow, club and other encountered penalties will be overloaded.

\balancefinalpenalties 4
10000 9000 8000 7000
\relax

The last one is not repetitive so here at most four penalties will be injected between lines (that is:
hlists with the line subtype).
223 \balancelineheight

This is a reserved parameter.

224 \balancelooseness

When set the balancer tries to produce nore or less slots. As with the par builder the result of looseness
is kind of unpredictable. One needs plenty of glue and normally that is not present in a vertical list.
225 \balancepasses

Specifies one or more recipes for additional second balance passes. Examples can be found in the
ConTgXt distribution (in due time).

226 \balancepenalty

This is the penalty applied between slots, prety much like \linepenalty.

227 \balanceshape

228 \balanceshapebottomspace
This gives the (fixed) amount of space added at the bottom of the given shape slot.

\the\balanceshapebottomspace 1 \space
\the\balanceshapebottomspace 3

We get: 21.0pt 23.0pt.

229 \balanceshapetopspace

This provides (fixed) amount of space added at the top of the given shape slot.

119

\the\balanceshapetopspace 1 \space
\the\balanceshapetopspace 3

This results in: 11.0pt 13.0pt.

230 \balanceshapevsize
This returns the the target height of the given shape slot.

\the\balanceshapevsize 1 \space
\the\balanceshapevsize 3

This results in: 91.0pt 93.0pt.

231 \balancetolerance

This parameter sets the criterium for a slot being bad (pretty much like in the linebreak for a line).
Although the code is able to have a pre balance pass it has no meaning here so we don’t have a
\balancepretolerance.?

232 \balancetopskip

This glue ensures the height of the first content (box or rule) in a slot. It can be compared to \topskip
and \splittopskip.

233 \balancevsize

This sets the target height of a balance slot unless \balanceshape is used.

234 \baselineskip

This is the maximum glue put between lines. The depth of the previous and height of the next line are
substracted.

235 \batchmode

This command disables (error) messages which can safe some runtime in situations where TgX’s char-
acter-by-character log output impacts runtime. It only makes sense in automated workflows where
one doesn’t look at the log anyway.

236 \begincsname

The next code creates a control sequence token from the given serialized tokens:

\csname mymacro\endcsname

When \mymacro is not defined a control sequence will be created with the meaning \relax. A side
effect is that a test for its existence might fail because it now exists. The next sequence will not create
an controil sequence:

8 We might find usage for it some day.

120

\begincsname mymacro\endcsname
This actually is kind of equivalent to:

\ifcsname mymacro\endcsname
\csname mymacro\endcsname
\fi

237 \begingroup
This primitive starts a group and has to be ended with \endgroup. See \beginsimplegroup for more
info.

238 \beginlocalcontrol

Once TgX is initialized it will enter the main loop. In there certain commands trigger a function that
itself can trigger further scanning and functions. In LuaMetaTEX we can have local main loops and
we can either enter it from the Lua end (which we don’t discuss here) or at the TgX end using this
primitive.

\scratchcounterl00
\edef\whatever{
a
\beginlocalcontrol
\advance\scratchcounter 10
b
\endlocalcontrol
\beginlocalcontrol
C
\endlocalcontrol
d
\advance\scratchcounter 10
}
\the\scratchcounter
\whatever
\the\scratchcounter

A bit of close reading probably gives an impression of what happens here:
bc
110ad 120

The local loop can actually result in material being injected in the current node list. However, where
normally assignments are not taking place in an \edef, here they are applied just fine. Basically we
have a local TgX job, be it that it shares all variables with the parent loop.

239 \beginmathgroup

In math mode grouping with \begingroup and \endgroup in some cases works as expected, but be-
cause the math input is converted in a list that gets processed later some settings can become persis-

121

tent, like changes in style or family. The engine therefore provides the alternatives \beginmathgroup
and \endmathgroup that restore some properties.
240 \beginmvl

This initiates intercepting the main vertical list (the page). There has to be a matching \endmvl. For
example:

\beginmvl 1 the main vertical list, one \endmvl
\beginmvl 2 the main vertical list, two \endmvl

The streams can be flushed out of order:

\setbox\scratchboxone\flushmvl 2
\setbox\scratchboxtwo\flushmvl 1

One can be more specific:

\beginmv1l

index 1

options 5 % ignore prevdepth (1) and discard top (4)
\relax
\endmv1l

More details can be found in the ConTEXt low level manuals that describe this feature in combination
with balancing.

241 \beginsimplegroup

The original TgX engine distinguishes two kind of grouping that at the user end show up as:

\begingroup \endgroup
\bgroup \egroup { }

where the last two pairs are equivalent unless the scanner explicitly wants to see a left and/or right
brace and not an equivalent. For the sake of simplify we use the aliases here. It is not possible to mix
these pairs, so:

\bgroup xxx\endgroup
\begingroup xxx\egroup

will in both cases issue an error. This can make it somewhat hard to write generic grouping macros
without somewhat dirty trickery. The way out is to use the generic group opener \beginsimplegroup.

Internally LuaMetaTgX is aware of what group it currently is dealing with and there we distinguish:

simple group \bgroup \egroup

semi simple group \begingroup \endgroup \endsimplegroup

also simple group \beginsimplegroup \egroup \endgroup \endsimplegroup
math simple group \beginmathgroup \endmathgroup

This means that you can say:

122

\beginsimplegroup xxx\endsimplegroup
\beginsimplegroup xxx\endgroup
\beginsimplegroup xxx\egroup

So a group started with \beginsimplegroup can be finished in three ways which means that the
user (or calling macro) doesn’t have take into account what kind of grouping was used to start with.
Normally usage of this primitive is hidden in macros and not something the user has to be aware of.

242 \belowdisplayshortskip

The glue injected aftter a display formula when the line above it is not overlapping with the formula
(TEX can’t look ahead). Watch out for interference with \baselineskip. It can be controlled by \dis-
playskipmode.

243 \belowdisplayskip

The glue injected after a display formula. Watch out for interference with \baselineskip. It can be
controlled by \displayskipmode.

244 \binoppenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

245 \botmark

This is a reference to the last mark on the current page, it gives back tokens.

246 \botmarks

This is a reference to the last mark with the given id (a number) on the current page, it gives back
tokens.

247 \bottomskip

This is a reserved parameter.

248 \boundary

Boundaries are signals added to he current list. This primitive injects a user boundary with the given
(integer) value. Such a boundary can be consulted at the Lua end or with \lastboundary.

249 \box

This is the box register accessor. While other registers have one property a box has many, like \wd,
\ht and \dp. This primitive returns the box and resets the register.

123

250 \boxadapt
Adapting will recalculate the dimensions with a scale factor for the glue:

\setbox 0 \hbox {test test test}

\setbox 2 \hbox {\red test test test} \boxadapt 0 200
\setbox 4 \hbox {\blue test test test} \boxadapt 0 -200
\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0}

Like \boxfreeze and \boxrepack this primitive has been introduced for experimental usage, although
we do use some in production code.
test test test

251 \boxanchor

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox anchor "01010202 {test}\tohexadecimal\boxanchor0

This gives: 1010202. Of course this feature is very macro specific and should not be used across
macro packages without coordination. An anchor has two parts each not exceeding OxOFFF.

252 \boxanchors

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox anchors "0101 "0202 {test}\tohexadecimal\boxanchors0

This gives: 1010202. Of course this feature is very macro specific and should not be used across
macro packages without coordination. An anchor has two parts each not exceeding OXOFFF.

253 \boxattribute

Every node, and therefore also every box gets the attributes set that are active at the moment of
creation. Additional attributes can be set too:

\darkred

\setbox0\hbox attr 999 1 {whatever}
\the\boxattribute 0 \colorattribute
\the\boxattribute 0 998
\the\boxattribute 0 999

A macro package should make provide a way define attributes that don’t clash the ones it needs itself,
like, in ConTgXt, the ones that can set a color

4
-2147483647
1

124

The number -2147483647 (-7FFFFFFF) indicates an unset attribute.

254 \boxdirection
The direction of a box defaults to 12r but can be explicitly set:

\setbox0\hbox direction 1 {this is a test}\textdirectionl
\setbox2\hbox direction 0 {this is a test}\textdirection0
\the\boxdirection0: \box0
\the\boxdirection2: \box2

The \textdirection does not influence the box direction:
1: tset a si siht

0: this is a test

255 \boxfinalize

This is special version of \boxfreeze which we demonstrate with an example:

o

don't recurse
don't recurse
scale glue multiplier by .50
scale glue multiplier by .25
scale glue multiplier by .10

\boxlimitate 0 0
\boxfreeze 2 0
\boxfinalize 4 500
\boxfinalize 6 250
\boxfinalize 8 100

o® o° o°

o°

\hpack\bgroup
\copy0\quad\copy2\quad\copyd\quad\copy6\quad\copy8
\egroup

where the boxes are populated with:

\setbox0\ruledvbox to 3cm{\hsize 2cm test\vskiplOpt plus 10pt test}
\setbox2\copy0O\setbox4\copyO\sethox6\copyd\setbhox8\copy0O

test test test test test

st test test
test

test

256 \boxfreeze

Glue in a box has a fixed component that will always be used and stretch and shrink that kicks in
when needed. The effective value (width) of the glue is driven by some box parameters that are set
by the packaging routine. This is why we can unbox: the original value is kept. It is the backend that
calculates the effective value. Te \boxfreeze primitive can do the same: turn the flexible glue into a
fixed one.

\setbhox 0 \hbox to 6cm {\hss frost}

125

\setbox 2 \hbox to 6cm {\hss frost}
\boxfreeze 2 0

\ruledhbox{\unhbox 0}
\ruledhbox{\unhbox 2}

The second parameter to \boxfreeze determines recursion. We don’t recurse here so just freeze the
outer level:

frost

\ frost

257 \boxgeometry

A box can have an orientation, offsets and/or anchors. These are stored independently but for effi-
ciency reasons we register if one or more of these properties is set. This primitive accesses this state;
it is a bitset:

0x01 offset
0x02 orientation
0x04 anchor

258 \boxinserts

A non zero value return indicates that there are inserts in this box. This primitive is meant to be used
with the balancer.

259 \boxlimit

This primitive will freeze the glue in a box but only when there is glue marked with the limit option.

260 \boxlimitate

This primitive will freeze the glue in a box. It takes two arguments, a box number and an number that
when set to non-zero will recurse into nested lists.

261 \boxlimitmode

This variable controls if boxes with glue marked ‘limit’ will be checked and frozen.

262 \boxmaxdepth

You can limit the depth of boxes being constructed. It’s one of these parameters that should be used
with care because when that box is filled nested boxes can be influenced.

263 \boxmigrate

When the given box has pre migration material the value will have 0x08 set. When there is post
material the 0x10 bit is set. Of course both can be set.

126

264 \boxorientation

The orientation field can take quite some values and is discussed in one of the low level ConTEXt
manuals. Some properties are dealt with in the TEX engine because they influence dimensions but in
the end it is the backend that does the work.

265 \boxrepack

When a box of to wide or tight we can tweak it a bit with this primitive. The primitive expects a box
register and a dimension, where a positive number adds and a negatie subtracts from the current box
with.

\setbox 0 \hbox {test test test}

\setbox 2 \hbox {\red test test test} \boxrepack0 +.2em
\setbox 4 \hbox {\green test test test} \boxrepackQ® -.2em
\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0}

test test test
We can also use this primitive to check the natural dimensions of a box:

\setbox 0 \hbox spread 10pt {test test test}
\ruledhbox{\box0} (\the\boxrepack0, \the\wdo)

In this context only one argument is expected.
test test test

(0.0pt,0.0pt)

266 \boxshift

Returns or sets how much the box is shifted: up or down in horizontally mode, left or right in vertical
mode.

267 \boxshrink

Returns the amount of shrink found (applied) in a box:

\setbox0\hbox to 4em {m m m m}
\the\boxshrinko

gives: 3.17871pt

268 \boxsnapping

This is an experimental feature what we occasionally come back to, so it’s currently undocumented.

269 \boxsource

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

127

\setbox0\hbox source 123 {m m m m}
\the\boxsource0

This gives: 123. Of course this feature is very macro specific and should not be used across macro
packages without coordination.

270 \boxstretch

Returns the amount of stretch found (applied) in a box:

\setbox0\hbox to 6em {m m m m}
\the\boxstretcho

gives: 4.76807pt

271 \boxsubtype
Returns the subtype of the given box.

\setbox0\hbox {test}[\the\boxsubtype0]
\setbox2\hbox container {test}[\the\boxsubtype?]

gives: [2] [4]. Beware that the numbers can change so best use the symbolic values that can be
queried via Lua.
272 \boxtarget

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox source 123 {m m m m}
\the\boxsource0

This gives: 123. Of course this feature is very macro specific and should not be used across macro
packages without coordination.
273 \boxtotal

Returns the total of height and depth of the given box.

274 \boxvadjust

When used as query this returns a bitset indicating the associated adjust and migration (marks and
inserts) data:

0x1 pre adjusted
0x2 post adjusted
0x4 pre migrated
0x8 post migrated

When used as a setter it directly adds adjust data to the box and it accepts the same keywords as
\vadjust.

128

275 \boxxmove

This will set the vertical offset and adapt the dimensions accordingly.

276 \boxxoffset

Returns or sets the horizontal offset of the given box.

277 \boxymove

This will set the vertical offset and adapt the dimensions accordingly.

278 \boxyoffset

Returns or sets the vertical offset of the given box.

279 \breaklasthangindent

This variable reflects the state of the current vertical list with respect to a \hangindent and
\hangafter situation.

280 \breaklasthangleftindent

This variable reflects the state of the current vertical list with respect to a (positive, therefore left)
\localhangindent and \localhangafter situation.

281 \breaklasthangleftslack

This variable reflects the state of the current vertical list with respect to a (positive, therefore left)
\localhangindent and \localhangafter situation. Here slack refers to the pending number lines on
the left.

282 \breaklasthangrightindent

This variable reflects the state of the current vertical list with respect to a (negative, therefore right)
\localhangindent and \localhangafter situation.

283 \breaklasthangrightslack

This variable reflects the state of the current vertical list with respect to a (negative, therefore right)
\localhangindent and \localhangafter situation. Here slack refers to the pending number lines on
the right.

284 \breaklasthangslack

This variable reflects the state of the current vertical list with respect to a \hangindent and
\hangafter situation. Here slack refers to the pending number lines.

129

285 \breaklastlinecount

This variable refers to the current vertical list.

286 \breaklastlinewidth

This variable refers to last lines of the current vertical list.

287 \brokenpenalties

Together with \widowpenalties and \clubpenalties this one permits discriminating left- and right
page (doublesided) penalties. For this one needs to also specify \options 4 and provide penalty pairs.
Where the others accept multiple pairs, this primitives expects a count value one.

288 \brokenpenalty

This penalty is added after a line that ends with a hyphen; it can help to discourage a page break (or
split in a box).

289 \catcode

Every character can be put in a category, but this is typically something that the macro package
manages because changes can affect behavior. Also, once passed as an argument, the catcode of a
character is frozen. There are 16 different values:

\escapecatcode 0 \begingroupcatcode 1
\endgroupcatcode 2 \mathshiftcatcode 3
\alignmentcatcode 4 \endoflinecatcode 5
\parametercatcode 6 \superscriptcatcode 7
\subscriptcatcode 8 \ignorecatcode 9
\spacecatcode 10 \lettercatcode 11
\othercatcode 12 \activecatcode 13
\commentcatcode 14 \invalidcatcode 15

The first column shows the constant that ConTgXt provides and the name indicates the purpose. Here
are two examples:

\catcodel23=\begingroupcatcode
\catcodel25=\endgroupcatcode
290 \catcodetable

The catcode table with the given index will become active.

291 \cccode

This is an experimental feature that can set some processing options. The character specific code is
stored in the glyph node and consulted later. An example of such option is ‘ignore twin’, bit one, which
we set for a few punctuation characters.

130

292 \cdef

This primitive is like \edef but in some usage scenarios is slightly more efficient because (delayed)
expansion is ignored which in turn saves building a temporary token list.

\edef\FooA{this is foo} \meaningfull\FooA\crlf
\cdef\FooB{this is foo} \meaningfull\FooB\par

macro:this is foo
constant macro:this is foo
293 \cdefcsname

This primitive is like \edefcsame but in some usage scenarios is slightly more efficient because (de-
layed) expansion is ignored which in turn saves building a temporary token list.

\edefcsname FooA\endcsname{this is foo} \meaningasis\FooA\crlf
\cdefcsname FooB\endcsname{this is foo} \meaningasis\FooB\par

\def \FooA {this is foo}

\constant \def \FooB {this is foo}

294 \cfcode

This primitive is a companion to \efcode and sets the compression factor. It takes three values: font,
character code, and factor.

295 \char

This appends a character with the given index in the current font.

296 \chardef
The following definition relates a control sequence to a specific character:
\chardef\copyrightsign"A9

However, because in a context where a number is expected, such a \chardef is seen as valid number,
there was a time when this primitive was used to define constants without overflowing the by then
limited pool of count registers. In e-IEX aware engines this was less needed, and in LuaMetaTEX we
have \integerdef as a more natural candidate.

297 \cleaders

See \gleaders for an explanation.

298 \clearmarks

This primitive is an addition to the multiple marks mechanism that originates in e-IgX and reset the
mark registers of the given category (a number).

131

299 \clubpenalties

This is an array of penalty put before the first lines in a paragraph. High values discourage (or even
prevent) a lone line at the end of a page. This command expects a count value indicating the number
of entries that will follow. The first entry is ends up after the first line.

300 \clubpenalty

This is the penalty put before a club line in a paragraph. High values discourage (or even prevent) a
lone line at the end of a next page.

301 \constant

This prefix tags a macro (without arguments) as being constant. The main consequence is that in some
cases expansion gets delayed which gives a little performance boost and less (temporary) memory
usage, for instance in \csname like scenarios.

302 \constrained

See previous section about \retained.

303 \copy

This is the box register accessor that returns a copy of the box.

304 \copymathatomrule

This copies the rule bitset from the parent class (second argument) to the target class (first argument).
The bitset controls the features that apply to atoms.

305 \copymathparent

This binds the given class (first argument) to another class (second argument) so that one doesn’t
need to define all properties.

306 \copymathspacing

This copies an class spacing specification to another one, so in

\copymathspacing 34 2

class 34 (a user one) get the spacing from class 2 (binary).

307 \copysplitdiscards

This is a variant of \splitdiscards that keep the original.

132

308 \count

This accesses a count register by index. This is kind of ‘not done’ unless you do it local and make sure
that it doesn’t influence macros that you call.

\count4023=10

In standard TgX the first 10 counters are special because they get reported to the console, and \count0
is then assumed to be the page counter.

309 \countdef

This primitive relates a control sequence to a count register. Compare this to the example in the
previous section.

\countdef\MyCounter4023
\MyCounter=10

However, this is also ‘not done’. Instead one should use the allocator that the macro package provides.

\newcount\MyCounter
\MyCounter=10

In LuaMetaTEX we also have integers that don’t rely on registers. These are assigned by the primitive
\integerdef:

\integerdef\MyCounterA 10
Or better \newinteger.

\newinteger\MyCounterB
\MyCounterN10

There is a lowlevel manual on registers.

310 \cr

This ends a row in an alignment. It also ends an alignment preamble.

311 \crampeddisplaystyle

A less spacy alternative of \displaystyle; integer representation: 4.

312 \crampedscriptscriptstyle

A less spacy alternative of \scriptscriptstyle; integer representation: 6.

313 \crampedscriptstyle

A less spacy alternative of \scriptstyle; integer representation: 4.

133

314 \crampedtextstyle

A less spacy alternative of \textstyle; integer representation: 2.

315 \crcr

This ends a row in an alignment when it hasn’t ended yet.

316 \csactive

Because LuaTgX (and LuaMetaTgX) are Unicode engines active characters are implemented a bit dif-
ferently. They don’t occupy a eight bit range of characters but are stored as control sequence with a
special prefix U+FFFF which never shows up in documents. The \csstring primitive injects the name
of a control sequence without leading escape character, the \csactive injects the internal name of
the following (either of not active) character. As we cannot display the prefix: \csactive~ will inject
the utf sequences for U+FFFF and U+0Q07E, so here we get the bytes EFBFBF7E. Basically the next token
is preceded by \string, so when you don’t provide a character you are in for a surprise.

317 \csname

This original TgX primitive starts the construction of a control sequence reference. It does a lookup
and when no sequence with than name is found, it will create a hash entry and defaults its meaning
to \relax.

\csname letters and other characters\endcsname

318 \csnamestring

This is a companion of \ lastnamedcs that injects the name of the found control sequence. When used
inside a csname constructor it is more efficient than repeating a token list, compare:

\csname\ifcsname whatever\endcsname\csnamestring\endcsname % referenced
\csname\ifcsname whatever\endcsname whatever\endcsname % scanned
319 \csstring

This primitive returns the name of the control sequence given without the leading escape character
(normally a backslash). Of course you could strip that character with a simple helper but this is more
natural.

\csstring\mymacro

We get the name, not the meaning: mymacro.

320 \currentalignmentcolumn

This number keeps track of the current column.

321 \currentalignmentrow

This number keeps track of the current row.

134

322 \currentalignmenttabskip

This dimension reflects the currently uses tabskip.

323 \currentgrouplevel
The next example gives: [1] [2] [3][2] [1].

[\the\currentgrouplevel] \bgroup
[\the\currentgrouplevel] \bgroup
[\the\currentgrouplevel]
\egroup [\the\currentgrouplevel]
\egroup [\the\currentgrouplevel]

324 \currentgrouptype
The next example gives: [22] [1]1[22] [1]1[1]1[23]1[1]1[1].

[\the\currentgrouptype] \bgroup
[\the\currentgrouptype] \begingroup
[\the\currentgrouptype]
\endgroup [\the\currentgrouptype]
[\the\currentgrouptype] \beginmathgroup
[\the\currentgrouptype]
\endmathgroup [\the\currentgrouptype]
[\the\currentgrouptype] \egroup

The possible values depend in the engine and for LuaMetaTgX they are:

0 bottomlevel 9 output 18 mathoperator 27 mathequationnumber
1 simple 10 mathsubformula 19 mathradical 28 localbox

2 hbox 11 mathstack 20 mathchoice 29 splitoff

3 adjustedhbox 12 mathcomponent 21 alsosimple 30 splitkeep

4 vbox 13 discretionary 22 semisimple 31 preamble

5 vtop 14 insert 23 mathsimple 32 alignset

6 dbox 15 wvadjust 24 mathfence 33 finishrow

7 align 16 vcenter 25 mathinline 34 lua

8 nmnoalign 17 mathfraction 26 mathdisplay

325 \currentifbranch
The next example gives: [0] [1][-1][1] [O].

[\the\currentifbranch] \iftrue
[\the\currentifbranch] \iffalse
[\the\currentifbranch]
\else
[\the\currentifbranch]
\fi [\the\currentifbranch]
\fi [\the\currentifbranch]

135

So when in the ‘then’ branch we get plus one and when in the ‘else’ branch we end up with a minus
one.

326 \currentiflevel
The next example gives: [0] [1][2] [3][2][1][O].

[\the\currentiflevel] \iftrue
[\the\currentiflevel]\iftrue
[\the\currentiflevel] \iftrue
[\the\currentiflevel]
\fi [\the\currentiflevel]
\fi [\the\currentiflevel]
\fi [\the\currentiflevel]

327 \currentiftype
The next example gives: [-1] [25][25] [25] [25] [25] [-1].

[\the\currentiftype] \iftrue
[\the\currentiftype]\iftrue
[\the\currentiftype] \iftrue
[\the\currentiftype]
\fi [\the\currentiftype]
\fi [\the\currentiftype]
\fi [\the\currentiftypel

The values are engine dependent:

char

cat

num
absnum
zeronum
intervalnum
float
absfloat
zerofloat
intervalfloat
dim
absdim
zerodim
intervaldim
odd

vmode
hmode
mmode
inner

void

hbox

© 0O Uk W N+~ O

N S T S e S
O ©W O O Ul W DN -~ O

136

21 vbox

22 tok

23 cstoken

24 x

25 ftrue

26 false

27 chknum

28 chknumber
29 chknumexpr
30 numval

31 cmpnum

32 chkdim

33 chkdimension
34 chkdimexpr

328 \currentloopiterator
Here we show the different expanded loop variants:

\edef\testA{\expandedloop 1 10 1{!}}

\edef\testB{\expandedrepeat 10 {!}}

\edef\testC{\expandedendless {\ifnum\currentloopiterator>10 \quitloop\else !\fi}}
\edef\testD{\expandedendless {\ifnum#I>10 \quitloop\else !\fi}}

All these give the same result:

The #1I is a shortcut to the current loop iterator; other shortcuts are #P for the parent iterator value
and #G for the grand parent.

329 \currentloopnesting

This integer reports how many nested loops are currently active. Of course in practice the value only
has meaning when you know at what outer level your nested loop started.

\expandedloop 1 10 1 {%
\ifodd\currentloopiterator\else
[\expandedloop 1 \currentloopiterator 1 {%
\the\currentloopnesting
H
\fi
}

Here we use the two numeric state primitives \currentloopiterator and \currentloopnesting.
This results in:

[22][2222] [222222] [22222222] [2222222222]

137

330 \currentlysetmathstyle

TODO

331 \currentmarks

Marks only get updated when a page is split off or part of a box using \vsplit gets wrapped up. This
primitive gives access to the current value of a mark and takes the number of a mark class.

332 \currentstacksize

This is more diagnostic feature than a useful one but we show it anyway. There is some basic overhead
when we enter a group:

\bgroup [\the\currentstacksize]

\bgroup [\the\currentstacksize]
\bgroup [\the\currentstacksize]
[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[223] [224] [225] [225] [224] [223]

As soon as we define something or change a value, the stack gets populated by information needed
for recovery after the group ends.

\bgroup [\the\currentstacksize]
\scratchcounter 1
\bgroup [\the\currentstacksize]
\scratchdimen 1pt
\scratchdimen 2pt
\bgroup [\the\currentstacksize]
\scratchcounter 2
\scratchcounter 3
[\the\currentstacksize] \egroup
[\the\currentstacksize] \egroup
[\the\currentstacksize] \egroup

[223] [225] [227][228] [226] [224]

The stack also keeps some state information, for instance when a box is being built. In LuaMetaTgX
that is is quite a bit more than in other engines but it is compensated by more efficient save stack
handling elsewhere.

\hbox \bgroup [\the\currentstacksize]

\hbox \bgroup [\the\currentstacksize]
\hbox \bgroup [\the\currentstacksize]
[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[232] [242] [252] [252] [242] [232]

333 \day

138

This internal number starts out with the day that the job started.

334 \dbox

A \dbox is just a \vbox (baseline at the bottom) but it has the property ‘dual baseline’ which means

that is some cases it will behave like a \vtop (baseline at the top) too. Like:

box box
|dbox ’VbOX center
box box top Ucenter
IVtOP center
top

A \dbox behaves like a \vtop when it’s appended to a vertical list which means that the height of the

first box or rule determines the (base)line correction that gets applied.

AXXXXXXXXXXXXXX
he Earth, as a habitat for animal life, is in old age

and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per
day—and we humans are the cigarettes.
XXXXXXXXKKKXKKKX

\vbox

335 \deadcycles

This counter is incremented every time the output routine is entered. When \maxdeadcycles is

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

‘he Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per

day—and we humans are the cigarettes.
XXXXX XXXXXXX

\vtop

he Earth, as a habitat for animal life, is in old ag

and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per|

XXXXXXXXXXXXXXXX

\dbox

reached TgX will issue an error message, so you’'d better reset its value when a page is done.

336 \def

This is the main definition command, as in:

\def\foo{l me}

with companions like \gdef, \edef, \xdef, etc. and variants like:

\def\foo#1{... #1...}

where the hash is used in the preamble and for referencing. More about that can be found in the low

level manual about macros.

In the ConTgXt distribution you can find explanations about how LuaMetaTgX extends the argument

parser. When defining a macro you can do this:

\def\foo (#1)#2{...}

Here the first argument between parentheses is mandate. But the magic prefix \tolerant makes that

limitation go away:

139

\tolerant\def\foo (#1)#2{...}
A variant is this:
\tolerant\def\foo (#1)#*(#2){...}

Here we have two optional arguments, possibly be separated by spaces. There are more parsing
options, that we just mention:

+ keep the braces
- discard and don’t count the argument

/ remove leading an trailing spaces and pars
= braces are mandate

B braces are mandate and kept

~ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

ignore pars and spaces
, push back space when no match

pick up scanning here
; quit scanning

337 \defaulthyphenchar

When a font is loaded its hyphen character is set to this value. It can be changed afterwards. However,
in LuaMetaTgX font loading is under Lua control so these properties can be set otherwise.

338 \defaultskewchar

When a font is loaded its skew character is set to this value. It can be changed afterwards. However,
in LuaMetaTgX font loading is under Lua control so these properties can be set otherwise. Also,
OpenType math fonts have top anchor instead.

339 \defcsname

We now get a series of log clutter avoidance primitives. It’s fine if you argue that they are not really
needed, just don’t use them.

\expandafter\def\csname MyMacro:1l\endcsname{...}
\defcsname MyMacro:1l\endcsname{...}

The fact that TgX has three (expanded and global) companions can be seen as a signal that less ver-
bosity makes sense. It’s just that macro packages use plenty of \csname’s.
340 \deferred

This is mostly a compatibility prefix and it can be checked at the Lua end when there is a Lua based
assignment going on. It is the counterpart of \immediate. In the traditional engines a \write is

140

normally deferred (turned into a node) and can be handled \immediate, while a \special does the
opposite.

341 \delcode

This assigns delimiter properties to an eight bit character so it has little use in an OpenType math
setup. WHen the assigned value is hex encoded, the first byte denotes the small family, then we have
two bytes for the small index, followed by three similar bytes for the large variant.

342 \delimiter

This command inserts a delimiter with the given specification. In OpenType math we use a different
command so it is unlikely that this primitive is used in LuaMetaTgX. It takes a number that can best
be coded hexadecimal: one byte for the class, one for the small family, two for the small index, one for
the large family and two for the large index. This demonstrates that it can’t handle wide fonts. Also,
in OpenType math fonts the larger sizes and extensible come from the same font as the small symbol.
On top of that, in LuaMetaTEX we have more classes than fit in a byte.

343 \delimiterfactor

This is one of the parameters that determines the size of a delimiter: at least this factor times the
formula height divided by 1000. In OpenType math different properties and strategies are used.

344 \delimitershortfall

This is one of the parameters that determines the size of a delimiter: at least the formula height minus
this parameter. In OpenType math different properties and strategies are used.

345 \detokened
The following token will be serialized into characters with category ‘other’.

\toks0{123}

\def\foo{let's be \relax'd}
\def\oof#1l{let's see #1}
\detokened\toks0
\detokened\ foo
\detokened\oof
\detokened\sethox
\detokened X

Gives:

123

let's be \relax 'd
\oof

\setbox

X

Macros with arguments are not shown.

141

346 \detokenize
This e-TgX primitive turns the content of the provides list will become characters, kind of verbatim.

\expandafter\let\expandafter\temp\detokenize{1l} \meaning\temp
\expandafter\let\expandafter\temp\detokenize{A} \meaning\temp

the character U+0031 1
the character U+0041 A

347 \detokenized
The following (single) token will be serialized into characters with category ‘other’.

\toks0{123}

\def\foo{let's be \relax'd}
\def\oof#1l{let's see #1}
\detokenized\toks0
\detokenized\foo
\detokenized\oof
\detokenized\setbox
\detokenized X

Gives:

\toks 0
\foo
\oof
\setbox
X

It is one of these new primitives that complement others like \detokened and such, and they are often
mostly useful in experiments of some low level magic, which made them stay.

348 \dimen

Like \count this is a register accessor which is described in more detail in a low level manual.
\dimen0=10pt

While TgX has some assumptions with respect to the first ten count registers (as well as the one that
holds the output, normally 255), all dimension registers are treated equal. However, you need to be
aware of clashes with other usage. Therefore you can best use the predefined scratch registers or
define dedicate ones with the \newdimen macro.

349 \dimendef

This primitive is used by the \newdimen macro when it relates a control sequence with a specific
register. Only use it when you know what you're doing.

350 \dimensiondef

A variant of \integerdef is:

142

\dimensiondef\MyDimen = 1234pt

The properties are comparable to the ones described in the section \integerdef.

351 \dimexperimental

This is the most extensive of the triplet \dimexpr, \dimexpression and and \dimexperimental. The
first one is the simple e-TgX scanner, the second one adds a few more operators and the third one
adds even more and uses a reverse polish notation stack internally which means that it is better with
priorities and nesting. The reason for calling it experimental is that it needs testing an dis less of a
drop-in than the second one.

For more about this scanner we refer to the ConTEXt lowlevel manuals, especially the one about ex-
pressions..
352 \dimexpr

This primitive is similar to of \numexpr but operates on dimensions instead. Integer quantities are
interpreted as dimensions in scaled points.

\the\dimexpr (1pt + 2pt - 5pt) * 10 / 2 \relax
gives: -10.0pt. You can mix in symbolic integers and dimensions. This doesn’t work:

because the engine scans for a dimension and only for an integer (or equivalent) after a * or /.

353 \dimexpression

This command is like \numexpression but results in a dimension instead of an integer. Where \dim-
expr doesn’t like 2 * 10pt this expression primitive is quite happy with it.

You can get an idea what the engines sees by setting \tracingexpressions to a value larger than
zero. It shows the expression in rpn form.

\dimexpression 4pt * 2+ 6pt \relax
\dimexpression 2 * 4pt + 6pt \relax
\dimexpression 4pt * 2.5 + 6pt \relax
\dimexpression 2.5 * 4pt + 6pt \relax
\numexpression 2 * 4 + 6 \relax
\numexpression (1 + 2) * (3 + 4) \relax

The \relaxis mandate simply because there are keywords involved so the parser needs to know where
to stop scanning. It made no sense to be more clever and introduce fuzziness (so there is no room for
exposing in-depth TgX insight and expertise here). In case you wonder: the difference in performance
between the e-IgX expression mechanism and the more extended variant will normally not be noticed,
probably because they both use a different approach and because the e-TgX variant also has been
optimized.

354 \directlua

This is the low level interface to Lua:

143

Gives: “Greetings from the lua end!” as expected. In Lua we have access to all kind of internals
of the engine. In LuaMetaTgX the interfaces have been polished and extended compared to Lua-
TgX. Although many primitives and mechanisms were added to the TgX frontend, the main extension
interface remains Lua. More information can be found in documents that come with ConTgXt, in
presentations and in articles.

355 \discretionary

The three snippets given with this command determine the pre, post and replace component of the
injected discretionary node. The penalty keyword permits setting a penalty with this node. The
postword keyword indicates that this discretionary starts a word, and preword ends it. With break
the line break algorithm will prefer a pre or post component over a replace, and with nobreak replace
will win over pre. With class you can set a math class that will determine spacing and such for
discretionaries used in math mode.

356 \discretionaryoptions
Processing of discretionaries is controlled by this bitset:

0x00000000 normalword
0x00000001 preword

0x00000002 postword
0x00000010 preferbreak
0x00000020 prefernobreak
0x00000040 noitaliccorrection
Ox00000080 nozeroitaliccorrection
0x00000100 standalone
0x00010000 userfirst

0x40000000 wuserlast

These can also be set on \discretionary using the options key.

357 \displayindent

The \displaywidth, \displayindent and \predisplaysize parameters are set by the line break
routine (but can be adapted by the user), so that mid-par display formula can adapt itself to hanging
indentation and par shapes. I order to calculate thee values and adapt the line break state afterwards
such a display formula is assumed to occupy three lines, so basically a rather compact formula.

358 \displaylimits

By default in math display mode limits are place on top while in inline mode they are placed like
scripts, after the operator. Placement can be forced with the \1imits and \nolimits modifiers (after
the operator). Because there can be multiple of these in a row there is \displaylimits that forces
the default placement, so effectively it acts here as a reset modifier.

359 \displaystyle

One of the main math styles; integer representation: 0.

144

360 \displaywidowpenalties

This is a math specific variant of \widowpenalties.

361 \displaywidowpenalty

This is a math specific variant of \widowpenalty.

362 \displaywidth

This parameter determines the width of the formula and normally defaults to the \hsize unless we
are in the middle of a paragraph in which case it is compensated for hanging indentation or the par
shape.

363 \divide

The \divide operation can be applied to integers, dimensions, float, attribute and glue quantities.
There are subtle rounding differences between the divisions in expressions and \divide:

\scratchcounter 1049 \numexpr\scratchcounter / 10\relax : 105
\scratchcounter 1049 \numexpr\scratchcounter : 10\relax : 104
\scratchcounter 1049 \divide\scratchcounter by 10 : 104

The : divider in \dimexpr is something that we introduced in LuaTgX.

364 \divideby

This is slightly more efficient variant of \divide that doesn’t look for by. See previous section.

365 \doublehyphendemerits

This penalty will be added to the penalty assigned to a breakpoint that results in two lines ending with
a hyphen.

366 \doublepenaltymode

When set to one this parameter signals the backend to use the alternative (left side) penalties of the
pairs set on \widowpenalties, \clubpenalties and \brokenpenalties. For more information on this
you can consult manuals (and articles) that come with ConTgXt.

367 \dp

Returns the depth of the given box.

368 \dpack

This does what \dbox does but without callback overhead.

145

369 \dsplit

This is the dual baseline variant of \vsplit (see \dbox for what that means).

370 \dump

This finishes an (ini) run and dumps a format (basically the current state of the engine).

371 \edef
This is the expanded version of \def.

\def \foo{foo} \meaning\foo
\def \ofo{\foo\foo} \meaning\ofo
\edef\oof{\foo\foo} \meaning\oof

Because \ foo is unprotected it will expand inside the body definition:

macro: foo
macro:\foo \foo
macro: foofoo

372 \edefcsname
This is the companion of \edef:

\expandafter\edef\csname MyMacro:1l\endcsname{...}
\edefcsname MyMacro:1l\endcsname{...}

373 \edivide

When expressions were introduced the decision was made to round the divisions which is incompatible
with the way \divide works. The expression scanners in LuaMetaTEX compensates that by providing
a : for integer division. The \edivide does the opposite: it rounds the way expressions do.

\the\dimexpr .4999pt : 2 \relax .24994pt
\the\dimexpr .4999pt / 2 \relax .24995pt
\scratchdimen.4999pt \divide \scratchdimen 2 \the\scratchdimen=.24994pt
\scratchdimen.4999pt \edivide\scratchdimen 2 \the\scratchdimen=.24995pt

\the\numexpr 1001 : 2 \relax =500
\the\numexpr 1001 / 2 \relax =501
\scratchcounter1001 \divide \scratchcounter 2 \the\scratchcounter=500
\scratchcounter1001 \edivide\scratchcounter 2 \the\scratchcounter=501

Keep in mind that with dimensions we have a fractional part so we actually rounding applies to the
fraction. For that reason we also provide \rdivide.

0.24994pt=.24994pt
0.24995pt=.24995pt
0.24994pt=.24994pt

146

0.24995pt=.24995pt

500=500
501=501
500=500
501=501

374 \edivideby

This the by-less variant of \edivide.

375 \efcode

This primitive originates in pdfTgX and can be used to set the expansion factor of a glyph (characters).
This primitive is obsolete because the values can be set in the font specification that gets passed via
Lua to TgX. Keep in mind that setting font properties at the TgX end is a global operation and can
therefore influence related fonts. In LuaMetaTgX the \cf code can be used to specify the compression
factor independent from the expansion factor. The primitive takes three values: font, character code,
and factor.

376 \else

This traditional primitive is part of the condition testing mechanism. When a condition matches, TgX
will continue till it sees an \else or \or or \orelse (to be discussed later). It will then do a fast
skipping pass till it sees an \fi.

377 \emergencyextrastretch

This is one of the extended parbuilder parameters. You can you it so temporary increase the permitted
stretch without knowing or messing with the normal value.

378 \emergencyleftskip

This is one of the extended parbuilder parameters (playground). It permits going ragged left in case
of a too bad result.

379 \emergencyrightskip

This is one of the extended parbuilder parameters (playground). It permits going ragged right in case
of a too bad result.

380 \emergencystretch

When set the par builder will run a third pass in order to fit the set criteria.

381 \emptyparagraphmode

An empty display math environment can add bogus nodes to the list. Although we don’t use the
engine’s display math in ConTgXt, we do support this parameter because it permitted us to test a
comparable feature in LuaTgX. In our case the value is a bitmap:

147

0x01 par 0x04 indentlist
0x02 dir 0x08 indentglue
382 \end

This ends a TgX run, unless of course this primitive is redefined.

383 \endcsname

This primitive is used in combination with \csname, \ifcsname and \begincsname where its end the
scanning for the to be constructed control sequence token.

384 \endgroup

This is the companion of the \begingroup primitive that opens a group. See \beginsimplegroup for
more info.

385 \endinput

The engine can be in different input modes: reading from file, reading from a token list, expanding a
macro, processing something that comes back from Lua, etc. This primitive quits reading from file:

this is seen
\endinput
here we're already quit

There is a catch. This is what the above gives:
this is seen
but how about this:

this is seen
before \endinput after
here we're already quit

Here we get:

this is seen before after

Because a token list is one line, the following works okay:
\def\quitrun{\ifsomething \endinput \fi}

but in a file you’d have to do this when you quit in a conditional:

\ifsomething
\expandafter \endinput
\fi

While the one-liner works as expected:

148

\ifsomething \endinput \fi

386 \endlinechar

This is an internal integer register. When set to positive value the character with that code point will
be appended to the line. The current value is 13. Here is an example:

\endlinechar\hyphenasciicode
line 1
line 2

line 1-line 2-

If the character is active, the property is honored and the command kicks in. The maximum value is
127 (the maximum character code a single byte utf character can carry.)

387 \endlocalcontrol

See \beginlocalcontrol.

388 \endmathgroup

This primitive is the counterpart of \beginmathgroup.

389 \endmvl

This ends \beginmvl.

390 \endsimplegroup

This one ends a simple group, see \beginsimplegroup for an explanation about grouping primitives.

391 \enforced

The engine can be set up to prevent overloading of primitives and macros defined as \permanent or
\immutable. However, a macro package might want to get around this in controlled situations, which
is why we have a \enforced prefix. This prefix in interpreted differently in so called ‘ini’ mode when
macro definitions can be dumped in the format. Internally they get an always flag as indicator that in
these places an overload is possible.

\permanent\def\foo{original}

\def\oof {\def\foo{fails}}
\def\oof{\enforced\def\foo{succeeds}}

Of course this only has an effect when overload protection is enabled.

392 \eofinput

This is a variant on \input that takes a token list as first argument. That list is expanded when the file
ends. It has companion primitives \atendoffile (single token) and \atendoffiled (multiple tokens).

149

393 \eqno

This primitive stores the (typeset) content (presumably a number) and when the display formula is
wrapped that number will end up right of the formula.

394 \errhelp

This is additional help information to \errmessage that triggers an error and shows a message.

395 \errmessage

This primitive expects a token list and shows its expansion on the console and/or in the log file, de-
pending on how TgX is configured. After that it will enter the error state and either goes on or waits
for input, again depending on how TgX is configured. For the record: we don’t use this primitive in
ConTgXt.

396 \errorcontextlines

This parameter determines the number on lines shown when an error is triggered.

397 \errorrecoverymode

There are cases when an error is not fatal and TgX can easily recover from it. It does not mean that
one should not pay attention. This parameter gets a bitset that makes the engine turn these errors
into warnings and continue. Currently we have two options: 0x01 for fixing an alignment tab, and
0x02 for fixing infinite shrink (which happens in various places). We don’t enable this in ConTgXt; it’s
more for unattended runs.

398 \errorstopmode

This directive stops at every opportunity to interact. In ConTgXt we overload the actions in a callback
and quit the run because we can assume that a successful outcome is unlikely.

399 \escapechar

This internal integer has the code point of the character that get prepended to a control sequence
when it is serialized (for instance in tracing or messages).

400 \etexexprmode

When set to a positive value the : and ; operators are not interpreted. In ConTgXt we keep this value
zero! This flag was added in 2024 for IXTEX where in places ; is used as signal to end an expression
instead of \relax). Because one never knows what users expect this flag disables both.

401 \etoks

This assigns an expanded token list to a token register:

\def\temp{less stuff}

150

\etoks\scratchtoks{a bit \temp}

The orginal value of the register is lost.

402 \etoksapp

A variant of \toksapp is the following: it expands the to be appended content.
\def\temp{more stuff}

\etoksapp\scratchtoks{some \temp}

403 \etokspre

A variant of \tokspre is the following: it expands the to be prepended content.
\def\temp{less stuff}

\etokspre\scratchtoks{a bit \temp}

404 \eufactor

When we introduced the es (2.5cm) and ts (2.5mm) units as metric variants of the in we also added
the eu factor. One eu equals one tenth of a es times the \eufactor. The ts is a convenient offset in
test files, the es a convenient ones for layouts and image dimensions and the eu permits definitions
that scale nicely without the need for dimensions. They also were a prelude to what later became
possible with \associateunit.

405 \everybeforepar
This token register is expanded before a paragraph is triggered. The reason for triggering is available
in \lastpartrigger.

406 \everycr

This token list gets expanded when a row ends in an alignment. Normally it will use \noalign as
wrapper

{\everycr{\noalign{H}} \halign{#\cr test\cr test\cr}}
{\everycr{\noalign{V}} \hsize 4cm \valign{#\cr test\cr test\cr}}

Watch how the \cr ending the preamble also get this treatment:
H
test

H
test

Vtest Vtest \Y

151

407 \everydisplay

This token list gets expanded every time we enter display mode. It is a companion of \everymath.

408 \everyeof

The content of this token list is injected when a file ends but it can only be used reliably when one
is really sure that no other file is loaded in the process. So in the end it is of no real use in a more
complex macro package.

409 \everyhbox

This token list behaves similar to \everyvbox so look there for an explanation.

410 \everyjob

This token list register is injected at the start of a job, or more precisely, just before the main control
loop starts.

411 \everymath

Often math needs to be set up independent from the running text and this token list can be used to do
that. There is also \everydisplay.

412 \everymathatom

When a math atom is seen this tokenlist is expanded before content is processed inside the atom
body. It is basically a math companion for \everyhbox and friends and it is therefore probably just as
useless. The next example shows how it works:

\everymathatom
{\begingroup
\scratchcounter\lastatomclass
\everymathatom{}%
\mathghost{\hbox to Opt yoffset -lex{\smallinfofont \setstrut\strut \the
\scratchcounter\hss}}%
\endgroup}

$ a = \mathatom class 4 {b} + \mathatom class 5 {c} $
We get a formula with open- and close atom spacing applied to b and c:
a=b+c

This example shows bit of all: we want the number to be invisible to the math machinery so we
ghost it. So, we need to make sure we don’t get recursion due to nested injection and expansion of
\everymathatom and of course we need to store the number. The \lastatomclass state variable is
only meaningful inside an explicit atom wrapper like \mathatom and \mathatom.

152

413 \everypar

When a paragraph starts this tokenlist is expanded before content is processed.

414 \everyparbegin

This token list is inserted before \everypar and likewise it’s not reset.

415 \everyparend

This token lists is injected at the end of a paragraph but before collected end of group tokens. This
register is not reset afterwards.

416 \everytab

This token list gets expanded every time we start a table cell in \halign or \valign.

417 \everyvbox

This token list gets expanded every time we start a vertical box. Like \everyhbox this is not that useful
unless you are certain that there are no nested boxes that don’t need this treatment. Of course you
can wipe this register in this expansion, like:

\everyvbox{\kernlOpt\everyvbox{}}

418 \exapostrophechar

This parameter is like \exhyphenchar marks a character code as being an explicit apostrophe. This
feature related to the node.direct.collapsing function that turns replaces some sequences that
relate to traditional TgX usage: hyphens, en-dashes (U+2013), em-dashes (U+2014) and apostrophes
(U+2019). For this to kick in, the font’s text control option must enable it and hyphenation mode must
have the replace apostrophe bit set.

419 \exceptionpenalty

In exceptions we can indicate a penalty by [digit] in which case a penalty is injected set by this
primitive, multiplied by the digit.

420 \exhyphenchar

The character that is used as pre component of the related discretionary.

421 \exhyphenpenalty

The penalty injected after - or \ - unless \hyphenationmode is set to force the dedisated penalties.

422 \expand

Beware, this is not a prefix but a directive to ignore the protected characters of the following macro.

153

\protected \def \testa{\the\scratchcounter}
\edef\testb{\testa}
\edef\testc{\expand\testa}

The meaning of the three macros is:

protected macro:\the \scratchcounter
macro:\testa
macro:123

423 \expandactive

This a bit of an outlier and mostly there for completeness.

\meaningasis~
\edef\foo{~} \meaningasis\foo
\edef\foo{\expandactive~} \meaningasis\foo

There seems to be no difference but the real meaning of the first \ foo is ‘active character 126’ while
the second \ foo ‘protected call ’ is.

\global \permanent \protected \def ~ {\nobreakspace }
\def \foo {~}
\def \foo {~}

Of course the definition of the active tilde is ConIgXt specific and situation dependent.

424 \expandafter

This original TEX primitive stores the next token, does a one level expansion of what follows it, which
actually can be an not expandable token, and reinjects the stored token in the input. Like:

\expandafter\let\csname my weird macro name\endcsname{m w m n}

Without \expandafter the \csname primitive would have been let to the left brace (effectively then
a begin group). Actually in this particular case the control sequence with the weird name is injected
and when it didn’t yet exist it will get the meaning \relax so we sort of have two assignments in a
row then.

425 \expandafterpars

Here is another gobbler: the next token is reinjected after following spaces and par tokens have been
read. So:

[\expandafterpars 1 2]
[\expandafterpars 3

4]

[\expandafterpars 5

6]

gives us: [12] [34] [56], because empty lines are like \par and therefore ignored.

154

426 \expandafterspaces

This is a gobbler: the next token is reinjected after following spaces have been read. Here is a simple
example:

[\expandafterspaces 1 2]
[\expandafterspaces 3

4]

[\expandafterspaces 5

6]

We get this typeset: [12] [34] [5

6], because a newline normally is configured to be a space (and leading spaces in a line are normally
being ignored anyway).

427 \expandcstoken

The rationale behind this primitive is that when we \let a single token like a character it is hard to
compare that with something similar, stored in a macro. This primitive pushes back a single token
alias created by \let into the input.

\let\tempA + \meaning\tempA

\let\tempB X \meaning\tempB \crlf
\let\tempC $ \meaning\tempC \par

\edef\temp {\tempA} \doifelse{\temp}{+}{Y}{N} \meaning\temp \crlf
\edef\temp {\tempB} \doifelse{\temp}{X}{Y}{N} \meaning\temp \crlf
\edef\temp {\tempC} \doifelse{\temp}{X}{Y}{N} \meaning\temp \par

\edef\temp{\expandcstoken\tempA} \doifelse{\temp}{+}{Y}{N} \meaning\temp \crlf
\edef\temp{\expandcstoken\tempB} \doifelse{\temp}{X}{Y}{N} \meaning\temp \crlf
\edef\temp{\expandcstoken\tempC} \doifelse{\temp}{$}{Y}{N} \meaning\temp \par

\doifelse{\expandcstoken\tempA}{+}{Y}{N}
\doifelse{\expandcstoken\tempB}{X}{Y}{N}
\doifelse{\expandcstoken\tempC}{$}{Y}{N} \par

The meaning of the \let macros shows that we have a shortcut to a character with (in this case)
catcode letter, other (here ‘other character’ gets abbreviated to ‘character’), math shift etc.

the character U+002B 'plus sign'

the letter U+0058 X
math shift character U+0024 'dollar sign'

N macro:\tempA
N macro:\tempB
N macro:\tempC

Y macro:+
macro:X
Y macro:$

=<

155

YYY

Here we use the ConTgXt macro \doifelse which can be implemented in different ways, but the only
property relevant to the user is that the expanded content of the two arguments is compared.

428 \expanded

This primitive complements the two expansion related primitives mentioned in the previous two sec-
tions. This time the content will be expanded and then pushed back into the input. Protected macros
will not be expanded, so you can use this primitive to expand the arguments in a call.

\def\A{!}
\def\B#1{\string#1} \B{\A}
\def\B#1{\string#1} \expanded{\noexpand\B{\A}}
\protected\def\B#1{\string#1} \B{\A}
\A
!
\A

429 \expandedafter
The following two lines are equivalent:

\def\foo{123}
\expandafter[\expandafter[\expandafter\secondofthreearguments\foo]]
\expandedafter{[[\secondofthreearguments}\foo]]

In ConTEXt MKIV the number of times that one has multiple \expandafters is much larger than in
ConTgXt LMTX thanks to some of the new features in LuaMetaTgX, and this primitive is not really
used yet in the core code.

[[211

(211

430 \expandeddetokenize

This is a companion to \detokenize that expands its argument:

\def\foo{12#H3}

\def\oof{\foo}

\detokenize {\foo} \detokenize {\oof}
\expandeddetokenize{\foo} \expandeddetokenize{\oof}
\edef\ofo{\expandeddetokenize{\foo}} \meaningless\ofo
\edef\ofo{\expandeddetokenize{\oof}} \meaningless\ofo

This is a bit more convenient than
\detokenize \expandafter {\expanded {\foo}}

kind of solutions. We get:

156

\foo \oof
12#3 12#3
12#3
12#3

431 \expandedendless

This one loops forever but because the loop counter is not set you need to find a way to quit it.

432 \expandedloop

This variant of the previously introduced \localcontrolledloop doesn’t enter a local branch but
immediately does its work. This means that it can be used inside an expansion context like \edef.

\edef\whatever
{\expandedloop 1 10 1
{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =1\relax \scratchcounter =2\relax \scratchcounter =3\relax \scratchcounter
=4\relax \scratchcounter =5\relax \scratchcounter =6\relax \scratchcounter =7\relax \scratchcounter =8\relax

\scratchcounter =9\relax \scratchcounter =10\relax }

433 \expandedrepeat

This one takes one instead of three arguments which is sometimes more convenient.

434 \expandparameter
This primitive is a predecessor of \parameterdef so we stick to a simple example.

\def\ foo#1#2%
{\integerdef\MyIndexOne\parameterindex\plusone % 1
\integerdef\MyIndexTwo\parameterindex\plustwo % 2
\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%
{<1:\expandparameter\MyIndexOne><1l:\expandparameter\MyIndexOne>%
#1%
<2:\expandparameter\MyIndexTwo><2:\expandparameter\MyIndexTwo>}

\foo{A}{B}

In principle the whole parameter stack can be accessed but often one never knows if a specific macro
is called nested. The original idea behind this primitive was tracing but it can also be used to avoid
passing parameters along a chain of calls.

<1:A><1:A>P<2:B><2:B><1:A><1:A>Q<2:B><2:B><1:A><1:A>R<2:B><2:B>

157

435 \expandtoken

This primitive creates a token with a specific combination of catcode and character code. Because it
assumes some knowledge of TgX we can show it using some \expandafter magic:

\expandafter\let\expandafter\temp\expandtoken 11 "X \meaning\temp
\expandafter\let\expandafter\temp\expandtoken 12 "X \meaning\temp

The meanings are:

the letter U+0058 X
the character U+0058 X

Using other catcodes is possible but the results of injecting them into the input directly (or here by
injecting \temp) can be unexpected because of what TgX expects. You can get messages you normally
won't get, for instance about unexpected alignment interference, which is a side effect of TgX using
some catcode/character combinations as signals and there is no reason to change those internals.
That said:

\xdef\tempA{\expandtoken 9 "X} \meaning\tempA
\xdef\tempB{\expandtoken 10 "X} \meaning\tempB
\xdef\tempC{\expandtoken 11 "X} \meaning\tempC
\xdef\tempD{\expandtoken 12 "X} \meaning\tempD

are all valid and from the meaning you cannot really deduce what’s in there:

macro: X
macro:X
macro:X
macro:X

But you can be assured that:

[AB: \ifx\tempA\tempB Y\else N\fi]
[AC: \ifx\tempA\tempC Y\else N\fi]
[AD: \ifx\tempA\tempD Y\else N\fi]
[BC: \ifx\tempB\tempC Y\else N\fi]
[BD: \ifx\tempB\tempD Y\else N\fi]
[CD: \ifx\tempC\tempD Y\else N\fi]

makes clear that they're different: [AB: N] [AC: N] [AD: N] [BC: N] [BD: N] [CD: N], and in case you
wonder, the characters with catcode 10 are spaces, while those with code 9 are ignored.

436 \expandtoks
This is a more efficient equivalent of \the applied to a token register, so:

\scratchtoks{just some tokens}

\edef\TestA{[\the \scratchtoks]}
\edef\TestB{[\expandtoks\scratchtoks]}

[\the \scratchtoks] [\TestA] \meaning\TestA
[\expandtoks\scratchtoks] [\TestB] \meaning\TestB

158

does the expected:

[just some tokens] [[just some tokens]] macro:[just some tokens]
[just some tokens] [[just some tokens]] macro:[just some tokens]

The \expandtoken primitive avoid a copy into the input when there is no need for it.

437 \explicitdiscretionary

This is the verbose alias for one of TgX’s single character control sequences: \-.

438 \explicithyphenpenalty

The penalty injected after an automatic discretionary \ -, when \hyphenationmode enables this.

439 \explicititaliccorrection

This is the verbose alias for one of TEX's single character control sequences: \/. Italic correction is a
character property specific to TgX and the concept is not present in modern font technologies. There
is a callback that hooks into this command so that a macro package can provide its own solution to
this (or alternatively it can assign values to the italic correction field.

440 \explicitspace

This is the verbose alias for one of TEX's single character control sequences: \. A space is inserted
with properties according the space related variables. There is look-back involved in order to deal
with space factors.

When \nospaces is set to 1 no spaces are inserted, when its value is 2 a zero space is inserted.

441 \fam

In a numeric context it returns the current family number, otherwise it sets the given family. The
number of families in a traditional engine is 16, in LuaTgX it is 256 and in LuaMetaTgX we have at
most 64 families. A future version can lower that number when we need more classes.

442 \fi

This traditional primitive is part of the condition testing mechanism and ends a test. So, we have:

\ifsomething ... \else ... \fi

\ifsomething ... \or ... \or ... \else ... \fi

\ifsomething ... \orelse \ifsometing ... \else ... \fi
\ifsomething ... \or ... \orelse \ifsometing ... \else ... \fi

The \orelse is new in LuaMetaTEX and a continuation like we find in other programming languages
(see later section).
443 \finalhyphendemerits

This penalty will be added to the penalty assigned to a breakpoint when that break results in a pre-last
line ending with a hyphen.

159

444 \firstmark

This is a reference to the first mark on the (split off) page, it gives back tokens.

445 \firstmarks

This is a reference to the first mark with the given id (a number) on the (split off) page, it gives back
tokens.

446 \firstvalidlanguage

Language id’s start at zero, which makes it the first valid language. You can set this parameter to
indicate the first language id that is actually a language. The current value is 1, so lower values will
not trigger hyphenation.

447 \fitnessclasses

We can have more fitness classes than traditional TgX that has ‘very loose’, ‘loose’, ‘decent’ and ‘tight’.
In ConTEXt we have ‘veryloose’, ‘loose’, ‘almostloose’, ‘barelyloose’, ‘decent’, ‘barelytight’, ‘almost-
tight’, ‘tight’ and ‘verytight’. Although we can go up to 31 this is already more than enough. The
default is the same as in regular TgX.

The \fitnessclasses can be used to set the criteria and like other specification primitives (like \par-
shape and \widowpenalties, it expects a count. With \adjacentdemerits one can set the demerits
that are added depending on the distance between classes (in traditional TgX that is adjdemerits for
all distances larger than one. With the double option the demerits come in pairs because we can go
up or down in the list of fitness classes.

448 \float

In addition to integers and dimensions, which are fixed 16.16 integer floats we also have ‘native’ floats,
based on 32 bit posit unums.

\floatd = 123.456 \the\float0
\float2 = 123.456 \the\float0
\advance \float0 by 123.456 \the\float0
\advance \float0 by \float2 \the\float0
\divideby\float0d 3 \the\float0d

They come with the same kind of support as the other numeric data types:

123.456000328
123.456000328
246.912000656
370.368003845
123.456001282

We leave the subtle differences between floats and dimensions to the user to investigate:

\dimen00O
\dimen02

123.456pt \the\dimen0
123.456pt \the\dimen0

160

\advance \dimen0O by 123.456pt \the\dimen0
\advance \dimen0® by \dimen2 \the\dimenO
\divideby\dimen0 3 \the\dimen0

The nature of posits is that they are more accurate around zero (or smaller numbers in general).

123.456pt
123.456pt
246.91199pt
370.36798pt
123.456pt

This also works:

\float0=123.456e4

\float2=123.456 \multiply\float2 by 10000
\the\float0

\the\float2

The values are (as expected) the same:
1234560

1234560

449 \floatdef

This primitive defines a symbolic (macro) alias to a float register, just like \countdef and friends do.

450 \floatexpr
This is the companion of \numexpr, \dimexpr etc.

\scratchcounter 200

\the \floatexpr 123.456/456.123 \relax
\the \floatexpr 1l.2*\scratchcounter \relax
\the \floatexpr \scratchcounter/3 \relax
\number\floatexpr \scratchcounter/3 \relax

Watch the difference between \the and \number:

0.270663833
240
66.666666985
67

451 \floatingpenalty

When an insertion is split (across pages) this one is added to to accumulated \insertpenalties. In
LuaMetaTgX this penalty can be stored per insertion class.

161

452 \flushmarks

This primitive is an addition to the multiple marks mechanism that originates in e-IgX and inserts a
reset signal for the mark given category that will perform a clear operation (like \clearmarks which
operates immediately).

453 \flushmvl

This returns a vertical box with the content of the accumulated mvl list (see \beginmv1l).

454 \font

This primitive is either a symbolic reference to the current font or in the perspective of an assignment
is used to trigger a font definitions with a given name (cs) and specification. In LuaMetaTgX the
assignment will trigger a callback that then handles the definition; in addition to the filename an
optional size specifier is checked (at or scaled).

In LuaMetaTgX all font loading is delegated to Lua, and there is no loading code built in the engine.
Also, instead of \font in ConTEXt one uses dedicated and more advanced font definition commands.
455 \fontcharba

Fetches the bottom anchor of a character in the given font, so:

results in: 1.8275pt. However, this anchor is only available when it is set and it is not part of OpenType;
it is something that ConTEXt provides for math fonts.

456 \fontchardp

Fetches the depth of a character in the given font, so:

results in: 2.22168pt.

457 \fontcharht
Fetches the width of a character in the given font, so:

results in: 5.33203pt.

458 \fontcharic

Fetches the italic correction of a characterin the given font, but because it is not an OpenType property
it is unlikely to return something useful. Although math fonts have such a property in ConTgXt we deal
with it differently.

459 \fontcharta

Fetches the top anchor of a character in the given font, so:

162

results in: 1.8275pt. This is a specific property of math characters because in text mark anchoring is
driven by a feature.

460 \fontcharwd

Fetches the width of a character in the given font, so:

results in: 6.40137pt.

461 \fontdimen

A traditional TgX font has a couple of font specific dimensions, we only mention the seven that come
with text fonts:

Y Ul B~ W

. The slant (slope) is an indication that we have an italic shape. The value divided by 65.536 is

a fraction that can be compared with for instance the slanted operator in MetaPost. It is used
for positioning accents, so actually not limited to oblique fonts (just like italic correction can be a
property of any character). It is not relevant in the perspective of OpenType fonts where we have
glyph specific top and bottom anchors.

. Unless is it overloaded by \spaceskip this determines the space between words (or actually any-

thing separated by a space).

. This is the stretch component of \fontdimen 2(space).

. This is the shrink component of \fontdimen 2(space).

. The so called ex-height is normally the height of the ‘x’ and is also accessible as em unit.

. The so called em-width or in TEX speak quad width is about the with of an ‘M’ but in many fonts

just matches the font size. It is also accessible as em unit.

. This is a very TgX specific property also known as extra space. It gets added to the regular space

after punctuation when \spacefactor is 2000 or more. It can be overloaded by \xspaceskip.

This primitive expects a a number and a font identifier. Setting a font dimension is a global operation
as it directly pushes the value in the font resource.

462 \fontid

Returns the (internal) number associated with the given font:

{\bf \xdef\MyFontA{\the\fontid\font}}
{\sl \xdef\MyFontB{\setfontid\the\fontid\font}}

with:

test {\setfontid\MyFontA test} test {\MyFontB test} test

gives: test test test test test.

463 \fontidentifier

This one is just there for completeness: it reports the string used to identify a font when logging.
Compare:

163

\fontname\font DejaVuSerif at 10.0pt
\fontidentifier\font <1: DejaVuSerif @ 10.0pt>
\the\fontid\font 1

464 \fontmathcontrol

The \mathfontcontrol parameter controls how the engine deals with specific font related properties
and possibilities. It is set at the TgX end. It makes it possible to fine tune behavior in this mixed
traditional and not perfect OpenType math font arena. One can also set this bitset when initializing
(loading) the font (at the Lua end) and the value set there is available in \fontmathcontrol. The bits
set in the font win over those in \mathfontcontrol. There are a few cases where we set these options
in the (so called) goodie files. For instance we ignore font kerns in Libertinus, Antykwa and some
more.

modern 0x0
pagella 0x0
antykwa Ox37EF3FF
libertinus Ox37EF3FF

465 \fontname

Depending on how the font subsystem is implemented this gives some information about the used
font:

{\tf \fontname\font}
{\bf \fontname\font}
{\sl \fontname\font}

DejaVuSerif at 10.0pt
DejaVuSerif-Bold at 10.0pt
DejaVuSerif-Italic at 10.0pt
466 \fontspecdef

This primitive creates a reference to a specification that when triggered will change multiple parame-
ters in one go.

\fontspecdef\MyFontSpec

\fontid\font

scale 1200

xscale 1100

yscale 800

weight 200

slant 500
\relax

is equivalent to:

\fontspecdef\MyFontSpec
\fontid\font

164

all 1200 1100 800 200 500
\relax

while

\fontspecdef\MyFontSpec

\fontid\font

all \glyphscale \glyphxscale \glyphyscale \glyphslant \glyphweight
\relax

is the same as

\fontspecdef\MyFontSpec
\fontid\font
\relax

The engine adapts itself to these glyph parameters but when you access certain quantities you have to
make sure that you use the scaled ones. The same is true at the Lua end. This is somewhat fundamental
in the sense that when one uses these sort of dynamic features one also need to keep an eye on code
that uses font specific dimensions.

467 \fontspecid

Internally a font reference is a number and this primitive returns the number of the font bound to the
specification.

468 \fontspecifiedname

Depending on how the font subsystem is implemented this gives some information about the (original)
definition of the used font:

{\tf \fontspecifiedname\font}
{\bf \fontspecifiedname\font}
{\sl \fontspecifiedname\font}

Serifsa 1
SerifBold sa 1
SerifSlanted sa 1

469 \fontspecifiedsize

Depending on how the font subsystem is implemented this gives some information about the (original)
size of the used font:

{\tf \the\fontspecifiedsize\font : \the\glyphscale}
{\bfa \the\fontspecifiedsize\font : \the\glyphscale}
{\slx \the\fontspecifiedsize\font : \the\glyphscale}

Depending on how the font system is setup, this is not the real value that is used in the text because
we can use for instance \glyphscale. So the next lines depend on what font mode this document is
typeset.

165

10.0pt: 1000
10.0pt: 1200

10.0pt: 800
470 \fontspecscale

This returns the scale factor of a fontspec where as usual 1000 means scaling by 1.

471 \fontspecslant

This returns the slant factor of a font specification, usually between zero and 1000 with 1000 being
maximum slant.

472 \fontspecweight

This returns the weight of the font specification. Reasonable values are between zero and 500.

473 \fontspecxscale

This returns the scale factor of a font specification where as usual 1000 means scaling by 1.

474 \fontspecyscale

This returns the scale factor of a font specification where as usual 1000 means scaling by 1.

475 \fonttextcontrol
This returns the text control flags that are set on the given font, here 0x208. Bits that can be set are:

0x01 collapsehyphens
0x02 baseligaturing
0x04 basekerning

0x08 mnoneprotected
0x10 hasitalics

0x20 autoitalics

0x40 replaceapostrophe

476 \forcedleftcorrection

This is a callback driven left correction signal similar to italic corrections.

477 \forcedrightcorrection

This is a callback driven right correction signal similar to italic corrections.

478 \formatname

It is in the name: cont-en, but we cheat here by only showing the filename and not the full path, which
in a ConTgXt setup can span more than a line in this paragraph.

166

479 \frozen

You can define a macro as being frozen:
\frozen\def\MyMacro{...}

When you redefine this macro you get an error:
I You can't redefine a frozen macro.

This is a prefix like \global and it can be combined with other prefixes.®

480 \futurecsname
In order to make the repertoire of def, let and futurelet primitives complete we also have:

\futurecsname MyMacro:1\endcsname\MyAction

481 \futuredef

We elaborate on the example of using \futurelet in the previous section. Compare that one with the
next:

\def\MySpecialToken{[}
\def\DoWhatever{\ifx\NextToken\MySpecialToken YES\else NOP\fi : }
\futurelet\NextToken\DoWhatever [A]\crlf
\futurelet\NextToken\DoWhatever (A)\par

This time we get:

NOP: [A]
NOP: (A)

It is for that reason that we now also have \futuredef:

\def\MySpecialToken{[}
\def\DoWhatever{\ifx\NextToken\MySpecialToken YES\else NOP\fi : }
\futuredef\NextToken\DoWhatever [A]\crlf
\futuredef\NextToken\DoWhatever (A)\par

So we’re back to what we want:
YES: [A]

NOP: (A)

482 \futureexpand

This primitive can be used as an alternative to a \futurelet approach, which is where the name
comes from.!?

9 The \outer and \long prefixes are no-ops in LuaMetaTEX and LuaTgX can be configured to ignore them.
10 1n the engine primitives that have similar behavior are grouped in commands that are then dealt with together, code wise.

167

\def\variantone<#1>{(#1)}
\def\varianttwo#1{[#1]1}
\futureexpand<\variantone\varianttwo<one>
\futureexpand<\variantone\varianttwo{two}

So, the next token determines which of the two variants is taken:
(one) [two]

Because we look ahead there is some magic involved: spaces are ignored but when we have no match
they are pushed back into the input. The next variant demonstrates this:

\def\variantone<#1>{(#1)}

\def\varianttwo{}
\def\temp{\futureexpand<\variantone\varianttwo}
[\temp <one>]

[\temp {two}]

[\expandafter\temp\space <one>]
[\expandafter\temp\space {two}]

This gives us:

[(one)] [two] [(one)] [two]

483 \futureexpandis

We assume that the previous section is read. This variant will not push back spaces, which permits a
consistent approach i.e. the user can assume that macro always gobbles the spaces.

\def\variantone<#1>{(#1)}

\def\varianttwo{}
\def\temp{\futureexpandis<\variantone\varianttwo}
[\temp <one>]

[\temp {two}]

[\expandafter\temp\space <one>]
[\expandafter\temp\space {two}]

So, here no spaces are pushed back. This is in the name of this primitive means ‘ignore spaces’, but
having that added to the name would have made the primitive even more verbose (after all, we also
don’t have \expandeddef but \edef and no \globalexpandeddef but \xdef.

[(one)] [two] [(one)] [two]

484 \futureexpandisap

This primitive is like the one in the previous section but also ignores par tokens, so isap means ‘ignore
spaces and paragraphs’.

485 \futurelet

The original TgX primitive \ futurelet can be used to create an alias to a next token, push it back into
the input and then expand a given token.

168

\let\MySpecialTokenL][

\let\MySpecialTokenR] % nicer for checker
\def\DoWhatever{\ifx\NextToken\MySpecialTokenL YES\else NOP\fi : }
\futurelet\NextToken\DoWhatever [A]\crlf
\futurelet\NextToken\DoWhatever (A)\par

This is typically the kind of primitive that most users will never use because it expects a sane follow
up handler (here \DoWhatever) and therefore is related to user interfacing.

YES: [A]
NOP: (A)
486 \gdef

The is the global companion of \def.

487 \gdefcsname

As with standard TgX we also define global ones:

\expandafter\gdef\csname MyMacro:1\endcsname{...}
\gdefcsname MyMacro:1l\endcsname{...}

488 \givenmathstyle

This primitive expects a math style and returns it when valid or otherwise issues an error.

489 \gleaders
Leaders are glue with special property: a box, rule of (in LuaMetaTgX) glyph, like:

x\leaders \glyph "M \hfill x
xx\leaders \glyph "M \hfill xx

x\cleaders \glyph "M \hfill x
xx\cleaders \glyph "M \hfill xx

x\xleaders \glyph "M \hfill x
xx\xleaders \glyph "M \hfill xx

x\gleaders \glyph "M \hfill x
xx\gleaders \glyph "M \hfill xx

The various leaders differ in how they anchor and align the successive components:

x MMx
xx MM xx

xMMMx
xx MMM xx

xMMMx

169

xxMMMxx

xMMMx
xx MMM xx

Leaders fill the available space. The \leaders command starts at the left edge and stops when there
is no more space. The blobs get centered when we use \cleaders: excess space is distributed before
and after a blob while \x1leaders also puts space between the blobs.

When a rule is given the advance (width or height and depth) is ignored, so these are equivalent.

x\leaders \hrule \hfill x
x\leaders \hrule width 1cm \hfill x

When a box is used one will normally have some alignment in that box.

x\leaders \hbox {\hss.\hss} \hfill X
x\leaders \hbox {\hss.\hss} \hskip 6cm \relax x

The reference point is the left edge of the current (outer) box and the effective glue (when it has
stretch or shrink) depends on that box. The \gleaders variant takes the page as reference. That
makes it possible to ‘align’ across boxes.

490 \glet

This is the global companion of \let. The fact that it is not an original primitive is probably due to
the expectation for it not it not being used (as) often (as in ConTEXt).

491 \gletcsname

Naturally LuaMetaTgX also provides a global variant:

\expandafter\global\expandafter\let\csname MyMacro:1l\endcsname\relax
\expandafter \glet\csname MyMacro:1l\endcsname\relax
\gletcsname MyMacro:1l\endcsname\relax

So, here we save even more.

492 \glettonothing

This is the global companion of \lettonothing.

493 \global
This is one of the original prefixes that can be used when we define a macro of change some register.

\bgroup
\def\MyMacroA{a}
\global\def\MyMacroB{a}
\gdef\MyMacroC{a}

\egroup

170

The macro defined in the first line is forgotten when the groups is left. The second and third definition
are both global and these definitions are retained.

494 \globaldefs

When set to a positive value, this internal integer will force all definitions to be global, and in a complex
macro package that is not something a user will do unless it is very controlled.

495 \glueexpr

This is a more extensive variant of \dimexpr that also handles the optional stretch and shrink compo-
nents.

496 \glueshrink

This returns the shrink component of a glue quantity. The result is a dimension so you need to apply
\the when applicable.

497 \glueshrinkorder

This returns the shrink order of a glue quantity. The result is a integer so you need to apply \the when
applicable.

498 \gluespecdef

A variant of \integerdef and \dimensiondef is:

\gluespecdef\MyGlue = 3pt plus 2pt minus 1pt

The properties are comparable to the ones described in the previous sections.

499 \gluestretch

This returns the stretch component of a glue quantity. The result is a dimension so you need to apply
\the when applicable.

500 \gluestretchorder

This returns the stretch order of a glue quantity. The result is a integer so you need to apply \the
when applicable.

501 \gluetomu

The sequence \the\gluetomu 20pt plus 10pt minus 5pt gives 20.0mu plus 10.0mu minus 5.0mu.

502 \glyph

This is a more extensive variant of \char that permits setting some properties if the injected character
node.

171

\ruledhbox{\glyph
scale 2000 xscale 9000 yscale 1200
slant 700 weight 200
xoffset 10pt yoffset -5pt left 10pt right 20pt
123}
\quad
\ruledhbox{\glyph
scale 2000 xscale 9000 yscale 1200
slant 700 weight 200
125}

In addition one can specify font (symbol), id (valid font id number), an options (bit set) and raise.

When no parameters are set, the current ones are used. More details and examples of usage can be
found in the ConTgXt distribution.

503 \glyphdatafield

The value of this parameter is assigned to data field in glyph nodes that get injected. It has no meaning
in itself but can be used at the Lua end.

504 \glyphoptions

The value of this parameter is assigned to the options field in glyph nodes that get injected.

0x00000000 normal 0x00000800 mathsitalicstoo
0x00000001 noleftligature 0x00001000 mathartifact
0x00000002 norightligature 0x00002000 weightless
0x00000004 noleftkern 0x00004000 spacefactoroverload
0x00000008 mnorightkern 0x00008000 checktoddler
0x00000010 noexpansion 0x00010000 checktwin
0x00000020 noprotrusion 0x00020000 istoddler
0x00000040 noitaliccorrection 0x00040000 iscontinuation
0x00000080 nozeroitaliccorrection 0x00080000 keepspacing
0x00000100 applyxoffset 0x01000000 wuserfirst
0x00000200 applyyoffset 0x40000000 wuserlast
0x00000400 mathdiscretionary

505 \glyphscale

An integer parameter defining the current glyph scale, assigned to glyphs (characters) inserted into
the current list.

506 \glyphscriptfield

The value of this parameter is assigned to script field in glyph nodes that get injected. It has no
meaning in itself but can be used at the Lua end.

172

507 \glyphscriptscale

This multiplier is applied to text font and glyph dimension properties when script style is used.

508 \glyphscriptscriptscale

This multiplier is applied to text font and glyph dimension properties when script script style is used.

509 \glyphslant

An integer parameter defining the current glyph slant, assigned to glyphs (characters) inserted into
the current list.

510 \glyphstatefield

The value of this parameter is assigned to script state in glyph nodes that get injected. It has no
meaning in itself but can be used at the Lua end.

511 \glyphtextscale

This multiplier is applied to text font and glyph dimension properties when text style is used.

512 \glyphweight

An integer parameter defining the current glyph weight, assigned to glyphs (characters) inserted into
the current list.

513 \glyphxoffset

An integer parameter defining the current glyph x offset, assigned to glyphs (characters) inserted into
the current list. Normally this will only be set when one explicitly works with glyphs and defines a
specific sequence.

514 \glyphxscale

An integer parameter defining the current glyph x scale, assigned to glyphs (characters) inserted into
the current list.

515 \glyphxscaled

This primitive returns the given dimension scaled by the \glyphscale and \glyphxscale.

516 \glyphyoffset

An integer parameter defining the current glyph x offset, assigned to glyphs (characters) inserted into
the current list. Normally this will only be set when one explicitly works with glyphs and defines a
specific sequence.

173

517 \glyphyscale

An integer parameter defining the current glyph y scale, assigned to glyphs (characters) inserted into
the current list.

518 \glyphyscaled

This primitive returns the given dimension scaled by the \glyphscale and \glyphyscale.

519 \gtoksapp

This is the global variant of \toksapp.

520 \gtokspre

This is the global variant of \tokspre.

521 \halign

This command starts horizontally aligned material. Macro packages use this command in table mech-
anisms and math alignments. It starts with a preamble followed by entries (rows and columns). There
are some related primitives, for instance \alignmark duplicates the functionality of # inside alignment
preambles, while \aligntab duplicates the functionality of & The \aligncontent primitive directly
refers to an entry so that one does not get repeated.

Alignments can be traced with \tracingalignments. When set to 1 basics usage is shown, for instance
of \noalign but more interesting is 2 or more: you then get the preambles reported.

The \halign (tested) and \valign (yet untested) primitives accept a few keywords in addition to to
and spread:

keyword explanation

attr set the given attribute to the given value
callback trigger the alignment callback

discard discard zero \tabskip’s

noskips don’t even process zero \tabskip’s
reverse reverse the final rows

nolastskip remove the last \tabskip

In the preamble the \tabsize primitive can be used to set the width of a column. By doing so one can
avoid using a box in the preamble which, combined with the sparse tabskip features, is a bit easier on
memory when you produce tables that span hundreds of pages and have a dozen columns.

The \everytab complements the \everycr token register but is sort of experimental as it might be-
come more selective and powerful some day.

The two primitives \alignmentcellsource and \alignmentwrapsource that associate a source id (in-
teger) to the current cell and row (line). Sources and targets are experimental and are being explored
in ConTgXt so we’ll see where that ends up in.

Here is an example of nolastskip usage:

174

\halign {
\tabskiplcm
\aligncontent \aligntab
\aligncontent \aligntab \aligntab
\aligncontent \cr
x \aligntab x \aligntab x \aligntab x\cr
x \aligntab x \aligntab x \aligntab x\cr

}

\halign nolastskip {
\tabskiplcm
\aligncontent \aligntab
\aligncontent \aligntab \aligntab
\aligncontent \cr
x \aligntab x \aligntab x \aligntab x\cr
x \aligntab x \aligntab x \aligntab x\cr

}

This feature is mostly handy for repeated preamble entries:

3 X X (X X

522 \hangafter

This parameter tells the par builder when indentation specified with \hangindent starts. A negative
value does the opposite and starts indenting immediately. So, a value of —2 will make the first two
lines indent.

523 \hangindent

This parameter relates to \hangafter and sets the amount of indentation. When larger than zero
indentation happens left, otherwise it starts at the right edge.

524 \hbadness

This sets the threshold for reporting a horizontal badness value, its current value is 0.

525 \hbadnessmode

This parameter determines what gets reported when the (in the horizontal packer) badness exceeds
some limit. The current value of this bitset is "F.

0x01 wunderfull 0x02 loose 0x04 tight 0x08 overfull

526 \hbox

This constructs a horizontal box. There are a lot of optional parameters so more details can be found
in dedicated manuals. When the content is packed a callback can kick in that can be used to apply for
instance font features.

175

527 \hccode

The TgX engine is good at hyphenating but traditionally that has been limited to hyphens. Some
languages however use different characters. You can set up a different \hyphenchar as well as pre
and post characters, but there’s also a dedicated code for controlling this.

\hccode"2013 "2013

\hsize 50mm test\char"2013test\par
\hsize 1mm test\char"2013test\par

\hccode"2013 !

\hsize 50mm test\char"2013test\par
\hsize 1mm test\char"2013test\par

This example shows that we can mark a character as hyphen-like but also can remap it to something
else:

test-test
test-
test
test-test
test!
test

528 \hfil

This is a shortcut for \hskip plus 1 fil (first order filler).

529 \hfill

This is a shortcut for \hskip plus 1 fill (second order filler).

530 \hfilneg

This is a shortcut for \hskip plus - 1 fil so it can compensate \hfil.

531 \hfuzz

This dimension sets the threshold for reporting horizontal boxes that are under- or overfull. The
current value is 0.1pt.

532 \hjcode

The so called lowercase code determines if a character is part of a to-be-hyphenated word. In LuaTgX
we introduced the ‘hyphenation justification’ code as replacement. When a language is saved and no
\hjcode is set the \lccode is used instead. This code serves a second purpose. When the assigned
value is greater than 0 but less than 32 it indicated the to be used length when checking for left- and
righthyphenmin. For instance it make sense to set the code to 2 for characters like ce.

176

533 \hkern

This primitive is like \kern but will force the engine into horizontal mode if it isn’t yet.

534 \hmcode

The hm stands for ‘hyphenation math’. When bit 1 is set the characters will be repeated on the next
line after a break. The second bit concerns italic correction but is of little relevance now that we
moved to a different model in ConTgXt. Here are some examples, we also show an example of \math-
discretionary because that is what this code triggers:

test $ \dorecurse {50} {
a \discretionary class 2 {$\darkred +$}{$\darkgreen +$}{$\darkblue +$}

} b$
test $ a \mathdiscretionary class 1 {-}{-}{-} b$

\bgroup

\hmcode"002B=1 % +

\hmcode"002D=1 % -

\hmcode"2212=1 % -

test $ \dorecurse{50}{a + b - } c$
\egroup

testa+
+a+b

testa—>b

testa+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b—-a+b—-a+b-
-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b—-a+
+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b—-a+b-a+b—-a+b—-a+b—-a+b—-a+b-
—-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b—-a+b—-a+b-c

535 \holdinginserts

When set to a positive value inserts will be kept in the stream and not moved to the insert registers.

536 \holdingmigrations

When set to a positive value marks (and adjusts) will be kept in the stream and not moved to the outer
level or related registers.

537 \hpack

This primitive is like \hbox but without the callback overhead.

538 \hpenalty

This primitive is like \penalty but will force the engine into horizontal mode if it isn’t yet.

177

539 \hrule

This creates a horizontal rule. Unless the width is set it will stretch to fix the available width. In
addition to the traditional width, height and depth specifiers some more are accepted. These are
discussed in other manuals. To give an idea:

h\hrule width 10mm height 2mm depth 1mm \relax rule
h\hrule width 10mm height 2mm depth 1mm xoffset 30mm yoffset -10mm \relax rule
vivrule width 10mm height 2mm depth 1mm \relax rule
vivrule width 10mm height 2mm depth 1mm xoffset 30mm yoffset 10mm \relax rule

The \relax stops scanning and because we have more keywords we get a different error report than
in traditional TgX when a lookahead confuses the engine. On separate lines we get the following.

rule o
h

rule .
VEEErule

\% rule

540 \hsize

This sets (or gets) the current horizontal size.

\hsize 40pt \setbox0\vbox{x} hsize: \the\wd0
\setbox0\vbox{\hsize 40pt x} hsize: \the\wd0

In both cases we get the same size reported but the first one will also influence the current paragraph
when used ungrouped.

hsize:
40.0pt
hsize:
40.0pt

541 \hskip

The given glue is injected in the horizontal list. If possible horizontal mode is entered.

542 \hss

In traditional TgX glue specifiers are shared. This makes a lot of sense when memory has to be saved.
For instance spaces in a paragraph of text are often the same and a glue specification has at least an
amount, stretch, shrink, stretch order and shrink order field plus a leader pointer; in LuaMetaTEX we
have even more fields. In LuaTgX these shared (and therefore referenced) glue spec nodes became
just copies.

x\hbox to Opt{\hskip Opt plus 1 fil minus 1 fil\relax test}x
x\hbox to Opt{\hss test}x
x\hbox to Opt{test\hskip Opt plus 1 fil minus 1 fil\relax}x

178

x\hbox to Opt{test\hss}x

The \hss primitives injects a glue node with one order stretch and one order shrink. In traditional
TEX this is a reference to a shared specification, and in LuaTgX just a copy of a predefined specifier.
The only gain is now in tokens because one could just be explicit or use a glue register with that value
because we have plenty glue registers.

testx

testx
xkest
xkest

We could have this:

\permanent\protected\untraced\def\hss
{\hskipOpt plus 1 fil minus 1 fil\relax}

or this:
\gluespecdef\hssglue Opt plus 1 fil minus 1 fil

\permanent\protected\untraced\def\hss
{\hskip\hssglue}

but we just keep the originals around.

543 \ht

Returns the height of the given box.

544 \hyphenation

The list passed to this primitive contains hyphenation exceptions that get bound to the current lan-
guage. In LuaMetaTgX this can be managed at the Lua end. Exceptions are not stored in the format
file.

545 \hyphenationmin

This property (that also gets bond to the current language) sets the minimum length of a word that
gets hyphenated.

546 \hyphenationmode

TODO

547 \hyphenchar

This is one of the font related primitives: it returns the number of the hyphen set in the given font.

548 \hyphenpenalty

Discretionary nodes have a related default penalty. The \hyphenpenalty is injected after a regular dis-
cretionary, and \exhyphenpenalty after \ - or -. The later case is called an automatic discretionary. In

179

LuaMetaTgX we have two extra penalties: \explicithyphenpenalty and \automatichyphenpenalty
and these are used when the related bits are set in \hyphenationmode.

549 \if

This traditional TgX conditional checks if two character codes are the same. In order to understand
unexpanded results it is good to know that internally TEX groups primitives in a way that serves the
implementation. Each primitive has a command code and a character code, but only for real characters
the name character code makes sense. This condition only really tests for character codes when we
have a character, in all other cases, the result is true.

\def\A{A}\def\B{B} \chardef\C="C \chardef\D="D \def\AA{AA}

[\1f AA YES \else NOP \fi] [\if AB YES \else NOP \fi]
[\if \A\B YES \else NOP \fi] [\if \A\A YES \else NOP \fi]
[\if \C\D YES \else NOP \fi] [\if \C\C YES \else NOP \fi]
[\if \count\dimen YES \else NOP \fi] [\if \AA\A YES \else NOP \fi]

The last example demonstrates that the tokens get expanded, which is why we get the extra A:

[YES 1[NOP]1[NOP 1[YES 1[YES 1 [YES] [YES] [AYES]

550 \ifabsdim
This test will negate negative dimensions before comparison, as in:

\def\TestA#1{\ifdim #1<2pt too smalllorelse\ifdim #1>4pt too large\else okay\fi}
\def\TestB#1{\ifabsdim#1<2pt too smalllorelse\ifabsdim#1>4pt too large\else okay\fi}

\TestA {1pt}\quad\TestA {3pt}\quad\TestA {5pt}\crif
\TestB {1pt}\quad\TestB {3pt}\quad\TestB {5pt}\crif
\TestB{-1pt}\quad\TestB{-3pt}\quad\TestB{-5pt}\par

So we get this:

too small okay too large
too small okay too large
too small okay too large

551 \ifabsfloat

This test will negate negative floats before comparison, as in:

\def\TestA#1{\iffloat #1<2.46 smalllorelse\iffloat #1>4.68 large\else medium\fi}
\def\TestB#1{\ifabsfloat#1<2.46 small\orelse\ifabsfloat#1>4.68 large\else medium\fi}

\TestA {1.23}\quad\TestA {3.45}\quad\TestA {5.67}\crlf
\TestB {1.23}\quad\TestB {3.45}\quad\TestB {5.67}\crlf
\TestB{-1.23}\quad\TestB{-3.45}\quad\TestB{-5.67}\par

So we get this:

180

small medium large
small medium large
small medium large
552 \ifabsnum

This test will negate negative numbers before comparison, as in:

\def\TestA#1{\ifnum #1<100 too smalllorelse\ifnum #1>200 too large\else okay\fi}
\def\TestB#1{\ifabsnum#1<100 too smalll\orelse\ifabsnum#1>200 too large\else okay\fi}

\TestA {10}\quad\TestA {150}\quad\TestA {210}\crlf
\TestB {10}\quad\TestB {150}\quad\TestB {210}\crlf
\TestB{-10}\quad\TestB{-150}\quad\TestB{-210}\par

Here we get the same result each time:

too small okay too large
too small okay too large
too small okay too large

553 \ifarguments

This is a variant of \ifcase were the selector is the number of arguments picked up. For example:

\def\MyMacro#l#2#3{\ifarguments\0\orl\or2\or3\else ?\fi} \MyMacro{A}{B}{C}
\def\MyMacro#1#0#3{\ifarguments\0\orl\or2\or3\else ?\fi} \MyMacro{A}{B}{C}
\def\MyMacro#l#-#2{\ifarguments\0\orl\or2\or3\else ?\fi} \MyMacro{A}{B}{C}\par

Watch the non counted, ignored, argument in the last case. Normally this test will be used in combi-
nation with \ignorearguments.

332

554 \ifboolean

This tests a number (register or equivalent) and any nonzero value represents true, which is nicer
than using an \unless\ifcase.

555 \ifcase

This numeric TgX conditional takes a counter (literal, register, shortcut to a character, internal quan-
tity) and goes to the branch that matches.

\ifcase 3 zero\or one\or two\or three\or four\else five or more\fi

Indeed: three equals three. In later sections we will see some LuaMetaTgX primitives that behave like
an \ifcase.

556 \ifcat

Another traditional TgX primitive: what happens with what gets read in depends on the catcode of a
character, think of characters marked to start math mode, or alphabetic characters (letters) versus
other characters (like punctuation).

181

\def\A{A}\def\B{,} \chardef\C="C \chardef\D=", \def\AA{AA}

[\ifcat $! YES \else NOP \fi] [\ifcat () YES \else NOP \fi]
[\ifcat AA YES \else NOP \fi] [\ifcat AB YES \else NOP \fi]
[\ifcat \A\B YES \else NOP \fi] [\ifcat \A\A YES \else NOP \fi]
[\ifcat \C\D YES \else NOP \fi] [\ifcat \C\C YES \else NOP \fi]
[\ifcat \count\dimen YES \else NOP \fi] [\ifcat \AA\A YES \else NOP \fi]

Close reading is needed here:
[NOP]J[YES][YES][YES][NOP][YES]I[YES][YES][YES][AYES]

This traditional TEX condition as a well as the one in the previous section are hardly used in ConTEXt,
if only because they expand what follows and we seldom need to compare characters.

557 \ifchkdim

A variant on the checker in the previous section is a dimension checker:

\ifchkdim oeps \or okay\else error\fi\quad
\ifchkdim 12 \or okay\else error\fi\quad
\ifchkdim 12pt \or okay\else error\fi\quad

\ifchkdim 12pt or more\or okay\else error\fi
We get:

error error okay okay

558 \ifchkdimension

COntrary to \ifchkdim this test doesn’t accept trailing crap:

\ifchkdimension oeps \or okay\else error\fi\quad
\ifchkdimension 12 \or okay\else error\fi\quad
\ifchkdimension 12pt \or okay\else error\fi\quad

\ifchkdimension 12pt or more\or okay\else error\fi
reports:

error error okay error

559 \ifchkdimexpr

This primitive is like \ifchkdim but handles an expression.

560 \ifchknum

In ConTgXt there are quite some cases where a variable can have a number or a keyword indicating
a symbolic name of a number or maybe even some special treatment. Checking if a valid number is
given is possible to some extend, but a native checker makes much sense too. So here is one:

\ifchknum oeps \or okay\else error\fi\quad

182

\ifchknum 12 \or okay\else error\fi\quad
\ifchknum 12pt \or okay\else error\fi\quad
\ifchknum 12pt or more\or okay\else error\fi

The result is as expected:

error okay okay okay

561 \ifchknumber

This check is more restrictive than \ifchknum discussed in the previous section:

\ifchknumber oeps \or okay\else error\fi\quad
\ifchknumber 12 \or okay\else error\fi\quad
\ifchknumber 12pt \or okay\else error\fi\quad

\ifchknumber 12pt or more\or okay\else error\fi
Here we get:

error okay error error

562 \ifchknumexpr

This primitive is like \ifchknum but handles an expression.

563 \ifcmpdim

This is a less strict veriant of \ifchkdimension that doesn’t bark on trailing tokens.

564 \ifcmpnum

This is a less strict veriant of \ifchknumber that doesn’t bark on trailing tokens.

565 \ifcondition

The conditionals in TEX are hard coded as primitives and although it might look like \newif creates
one, it actually just defined three macros.

\newif\ifMyTest

\meaning\MyTesttrue \crlf
\meaning\MyTestfalse \crlf
\meaning\ifMyTest \crlf \MyTesttrue
\meaning\ifMyTest \par

protected macro:\always \let \ifMyTest \iftrue
protected macro:\always \let \ifMyTest \iffalse
\iffalse
\iftrue

This means that when you say:

183

\ifMytest ... \else ... \fi
You actually have one of:

\iftrue ... \else ... \fi
\iffalse ... \else ... \fi

and because these are proper conditions nesting them like:
\ifnum\scratchcounter > 0 \ifMyTest A\else B\fi \fi
will work out well too. This is not true for macros, so for instance:

\scratchcounter =1
\unexpanded\def\ifMyTest{\iftrue}
\ifnum\scratchcounter > 0 \ifMyTest A\else B\fi \fi

will make a run fail with an error (or simply loop forever, depending on your code). This is where
\ifcondition enters the picture:

\def\MyTest{\iftrue} \scratchcounter0
\ifnum\scratchcounter > 0
\ifcondition\MyTest A\else B\fi
\else
X
\fi

This primitive is seen as a proper condition when TgX is in “fast skipping unused branches” mode but
when it is expanding a branch, it checks if the next expanded token is a proper tests and if so, it deals
with that test, otherwise it fails. The main condition here is that the \MyTest macro expands to a
proper true or false test, so, a definition like:

\def\MyTest{\ifnum\scratchcounter<10 }

is also okay. Now, is that neat or not?

566 \ifcramped

Depending on the given math style this returns true of false:

\ifcramped\mathstyle no \fi
\ifcramped\crampedtextstyle yes \fi
\ifcramped\textstyle no \fi
\ifcramped\displaystyle yes \fi
gives: yes.

567 \ifcsname
This is an e-TgX conditional that complements the one on the previous section:

\expandafter\ifx\csname MyMacro\endcsname\relax ... \else ... \fi
\ifcsname MyMacro\endcsname ... \else ... \fi

184

Here the first one has the side effect of defining the macro and defaulting it to \relax, while the
second one doesn’t do that. Just think of checking a few million different names: the first one will
deplete the hash table and probably string space too.

In LuaMetaTgX the construction stops when there is no letter or other character seen (TgX expands on
the go so expandable macros are dealt with). Instead of an error message, the match is simply false
and all tokens till the \endcsname are gobbled.

568 \ifcstok

A variant on the primitive mentioned in the previous section is one that operates on lists and macros:
\def\a{a} \def\b{b} \def\c{a}

This:

\ifcstok\a\b Y\else N\fi\space
\ifcstok\a\c Y\else N\fi\space
\ifcstok{\a}\c Y\else N\fi\space
\ifcstok{a}\c Y\else N\fi

will giveus: NYYY.

569 \ifdefined

In traditional TgX checking for a macro to exist was a bit tricky and therefore e-TgX introduced a
convenient conditional. We can do this:

\ifx\MyMacro\undefined ... \else ... \fi

but that assumes that \undefined is indeed undefined. Another test often seen was this:
\expandafter\ifx\csname MyMacro\endcsname\relax ... \else ... \fi

Instead of comparing with \undefined we need to check with \relax because the control sequence
is defined when not yet present and defaults to \relax. This is not pretty.

570 \ifdim

Dimensions can be compared with this traditional TEX primitive.

\scratchdimen=1pt \scratchcounter=65536

\ifdim\scratchdimen=\scratchcounter sp YES \else NOP\fi
\ifdim\scratchdimen=1 pt YES \else NOP\fi

The units are mandate:

YES YES

571 \ifdimexpression

The companion of the previous primitive is:

185

This matches when the result is non zero, and you can mix calculations and tests as with normal
expressions. Contrary to the number variant units can be used and precision kicks in.
572 \ifdimval

This conditional is a variant on \ifchkdim and provides some more detailed information about the
value:

[-12pt : \ifdimval-12pt\or negative\or zero\or positive\else error\fi]\quad

[Opt : \ifdimval Opt\or negative\or zero\or positive\else error\fi]\quad
[12pt : \ifdimval 12pt\or negative\or zero\or positive\else error\fil\quad
[oeps : \ifdimval oeps\or negative\or zero\or positive\else error\fi]

This gives:

[-12pt : negative] [Opt: zero] [12pt: positive] [oeps : error]

573 \ifempty

This conditional checks if a control sequence is empty:
is \ifempty\MyMacro \else not \fi empty

It is basically a shortcut of:

is \ifx\MyMacro\empty \else not \fi empty
with:

\def\empty{}

Of course this is not empty at all:

\def\notempty#1{}

574 \iffalse

Here we have a traditional TgX conditional that is always false (therefore the same is true for any
macro that is \let to this primitive).

575 \ifflags

This test primitive relates to the various flags that one can set on a control sequence in the perspective
of overload protection and classification.

\protected\untraced\tolerant\def\foo[#1]{...#1...}

\permanent\constant \def\oof{okay}
flag \foo \oof flag \foo \oof
frozen N N permanent N Y

immutable N N mutable N N

186

noaligned N N instance N N
untraced Y N global N N
tolerant Y N constant N Y
protected Y N semiprotected N N

Instead of checking against a prefix you can test against a bitset made from:

0x1 frozen 0x2 permanent 0x4 immutable 0x8 primitive
0x10 mutable 0x20 noaligned 0x40 instance 0x80 untraced
0x100 global 0x200 tolerant 0x400 protected 0x800 overloaded
0x1000 aliased 0x2000 immediate 0x4000 conditional 0x8000 value

0x10000 semiprotected 0x20000 inherited 0x40000 constant 0x80000 deferred

576 \iffloat

This test does for floats what \ifnum, \ifdim do for numbers and dimensions: comparing two of them.

577 \iffontchar

This is an e-TgX conditional. It takes a font identifier and a character number. In modern fonts simply
checking could not be enough because complex font features can swap in other ones and their index
can be anything. Also, a font mechanism can provide fallback fonts and characters, so don’t rely on
this one too much. It just reports true when the font passed to the frontend has a slot filled.

578 \ifhaschar

This one is a simplified variant of the above:

\ifhaschar !{this ! works} yes \else no \fi

and indeed we get: yes! Of course the spaces in this this example code are normally not present in
such a test.

579 \ifhastok

This conditional looks for occurrences in token lists where each argument has to be a proper list.

\def\scratchtoks{x}

\ifhastoks{yz} {xyz} Y\else N\fi\quad
\ifhastoks\scratchtoks {xyz} Y\else N\fi

We get:

Y Y

580 \ifhastoks
This test compares two token lists. When a macro is passed it’s meaning gets used.

\def\x {x}

\def\xyz{xyz

(\ifhastoks
(\ifhastoks
(\ifhastoks
(\ifhastoks
(\ifhastoks
(\ifhastoks

) (N) (V)

}

{x}
{\x}
\ X
{y}
{yz}
{yz}

{xyz}Y\else
{xyz}Y\else
{xyz}Y\else
{xyz}Y\else
{xyz}Y\else

{\xyz}Y\else

Y)) (N)

581 \ifhasxtoks

This primitive is like the one in the previous section but this time the given lists are expanded.

\def\x {x}

\def\xyz{\x yz}

\ifhasxtoks
\ifhasxtoks
\ifhastoks

\ifhasxtoks
\ifhasxtoks
\ifhasxtoks

P

{x}
{\x}
\ X
{y}
{yz}
{yz}

{xyz}Y\else
{xyz}Y\else
{xyz}Y\else
{xyz}Y\else
{xyz}Y\else
{\xyz}Y\else

) ¥ ¥ @))

N\fi)\quad
N\fi)\quad
N\fi)\quad
N\fi)\quad
N\fi)\quad
N\fi)

N\fi)\quad
N\fi)\quad
N\fi)\quad
N\fi)\quad
N\fi)\quad
N\fi)

This primitive has some special properties.

\edef\+{\expandtoken 9

\ifhasxtoks

{xy}

4}

{xyz}Y\else

N\fi\quad

\ifhasxtoks {x\+y} {xyz}Y\else N\fi

Here the first argument has a token that has category code ‘ignore’ which means that such a character

will be skipped when seen. So the result is:

Y Y

This permits checks like these:

\edef\, {\expandtoken 9

o}

\ifhasxtoks{\,x\,} {,x,y,z,}Y\else
\ifhasxtoks{\,y\,} {,x,y,z,}Y\else
\ifhasxtoks{\,z\,} {,x,y,z,}Y\else
\ifhasxtoks{\,x\,} {,xy,z,}Y\else

N\fi\quad
N\fi\quad
N\fi\quad
N\fi

I admit that it needs a bit of a twisted mind to come up with this, but it works ok:

Y YY N

188

582 \ifhbox

This traditional conditional checks if a given box register or internal box variable represents a hori-
zontal box,

583 \ifhmode

This traditional conditional checks we are in (restricted) horizontal mode.

584 \ifinalignment

As the name indicates, this primitive tests for being in an alignment. Roughly spoken, the engine is
either in a state of align, handling text or dealing with math.

585 \ifincsname

This conditional is sort of obsolete and can be used to check if we’re inside a \csname or \ifcsname
construction. It’s not used in ConTgXt.

586 \ifinner

This traditional one can be confusing. It is true when we are in restricted horizontal mode (a box),
internal vertical mode (a box), or inline math mode.

test \ifhmode \ifinner INNER\fi HMODE\fi\crlf
\hbox{test \ifhmode \ifinner INNER \fi HMODE\fi} \par

\ifvmode \ifinner INNER\fi VMODE \fi\crlf
\vbox{\ifvmode \ifinner INNER \fi VMODE\fi} \crlf
\vbox{\ifinner INNER \ifvmode VMODE \fi \fi} \par

Watch the last line: because we typeset INNER we enter horizontal mode:

test HMODE
test INNER HMODE

VMODE
INNER VMODE
INNER

587 \ifinsert

This is the equivalent of \ifvoid for a given insert class.

588 \ifintervaldim

This conditional is true when the intervals around the values of two dimensions overlap. The first
dimension determines the interval.

[\ifintervaldimlpt 20pt 21pt \else no \fi overlap]

189

[\ifintervaldimlpt 18pt 20pt \else no \fi overlap]

So here: [overlap] [no overlap]

589 \ifintervalfloat

This one does with floats what we described under \ifintervaldim.

590 \ifintervalnum

This one does with integers what we described under \ifintervaldim.

591 \iflastnamedcs

When a \csname is constructed and succeeds the last one is remembered and can be accessed with
\lastnamedcs. It can however be an undefined one. That state can be checked with this primitive. Of
course it also works with the \ifcsname and \begincsname variants.

592 \iflist

The \ifvoid conditional checks is a box is unset, that is, no hlist or vlist node is assigned. The
\iflist conditional also checks is a list is assigned to this node. If there is a node assigned the box
can of course have dimensions, but it’s the presence of a list (content) that matters here.

[\setboxO\hbox{!}\iflist0O \else no \fi list, \ifvoid0® \else not \fi void]
[\setboxO\hbox {}\iflist0O \else no \fi list, \ifvoid® \else not \fi void]
[\box0 \iflist0 \else no \fi list, \ifvoidO® \else not \fi void]

We get: [list, not void] [no list, not void] [no list, void]

593 \ifmathparameter

This is an \ifcase where the value depends on if the given math parameter is zero, (0), set (1), or
unset (2).

\ifmathparameter\Umathpunctclosespacing\displaystyle
zero \or
nonzero \or
unset \fi

594 \ifmathstyle

This is a variant of \ifcase were the number is one of the seven possible styles: display, text, cramped
text, script, cramped script, script script, cramped script script.

\ifmathstyle
display
\or
text
\or

190

cramped text
\else

normally smaller than text
\fi
595 \ifmmode

This traditional conditional checks we are in (inline or display) math mode mode.

596 \ifnum

This is a frequently used conditional: it compares two numbers where a number is anything that can
be seen as such.

\scratchcounter=65 \chardef\A=65

\ifnum65="A YES \else NOP\fi
\ifnum\scratchcounter=65 YES \else NOP\fi
\ifnum\scratchcounter=\A YES \else NOP\fi

Unless a number is an unexpandable token it ends with a space or \relax, so when you end up in the
true branch, you’d better check if TEX could determine where the number ends.

YES YES YES

On top of these ascii combinations, the engine also accepts some Unicode characters. This brings the
full repertoire to:

character operation
0x003C < less

0x003D = equal

Ox003E > more

0x2208 (S element of
0x2209 ¢ not element of
0x2260 # != not equal
0x2264 < I> less equal
0x2265 = I< greater equal
0x2270 % not less equal
0x2271 £ not greater equal

This also applied to \ifdim although in the case of element we discard the fractional part (read: divide
the numeric representation by 65536).

597 \ifnumexpression

Here is an example of a conditional using expressions:

This matches when the result is non zero, and you can mix calculations and tests as with normal
expressions.

191

598 \ifnumval

This conditional is a variant on \ifchknum. This time we get some more detail about the value:

[-12 : \ifnumval -12\or negative\or zero\or positive\else error\fi]\quad
[0 : \ifnumval 0\or negative\or zero\or positive\else error\fi]\quad
[12 : \ifnumval 12\or negative\or zero\or positive\else error\fi]\quad

[oeps : \ifnumval oeps\or negative\or zero\or positive\else error\fi]
This gives:

[-12 : negative] [0 : zero] [12: positive] [oeps : error]

599 \ifodd

One reason for this condition to be around is that in a double sided layout we need test for being on
an odd or even page. It scans for a number the same was as other primitives,

\ifodd65 YES \else NO\fi &
\ifodd B YES \else NO\fi .

So: YES & NO.

600 \ifparameter

In a macro body #1 is a reference to a parameter. You can check if one is set using a dedicated
parameter condition:

\tolerant\def\foo [#1]#*[#2]%
{\ifparameter#1\or one\else no one\fi\enspace
\ifparameter#2\or two\else no two\fi\emspace}

\foo
\foo[1]
\foo[1][2]

We get:

no one no two one notwo one two

601 \ifparameters

This is equivalent to an \ifcase with as value the number of parameters passed to the current macro.

602 \ifrelax

This is a convenient shortcut for \ifx\relax and the motivation for adding this one is (as with some
others) to get less tracing.

603 \iftok

When you want to compare two arguments, the usual way to do this is the following:

192

\edef\tempA{#1}
\edef\tempb{#2}
\ifx\tempA\tempB
the same
\else
different
\fi

This works quite well but the fact that we need to define two macros can be considered a bit of a
nuisance. It also makes macros that use this method to be not so called ‘fully expandable’. The next
one avoids both issues:

\iftok{#1}{#2}
the same
\else
different
\fi

Instead of direct list you can also pass registers, so given:

\scratchtoks{a}%

\toks0{a}%

This:

\iftok 0 \scratchtoks Y\else N\fi\space
\iftok{a}\scratchtoks Y\else N\fi\space

\iftok\scratchtoks\scratchtoks Y\else N\fi

gives: YY Y.

604 \iftrue

Here we have a traditional TgX conditional that is always true (therefore the same is true for any macro
that is \let to this primitive).

605 \ifvbox

This traditional conditional checks if a given box register or internal box variable represents a vertical
box,

606 \ifvmode

This traditional conditional checks we are in (internal) vertical mode.

607 \ifvoid

This traditional conditional checks if a given box register or internal box variable has any content.

608 \ifx

We use this traditional TeX conditional a lot in ConTgXt. Contrary to \if the two tokens that are
compared are not expanded. This makes it possible to compare the meaning of two macros. Depending

193

on the need, these macros can have their content expanded or not. A different number of parameters
results in false.

Control sequences are identical when they have the same command code and character code. Because
a \let macro is just a reference, both let macros are the same and equal to \ relax:

\let\one\relax \let\two\relax

The same is true for other definitions that result in the same (primitive) or meaning encoded in the
character field (think of \chardefs and so).

609 \ifzerodim

This tests for a dimen (dimension) being zero so we have:

\ifdim<dimension>=0pt
\ifzerodim<dimension>
\ifcase<dimension register>

610 \ifzerofloat

As the name indicated, this tests for a zero float value.

[\scratchfloat\zerofloat \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat\plusone \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat 0.01 \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat 0.0e0 \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat \zeropoint\ifzerofloat\scratchfloat \else not \fi zero]

So: [zero] [not zero] [not zero] [zero] [zero]

611 \ifzeronum
This tests for a number (integer) being zero so we have these variants now:

\ifnum<integer or equivalent>=0
\ifzeronum<integer or equivalent>
\ifcase<integer or equivalent>

612 \ignorearguments

This primitive will quit argument scanning and start expansion of the body of a macro. The number
of grabbed arguments can be tested as follows:

\def\MyMacro[#1] [#2] [#3]%
{\ifarguments zero\or one\or two\or three \else hm\fi}

\MyMacro \ignorearguments \quad
\MyMacro [1]1\ignorearguments \quad
\MyMacro [1]1[2]\ignorearguments \quad

\MyMacro [1][2][3]\ignorearguments \par

194

zero one two three

Todo: explain optional delimiters.

613 \ignoredepthcriterion

When setting the \prevdepth (either by TgX or by the current user) of the current vertical list the
value 1000pt is a signal for special treatment of the skip between ‘lines’. There is an article on that in
the distribution. It also demonstrates that \ignoredepthcriterion can be used to change this special
signal, just in case it is needed.

614 \ignorenestedupto
This primitive gobbles following tokens and can deal with nested ‘environments’, for example:
\def\StartFoo{\ignorenestedupto\StartFoo\StopFoo}

(before
\StartFoo
test \StartFoo test \StopFoo
{test \StartFoo test \StopFoo}
\StopFoo
after)

delivers:

(before after)

615 \ignorepars

This is a variant of \ignorespaces: following spaces and \par equivalent tokens are ignored, so for
instance:

one + \ignorepars

two = \ignorepars \par
three

renders as: one + two = three. Traditionally TEX has been sensitive to \par tokens in some of its
building blocks. This has to do with the fact that it could indicate a runaway argument which in the
times of slower machines and terminals was best to catch early. In LuaMetaTgX we no longer have
long macros and the mechanisms that are sensitive can be told to accept \par tokens (and ConTEXt
set them such that this is the case).

616 \ignorerest

An example shows what this primitive does:

\tolerant\def\foo [#1]#*[#2]%
{1234
\ifparameter#l\or\else

195

\expandafter\ignorerest
\fi
/#1/
\ifparameter#2\or\else
\expandafter\ignorerest
\fi
/#2/ }

\foo test \foo[456] test \foo[456][789] test

As this likely makes most sense in conditionals you need to make sure the current state is properly fin-
ished. Because \expandafter bumps the input state, here we actually quit two levels; this is because
so called ‘backed up text’ is intercepted by this primitive.

1234 test 1234 /456/ test 1234 /456/ /789/ test

617 \ignorespaces

This traditional TgX primitive signals the scanner to ignore the following spaces, if any. We mention it
because we show a companion in the next section.

618 \ignoretokens

This primitive is an input command that reads a balanced list and discards what it sees upto a matching
right brace.

619 \ignoreupto

This ignores everything upto the given token, so

\ignoreupto \foo not this but\foo only this

will give: only this.

620 \immediate

This one has no effect unless you intercept it at the Lua end and act upon it. In original TEX immediate
is used in combination with read from and write to file operations. So, this is an old primitive with a
new meaning.

621 \immutable

This prefix flags what follows as being frozen and is usually applied to for instance \integerdef’d con-
trol sequences. In that respect is is like \permanent but it makes it possible to distinguish quantities
from macros.

622 \indent

In engines other than LuaMetaTEX a paragraph starts with an indentation box. The width of that
(empty) box is determined by \parindent. In LuaMetaTEX we can use a dedicated indentation skip
instead (as part of paragraph normalization). An indentation can be zero’d with \undent.

196

623 \indexedsubprescript

This primitive (or) puts a flag on the script but renders the same:
$

x \indexedsuperprescript{2} \subprescript {2} +

X \superprescript {2} \indexedsubprescript{2} +

X \superprescript {2}y {2} =

X \superprescript {2} \subprescript {2}
$

2

Gives: 2x + 2x + 3x = 3x.

624 \indexedsubscript

This primitive (or) puts a flag on the script but renders the same:

$
x \indexedsuperscript{2} \subscript {2} +
X \superscript {2} \indexedsubscript{2} +
X \superscript {2} {2} =
X \superscript {2} \subscript {2}

$

Gives: X3 + X3 + X3 = x3.

625 \indexedsuperprescript

This primitive (or ~~"") puts a flag on the script but renders the same:

$
x \indexedsuperprescript{2} \subprescript {2} +
X AN {2} \subprescript {2} +
X \superprescript {2} \indexedsubprescript{2} =
X \superprescript {2} \subprescript {2}

$

Gives: 3x + 35X + 35x = 3x.

626 \indexedsuperscript

This primitive (or ") puts a flag on the script but renders the same:

$
x \indexedsuperscript{2} \subscript {2} +
X " {2} \subscript {2} +
X \superscript {2} \indexedsubscript{2} =
X \superscript {2} \subscript {2}

$

Gives: X3 + X3 + X3 = x3.

197

627 \indexofcharacter
This primitive is more versatile variant of the backward quote operator, so instead of:

\number " |
\number " ~
\number " \a
\number \q

you can say:

\the\indexofcharacter |
\the\indexofcharacter -~
\the\indexofcharacter \a
\the\indexofcharacter \q

In both cases active characters and unknown single character control sequences are valid. In addition
this also works:

\chardef \foo 128
\mathchardef\oof 130

\the\indexofcharacter \foo
\the\indexofcharacter \oof

An important difference is that \indexofcharacter returns an integer and not a serialized number. A
negative value indicates no valid character.

628 \indexofregister

You can use this instead of \number for determining the index of a register but it also returns a number
when a register value is seen. The result is an integer, not a serialized number.

When you have defined a register with one of the \...def primitives but for some reasons needs to
know the register index you can query that:

\the\indexofregister \scratchcounterone,
\the\indexofregister \scratchcountertwo,
\the\indexofregister \scratchwidth,
\the\indexofregister \scratchheight,
\the\indexofregister \scratchdepth,
\the\indexofregister \scratchbox

We lie alittle here because in ConTgXt the box index \scratchbox is actually defined as: \global\per-
manent\constant integer 257 but it still is a number so it fits in.

0,0,0,0,0, 257

629 \inherited

When this prefix is used in a definition using \ let the target will inherit all the properties of the source.

198

630 \initcatcodetable

This initializes the catcode table with the given index.

631 \initialpageskip

When a page starts the value of this register are used to initialize \pagetotal, \pagestretch and
\pageshrink. This make nicer code than using a \topskip with weird values.

632 \initialtopskip

When set this one will be used instead of \topskip. The rationale is that the \topskip is often also
used for side effects and compensation.

633 \input

There are several ways to use this primitive:

\input test
\input {test}
\input "test"
\input 'test'

When no suffix is given, TgX will assume the suffix is . tex. The second one is normally used.

634 \inputlineno

This integer holds the current linenumber but it is not always reliable.

635 \insert

This stores content in the insert container with the given index. In LuaMetaTgX inserts bubble up to
outer boxes so we don’t have the ‘deeply buried insert issue’.

636 \insertboundary

This boundary takes two integer values. When it is encountered in the page builder a callback in-
sert boundary will be triggered that gets the two integers as arguments.

637 \insertbox

This is the accessor for the box (with results) of an insert with the given index. This is equivalent to
the \box in the traditional method.

638 \insertcategory

There is currently only one category (0x01) for page bound inserts like footnotes. The category is
used to help determining the top of an insert stack as well as the first in a substack. For instance, a
top insert can come before a footnote but in that case the first footnote is still the first in the list of

199

inserts with the same category (when set). This relates to the insert distance callback where the
first variant call gets an index (integer), variant (here 1), a first and top state (boolean) and returns a
distance (glue). These are rather specialized features.

639 \insertcopy

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so the
original is kept. This is equivalent to a \copy in the traditional method.

640 \insertdepth

This is the (current) depth of the inserted material with the given index. It is comparable to the \dp
in the traditional method.

641 \insertdirection

This sets the direction of the inserted material with the given index.

642 \insertdistance

This is the space before the inserted material with the given index. This is equivalent to \glue in the
traditional method.

643 \insertheight

This is the (current) depth of the inserted material with the given index. It is comparable to the \ht
in the traditional method.

644 \insertheights

This is the combined height of the inserted material.

645 \insertlimit

This is the maximum height that the inserted material with the given index can get. This is equivalent
to \dimen in the traditional method.

646 \insertlinedepth

This property is used in the balancer where the currently checked insert has no depth. It is experi-
mental.

647 \insertlineheight

This is a reserved property.

648 \insertmaxdepth

This is the maximum depth that the inserted material with the given index can get.

200

649 \insertmaxplaced

This represents the maximum number of inserts that gets placed (flushed) for the given index.

650 \insertmode

In traditional TgX inserts are controlled by a \box, \dimen, \glue and \count register with the same
index. The allocators have to take this into account. When this primitive is set to one a different model
is followed with its own namespace. There are more abstract accessors to interface to this.!!

651 \insertmultiplier

This is the height (contribution) multiplier for the inserted material with the given index. This is
equivalent to \count in the traditional method.

652 \insertonlycount

When a page was wrapped up and there are only inserts left, this variable hold the number of inserts.
In ConTgXt we use this property to issue an insert boundary that then triggers (via a callback) resetting
some constraints with respect to note placement. It’s one of the more specialized features.

653 \insertoptions

When bit 0x01 is set, the engine will check for insert overflows as described in one of the ‘beyond’
wrap-ups in the ConTgXt distribution. Such overflows can happen in documents (like critical editions)
that have many (large) notes that end up on their own pages.

654 \insertpenalties

This dual purpose internal counter holds the sum of penalties for insertions that got split. When we’re
the output routine in reports the number of insertions that is kept in store.

655 \insertpenalty

This is the insert penalty associated with the inserted material with the given index.

656 \insertplaced

This quantity hold the number of inserts in a specific class that has been placed, assuming that we
use that insert mode.

657 \insertprogress

This returns the current accumulated insert height of the insert with the given index.

1 The old model might be removed at some point.

201

658 \insertshrink

When set this will be taken into account. It basically turns ann insert into a kind of glue but without
it being a valid break point.

659 \insertstorage

The value passed will enable (one) or disable (zero) the insert with the given index.

660 \insertstoring

The value passed will enable (one) or disable (zero) inserts.

661 \insertstretch

When set this will be taken into account. It basically turns ann insert into a kind of glue but without
it being a valid break point.

662 \insertunbox

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so
the original is kept. The content is unpacked and injected. This is equivalent to an \unvbox in the
traditional method.

663 \insertuncopy

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so
the original is kept. The content is unpacked and injected. This is equivalent to the \unvcopy in the
traditional method.

664 \insertwidth

This is the (current) width of the inserted material with the given index. It is comparable to the \wd
in the traditional method.

665 \instance

This prefix flags a macro as an instance which is mostly relevant when a macro package want to
categorize macros.

666 \integerdef

You can alias to a count (integer) register with \countdef:

\countdef\MyCountl134

Afterwards the next two are equivalent:

\MyCount = 99

202

\countl234 = 99

where \MyCount can be a bit more efficient because no index needs to be scanned. However, in terms
of storage the value (here 99) is always in the register so \MyCount has to get there. This indirectness
has the benefit that directly setting the value is reflected in the indirect accessor.

\integerdef\MyCount = 99

This primitive also defines a numeric equivalent but this time the number is stored with the equivalent.
This means that:

\let\MyCopyOfCount = \MyCount

will store the current value of \MyCount in \MyCopyOfCount and changing either of them is not reflected
in the other.

The usual \advance, \multiply and \divide can be used with these integers and they behave like
any number. But compared to registers they are actually more a constant.

667 \interactionmode

This internal integer can be used to set or query the current interaction mode:

\batchmode 0 omits all stops and terminal output
\nonstopmode 1 omits all stops

\scrollmode 2 omits error stops

\errorstopmode 3 stops at every opportunity to interact

668 \interlinepenalties

This is a more granular variant of \interlinepenalty: an array of penalties to be put between suc-
cessive line from the start of a paragraph. The list starts with the number of penalties that gets
passed.

669 \interlinepenalty

This is the penalty that is put between lines.

670 \jobname

This gives the current job name without suffix: Luametatex.

671 \kern

A kern is injected with the given dimension. For variants that switch to a mode we have \hkern and
\vkern.

672 \language

Sets (or returns) the current language, a number. In LuaTgX and LuaMetaTgX the current language
is stored in the glyph nodes.

203

673 \lastalignmentcolumn

This number keeps track of the last (maximum) column count.

674 \lastalignmentrow

This number keeps track of the last (maximum) row count.

675 \lastarguments

\def\MyMacro #1{\the\lastarguments (#1) } \MyMacro{1} \crlf
\def\MyMacro #1#2{\the\lastarguments (#1) (#2)} \MyMacro{1}{2} \crlf
\def\MyMacro#1#2#3{\the\lastarguments (#1) (#2) (#3)} \MyMacro{1}{2}{3} \par
\def\MyMacro #1{(#1) \the\lastarguments} \MyMacro{1l} \crlf
\def\MyMacro #1#2{(#1) (#2) \the\lastarguments} \MyMacro{1}{2} \crlf

\def\MyMacro#1#2#3{ (#1) (#2) (#3) \the\lastarguments} \MyMacro{1l}{2}{3} \par

The value of \lastarguments can only be trusted in the expansion until another macro is seen and
expanded. For instance in these examples, as soon as a character (like the left parenthesis) is seen,
horizontal mode is entered and \everypar is expanded which in turn can involve macros. You can see
that in the second block (that is: unless we changed \everypar in the meantime).

1(1)
2(1) (2)
3(1) (2) (3)

(1o
(1) (2) 2
(1) (2)(3) 3

676 \lastatomclass

This returns the class number of the last atom seen in the math input parser.

677 \lastboundary

This primitive looks back in the list for a user boundary injected with \boundary and when seen it
returns that value or otherwise zero.

678 \lastbox

When issued this primitive will, if possible, pull the last box from the current list.

679 \lastchkdimension

When the last check for a dimension with \ifchkdimension was successful this primitive returns the
value.

204

680 \lastchknumber

When the last check for an integer with \ifchknumber was successful this primitive returns the value.

681 \lastkern

This returns the last kern seen in the list (if possible).

682 \lastleftclass

This variable registers the first applied math class in a formula.

683 \lastlinefit

The e-TEX manuals explains this parameter in detail but in practice it is enough to know that when set
to 1000 spaces in the last line might match those in the previous line. Basically it counters the strong
push of a \parfillskip.

684 \lastloopiterator

In addition to \currentloopiterator we have a variant that stores the value in case an unexpanded
loop is used:

\localcontrolledrepeat 8 { [\the\currentloopiterator\eq\the\lastloopiterator] }
\expandedrepeat 8 { [\the\currentloopiterator\eq\the\lastloopiterator] }
\unexpandedrepeat 8 { [\the\currentloopiterator\ne\the\lastloopiterator] }

[1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8]
[1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8]
[0#1] [0+2] [0+£3] [0+#4] [0£5] [0#£6] [0#7] [0+8]

685 \lastnamedcs

The example code in the previous section has some redundancy, in the sense that there to be looked
up control sequence name mymacro is assembled twice. This is no big deal in a traditional eight bit TgX
but in a Unicode engine multi-byte sequences demand some more processing (although it is unlikely
that control sequences have many multi-byte utf8 characters).

\ifcsname mymacro\endcsname
\csname mymacro\endcsname
\fi

Instead we can say:

\ifcsname mymacro\endcsname
\lastnamedcs
\fi

Although there can be some performance benefits another advantage is that it uses less tokens and
parsing. It might even look nicer.

205

686 \lastnodesubtype

When possible this returns the subtype of the last node in the current node list. Possible values can
be queried (for each node type) via Lua helpers.

687 \lastnodetype

When possible this returns the type of the last node in the current node list. Possible values can be
queried via Lua helpers.

688 \lastpageextra

This reports the last applied (permitted) overshoot.

689 \lastparcontext

When a paragraph is wrapped up the reason is reported by this state variable. Possible values are:

0x00 mnormal 0x04 dbox 0x08 output 0x0C math
0x01 wvmode 0x05 vcenter 0x09 align 0x0D lua
0x02 vbox 0x06 vadjust 0x0A noalign OxOE reset
0x03 vtop 0x07 insert Ox0B span

690 \lastpartrigger

There are several reasons for entering a paragraphs and some are automatic and triggered by other
commands that force TgX into horizontal mode.

0x00 normal 0x04 mathchar 0x08 math 0x0C wvalign
0x01 force 0x05 char 0x09 kern 0x0D vrule
0x02 indent 0x06 boundary Ox0A hskip
0x03 noindent 0x07 space 0x0B unhbox

691 \lastpenalty

This returns the last penalty seen in the list (if possible).

692 \lastrightclass

This variable registers the last applied math class in a formula.

693 \lastskip

This returns the last glue seen in the list (if possible).

694 \lccode

When the \lowercase operation is applied the lowercase code of a character is used for the replace-
ment. This primitive is used to set that code, so it expects two character number. The code is also

206

used to determine what characters make a word suitable for hyphenation, although in LuaTgX we
introduced the \hj code for that.

695 \leaders

See \gleaders for an explanation.

696 \left

Inserts the given delimiter as left fence in a math formula.

697 \lefthyphenmin

This is the minimum number of characters after the last hyphen in a hyphenated word.

698 \leftmarginkern

The dimension returned is the protrusion kern that has been added (if at all) to the left of the content
in the given box.

699 \leftskip

This skip will be inserted at the left of every line.

700 \lefttwindemerits

Additional demerits for a glyph sequence at the left edge when a previous line also has that sequence.

701 \legno

This primitive stores the (typeset) content (presumably a number) and when the display formula is
wrapped that number will end up left of the formula.

702 \let

Where a \def creates a new macro, either or not with argument, a \let creates an alias. You are not
limited to aliasing macros, basically everything can be aliased.

703 \letcharcode

Assigning a meaning to an active character can sometimes be a bit cumbersome; think of using some
documented uppercase magic that one tends to forget as it’s used only a few times and then never
looked at again. So we have this:

{\letcharcode 65 1 \catcode 65 13 A : \meaning A}\crlf
{\letcharcode 65 2 \catcode 65 13 A : \meaning A}\par

here we define A as an active charcter with meaning 1 in the first line and 2 in the second.

207

1 : the character U+0031 1
2 : the character U+0032 2

Normally one will assign a control sequence:

{\letcharcode 66 \bf \catcode 66 13 {B bold}: \meaning B}\crlf
{\letcharcode 73 \it \catcode 73 13 {I italic}: \meaning I}\par

Of course \bf and \it are ConTgXt specific commands:

bold: protected macro:\ifmmode \expandafter \mathbf \else \expandafter \normalbf \fi
italic: protected macro:\ifmmode \expandafter \mathit \else \expandafter \normalit
\fi

704 \letcsname

It is easy to see that we save two tokens when we use this primitive. As with the ..defcs.. variants
it also saves a push back of the composed macro name.

\expandafter\let\csname MyMacro:1l\endcsname\relax
\letcsname MyMacro:1l\endcsname\relax

705 \letfrozen

You can explicitly freeze an unfrozen macro:

\def\MyMacro{...}
\letfrozen\MyMacro

A redefinition will now give:

! You can't redefine a frozen macro.

706 \letmathatomrule

You can change the class for a specific style. This probably only makes sense for user classes. It’s one
of those features that we used when experimenting with more control.

\letmathatomrule 4
\letmathatomrule 5

4400
5500

This changes the classes 4 and 5 into class 0 in the two script styles and keeps them the same in
display and text. We leave it to the reader to ponder how useful this is.

707 \letmathparent

This primitive takes five arguments: the target class, and four classes that determine the pre penalty
class, post penalty class, options class and a dummy class for future use.

708 \letmathspacing

By default inter-class spacing inherits from the ordinary class but you can remap specific combinations
is you want:

208

\letmathspacing \mathfunctioncode
\mathordinarycode \mathordinarycode
\mathordinarycode \mathordinarycode

The first value is the target class, and the nest four tell how it behaves in display, text, script and script
script style. Here \mathfunctioncode is a ConTEXt specific class (26), one of the many.

709 \letprotected

Say that you have these definitions:

\def \MyMacroA{alpha}
\protected \def \MyMacroB{beta}
\edef \MyMacroC{\MyMacroA\MyMacroB}

\letprotected \MyMacroA

\edef \MyMacroD{\MyMacroA\MyMacroB}
\meaning \MyMacroC\crlf
\meaning \MyMacroD\par

The typeset meaning in this example is:
macro:alpha\MyMacroB
macro:\MyMacroA \MyMacroB

710 \lettolastnamedcs

The \lastnamedcs primitive is somewhat special as it is a (possible) reference to a control sequence
which is why we have a dedicated variant of \let.

\csname relax\endcsname\let \foo\lastnamedcs \meaning\foo
\csname relax\endcsname\expandafter\let\expandafter \oof\lastnamedcs \meaning\oof
\csname relax\endcsname\lettolastnamedcs \ofo \meaning\ofo

These give the following where the first one obviously is not doing what we want and the second one
is kind of cumbersome.

\lastnamedcs
\relax
\relax

711 \lettonothing

This one let’s a control sequence to nothing. Assuming that \empty is indeed empty, these two lines
are equivalent.

\let \foo\empty
\lettonothing\oof

712 \limits

This is a modifier: it flags the previous math atom to have its scripts above and below the (summation,
product, integral etc.) symbol. In LuaMetaTgX this can be any atom (that is: any class). In display
mode the location defaults to above and below.

209

Like any modifier it looks back for a math specific element. This means that the following will work
well:

\sum \limits "2 3
\sum "2 \limits 3
\sum "2 3 \limits
\sum 72 3 \limits \nolimits \limits

because scripts are bound to these elements so looking back just sees the element.

713 \linebreakchecks

The value of this parameter is passed to the linebreak callback so that one can act on it if needed.

714 \linebreakoptional

This selects the optional text range that is to be used. Optional content is marked with optionalbound-
ary nodes.

715 \linebreakpasses

When set to a positive value it will apply additional line break runs defined with \parpasses until the
criteria set in there are met.

716 \linedirection

This sets the text direction (1 for r21) to the given value but keeps preceding glue into the range.

717 \linepenalty

Every line gets this penalty attached, so normally it is a small value, like here: 10.

718 \lineskip

This is the amount of glue that gets added when the distance between lines falls below \line-
skiplimit.

719 \lineskiplimit

When the distance between two lines becomes less than \lineskiplimit a \lineskip glue item is
added.

\ruledvbox{
\lineskiplimit Opt \lineskip3pt \baselineskipOpt
\ruledhbox{line 1}
\ruledhbox{line 2}
\ruledhbox{\tx line 3}

210

Normally the \baselineskip kicks in first but here we’ve set that to zero, so we get two times a 3pt
glue injected.

ine 1
ine 2
me

720 \linesnapping

This is an experimental feature what we occasionally come back to, so it’s currently undocumented.

721 \localbreakpar

This forces a newline in a paragraph without side effects so that for instance \widowpenalties work
as expected in scenarios where using a \par would have been the solution. This is an experimental
primitive!

722 \localbrokenpenalty

TODO

723 \localcontrol
This primitive takes a single token:

\edef\testa{\scratchcounterl23 \the\scratchcounter}
\edef\testc{\testa \the\scratchcounter}
\edef\testd{\localcontrol\testa \the\scratchcounter}

The three meanings are:
123

\testa macro:\scratchcounter 123 123
\testc macro:\scratchcounter 123 123123
\testd macro:123

The \localcontrol makes that the following token gets expanded so we don’t see the yet to be ex-
panded assignment show up in the macro body.
724 \localcontrolled

The previously described local control feature comes with two extra helpers. The \localcontrolled
primitive takes a token list and wraps this into a local control sidetrack. For example:

\edef\testa{\scratchcounterl23 \the\scratchcounter}
\edef\testb{\localcontrolled{\scratchcounterl23}\the\scratchcounter}

The two meanings are:

\testa macro:\scratchcounter 123 123
\testb macro:123

211

The assignment is applied immediately in the expanded definition.

725 \localcontrolledendless

As the name indicates this will loop forever. You need to explicitly quit the loop with \quitloop or
\quitloopnow. The first quitter aborts the loop at the start of a next iteration, the second one tries to
exit immediately, but is sensitive for interference with for instance nested conditionals. Of course in
the next case one can just adapt the final iterator value instead. Here we step by 2:

\expandedloop 1 20 2 {%
\ifnum\currentloopiterator>10
\quitloop
\else
[']
\fi
}

This results in:

HESEHES R

726 \localcontrolledloop

As with more of the primitives discussed here, there is a manual in the ‘lowlevel’ subset that goes into
more detail. So, here a simple example has to do:

\localcontrolledloop 1 100 1 {%
\ifnum\currentloopiterator>6\relax
\quitloop
\else
[\number\currentloopnesting:\number\currentloopiterator]
\localcontrolledloop 1 8 1 {%
(\number\currentloopnesting:\number\currentloopiterator)
H\par
\fi
}

Here we see the main loop primitive being used nested. The code shows how we can \quitloop and
have access to the \currentloopiterator as well as the nesting depth \currentloopnesting.

[1:1] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:2] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:3] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:4] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:5] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:6] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

Be aware of the fact that \quitloop will end the loop at the next iteration so any content after it will
show up. Normally this one will be issued in a condition and we want to end that properly. Also keep
in mind that because we use local control (a nested TgX expansion loop) anything you feed back can
be injected out of order.

212

The three numbers can be separated by an equal sign which is a trick to avoid look ahead issues that
can result from multiple serialized numbers without spaces that indicate the end of sequence of digits.

727 \localcontrolledrepeat

This one takes one instead three arguments which looks a bit better in simple looping.

728 \localhangafter

A positive value will create a local, that is at he current line, hole in the paragraph similar to a
\hangafter. One needs to set \localhangindent in order to happen. Depending on the sign of that
dimension the hole will appear left or right. In this perspective ‘current’ is a bit fluid because the par
builder is in charge of breaking lines at the best possible location.

729 \localhangindent

This value only kicks in when a \localhangafter command is given. A positive dimension will create
an insert left of the paragraph, a negative number creates a hole at the right. This is consistent with
\hangindent.

730 \localinterlinepenalty

TODO

731 \localleftbox

This sets the box that gets injected at the left of every line.

732 \localleftboxbox

This returns the box set with \localleftbox.

733 \localmiddlebox

This sets the box that gets injected at the left of every line but its width is ignored.

734 \localmiddleboxbox

This returns the box set with \localmiddlebox.

735 \localpretolerance

TODO

736 \localrightbox

This sets the box that gets injected at the right of every line.

213

737 \localrightboxbox

This returns the box set with \localrightbox.

738 \localtolerance

TODO

739 \long

This original prefix gave the macro being defined the property that it could not have \par (or the often
equivalent empty lines) in its arguments. It was mostly a protection against a forgotten right curly
brace, resulting in a so called run-away argument. That mattered on a paper terminal or slow system
where such a situation should be catched early. In LuaTgX it was already optional, and in LuaMetaTgX
we dropped this feature completely (so that we could introduce others).

740 \looseness

The number fo lines in the current paragraph will be increased by given number of lines. For this to
succeed there need to be enough stretch in the spacing to make that happen. There is some wishful
thinking involved.

741 \lower
This primitive takes two arguments, a dimension and a box. The box is moved down. The operation
only succeeds in horizontal mode.

742 \lowercase

This token processor converts character tokens to their lowercase counterparts as defined per \1c-
code. In order to permit dirty tricks active characters are also processed. We don’t really use this
primitive in ConTgXt, but for consistency we let it respond to \expand:!?

\edef \foo {\lowercase{tex TeX \TEX}} \meaningless\foo
\lowercase{\edef\foo {tex TeX \TEX}} \meaningless\foo
\edef \foo{\expand\lowercase{tex TeX \TEX}} \meaningless\foo

Watch how \lowercase is not expandable but can be forced to. Of course, as the logo macro is pro-
tected the TgX logo remains mixed case.

\lowercase {tex TeX \TEX }
tex tex \TEX
tex tex \TEX

743 \lpcode

This one can be used to set the left protrusion factor of a glyph in a font and takes three arguments:
font, character code and factor. It is kind of obsolete because we can set up vectors at definition time
and tweaking from TgX can have side effects because it globally adapts the font.

12 Tnstead of providing \lowercased and \uppercased primitives that would clash with macros anyway.

214

744 \luaboundary

This primive inserts a boundary that takes two integer values. Some mechanisms (like math construc-
tors) can trigger a callback when preceded by such a boundary. As we go more mechanisms might do
such a check but we don’t want a performance hit on ConTgXt as we do so (nor unwanted interference).
745 \luabytecode

This behaves like \luafunction but here the number is a byte code register. These bytecodes are in
the lua.bytecode array.

746 \luabytecodecall

This behaves like \luafunctioncall but here the number is a byte code register. These bytecodes
are in the lua.bytecode array.

747 \luacopyinputnodes

When set to a positive value this will ensure that when nodes are printed from Lua to TgX copies are
used.

748 \luadef

This command relates a (user) command to a Lua function registered in the lua.lualib get func-
tions table(), so after:

\luadef\fo00123

the \foo command will trigger the function at index 123. Of course a macro package has to make
sure that these definitions are unique.!3

This command is accompanied by \luafunctioncall and \luafunction. When we have funciton 123
defined as

function() tex.sprint("!") end
the following:

(\luafunctioncall \foocode ?)
(\normalluafunction\foocode ?)
(\foo ?)

gives three times (!7?). But this:

\edef\oof{\foo } \meaning\oof % protected
\edef\oof{\luafunctioncall \foocode} \meaning\oof % protected
\edef\oof{\normalluafunction\foocode} \meaning\oof % expands

returns:

13 Plain TgX established a norm for allocating registers, like \newdimen but there is no such convention for Lua functions.

215

macro:!
macro:\luafunctioncall 1740
macro:!

Because the definition command is like any other
\permanent\protected\luadef\fool23
boils down to:

permanent protected luacall 123

749 \luaescapestring

This command converts the given (token) list into something that is acceptable for Lua. It is inherited
from LuaTgX and not used in ConTgXt.

\directlua { tex.print ("\luaescapestring {{\tt This is a "test".}}") }

Results in: This is a "test". (Watch the grouping.)

750 \luafunction

The integer passed to this primitive is the index in the table returned by lua.lualib get func-
tions table(). Of course a macro package has to provide reliable management for this. This is a so
called convert command so it expands in an expansion context (like an \edef).

751 \luafunctioncall

The integer passed to this primitive is the index in the table returned by lua.lualib get func-
tions table(). Of course a macro package has to provide reliable management for this. This primi-
tive doesn’t expand in an expansion context (like an \edef).

752 \luametatexmajorversion

This is the numeric major version number, so it’s an integer: 2, which will only change when we have
very drastic changes. The whole repertoire of numbers is:

\the\luametatexmajorversion 2
\the\luametatexminorversion 11

\the\luametatexrelease 8
\the\luatexversion 211
\the\luatexrevision 0

The last two are there because they might be tested but the first three are the official ones.

753 \luametatexminorversion

This is a numeric minor version number, so it’s an integer: 11. It changes when we add functionality.
Intermediate updates

216

754 \luametatexrelease

This is a numeric release number, so it’s an integer: 8. It changes when we are developing function-
ality.

755 \luatexbanner

This gives: This is LuaMetaTeX, Version 2.11.08.

756 \luatexrevision

This is an integer. The current value is: 0.

757 \luatexversion

This is an integer. The current value is: 211.

758 \mark

The given token list is stored in a node in the current list and might become content of \topmark,
\botmark or \firstmark when a page split off, or in the case of a box split in \splitbotmark or
\splitfirstmark. In LuaMetaTgX deeply burried marks bubbly up to an outer box level.

759 \marks
This command is similar to \mark but first expects a number of a mark register. Multiple marks were
introduced in e-TgX.

760 \mathaccent

This takes a number and a math object to put the accent on. The four byte number has a dummy class
byte, a family byte and two index bytes. It is replaced by \Umathaccent that handles wide fonts.

761 \mathatom

This operation wraps following content in a atom with the given class. It is part of LuaMetaTgX’s
extended math support. There are three class related key/values: class, leftclass and rightclass
(or all for all of them). When none is given this command expects a class number before scanning the
content. The options key expects a bitset but there are also direct option keys, like limits, nolimits,
unpack, unroll, single, nooverflow, void and phantom. A source id can be set, one or more attr
assigned, and for specific purposes textfont and mathfont directives are accepted. Features like this
are discussed in dedicated manuals.

762 \mathatomglue
This returns the glue that will be inserted between two atoms of a given class for a specific style.

\the\mathatomglue \textstyle 11
\the\mathatomglue \textstyle 0 2

217

\the\mathatomglue \scriptstyle 1 1
\the\mathatomglue \scriptstyle 0 2

1.66667mu

2.22223mu plus 1.11111mu minus 1.11111mu

1.66667mu

0.55556mu minus 0.27777mu

763 \mathatomskip

This injects a glue with the given style and class pair specification: xx x x x X xx xXx.

$X
$X
$X
$X
$X

X$

\mathatomskip \textstyle 1 1 x$
\mathatomskip \textstyle 0 2 x$
\mathatomskip \scriptstyle 1 1 x$
\mathatomskip \scriptstyle 0 2 x$

764 \mathbackwardpenalties

See \mathforwardpenalties for an explanation.

765 \mathbeginclass

This variable can be set to signal the class that starts the formula (think of an imaginary leading atom).

766 \mathbin

This operation wraps following content in a atom with class ‘binary’.

767 \mathboundary

This primitive is part of an experiment with granular penalties in math. When set nested fences will
use the \mathdisplaypenaltyfactor or \mathinlinepenaltyfactor to increase nested penalties. A
bit more control is possible with \mathboundary:

w N = O

begin
end
begin
end

factor 1000
factor 1000
given factor
given factor

These will be used when the mentioned factors are zero. The last two variants expect factor to be
given.

768 \mathchar

Replaced by \Umathchar this old one takes a four byte number: one byte for the class, one for the
family an two for the index. The specified character is appended to to the list.

218

769 \mathcharclass
Returns the slot (in the font) of the given math character.
\the\mathcharclass\Umathchar 4 2 123

The first passed number is the class, so we get: 4.

770 \mathchardef

Replaced by \Umathchardef this primitive relates a control sequence with a four byte number: one
byte for the class, one for the family an two for the index. The defined command will insert that
character.

771 \mathcharfam

Returns the family number of the given math character.

\the\mathcharfam\Umathchar 4 2 123

The second passed number is the family, so we get: 2.

772 \mathcharslot
Returns the slot (or index in the font) of the given math character.
\the\mathcharslot\Umathchar 4 2 123

The third passed number is the slot, so we get: 123.

773 \mathcheckfencesmode

When set to a positive value there will be no warning if a right fence (\right or \Uright) is missing.

774 \mathchoice

This command expects four subformulas, for display, text, script and scriptscript and it will eventually
use one of them depending on circumstances later on. Keep in mind that a formula is first scanned
and when that is finished the analysis and typesetting happens.

775 \mathclass

There are build in classes and user classes. The first possible user class is 20 and the last one is 60.
You can better not touch the special classes ‘all’ (61), ‘begin’ (62) and ‘end’ (63). The basic 8 classes
that original TgX provides are of course also present in LuaMetaTgX. In addition we have some that
relate to constructs that the engine builds.

ordinary ord 0 the default

operator op 1 small and large operators
binary bin 2

relation rel 3

219

open 4

close 5

punctuation punct 6

variable 7 adapts to the current family

active 8 character marked as such becomes active
inner 9 this class is not possible for characters
under 10

over 11

fraction 12

radical 13

middle 14

accent 16

fenced 17

ghost 18

vcenter 19

There is no standard for user classes but ConTEXt users should be aware of quite some additional ones
that are set up. The engine initialized the default properties of classes (spacing, penalties, etc.) the
same as original TgX.

Normally characters have class bound to them but you can (temporarily) overload that one. The
\mathclass primitive expects a class number and a valid character number or math character and
inserts the symbol as if it were of the given class; so the original class is replaced.

\ruledhbox{(x)} and \ruledhbox{$\mathclass 1 " (x\mathclass 1 ")$}

Changing the class is likely to change the spacing, compare and [(x).

776 \mathclose

This operation wraps following content in a atom with class ‘close’.

777 \mathcode

This maps a character to one in a family: the assigned value has one byte for the class, one for the
family and two for the index. It has little use in an OpenType math setup.

778 \mathdictgroup

This is an experimental feature that in due time will be explored in ConIgXt. It currently has no
consequences for rendering.

779 \mathdictionary

This is an experimental feature that in due time will be explored in ConTEXt. It currently has no
consequences for rendering.

780 \mathdictproperties

This is an experimental feature that in due time will be explored in ConTgXt. It currently has no
consequences for rendering.

220

781 \mathdirection

When set to 1 this will result in r21 typeset math formulas but of course you then also need to set up
math accordingly (which is the case in ConTgXt).

782 \mathdiscretionary

The usual \discretionary command is supported in math mode but it has the disadvantage that one
needs to make sure that the content triplet does the math right (especially the style). This command
takes an optional class specification.

\mathdiscretionary {+} {+} {+}
\mathdiscretionary class \mathbinarycode {+} {+} {+}

It uses the same logic as \mathchoice but in this case we handle three snippets in the current style.

A fully automatic mechanism kicks in when a character has a \hmcode set:

bit meaning explanation

1 normal a discretionary is created with the same components
2 italic following italic correction is kept with the component

So we can say:
\hmcode "+ 3

When the italic bit is set italic correction is kept at a linebreak.

783 \mathdisplaymode

Display mode is entered with two dollars (other characters can be used but the dollars are a con-
vention). Mid paragraph display formulas get a different treatment with respect to the width and
indentation than stand alone. When \mathdisplaymode is larger than zero the double dollars (or
equivalents) will behave as inline formulas starting out in \displaystyle and with \everydisplay
expanded.

784 \mathdisplaypenaltyfactor

This one is simular to \mathinlinepenaltyfactor but is used when we’re in display style.

785 \mathdisplayskipmode

A display formula is preceded and followed by vertical glue specified by \abovedisplayskip and \be-
lowdisplayskip or \abovedisplayshortskip and \belowdisplayshortskip. Spacing ‘above’ is al-
ways inserted, even when zero, but the spacing ‘below’ is only inserted when it is non-zero. There’s
also \baselineskip involved. The way spacing is handled can be influenced with \mathdisplayskip-
mode, which takes the following values:

value meaning

0 does the same as any TgX engine

221

1 idem
2 only insert spacing when it is not zero
3 never insert spacing

786 \mathdoublescriptmode

When this parameter has a negative value double scripts trigger an error, so with \superscript, \no-
superscript, \indexedsuperscript, \superprescript, \nosuperprescript, \indexedsuperpre-
script, \subscript, \nosubscript, \indexedsubscript, \subprescript, \nosubprescript, \in-
dexedsubprescript and \primescript, as well as their (multiple) and " aliases.

A value of zero does the normal and inserts a dummy atom (basically a {}) but a positive value is more
interesting. Compare these:

{\mathdoublescriptmode 0 $x X x$}
{\mathdoublescriptmode"000000 $x x x$}
{\mathdoublescriptmode"030303 $x x x$}

{$x x x$}

The three pairs of bytes indicate the main class, left side class and right side class of the inserted
atom, so we get this: X,x Xxx Xx x Xxx- The last line gives what ConTgXt is configured for.

787 \mathendclass

This variable can be set to signal the class that ends the formula (think of an imaginary trailing atom).

788 \matheqnogapstep

The display formula number placement heuristic puts the number on the same line when there is place
and then separates it by a quad. In LuaTgX we decided to keep that quantity as it can be tight into the
math font metrics but introduce a multiplier \matheqnogapstep that defaults to 1000.

789 \mathfontcontrol

This bitset controls how the math engine deals with fonts, and provides a way around dealing with
inconsistencies in the way they are set up. The \fontmathcontrol makes it possible to bind options
ot a specific math font. In practice, we just set up the general approach which ii possible because we
normalize the math fonts and ‘fix’ issues at runtime.

0x00000001 usefontcontrol
0x00000002 overrule

0x00000004 underrule

Ox00000008 radicalrule
0x00000010 fractionrule
0x00000020 accentskewhalf
0x00000040 accentskewapply
0x00000080 applyordinarykernpair
0x00000100 applyverticalitalickern
0x00000200 applyordinaryitalickern
0x00000400 applycharitalickern

0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000
0x01000000
0x02000000

222

reboxcharitalickern
applyboxeditalickern
staircasekern
applytextitalickern
checktextitalickern
checkspaceitalickern
applyscriptitalickern
analyzescriptnucleuschar
analyzescriptnucleuslist
analyzescriptnucleusbox
accenttopskewwithoffset
ignorekerndimensions
ignoreflataccents
extendaccents
extenddelimiters

790 \mathforwardpenalties

Inline math can have multiple atoms and constructs and one can configure the penalties between then
bases on classes. In addition it is possible to configure additional penalties starting from the beginning
or end using \mathforwardpenalties and \mathbackwardpenalties. This is one the features that we
added in the perspective of breaking paragraphs heavy on math into lines. It not that easy to come
up with useable values.

These penalties are added to the regular penalties between atoms. Here is an example, as with other
primitives that take more arguments the first number indicates how much follows.

$a+b+c+d+e+f+ g+ h=x $\par
\mathforwardpenalties 3 300 200 100
\mathbackwardpenalties 3 250 150 50
$a+b+c+d+e+f+ g+ h=x $\par

You'll notice that we apply more severe penalties at the edges:

a+b+c+d+e+f+g+h=x.
a+b+c+d+e+f+g+h=x.

11000 Pss0

791 \mathgluemode

We can influence the way math glue is handled. By default stretch and shrink is applied but this
variable can be used to change that. The limit option ensures that the stretch and shrink doesn’t go
beyond their natural values.

0x01 stretch
0x02 shrink
0x04 limit

792 \mathgroupingmode

Normally a {} or \bgroup-\egroup pair in math create a math list. However, users are accustomed
to using it also for grouping and then a list being created might not be what a user wants. As an al-

223

ternative to the more verbose \begingroup-\endgroup or even less sensitive \beginmathgroup-\end-
mathgroup you can set the math grouping mode to a non zero value which makes curly braces (and
the aliases) behave as expected.

793 \mathinlinepenaltyfactor

A math formula can have nested (sub)formulas and one might want to discourage a line break inside
those. If this value is non zero it becomes a mulitiplier, so a value of 1000 will make an inter class
penalty of 100 into 200 when at nesting level 2 and 500 when at level 5.

794 \mathinner

This operation wraps following content in a atom with class ‘inner’. In LuaMetaTgX we have more
classes and this general wrapper one is therefore kind of redundant.

795 \mathleftclass

When set this class will be used when a formula starts.

796 \mathlimitsmode

When this parameter is set to a value larger than zero real dimensions are used and longer limits will
not stick out, which is a traditional TgX feature. We could have more advanced control but this will
do.

Compare the zero setting:

TTTTTTTTT, TTTTTTTTY, TTTTTTT, TTTTTT, TTTTTY, TTTT] LN 1 11 1 !

e AL e AL i ANl A " " 1 !

f

| nm | iy | !!1!!1!!| | 1!!!!1!!!!1!!1|. for demandingj
| || ! ||m|u | | i l htegral freaks

with the positive variant:

TTrrrrrTT T TrrrrrTT T TTTTTY T T T m m T

//////////,/,
T UL

e e renm e mm mnn mnm " m " !

| /]
J

{1 i
! 1

Here we switched to Latin Modern because it’s font dependent how serious this issue is. In Pagella
all is fine in both modes.

|1!/1!!1!' |!!17!!1!!| ‘
o

!

TTOTTIT | [y PO ‘ for demanding

A

| Inum | ||HIIH I Iinteqralfreaks

224

797 \mathmainstyle

This inspector returns the outermost math style (contrary to \mathstyle), as we can see in the next
examples where use these snippets:

\def\foo{(\the\mathmainstyle, \the\mathstyle)}
\def\oof{\sqrt[\foo]{\foo}}
\def\ofo{\frac{\foo}{\foo}}
\def\fof{\mathchoice{\foo}{\foo}{\foo}{\foo}}

When we use the regular math triggers we get this:

$\displaystyle \foo + \oof + \ofo$

$\textstyle \foo + \oof + \ofo$%

$\displaystyle \foo + \fof$

$\textstyle \foo + \fof$

$\scriptstyle \foo + \fof$

$\scriptscriptstyle\foo + \fof$

(2,0) +*%(2,0) + 52

(2,2) + *3(22) + 355

(2,0)+(2,0)

(2,2)+(2,2)

(2,4)+(2,4)

(2,6)+(2,6)

But we can also do this:

\Ustartmathmode \displaystyle \foo + \oof + \ofo \Ustopmathmode
\Ustartmathmode \textstyle \foo + \oof + \ofo \Ustopmathmode
\Ustartmathmode \displaystyle \foo + \fof \Ustopmathmode
\Ustartmathmode \textstyle \foo + \fof \Ustopmathmode
\Ustartmathmode \scriptstyle \foo + \fof \Ustopmathmode
\Ustartmathmode \scriptscriptstyle\foo + \fof \Ustopmathmode

(0,0) + (0,0 + {5

(0,5)
(2,2) + 22, 2) + 52
(0,0)+(0,0)
(2,2)+(2,2)
(4,4)+(4,4)
(6,6)+(6,6)

798 \mathop

This operation wraps following content in a atom with class ‘operator’.

799 \mathopen

This operation wraps following content in a atom with class ‘open’.

225

800 \mathoptions

The math renderer can set some options in the process and these are kept with the result in the
math nodes. The snapping options in this set can be controlled by the user. The engine itself doesn’t
anything with these.

0x00 normal 0x08 cramped
0x01 short 0x10 snapping
0x02 orphaned 0x20 nosnapping
0x04 display 0x40 text

801 \mathord

This operation wraps following content in a atom with class ‘ordinary’.

802 \mathparentstyle

This inspector returns the math style used in a construct, so is is either equivalent to \mathmainstyle
or a nested \mathstyle. For instance in a nested fraction we get this (in ConTgXt) in display formulas:

(O,
(
(
(0,

o
_
%)}

)

:+(0,0,0)

)

N
%)}

s 4,

=l k=)
-
wul

s 4,

o
N
%)}

but this in inline formulas:

(2,5,7)

(2,5,7)
(2’5’7) + (21 2/ 2)
(2,5,7)

where the first element in a nested fraction.

803 \mathpenaltiesmode

Normally the TgX math engine only inserts penalties when in textstyle. You can force penalties in
displaystyle with this parameter. In inline math we always honor penalties, with mode 0 and mode 1
we get this:

2x =0

#:0 :700 HP:500 4P:0

x=1

#:0 P:700 HP:500 4P:0

However in ConIgXt, where all is done in inline math mode, we set this this parameter to 1, otherwise
we wouldn’t get these penalties, as shown next:

XxX+2x=0
X +VF72WX =MP1‘D

If one uses a callback it is possible to force penalties from there too.

804 \mathpretolerance

This is used instead of \pretolerance when a breakpoint is calculated when a math formula starts.

226

805 \mathpunct

This operation wraps following content in a atom with class ‘punctuation’.

806 \mathrel

This operation wraps following content in a atom with class ‘relation’.

807 \mathrightclass

When set this class will be used when a formula ends.

808 \mathrulesfam

When set, this family will be used for setting rule properties in fractions, under and over.

809 \mathrulesmode

When set to a non zero value rules (as in fractions and radicals) will be based on the font parameters
in the current family.

810 \mathscale

In LuaMetaTgX we can either have a family of three (text, script and scriptscript) fonts or we can use
one font that we scale and where we also pass information about alternative shapes for the smaller
sizes. When we use this more compact mode this primitive reflects the scale factor used.

What gets reported depends on how math is implemented, where in ConTEXt we can have either normal
or compact mode: 1000 700 sso 1000 700 sso. In compact mode we have the same font three times so
then it doesn’t matter which of the three is passed.

811 \mathscriptsmode

There are situations where you don’t want TgX to be clever and optimize the position of super- and
subscripts by shifting. This parameter can be used to influence this.

0 x5+ yXi+zo+w? Rx3+yi+2z,+wd Rix3+yXi+2z,+w?

1 over O 2 over O 2 over 1

The next table shows what parameters kick in when:

or (1) and (2) otherwise
super sup shift up sup shift up sup shift up, sup bot min
sub sub shift down sub sup shift down sub shift down, sub top max
both sub shift down sub sup shift down sub sup shift down, sub sup vgap, sup sub bot max

227

812 \mathslackmode

When positive this parameter will make sure that script spacing is discarded when there is no reason
to add it.

X2 T X2 X2 X2 T X2X2 T X X2

disabled (0) enabled (1) enabled over disabled

813 \mathspacingmode

Zero inter-class glue is not injected but setting this parameter to a positive value bypasses that check.
This can be handy when checking (tracing) how (and what) spacing is applied. Keep in mind that glue
in math is special in the sense that it is not a valid breakpoint. Line breaks in (inline) math are driven
by penalties.

814 \mathstack

There are a few commands in TgX that can behave confusing due to the way they are scanned. Compare
these:

$ 1 \over 2 $

$ 1+ x \over 2 + x$

$ {1 + x} \over {2 + x}$

$ {{1 + x} \over {2 + x}}$

A single 1 is an atom as is the curly braced 1 + x. The two arguments to \over eventually will get
typeset in the style that this fraction constructor uses for the numerator and denominator but on might
actually also like to relate that to the circumstances. It is comparable to using a \mathchoice. In order
not to waste runtime on four variants, which itself can have side effects, for instance when counters
are involved, LuaTgX introduced \mathstack, used like:

$\mathstack {1 \over 2}$

This \mathstack command will scan the next brace and opens a new math group with the correct (in
this case numerator) math style. The \mathstackstyle primitive relates to this feature that defaults
to ‘smaller unless already scriptscript’.

815 \mathstackstyle

This returns the (normally) numerator style but the engine can be configured to default to another
style. Although all these in the original TgX engines hard coded style values can be changed in Lua-
MetaTgX it is unlikely to happen. So this primitive will normally return the (current) style ‘smaller
unless already scriptscript’.

816 \mathstyle

This returns the current math style, so $\the\mathstyle$ gives 2.

228

817 \mathstylefontid

This returns the font id (a number) of a style/family combination. What you get back depends on how
a macro package implements math fonts.

(\the\mathstylefontid\textstyle \fam)
(\the\mathstylefontid\scriptstyle \fam)
(\the\mathstylefontid\scriptscriptstyle\fam)

In ConTgXt gives: (2) (2) (2).

818 \mathsurround

The kern injected before and after an inline math formula. In practice it will be set to zero, if only
because otherwise nested math will also get that space added. We also have \mathsurroundskip
which, when set, takes precedence. Spacing is controlled by \mathsurroundmode.

819 \mathsurroundmode

The possible ways to control spacing around inline math formulas in other manuals and mostly serve
as playground.

820 \mathsurroundskip

When set this one wins over \mathsurround.

821 \maththreshold

This is a glue parameter. The amount determines what happens: when it is non zero and the inline
formula is less than that value it will become a special kind of box that can stretch and/ or shrink
within the given specification. The par builder will use these stretch and/ or shrink components but
it is up to one of the Lua callbacks to deal with the content eventually (if at all). As this is somewhat
specialized, more details can be found on ConTgXt documentation.

822 \mathtolerance

This is used instead of \tolerance when a breakpoint is calculated when a math formula starts.

823 \maxdeadcycles

When the output routine is called this many times and no page is shipped out an error will be triggered.
You therefore need to reset its companion counter \deadcycles if needed. Keep in mind that LuaMeta-
TEX has no real \shipout because providing a backend is up to the macro package.

824 \maxdepth

The depth of the page is limited to this value.

229

825 \meaning

We start with a primitive that will be used in the following sections. The reported meaning can look a
bit different than the one reported by other engines which is a side effect of additional properties and
more extensive argument parsing.

\tolerant\permanent\protected\gdef\foo [#1]#*[#2]1{(#1) (#2)} \meaning\foo

tolerant protected macro:[#1]#*[#2]->(#1)(#2)

826 \meaningasis

Although it is not really round trip with the original due to information being lost this primitive tries
to return an equivalent definition.

\tolerant\permanent\protected\gdef\foo [#1]1#*[#2]1{(#1) (#2)} \meaningasis\foo

\global \permanent \tolerant \protected \def \foo [#1]#*[#2]{(#1)(#2)}

827 \meaningful
This one reports a bit less than \meaningful.
\tolerant\permanent\protected\gdef\foo [#1]#*[#2]1{(#1) (#2)} \meaningful\foo

global permanent tolerant protected macro

828 \meaningfull
This one reports a bit more than \meaning.
\tolerant\permanent\protected\gdef\foo [#1]1#*[#2]1{(#1) (#2)} \meaningfull\foo

global permanent tolerant protected macro:[#1]1#*[#2]->(#1)(#2)

829 \meaningles
This one reports a bit less than \meaningless.
\tolerant\permanent\protected\gdef\foo [#1]#*[#2]{(#1) (#2)} \meaningles\foo

[#11#*X[#2]

830 \meaningless
This one reports a bit less than \meaning.
\tolerant\permanent\protected\gdef\foo [#1]1#*[#2]{(#1) (#2)} \meaningless\foo

[#11#*[#2]->(#1)(#2)

230

831 \medmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
4.0mu plus 2.0mu minus 2.0mu. In traditional TEX most inter atom spacing is hard coded using the
predefined registers.

832 \message

Prints the serialization of the (tokenized) argument to the log file and/or console.

833 \middle

Inserts the given delimiter as middle fence in a math formula. In LuaMetaTgX it is a full blown fence
and not (as in e-TgX) variation of \open.

834 \mkern

This one injects a kern node in the current (math) list and expects a value in so called mu units.

835 \month

This internal number starts out with the month that the job started.

836 \moveleft

This primitive takes two arguments, a dimension and a box. The box is moved to the left. The operation
only succeeds in vertical mode.

837 \moveright

This primitive takes two arguments, a dimension and a box. The box is moved to the right. The
operation only succeeds in vertical mode.

838 \mskip

The given math glue (in mu units) is injected in the horizontal list. For this to succeed we need to be
in math mode.

839 \muexpr

This is a companion of \glueexpr so it handles the optional stretch and shrink components. Here
math units (mu) are expected.

840 \mugluespecdef

A variant of \gluespecdef that expects mu units is:

\mugluespecdef\MyGlue = 3mu plus 2mu minus 1mu

231

The properties are comparable to the ones described in the previous sections.

841 \multiply
The given quantity is multiplied by the given integer (that can be preceded by the keyword ‘by’, like:

\scratchdimen=10pt \multiply\scratchdimen by 3

842 \multiplyby

This is slightly more efficient variant of \multiply that doesn’t look for by. See previous section.

843 \muskip

This is the accessor for an indexed muskip (muglue) register.

844 \muskipdef

This command associates a control sequence with a muskip (math skip) register (accessed by number).

845 \mutable

This prefix flags what follows can be adapted and is not subjected to overload protection.

846 \mutoglue

The sequence \the\mutoglue 20mu plus 10mu minus 5mu gives 20.0pt plus 10.0pt minus 5.0pt.

847 \mvlcurrentlyactive

This numeric state variable hold the id of the currently active mvl. Unless one is in \beginmlyv it’s
zero (regular page).

848 \nestedloopiterator

This is one of the accessors of loop iterators:

\expandedrepeat 2 {%

\expandedrepeat 3 {%
(n=\the\nestedloopiterator 1,
p=\the\previousloopiteratorl,
c=\the\currentloopiterator)

}s
Gives:

(n=1, p=1, c=1) (n=2, p=1, c=2) (n=3, p=1, ¢c=3) (n=1, p=2, c=1) (n=2, p=2, c=2) (n=3, p=2, c=3)

232

Where a nested iterator starts relative to innermost loop, the previous one is relative to the outer loop
(which is less predictable because we can already be in a loop).
849 \newlinechar

When something is printed to one of the log channels the character with this code will trigger a
linebreak. That also resets some counters that deal with suppressing redundant ones and possible
indentation. Contrary to other engines LuaMetaTgX doesn’t bother about the length of lines.

850 \noalign

The token list passed to this primitive signals that we don’t enter a table row yet but for instance
in a \halign do something between the lines: some calculation or injecting inter-row material. In
LuaMetaTgX this primitive can be used nested.

Todo: discuss keywords.

851 \noaligned

The alignment mechanism is kind of special when it comes to expansion because it has to look ahead
for a \noalign. This interferes with for instance protected macros, but using this prefix we get around
that. Among the reasons to use protected macros inside an alignment is that they behave better inside
for instance \expanded.

852 \noarguments

Sometimes picking up arguments can interfere with intentions, for instance when an optional argu-
ment uses square brackets but the ones following the command are to be typeset. The \noarguments
command is a variant on \relax (and \norelax) but doesn’t push back that command when seen. This
permits for instance usage in an \edef comparable context where one doesn’t want to end up with
such artifacts.

853 \noatomruling

Spacing in math is based on classes and this primitive inserts a signal that there is no ruling in place
here. Basically we have a zero skip glue tagged as non breakable because in math mode glue is not a
valid breakpoint unless we have configured inter-class penalties.

854 \noboundary

This inserts a boundary node with no specific property. It can still serve as boundary but is not inter-
preted in special ways, like the others.

855 \noexpand

This prefix prevents expansion in a context where expansion happens. Another way to prevent expan-
sion is to define a macro as \protected.

\def\foo{foo} \edef\oof{we expanded \foo} \meaning\oof

233

\def\foo{foo} \edef\oof{we keep \noexpand\foo} \meaning\oof
\protected\def\foo{foo} \edef\oof{we keep \foo} \meaning\oof

macro:we expanded foo

macro:we keep \foo

macro:we keep \foo

856 \nohrule

This is a rule but flagged as empty which means that the dimensions kick in as for a normal rule but
the backend can decide not to show it.

857 \noindent

This starts a paragraph. In LuaTgX (and LuaMetaTgX) a paragraph starts with a so called par node
(see \indent on how control that. After that comes either \parindent glue or a horizontal box. The
\indent makes gives them some width, while \noindent keeps that zero.

858 \nolimits

This is a modifier: it flags the previous math atom to have its scripts after the the atom (contrary
to \limits. In LuaMetaTgX this can be any atom (that is: any class). In display mode the location
defaults to above and below.

859 \nomathchar

This can be used when a math character is expected but not available (or needed).

860 \nonscript

This prevents TEX from adding inter-atom glue at this spot in script or scriptscript mode. It actually
is a special glue itself that serves as signal.

861 \nonstopmode

This directive omits all stops.

862 \nooutputhoxerror

Setting this a positive value will silence the error triggered by a still somewhat full output box after
the output routine returns. It is a bitset:

0x1 when firing up
0x2 after output

where values larger than two will always silence,

863 \norelax

The rationale for this command can be shown by a few examples:

234

\dimenO 1pt \dimen2 1pt \dimen4 2pt
\edef\testa{\ifdim\dimenO=\dimen2\norelax N\else Y\fi}
\edef\testb{\ifdim\dimenO=\dimen2\relax N\else Y\fi}
\edef\testc{\ifdim\dimenO=\dimen4\norelax N\else Y\fi}
\edef\testd{\ifdim\dimenO=\dimen4\relax N\else Y\fi}
\edef\teste{\norelax}

The five meanings are:

\testa macro:N

\testb macro:\relax N
\testc macro:Y

\testd macro:Y

\teste macro:

So, the \norelax acts like \relax but is not pushed back as usual (in some cases).

864 \normalizelinemode

The TgX engine was not designed to be opened up, and therefore the result of the linebreak effort can
differ depending on the conditions. For instance not every line gets the left- or rightskip. The first and
last lines have some unique components too. When LuaTgX made it possible too get the (intermediate)
result manipulating the result also involved checking what one encountered, for instance glue and its
origin. In LuaMetaTgX we can normalize lines so that they have for instance balanced skips.

0x0001 normalizeline 0x0040 clipwidth

0x0002 parindentskip 0x0080 flattendiscretionaries
0x0004 swaphangindent 0x0100 discardzerotabskips
0x0008 swapparshape 0x0200 flattenhleaders
0x0010 breakafterdir 0x0400 balanceinlinemath

0x0020 removemarginkerns
The order in which the skips get inserted when we normalize is as follows:

\lefthangskip the hanging indentation (or zero)
\leftskip the value even when zero
\parfillleftskip only on the last line
\parinitleftskip only on the first line
\indentskip the amount of indentation

.. the (optional) content
\parinitrightskip only on the first line
\parfillrightskip only on the last line
\correctionskip the correction needed to stay within the \hsize
\rightskip the value even when zero
\righthangskip the hanging indentation (or zero)

The init and fill skips can both show up when we have a single line. The correction skip replaces the
traditional juggling with the right skip and shift of the boxed line.

For now we leave the other options to your imagination. Some of these can be achieved by callbacks
(as we did in older versions of ConTEXt) but having the engine do the work we get a better performance.

235

865 \normalizeparmode

For now we just mention the few options available. It is also worth mentioning that LuaMetaTgX tries
to balance the direction nodes.

0x01 normalizepar 0x08 keepinterlinepenalties

0x02 flattenvleaders 0x10 removetrailingspaces

0x04 limitprevgraf

866 \noscript

In math we can have multiple pre- and postscript. These get typeset in pairs and this primitive can be
used to skip one. More about multiple scripts (and indices) can be found in the ConTgXt math manual.

867 \nospaces

When \nospaces is set to 1 no spaces are inserted, when its value is 2 a zero space is inserted.
The default value is 0 which means that spaces become glue with properties depending on the font,
specific parameters and/or space factors determined preceding characters. A value of 3 will inject
a glyph node with code \spacechar. The values 4, 5 and 6 insert a fixed space. With 5 there is no
stretch and 6 sets the width to the width of a zero.

868 \nosubprescript

This processes the given script in the current style, so:

comes out as: 2x + X +2X.

869 \nosubscript
This processes the given script in the current style, so:

comes out as: Xz + Xy + Xa.

870 \nosuperprescript
This processes the given script in the current style, so:

comes out as: 2x + 2x + 2x.

871 \nosuperscript
This processes the given script in the current style, so:

comes out as: X2 + 2x + 2x.

872 \notexpanded

This is an equivalent of \unexpanded which happens to be a ConTgXt prefix (the pre-e-TgX equivalent
of \protected). It permits us to transition to a regular primitive with the benefits that comes with
primitives, line overload protection, syntax highlighting, etc.

236

873 \novrule

This is a rule but flagged as empty which means that the dimensions kick in as for a normal rule but
the backend can decide not to show it.

874 \nulldelimiterspace

In fenced math delimiters can be invisible in which case this parameter determines the amount of
space (width) that ghost delimiter takes.

875 \nullfont

This a symbolic reference to a font with no glyphs and a minimal set of font dimensions.

876 \number
This TgX primitive serializes the next token into a number, assuming that it is indeed a number, like

\number A
\number65
\number\scratchcounter

For counters and such the \the primitive does the same, but when you’re not sure if what follows is a
verbose number or (for instance) a counter the \number primitive is a safer bet, because \the 65 will
not work.

877 \numericscale
This primitive can best be explained by a few examples:

\the\numericscale 1323
\the\numericscale 1323.0
\the\numericscale 1.323
\the\numericscale 13.23

In several places TgX uses a scale but due to the lack of floats it then uses 1000 as 1.0 replacement.
This primitive can be used for ‘real’ scales:

1323000
1323000
1323
13230

878 \numericscaled

This is a variant if \numericscale:

\scratchcounter 1000
\the\numericscaled 1323 \scratchcounter
\the\numericscaled 1323.0 \scratchcounter

237

\the\numericscaled 1.323 \scratchcounter
\the\numericscaled 13.23 \scratchcounter

The second number gets multiplied by the first fraction:

1323000
1323000
1323
13230

879 \numexperimental

Where \numexpr (from e-TgX) only does simple addition, subtraction, multiplication and division, \nu-
mexpression does some more. A next step in functionality is provided by \numexperimental. That
one is discussed in more detail in the the ConTEXt lowlevel manual about expressions.

880 \numexpr

This primitive was introduced by e-TgX and supports a simple expression syntax:

\the\numexpr 10 * (1 + 2 - 5) / 2 \relax

gives: -10. You can mix in symbolic integers and dimensions.

881 \numexpression

The normal \numexpr primitive understands the +, -, * and / operators but in LuaMetaTgX we also
can use : for a non rounded integer division (think of Lua’s //). if you want more than that, you can
use the new expression primitive where you can use the following operators.

add +

subtract -

multiply *

divide /

mod % mod
band & band
bxor ~ bxor
bor | v bor
and && and
or || or
sethit <undecided> bset
resetbit <undecided> breset
left <<

right >>

less <

lessequal <=

equal = ==

moreequal >=

more >

unequal <> I= ~=

not I~ not

238

An example of the verbose bitwise operators is:

\scratchcounter = \numexpression
"00000 bor "00001 bor "00020 bor "00400 bor "08000 bor "FO000
\relax

In the table you might have notices that some operators have equivalents. This makes the scanner a
bit less sensitive for catcode regimes.

When \tracingexpressions is set to one or higher the intermediate ‘reverse polish notation’ stack
that is used for the calculation is shown, for instance:

4:8: {numexpression rpn: 2 5 >4 5 > and}
When you want the output on your console, you need to say:

\tracingexpressions 1
\tracingonline 1

Here are some things that \numexpr is not suitable for but \numexpression can handle:

\scratchcounter = \numexpression
"00000 bor "00001 bor "00020 bor "00400 bor "08000 bor "FO000
\relax

\ifcase \numexpression
(\scratchcounterone > 5) && (\scratchcountertwo > 5)
\relax yes\else nop\fi
882 \omit
This primitive cancels the template set for the upcoming cell. Often it is used in combination with
\span.
883 \optionalboundary

This boundary is used to mark optional content. An positive \optionalboundary starts a range and
a zero one ends it. Nesting is not supported. Optional content is considered when an additional
paragraph pass enables it as part of its recipe.

884 \or

This traditional primitive is part of the condition testing mechanism and relates to an \ifcase test (or
a similar test to be introduced in later sections). Depending on the value, TgX will do a fast scanning
till the right \or is seen, then it will continue expanding till it sees a \or or \else or \orelse (to be
discussed later). It will then do a fast skipping pass till it sees an \fi.

885 \orelse

This primitive provides a convenient way to flatten your conditional tests. So instead of

\ifnum\scratchcounter<-10

239

too small
\else\ifnum\scratchcounter>10
too large
\else
just right
\fi\fi

You can say this:

\ifnum\scratchcounter<-10
too small
\orelse\ifnum\scratchcounter>10
too large
\else
just right
\fi

You can mix tests and even the case variants will work in most cases!*

\ifcase\scratchcounter zero

\or one

\or two
\orelse\ifnum\scratchcounter<10 less than ten
\else ten or more
\fi

Performance wise there are no real benefits although in principle there is a bit less housekeeping
involved than with nested checks. However you might like this:

\ifnum\scratchcounter<-10
\expandafter\toosmall

\orelse\ifnum\scratchcounter>10
\expandafter\toolarge

\else
\expandafter\justright

\fi

over:

\ifnum\scratchcounter<-10
\expandafter\toosmall
\else\ifnum\scratchcounter>10
\expandafter\expandafter\expandafter\toolarge
\else
\expandafter\expandafter\expandafter\justright
\fi\fi

or the more ConTgXt specific:

\ifnum\scratchcounter<-10

14 1 just play safe because there are corner cases that might not work yet.

240

\expandafter\toosmall
\else\ifnum\scratchcounter>10

\doubleexpandafter\toolarge
\else

\doubleexpandafter\justright
\fi\fi

But then, some TgXies like complex and obscure code and throwing away working old code that took
ages to perfect and get working and also showed that one masters TgX might hurt.

There is a nice side effect of this mechanism. When you define:
\def\quitcondition{\orelse\iffalse}
you can do this:

\ifnum\count0<10
less

\orelse\ifnum\count0=10
equal
\quitcondition
indeed

\else
more

\fi

Of course it is only useful at the right level, so you might end up with cases like

\ifnum\count0<10
less
\orelse\ifnum\count0=10
equal
\ifnum\count2=30
\expandafter\quitcondition
\fi
indeed
\else
more
\fi

886 \orphanlinefactors
Normally this (specification) parameter is set in a \parpasses as it supports multiple orphan penalties
with a different weight (starting from the last candidate).

887 \orphanpenalties

This an (single entry) array parameter: first the size is given followed by that amount of penalties.
These penalties are injected before spaces, going backward from the end of a paragraph. When we
see a math node with a penalty set then we take the max and jump over a (preceding) skip.

241

888 \orunless

This is the negated variant of \orelse (prefixing that one with \unless doesn’t work well.

889 \outer

An outer macro is one that can only be used at the outer level. This property is no longer supported.
Like \long, the \outer prefix is now an no-op (and we don’t expect this to have unfortunate side
effects).

890 \output

This token list register holds the code that will be expanded when TgX enters the output routine. That
code is supposed to do something with the content in the box with number \outputbox. By default
this is box 255 but that can be changed with \outputbox.

891 \outputbox

This is where the split off page contend ends up when the output routine is triggered.

892 \outputpenalty

This is the penalty that triggered the output routine.

893 \over

This math primitive is actually a bit of a spoiler for the parser as it is one of the few that looks back.
The \Uover variant is different and takes two arguments. We leave it to the user to predicts the results

$ {1} \over {x} $
$ 1 \over x $
$ 12 \over x / y $
$a+1 \over {x} $

$ \textstyle 1 \over x $
$ {\textstyle 1} \over x $
$ \textstyle {1 \over x} $

It’s one of the reasons why macro packages provide \frac.

894 \overfullrule

When an overfull box is encountered a rule can be shown in the margin and this parameter sets its
width. For the record: ConTgXt does it different.

895 \overline

This is a math specific primitive that draws a line over the given content. It is a poor mans replacement
for a delimiter. The thickness is set with \Umathoverbarrule, the distance between content and rule

242

is set by \Umathoverbarvgap and \Umathoverbarkern is added above the rule. The style used for the
content under the rule can be set with \Umathoverlinevariant.

Because ConTgEXt set up math in a special way, the following example:

\normaloverline {
\blackrule[color=red, height=1lex,depth=0ex,width=2cm]%
\kern-2cm
\blackrule[color=blue, height=0ex,depth=.5ex,width=2cm]
X + X

}

gives: u— + X, while:

\mathfontcontrol\zerocount
\Umathoverbarkern\allmathstyles10pt
\Umathoverbarvgap\allmathstyles5pt
\Umathoverbarrule\allmathstyles2.5pt
\Umathoverlinevariant\textstyle\scriptstyle

|
gives this: —m We have to disable the related \mathfontcontrol bits because otherwise
the thickness is taken from the font. The variant is just there to overload the (in traditional TEX engines)
default.

896 \overloaded

This prefix can be used to overload a frozen macro.

897 \overloadmode

The overload protection mechanism can be used to prevent users from redefining a control sequence.
The mode can have several values, the higher the more strict we are:

immutable permanent primitive frozen instance

1 warning + + +

2 error + + +

3 warning + + + +

4 error + + + +

5 warning + + + + +
6 error + + + + +

When you set a high error value, you can of course temporary lower or even zero the mode. In ConTXt
all macros and quantities are tagged so there setting the mode to 6 gives a proper protection against
overloading. We need to zero the mode when we load for instance tikz, so when you use that generic
package, you loose some.

898 \overshoot

This primitive is a companion to \badness and reports how much a box overflows.

243

\setbox0\hbox to lem {mmm} \the\badness\quad\the\overshoot
\setbox0\hbox {mm} \the\badness\quad\the\overshoot
\setbox0\hbox to 3em {m} \the\badness\quad\the\overshoot

This reports:

1000000 18.44727pt

0 0.0pt

10000 0.0pt

And:

\hbox to 2cm {does it fit} \the\overshoot
\hbox to 2cm {does it fit in here} \the\overshoot

\hbox to 2cm {how much does fit in here} \the\overshoot
gives:

does it fit

0.0pt

does it fitin here
25.64333pt

how much does fit in here
69.53004pt

When traditional TgX wraps up the lines in a paragraph it uses a mix of shift (a box property) to
position the content suiting the hanging indentation and/or paragraph shape, and fills up the line
using right skip glue, also in order to silence complaints in packaging. In LuaMetaTgX the lines can
be normalized so that they all have all possible skips to the left and right (even if they’re zero). The
\overshoot primitive fits into this picture and is present as a compensation glue. This all fits better
in a situation where the internals are opened up via Lua.

899 \overwithdelims

This is a variant of \over but with delimiters. It has a more advanced upgrade in \Uoverwithdelims.

900 \pageboundary

In order to avoid side effects of triggering the page builder with a specific penalty we can use this
primitive which expects a value that actually gets inserted as zero penalty before triggering the page
builder callback. Think of adding a no-op to the contribution list. We fake a zero penalty so that all
gets processed. The main rationale is that we get a better indication of what we do. Of course a
callback can remove this node so that it is never seen. Triggering from the callback is not doable.
Consider this experimental code (which is actually used in ConTgXt anyway).

901 \pagedepth

This page property holds the depth of the page.

902 \pagediscards

The left-overs after a page is split of the main vertical list when glue and penalties are normally
discarded. The discards can be pushed back in (for instance) trial runs.

244

903 \pageexcess

This page property hold the amount of overflow when a page break occurs.

904 \pageextragoal

This (experimental) dimension will be used when the page overflows but a bit of overshoot is consid-
ered okay.

905 \pagefilllstretch

The accumulated amount of third order stretch on the current page.

906 \pagefillstretch

The accumulated amount of second order stretch on the current page.

907 \pagefilstretch

The accumulated amount of first order stretch on the current page.

908 \pagefistretch

The accumulated amount of zero order stretch on the current page.

909 \pagegoal

The target height of a page (the running text). This value will be decreased by the height of inserts
something to keep into mind when messing around with this and other (pseudo) page related parame-
ters like \pagetotal.

910 \pagelastdepth

The accumulated depth of the current page.

911 \pagelastfilllstretch

The accumulated amount of third order stretch on the current page. Contrary to \pagefilllstretch
this is the really contributed amount, not the upcoming.

912 \pagelastfillstretch

The accumulated amount of second order stretch on the current page. Contrary to \pagefillstretch
this is the really contributed amount, not the upcoming.

913 \pagelastfilstretch

The accumulated amount of first order stretch on the current page. Contrary to \pagefilstretch this
is the really contributed amount, not the upcoming.

245

914 \pagelastfistretch

The accumulated amount of zero order stretch on the current page. Contrary to \pagefistretch this
is the really contributed amount, not the upcoming.

915 \pagelastheight

The accumulated height of the current page.

916 \pagelastshrink

The accumulated amount of shrink on the current page. Contrary to \pageshrink this is the really
contributed amount, not the upcoming.

917 \pagelaststretch

The accumulated amount of stretch on the current page. Contrary to \pagestretch this is the really
contributed amount, not the upcoming.

918 \pageshrink

The accumulated amount of shrink on the current page.

919 \pagestretch

The accumulated amount of stretch on the current page.

920 \pagetotal

The accumulated page total (height) of the current page.

921 \pagevsize

This parameter, when set, is used as the target page height. This lessens the change of \vsize inter-
fering.

922 \par

This is the explicit ‘finish paragraph’ command. Internally we distinguish a par triggered by a new
line, as side effect of another primitive or this \par command.

923 \parametercount

The number of parameters passed to the current macro.

924 \parameterdef

Here is an example of binding a variable to a parameter. The alternative is of course to use an \edef.

246

\def\ foo#1#2%
{\parameterdef\MyIndexOne\plusone % 1
\parameterdef\MyIndexTwo\plustwo % 2
\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%
{<1:\MyIndex0One><1:\MyIndexOne>%
#1%
<2:\MyIndexTwo><2:\MyIndexTwo>}

\foo{A}{B}
The outcome is:

<1:A><1:A>P<2:B><2:B><1:A><1:A>Q<2:B><2:B><1:A><1:A>R<2:B><2:B>

925 \parameterindex

This gives the zero based position on the parameter stack. One reason for introducing \parameterdef
is that the position remains abstract so there we don’t need to use \parameterindex.

926 \parametermark

The meaning of primitive \parametermark is equivalent to # in a macro definition, just like \alignmark
is in an alignment. It can be used to circumvent catcode issues. The normal “duplicate them when
nesting” rules apply.

\def\foo\parametermarkl%
{\def\oof\parametermark\parametermarkl
{[\parametermarkl:\parametermark\parametermarkl]}}

Here \foo{X}\oof{Y} gives: [X:Y].

927 \parametermode

Setting this internal integer to a positive value (best use 1 because future versions might use bit set)
will enable the usage of # for escaped in the main text and body of macros.

928 \parattribute

This primitive takes an attribute index and value and sets that attribute on the current paragraph.

929 \pardirection

This set the text direction for the whole paragraph which in the case of r21 (1) makes the right edge
the starting point.

930 \parfillleftskip

The glue inserted at the start of the last line.

247

931 \parfillrightskip

The glue inserted at the end of the last line (aka \parfillskip).

932 \parfillskip

The glue inserted at the end of the last line.

933 \parindent

The amount of space inserted at the start of the first line. When bit 2 is set in \normalizelinemode a
glue is inserted, otherwise an empty \hbox with the given width is inserted.

934 \parinitleftskip

The glue inserted at the start of the first line.

935 \parinitrightskip

The glue inserted at the end of the first line.

936 \paroptions

This adds options to already set options in a paragraph. It is used for experiments so for now just
forget about it.

937 \parpasses

Specifies one or more recipes for additional second linebreak passes. Examples can be found in the
ConTgXt distribution.

938 \parpassesexception

Specifies al alternative parpass to use in the upcoming paragraph, for instance one with a specific
looseness that then demands for instance more emergency stretch.

939 \parshape

Stores a shape specification. The first argument is the length of the list, followed by that amount of
indentation-width pairs (two dimensions).

940 \parshapedimen

This oddly named (e-TgX) primitive returns the width component (dimension) of the given entry (an
integer). Obsoleted by \parshapewidth.

941 \parshapeindent

Returns the indentation component (dimension) of the given entry (an integer).

2438

942 \parshapelength

Returns the number of entries (an integer).

943 \parshapewidth

Returns the width component (dimension) of the given entry (an integer).

944 \parskip

This is the amount of glue inserted before a new paragraph starts.

945 \patterns

The argument to this primitive contains hyphenation patterns that are bound to the current language.
In LuaTgX and LuaMetaTgX we can also manage this at the Lua end. In LuaMetaTgX we don’t store
patterns in te format file

946 \pausing

In LuaMetaTgX this variable is ignored but in other engines it can be used to single step thought the
input file by setting it to a positive value.

947 \penalty

The given penalty (a number) is inserted at the current spot in the horizontal or vertical list. We also
have \vpenalty and \hpenalty that first change modes.

948 \permanent

This is one of the prefixes that is part of the overload protection mechanism. It is normally used to
flag a macro as being at the same level as a primitive: don’t touch it. primitives are flagged as such
but that property cannot be set on regular macros. The similar \immutable flag is normally used for
variables.

949 \pettymuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
1.0mu minus 0.5mu. This one complements \thinmuskip, \medmuskip, \thickmuskip and the new
\tinymuskip.

950 \positdef

The engine uses 32 bit integers for various purposes and has no (real) concept of a floating point
quantity. We get around this by providing a floating point data type based on 32 bit unums (posits).
These have the advantage over native floats of more precision in the lower ranges but at the cost of a
software implementation.

249

The \positdef primitive is the floating point variant of \integerdef and \dimensiondef: an efficient
way to implement named quantities other than registers.

\positdef \MyFloatA 5.678
\positdef \MyFloatB 567.8
[\the\MyFloatA] [\todimension\MyFloatA] [\tointeger\MyFloatA]
[\the\MyFloatB] [\todimension\MyFloatB] [\tointeger\MyFloatB]

For practical reasons we can map posit (or float) onto an integer or dimension:
[5.678000003] [5.678pt] [6]

[567.800003052] [567.80005pt] [568]

951 \postdisplaypenalty

This is the penalty injected after a display formula.

952 \postexhyphenchar

This primitive expects a language number and a character code. A negative character code is equiva-
lent to ignore. In case of an explicit discretionary the character is injected at the beginning of a new
line.

953 \posthyphenchar

This primitive expects a language number and a character code. A negative character code is equiv-
alent to ignore. In case of an automatic discretionary the character is injected at the beginning of a
new line.

954 \postinlinepenalty

When set this penalty is inserted after an inline formula unless we have a short formula and \post-
shortinlinepenalty is set.

955 \postshortinlinepenalty

When set this penalty is inserted after a short inline formula. The criterium is set by \shortinline-
maththreshold but only applied when it is enabled for the class involved.

956 \prebinoppenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

957 \predisplaydirection

This is the direction that the math sub engine will take into account when dealing with right to left
typesetting.

250

958 \predisplaygapfactor

The heuristics related to determine if the previous line in a formula overlaps with a (display) formula
are hard coded but in LuaTgX to be two times the quad of the current font. This parameter is a
multiplier set to 2000 and permits you to change the overshoot in this heuristic.

959 \predisplaypenalty

This is the penalty injected before a display formula.

960 \predisplaysize

This parameter holds the length of the last line in a paragraph when a display formula is part of it.

961 \preexhyphenchar

This primitive expects a language number and a character code. A negative character code is equiv-
alent to ignore. In case of an explicit discretionary the character is injected at the end of the line.
962 \prehyphenchar

This primitive expects a language number and a character code. A negative character code is equiv-
alent to ignore. In case of an automatic discretionary the character is injected at the end of the line.
963 \preinlinepenalty

When set this penalty is inserted before an inline formula unless we have a short formula and
\preshortinlinepenalty is set. These are not real penalties but properties of the math begin and
end markers. Just as with spacing as such property, these penalties are not visible as nodes in the list.
964 \prerelpenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

965 \preshortinlinepenalty

When set this penalty is inserted before a short inline formula. The criterium is set by \shortinline-
maththreshold but only applied when it is enabled for the class involved.

966 \pretolerance

When the badness of a line in a paragraph exceeds this value a second linebreak pass will be enabled.

967 \prevdepth

The depth of current list. It can also be set to special (signal) values in order to inhibit line corrections.
It is not an internal dimension but a (current) list property.

251

968 \prevgraf

The number of lines in a previous paragraph.

969 \previousloopiterator

\edef\testA{
\expandedrepeat 2 {%
\expandedrepeat 3 {%
(\the\previousloopiteratorl:\the\currentloopiterator)

}%
}%
}
\edef\testB{
\expandedrepeat 2 {%
\expandedrepeat 3 {%
(#P:#I) % #G is two levels up
}%
}%
}

These give the same result:

\def \testA { (1:1) (1:
1:

) (1:
\def \testB { (1:1) (1:

2 (2:1) (2:2) (2:3) }
2) (2:2) (2:3) }

3
3) (2:1) (

The number indicates the number of levels we go up the loop chain.

970 \primescript

This is a math script primitive dedicated to primes (which are somewhat troublesome on math). It
complements the six script primitives (like \subscript and \presuperscript).

971 \protected

A protected macro is one that doesn’t get expanded unless it is time to do so. For instance, inside an
\edef it just stays what it is. It often makes sense to pass macros as-is to (multi-pass) file (for tables
of contents).

In ConTgXt we use either \protected or \unexpanded because the later was the command we used to
achieve the same results before e-TgX introduced this protection primitive. Originally the \protected
macro was also defined but it has been dropped.

972 \protecteddetokenize
This is a variant of \protecteddetokenize that uses some escapes encoded as body parameters, like
#H for a hash.

973 \protectedexpandeddetokenize

This is a variant of \expandeddetokenize that uses some escapes encoded as body parameters, like
#H for a hash.

252

974 \protrudechars

This variable controls protrusion (into the margin). A value 2 is comparable with other engines, while
a value of 3 does a bit more checking when we’re doing right-to-left typesetting.

975 \protrusionboundary

This injects a boundary with the given value:

0x00 skipnone
0x01 skipnext
0x02 skipprevious
0x03 skipboth

This signal makes the protrusion checker skip over a node.

976 \pxdimen

The current numeric value of this dimension is 65781, 1.00374pt: one bp. We kept it around because
it was introduced in pdfTEX and made it into LuaTgX, where it relates to the resolution of included
images. In ConTEXt it is not used.

977 \quitloop

There are several loop primitives and they can be quit with \quitloop at the next the next iteration.
An immediate quit is possible with \quitloopnow. An example is given with \localcontrolledloop.
978 \quitloopnow

There are several loop primitives and they can be quit with \quitloopnow at the spot.

979 \quitvmode

This primitive forces horizontal mode but has no side effects when we’re already in that mode.

980 \radical

This old school radical constructor is replaced by \Uradical. It takes a number where the first byte
is the small family, the next two index of this symbol from that family, and the next three the family
and index of the first larger variant.

981 \raise

This primitive takes two arguments, a dimension and a box. The box is moved up. The operation only
succeeds in horizontal mode.

982 \rdivide

This is variant of \divide that rounds the result. For integers the result is the same as \edivide.

253

\the\dimexpr .4999pt : 2 \relax =.24994pt
\the\dimexpr .4999pt / 2 \relax =.,24995pt
\the\dimexpr .4999pt ; 2 \relax =.00002pt
\scratchdimen.4999pt \divide \scratchdimen 2 \the\scratchdimen =.24994pt
\scratchdimen.4999pt \edivide\scratchdimen 2 \the\scratchdimen =.24995pt
\scratchdimen 4999pt \rdivide\scratchdimen 2 \the\scratchdimen =2500.0pt
\scratchdimen 5000pt \rdivide\scratchdimen 2 \the\scratchdimen =2500.0pt
\the\numexpr 1001 \relax =500
\the\numexpr 1001 / 2 \relax =501
\the\numexpr 1001 ; \relax =1

\the\scratchcounter=500
\the\scratchcounter=501
\the\scratchcounter=501

\scratchcounterl1001 \divide \scratchcounter
\scratchcounterl1001 \edivide\scratchcounter
\scratchcounterl1001 \rdivide\scratchcounter

N NDNDNNNDN

0.24994pt=.24994pt
0.24995pt=.24995pt
0.00002pt=.00002pt
0.24994pt=.24994pt
0.24995pt=.24995pt
2500.0pt=2500.0pt

2500.0pt=2500.0pt

500=500
501=501
1=1

500=500
501=501
501=501

The integer division : and modulo ; are an addition to the e-TgX compatible expressions.

983 \rdivideby

This is the by-less companion to \rdivide.

984 \realign

Where \omit suspends a preamble template, this one overloads is for the current table cell. It expects
two token lists as arguments.

985 \relax

This primitive does nothing and is often used to end a verbose number or dimension in a comparison,
for example:

\ifnum \scratchcounter = 123\relax
which prevents a lookahead. A variant would be:

\ifnum \scratchcounter = 123 %

254

assuming that spaces are not ignored. Another application is finishing an expression like \numexpr or
\dimexpr. Iis also used to prevent lookahead in cases like:

\vrule height 3pt depth 2pt width 5pt\relax
\hskip 5pt plus 3pt minus 2pt\relax

Because \relax is not expandable the following:

\edef\foo{\relax} \meaningfull\foo
\edef\oof{\norelax} \meaningfull\oof

gives this:

macro:\relax
macro:

A \norelax disappears here but in the previously mentioned scenarios it has the same function as
\relax. It will not be pushed back either in cases where a lookahead demands that.

986 \relpenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

987 \resetlocalboxes

Its purpose should be clear from the name.

988 \resetmathspacing

This initializes all parameters to their initial values.

989 \restorecatcodetable

This is an experimental feature that should be used with care. The next example shows usage. It was
added when debugging and exploring a side effect.

\tracingonlinel
\bgroup
\catcode 6 = 11 \catcode 7 = 11
\bgroup
\tracingonlinel
current: \the\catcodetable
original: \the\catcode 6\quad \the\catcode 7

\catcode 6 = 11 \catcode 7 = 11

255

\showcodestack\catcode
assigned: \the\catcode 6\quad \the\catcode 7
\showcodestack\catcode
\catcodetable\ctxcatcodes switched: \the\catcodetable
stored: \the\catcode 6\quad \the\catcode 7
\showcodestack\catcode
\restorecatcodetable\ctxcatcodes
\showcodestack\catcode
restored: \the\catcode 6\quad \the\catcode 7
\showcodestack\catcode
\egroup
\catcodetable\ctxcatcodes
inner: \the\catcode 6\quad\the\catcode 7
\egroup
outer: \the\catcode 6\quad\the\catcode 7
In ConTgXt this typesets

current: 9
original: 11 11
assigned: 11 11
switched: 9
stored: 11 11
restored: 12 12
inner: 11 11
outer; 12 12

and on the console we see:

[codestack 1, size 3]

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[codestack 1 bottom]

[codestack 1, size 3]

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]

W wwwwwwwwww
W wwwwwwwwww

256

[codestack 1 bottom]
[codestack 1, size 3]
[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[codestack 1 bottom]
[codestack 1, size 7]

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[5: level 3, code 55, value 11]
[6: level 3, code 54, value 11]
[7: level 3, code 55, value 11]
[8: level 3, code 54, value 11]

[codestack 1 bottom]
[codestack 1, size 7]

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[5: level 3, code 55, value 11]
[6: level 3, code 54, value 11]
[7: level 3, code 55, value 11]
[8: level 3, code 54, value 11]

W wwwwwwwwwwwwwwwwwwwwwwwwwuw
W wwwwwwwwwwwwwwwwwwwwwwwwwuw

[codestack 1 bottom]

So basically \restorecatcodetable brings us (temporarily) back to the global settings.

990 \retained

When a value is assigned inside a group TgX pushes the current value on the save stack in order to
be able to restore the original value after the group has ended. You can reach over a group by using
the \global prefix. A mix between local and global assignments can be achieved with the \retained
primitive.

\MyDim 15pt \bgroup \the\MyDim \space
\bgroup
\bgroup
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\bgroup
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\egroup
\egroup \the\MyDim

\MyDim 15pt \bgroup \the\MyDim \space

257

\bgroup
\bgroup
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\bgroup
\bgroup \global\advance\MyDim1lOpt \the\MyDim \egroup\space
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\egroup
\egroup \the\MyDim

\MyDim 15pt \bgroup \the\MyDim \space
\constrained\MyDim\zeropoint
\bgroup
\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space
\bgroup \retained\advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\bgroup
\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space
\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space
\egroup
\egroup \the\MyDim

These lines result in:

15.0pt 25.0pt 25.0pt 25.0pt 25.0pt 15.0pt
15.0pt 25.0pt 35.0pt 45.0pt 55.0pt 55.0pt
15.0pt 10.0pt 20.0pt 30.0pt 40.0pt 15.0pt

Because LuaMetaTgX avoids redundant stack entries and reassignments this mechanism is a bit fragile
but the \constrained prefix makes sure that we do have a stack entry. If it is needed depends on the
usage pattern.

991 \retokenized
This is a companion of \tokenized that accepts a catcode table, so the whole repertoire is:

\tokenized {test x test: current}
\tokenized catcodetable \ctxcatcodes {test x test: context}
\tokenized catcodetable \vrbcatcodes {test x test: verbatim}
\retokenized \ctxcatcodes {test x test: context}
\retokenized \vrbcatcodes {test x test: verbatim}

Here we pass the numbers known to ConTgXt and get:

test x test: current
test x test: context
test x test: verbatim
test x test: context
test x test: verbatim

258

992 \right

Inserts the given delimiter as right fence in a math formula.

993 \righthyphenmin

This is the minimum number of characters before the first hyphen in a hyphenated word.

994 \rightmarginkern

The dimension returned is the protrusion kern that has been added (if at all) to the left of the content
in the given box.

995 \rightskip

This skip will be inserted at the right of every line.

996 \righttwindemerits

Additional demerits for a glyph sequence at the right edge when a previous line also has that sequence.

997 \romannumeral

This converts a number into a sequence of characters representing a roman numeral. Because the
Romans had no zero, a zero will give no output, a fact that is sometimes used for hacks and showing
off ones macro coding capabilities. A large number will for sure result in a long string because after
thousand we start duplicating.

998 \rpcode

This is the companion of \lpcode (see there) and also takes three arguments: font, character code
and factor.

999 \savecatcodetable

This primitive stores the currently set catcodes in the current table.

1000 \savinghyphcodes

When set to non-zero, this will trigger the setting of \hjcodes from \lccodes for the current font.
These codes determine what characters are taken into account when hyphenating words.

1001 \savingvdiscards

When set to a positive value the page builder will store the discarded items (like glues) so that they
can later be retrieved and pushed back if needed with \pagediscards or \splitdiscards.

259

1002 \scaledemwidth

Returns the current (font specific) emwidth scaled according to \glyphscale and \glyphxscale.

1003 \scaledexheight

Returns the current (font specific) exheight scaled according to \glyphscale and \glyphyscale.

1004 \scaledextraspace

Returns the current (font specific) extra space value scaled according to \glyphscale and \glyphxs-
cale.

1005 \scaledfontcharba

Returns the bottom accent position of the given font-character pair scaled according to \glyphscale
and \glyphyscale.

1006 \scaledfontchardp

Returns the depth of the given font-character pair scaled according to \glyphscale and \gly-
physcale.

1007 \scaledfontcharht

Returns the height of the given font-character pair scaled according to \glyphscale and \gly-
physcale.

1008 \scaledfontcharic

Returns the italic correction of the given font-character pair scaled according to \glyphscale and
\glyphxscale. This property is only real for traditional fonts.

1009 \scaledfontcharta

Returns the top accent position of the given font-character pair scaled according to \glyphscale and
\glyphxscale.

1010 \scaledfontcharwd

Returns width of the given font-character pair scaled according to \glyphscale and \glyphxscale.

1011 \scaledfontdimen

Returns value of a (numeric) font dimension of the given font-character pair scaled according to
\glyphscale and \glyphxscale and/or \glyphyscale. Valid (text font) dimension are:

font dimension
1 slant per point

260

interword space
interword stretch
interword shrink
ex height

em width

extra space

N O O WN

Some traditional TEX fonts provide more and math fonts also have plenty although in OpenType all is
different.
1012 \scaledfontemwidth

This primitive takes a font identifier and returns the em width scaled by the current glyph scales.

1013 \scaledfontexheight

This primitive takes a font identifier and returns the ex height scaled by the current glyph scales.

1014 \scaledfontextraspace

This primitive takes a font identifier and returns the extra space property scaled by the current glyph
scales.

1015 \scaledfontinterwordshrink

This primitive takes a font identifier and returns the shrink component of a space scaled by the current
glyph scales.

1016 \scaledfontinterwordspace

This primitive takes a font identifier and returns the fixed component of a space scaled by the current
glyph scales.

1017 \scaledfontinterwordstretch

This primitive takes a font identifier and returns the stretch component of a space scaled by the current
glyph scales.

1018 \scaledfontslantperpoint

This primitive takes a font identifier and (normally only for an italic font) returns the slant scaled by
the current glyph scales.

1019 \scaledinterwordshrink

Returns the current (font specific) shrink of a space value scaled according to \glyphscale and
\glyphxscale.

261

1020 \scaledinterwordspace

Returns the current (font specific) space value scaled according to \glyphscale and \glyphxscale.

1021 \scaledinterwordstretch

Returns the current (font specific) stretch of a space value scaled according to \glyphscale and
\glyphxscale.

1022 \scaledmathaxis

This primitive returns the math axis of the given math style. It’s a dimension.

1023 \scaledmathemwidth

Returns the emwidth of the given style scaled according to \glyphscale and \glyphxscale.

1024 \scaledmathexheight

Returns the exheight of the given style scaled according to \glyphscale and \glyphyscale.

1025 \scaledmathstyle

This command inserts a signal in the math list that tells how to scale the (upcoming) part of the
formula.

$ x + {\scaledmathstyle900 x} + x$

We get: x + x+x. Of course using this properly demands integration in the macro packages font
system.

1026 \scaledslantperpoint

This primitive is equivalent to \scaledfontdimenl\font where ‘scaled’ means that we multiply by the
glyph scales.

1027 \scantextokens

This primitive scans the input as if it comes from a file. In the next examples the \detokenize primitive
turns tokenized code into verbatim code that is similar to what is read from a file.

\edef\whatever{\detokenize{This is {\bf bold} and this is not.}}
\detokenize {This is {\bf bold} and this is not.}\crlf
\scantextokens{This is {\bf bold} and this is not.}\crlf
\scantextokens{\whatever}\crlf
\scantextokens\expandafter{\whatever}\par

This primitive does not have the end-of-file side effects of its precursor \scantokens.

262

This is {\bf bold} and this is not.
This is bold and this is not.

This is {\bf bold} and this is not.
This is bold and this is not.
1028 \scantokens

Just forget about this e-TgX primitive, just take the one in the previous section.

1029 \scriptfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It
is the middle one of the three family members; its relatives are \textfont and \scriptscriptfont.

1030 \scriptscriptfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It
is the smallest of the three family members; its relatives are \textfont and \scriptfont.

1031 \scriptscriptstyle

One of the main math styles, normally one size smaller than \scriptstyle: integer representation:
6.

1032 \scriptspace

The math engine will add this amount of space after subscripts and superscripts. It can be seen as
compensation for the often too small widths of characters (in the traditional engine italic correction
is used too). It prevents scripts from running into what follows.

1033 \scriptspaceafterfactor

This is a (1000 based) multiplier for \Umathspaceafterscript.

1034 \scriptspacebeforefactor

This is a (1000 based) multiplier for \Umathspacebeforescript.

1035 \scriptspacebetweenfactor

This is a (1000 based) multiplier for \Umathspacebetweenscript.

1036 \scriptstyle

One of the main math styles, normally one size smaller than \displaystyle and \textstyle; integer
representation: 4.

263

1037 \scrollmode

This directive omits error stops.

1038 \semiexpand

This command expands the next macro when it is protected with \semprotected. See that primitive
there for an example.

1039 \semiexpanded

This command expands the tokens in the given list including the macros protected by with \sempro-
tected. See that primitive there for an example.

1040 \semiprotected
The working of this prefix can best be explained with an example. We define a few macros first:

\def\TestA{A}
\semiprotected\def\TestB{B}
\protected\def\TestC{C}

\edef\TestD{\TestA \TestB \TestC}
\edef\TestE{\TestA\semiexpand\TestB\semiexpand\TestC}
\edef\TestF{\TestA\expand \TestB\expand \TestC}

\edef\TestG{\expanded {\TestA\TestB\TestC}}
\edef\TestH{\semiexpanded{\TestA\TestB\TestC}}

The meaning of the macros that are made from the other three are:

Here we use the \normal.. variants because (currently) we still have the macro with the \expanded
in the ConTgEXt core.

A\TestB \TestC
AB\TestC

ABC

A\TestB \TestC
AB\TestC

1041 \setbhox

This important primitive is used to set a box register. It expects a number and a box, like \hbox
or \box. There is no \boxdef primitive (analogue to other registers) because it makes no sense but
numeric registers or equivalents are okay as register value.

1042 \setdefaultmathcodes

This sets the math codes of upper- and lowercase alphabet and digits and the delimiter code of the
period. It’s not so much a useful feature but more just an accessor to the internal initializer.

264

1043 \setfontid

Internally a font instance has a number and this number is what gets assigned to a glyph node. You
can get the number with \fontid an set it with \setfontid.

\setfontid\fontid\font

The code above shows both primitives and effectively does nothing useful but shows the idea.

1044 \setlanguage

In LuaTgX and LuaMetaTgX this is equivalent to \language because we carry the language in glyph
nodes instead of putting triggers in the list.

1045 \setmathatomrule

The math engine has some built in logic with respect to neighboring atoms that change the class. The
following combinations are intercepted and remapped:

old first old second new first new second
begin binary ordinary ordinary
operator binary operator ordinary
open binary open ordinary
punctuation binary punctuation ordinary
binary end ordinary ordinary
binary binary binary ordinary
binary close ordinary close
binary punctuation ordinary punctuation
binary relation ordinary relation
relation binary relation ordinary
relation close ordinary close

relation punctuation ordinary punctuation
You can change this logic if needed, for instance:
\setmathatomrule 1 2 \allmathstyles 1 1

Keep in mind that the defaults are what users expect. You might set them up for additional classes
that you define but even then you probably clone an existing class and patch its properties. Most extra
classes behave like ordinary anyway.

1046 \setmathdisplaypostpenalty

This penalty is inserted after an item of a given class but only in inline math when display style is used,
for instance:

\setmathdisplayprepenalty 2 750

265

1047 \setmathdisplayprepenalty

This penalty is inserted before an item of a given class but only in inline math when display style is
used, for instance:

\setmathdisplayprepenalty 2 750

1048 \setmathignore
You can flag a math parameter to be ignored, like:

\setmathignore \Umathxscale 2
\setmathignore \Umathyscale 2
\setmathignore \Umathspacebeforescript 1
\setmathignore \Umathspacebetweenscript 1
\setmathignore \Umathspaceafterscript 1

A value of two will not initialize the variable, so its old value (when set) is kept. This is somewhat
experimental and more options might show up.

1049 \setmathoptions

This primitive expects a class (number) and a bitset.

0x00000001 mnopreslack 0x00004000 raiseprime

0x00000002 nopostslack 0x00008000 carryoverlefttopkern
0x00000004 lefttopkern 0x00010000 carryoverrighttopkern
0x00000008 righttopkern 0x00020000 carryoverleftbottomkern
0x00000010 leftbottomkern 0x00040000 carryoverrightbottomkern
0x00000020 rightbottomkern 0x00080000 preferdelimiterdimensions
0x00000040 lookaheadforend 0x00100000 autoinject

0x00000080 mnoitaliccorrection 0x00200000 removeitaliccorrection
0x00000100 checkligature 0x00400000 operatoritaliccorrection
0x00000200 checkitaliccorrection 0x00800000 shortinline

0x00000400 checkkernpair 0x01000000 pushnesting

0x00000800 flatten 0x02000000 popnesting

0x00001000 omitpenalty 0x04000000 obeynesting

0x00002000 unpack

1050 \setmathpostpenalty

This penalty is inserted after an item of a given class but only in inline math when text, script or
scriptscript style is used, for instance:

\setmathpostpenalty 2 250

1051 \setmathprepenalty

This penalty is inserted before an item of a given class but only in inline math when text, script or
scriptscript style is used, for instance:

266

\setmathprepenalty 2 250

1052 \setmathspacing

More details about this feature can be found in ConTgXt but it boils down to registering what spacing
gets inserted between a pair of classes. It can be defined per style or for a set of styles, like:

\inherited\setmathspacing
\mathimplicationcode \mathbinarycode
\alldisplaystyles \thickermuskip

\inherited\setmathspacing
\mathradicalcode \mathmiddlecode
\allunsplitstyles \pettymuskip

Here the \inherited prefix signals that a change in for instance \pettymuskip is reflected in this
spacing pair. In ConTgXt there is a lot of granularity with respect to spacing and it took years of
experimenting (and playing with examples) to get at the current stage. In general users are not
invited to mess around too much with these values, although changing the bound registers (here
\pettymuskip and thickermuskip) is no problem as it consistently makes related spacing pairs follow.

1053 \sfcode

You can set a space factor on a character. That factor is used when a space factor is applied (as part of
spacing). It is (mostly) used for adding a different space (glue) after punctuation. In some languages
different punctuation has different factors.

1054 \shapingpenaltiesmode

Shaping penalties are inserted after the lines of a \parshape and accumulate according to this mode,
a bitset of:

0x01 interlinepenalty
0x02 widowpenalty
0x04 clubpenalty
0x08 brokenpenalty

1055 \shapingpenalty
In order to prevent a \parshape to break in unexpected ways we can add a dedicated penalty, specified
by this parameter.

1056 \shipout

Because there is no backend, this is not supposed to be used. As in traditional TgX a box is grabbed
but instead of it being processed it gets shown and then wiped. There is no real benefit of turning it
into a callback.

1057 \shortinlinemaththreshold

This parameter determines when an inline formula is considered to be short. This criterium is used
for for \preshortinlinepenalty and \postshortinlinepenalty.

267

1058 \shortinlineorphanpenalty

Short formulas at the end of a line are normally not followed by something other than punctuation.
This penalty will discourage a break before a short inline formula. In practice one can set this penalty
to e.g. a relatively low 200 to get the desired effect.

1059 \show

Prints to the console (and/or log) what the token after it represents.

1060 \showbox

The given box register is shown in the log and on te console (depending on \tracingonline. How
much is shown depends on \showboxdepth and \showboxbreadth. In LuaMetaTgX we show more
detailed information than in the other engines; some specific information is provided via callbacks.

1061 \showboxbreadth

This primitives determine how much of a box is shown when asked for or when tracing demands it.

1062 \showboxdepth

This primitives determine how deep tracing a box goes into the box. Some boxes, like the ones that
has the assembled page.

1063 \showcodestack

This inspector is only useful for low level debugging and reports the current state of for instance the
current catcode table: \showcodestack\catcode. See \restorecatcodes for an example.

1064 \showgroups

This primitive reports the group nesting. At this spot we have a not so impressive nesting:

2:3: simple group entered at line 9375:

1:3: semisimple group: \begingroup

0:3: bottomlevel

1065 \showifs

This primitive will show the conditional stack in the log file or on the console (assuming \tracin-
gonline being non-zero). The shown data is different from other engines because we have more
conditionals and also support a more flat nesting model

1066 \showlists

This shows the currently built list.

268

1067 \shownodedetails

When set to a positive value more details will be shown of nodes when applicable. Values larger than
one will also report attributes. What gets shown depends on related callbacks being set.

1068 \showstack

This tracer is only useful for low level debugging of macros, for instance when you run out of save
space or when you encounter a performance hit.

test\scratchcounter® \showstack
{test\scratchcounterl \showstack}
{{test\scratchcounterl \showstack}}

reports

1:3: [savestack size 0]

1:3: [savestack bottom]

2:3: [savestack size 2]

2:3: [1: restore, level 1, cs \scratchcounter=integer 1]

2:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
2:3: [savestack bottom]

[savestack size 3]

[2: restore, level 1, cs \scratchcounter=integer 1]

[1: boundary, group 'simple', boundary 0, attrlist 3600, line 12]

[0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
[savestack bottom]

w w w ww
w w w ww

while

test\scratchcounterl \showstack
{test\scratchcounterl \showstack}
{{test\scratchcounterl \showstack}}

shows this:

1:3: [savestack size 0]
1:3: [savestack bottom]

2:3: [savestack size 1]

2:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
2:3: [savestack bottom]

3:3: [savestack size 2]

3:3: [1: boundary, group 'simple', boundary 0, attrlist 3600, line 16]

3:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
3:3: [savestack bottom]

Because in the second example the value of \scratchcounter doesn’t really change inside the group
there is no need for a restore entry on the stack. In LuaMetaTgX there are checks for that so that we

269

consume less stack space. We also store some states (like the line number and current attribute list
pointer) in a stack boundary.
1069 \showthe

Prints to the console (and/or log) the value of token after it.

1070 \showtokens

This command expects a (balanced) token list, like
\showtokens{a few tokens}

Depending on what you want to see you need to expand:
\showtokens\expandafter{\the\everypar}

which is equivalent to \showthe\everypar. It is an e-TEX extension.

1071 \singlelinepenalty

This is a penalty that gets injected before a paragraph that has only one line. It is a one-shot parameter,
so like \looseness it only applies to the upcoming (or current) paragraph.

1072 \skewchar

This is an (imaginary) character that is used in math fonts. The kerning pair between this character
and the current one determines the top anchor of a possible accent. In OpenType there is a dedicated
character property for this (but for some reason not for the bottom anchor).

1073 \skip

This is the accessor for an indexed skip (glue) register.

1074 \skipdef

This command associates a control sequence with a skip register (accessed by number).

1075 \snapshotpar

There are many parameters involved in typesetting a paragraph. One complication is that parameters
set in the middle might have unpredictable consequences due to grouping, think of:

text text <some setting> text text \par
text {text <some setting> text } text \par

This makes in traditional TgX because there is no state related to the current paragraph. But in Lua-
TeX we have the initial so called par node that remembers the direction as well as local boxes. In
LuaMetaTgX we store way more when this node is created. That means that later settings no longer
replace the stored ones.

270

The \snapshotpar takes a bitset that determine what stored parameters get updated to the current

values.

0x00000001 hsize 0x00000800 linepenalty 0x00400000 toddlerpenalty
0x00000002 skip 0x00001000 clubpenalty 0x00800000 emergency
0x00000004 hang 0x00002000 widowpenalty 0x01000000 parpasses
0x00000008 indent 0x00004000 displaypenalty 0x02000000 linesnapping
0x00000010 parfill 0x00008000 brokenpenalty 0x04000000 singlelinepenalty
0x00000020 adjust 0x00010000 demerits 0x08000000 hyphenpenalty
0x00000040 protrude 0x00020000 shape 0x10000000 linebreakchecks
0x00000080 tolerance 0x00040000 line 0x20000000 twindemerits
0x00000100 stretch 0x00080000 hyphenation 0x40000000 fitnessclasses
0x00000200 looseness 0x00100000 shapingpenalty

0x00000400 lastline 0x00200000 orphanpenalty

One such value covers multiple values, so for instance skip is good for storing the current \leftskip
and \rightskip values. More about this feature can be found in the ConTgXt documentation.

The list of parameters that gets reset after a paragraph is longer than for pdfTgX and LuaMeta-
TeX: \emergencyleftskip, \emergencyrightskip, \hangafter, \hangindent, \interlinepenalties,
\localbrokenpenalty, \localinterlinepenalty, \localpretolerance, \localtolerance, \loose-
ness, \parshape and \singlelinepenalty.

1076 \spacechar

When \nospaces is set to 3 a glyph node with the character value of this parameter is injected.

1077 \spacefactor

The space factor is a somewhat complex feature. When during scanning a character is appended that
has a \sfcode other than 1000, that value is saved. When the time comes to insert a space triggered
glue, and that factor is 2000 or more, and when \xspaceskip is nonzero, that value is used and we’re
done.

If these criteria are not met, and \spaceskip is nonzero, that value is used, otherwise the space
value from the font is used. Now, it if the space factor is larger than 2000 the extra space value
from the font is added to the set value. Next the engine is going to tweak the stretch and shrink if
that value and in LuaMetaTgX that can be done in different ways, depending on \spacefactormode,
\spacefactorstretchlimit and \spacefactorshrinklimit.

First the stretch. When the set limit is 1000 or more and the saved space factor is also 1000 or more,
we multiply the stretch by the limit, otherwise the saved space factor is used.

Shrink is done differently. When the shrink limit and space factor are both 1000 or more, we will scale
the shrink component by the limit, otherwise we multiply by the saved space factor but here we have
three variants, determined by the value of \spacefactormode.

In the first case, when the limit kicks in, a mode value 1 will multiply by limit and divides by 1000. A
value of 2 multiplies by 2000 and divides by the limit. Other mode values multiply by 1000 and divide
by the limit. When the limit is not used, the same happens but with the saved space factor.

271

If this sounds complicated, here is what regular TgX does: stretch is multiplied by the factor and
divided by 1000 while shrink is multiplied by 1000 and divided by the saved factor. The (new) mode
driven alternatives are the result of extensive experiments done in the perspective of enhancing the
rendering of inline math as well as additional par builder passes. For sure alternative strategies are
possible and we can always add more modes.

A better explanation of the default strategy around spaces can be found in (of course) The TgXbook
and TgX by Topic.

1078 \spacefactormode

Its setting determines the way the glue components (currently only shrink) adapts itself to the current
space factor (determined by by the character preceding a space).

1079 \spacefactoroverload

When set to value between zero and thousand, this value will be used when TgX encounters a below
thousand space factor situation (usually used to suppress additional space after a period following an
uppercase character which then gets (often) a 999 space factor. This feature only kicks in when the
overload flag is set in the glyph options, so it can be applied selectively.

1080 \spacefactorshrinklimit

This limit is used when \spacefactormode is set. See \spacefactor for a bit more explanation.

1081 \spacefactorstretchlimit

This limit is used when \spacefactormode is set. See \spacefactor for a bit more explanation.

1082 \spaceskip

Normally the glue inserted when a space is encountered is taken from the font but this parameter can
overrule that.

1083 \spaceskipfactor

This is a multiplier, with the usual 1000 meaning 1.000, that get applied to the amount, stretch and
shrink components of space glue. It is mostly there for demonstration purposes, and usually giving it
a value other that 1000 gives less optimal results.

1084 \span

This primitive combined two upcoming cells into one. Often it is used in combination with \omit.
However, in the preamble it forces the next token to be expanded, which means that nested \tabskips
and align content markers are seen.

1085 \specificationcount

See section 2.28 for more about specifications. This primitive returns an integer indicating how many
entries the specification has.

272

\the\specificationcount\widowpenalties

Gives in ConTgXt: 1.

1086 \specificationdef

There are some datastructures that are like arrays: \adjacentdemerits, \brokenpenalties,
\clubpenalties, \displaywidowpenalties, \fitnessclasses, \interlinepenalties, \mathback-
wardpenalties, \mathforwardpenalties, \orphanpenalties, \parpasses, \parshape and \widow-
penalties. They accept a counter than tells how many entries follow and depending in the specifica-
tion options, keywords and/or just values are expected.

With \specificationdef you can define a command that holds such an array and that can be used
afterwards as a fast way to enable that specification. The way it work is as follows:

\specificationdef\MyWidowPenalties
\widowpenalties 4 2000 1000 500 250
\relax

where the relax is optional but a reasonabel way to make sure we end the definition (when keywords
are used, as in \parpasses it prevents running into unexpected keywords.

1087 \specificationfirst

See section 2.28 for more about specifications. This primitive returns an integer or dimension.
\the\specificationfirst\widowpenalties 1

Gives in ConTgXt: 2000.

1088 \specificationoptions
0x\tohexadecimal\specificationoptions\widowpenalties

Gives in ConTgXt: 0x20.

1089 \specificationsecond
\the\specificationsecond\widowpenalties 1

Gives in ConTgXt: 2000.

1090 \splitbotmark

This is a reference to the last mark on the currently split off box, it gives back tokens.

1091 \splitbotmarks

This is a reference to the last mark with the given id (a number) on the currently split off box, it gives
back tokens.

273

1092 \splitdiscards

When a box is split off, items like glue are discarded. This internal register keeps the that list so that
it can be pushed back if needed.

1093 \splitextraheight

A possible (permissive) overrun of the split off part in a \vsplit.

1094 \splitfirstmark

This is a reference to the first mark on the currently split off box, it gives back tokens.

1095 \splitfirstmarks

This is a reference to the first mark with the given id (a number) on the currently split off box, it gives
back tokens.

1096 \splitlastdepth

This returns the last depth in a vsplit.

1097 \splitlastheight

This returns the last (accumulated) height in a vsplit.

1098 \splitlastshrink

This returns the last (accumulated) shrink in a vsplit.

1099 \splitlaststretch

This returns the last (accumulated) stretch in a vsplit.

1100 \splitmaxdepth

The depth of the box that results from a \vsplit.

1101 \splittopskip

This is the amount of glue that is added to the top of a (new) split of part of a box when \vsplit is
applied.

1102 \srule

This inserts a rule with no width. When a font and a char are given the height and depth of that
character are taken. Instead of a font fam is also accepted so that we can use it in math mode.

274

1103 \string

We mention this original primitive because of the one in the next section. It expands the next token
or control sequence as if it was just entered, so normally a control sequence becomes a backslash
followed by characters and a space.

1104 \subprescript

Instead of three or four characters with catcode 8 (or) this primitive can be used. It will add
the following argument as lower left script to the nucleus.

1105 \subscript

Instead of one or two characters with catcode 7 (_ or) this primitive can be used. It will add the
following argument as upper left script to the nucleus.

1106 \superprescript

(/\/\/\

Instead of three or four characters with catcode 7 or ~~"") this primitive can be used. It will add
the following argument as upper left script to the nucleus.

1107 \superscript

Instead of one or two character with catcode 7 (™ or *")t his primitive can be used. It will add the
following argument as upper right script to the nucleus.

1108 \supmarkmode

As in other languages, TgX has ways to escape characters and get whatever character needed into the
input. By default multiple ~ are used for this. The dual ~" variant is a bit weird as it is not continuous
but ***" and """ provide four or six byte hexadecimal references ot characters. The single " is
also used for superscripts but because we support prescripts and indices we get into conflicts with
the escapes.

When this internal quantity is set to zero, multiple *’s are interpreted in the input and produce char-
acters. Other values disable the multiple parsing in text and/or math mode:

\normalsupmarkmode® $ X"58 \quad X""58 $
\normalsupmarkmodel $ X"58 \quad X*"58 $ ~"58
\normalsupmarkmode2 $ X~58 \quad X*"58 $ % 7”58 : error

In ConTgXt we default to one but also have the \catcode set to 12, and the \amcode to 7.
X°8 XX

X8 X°8X

X8 X°8

1109 \swapcsvalues

Because we mention some def and let primitives here, it makes sense to also mention a primitive
that will swap two values (meanings). This one has to be used with care. Of course that what gets

275

swapped has to be of the same type (or at least similar enough not to cause issues). Registers for
instance store their values in the token, but as soon as we are dealing with token lists we also need
to keep an eye on reference counting. So, to some extend this is an experimental feature.

\scratchcounterone 1 \scratchcountertwo 2
(\the\scratchcounterone, \the\scratchcountertwo)
\swapcsvalues \scratchcounterone \scratchcountertwo
(\the\scratchcounterone, \the\scratchcountertwo)
\swapcsvalues \scratchcounterone \scratchcountertwo
(\the\scratchcounterone, \the\scratchcountertwo)

\scratchcounterone 3 \scratchcountertwo 4
(\the\scratchcounterone, \the\scratchcountertwo)
\bgroup

\swapcsvalues \scratchcounterone \scratchcountertwo
(\the\scratchcounterone, \the\scratchcountertwo)
\egroup
(\the\scratchcounterone,\the\scratchcountertwo)

We get similar results:

(1,2)
(2,1)
(1,2)

(3,4)
(4,3)
(3,4)

1110 \tabsize

This primitive can be used in the preamble of an alignment and sets the size of a column, as in:

\halign{%
\aligncontent \aligntab
\aligncontent\tabsize 3cm \aligntab
\aligncontent \aligntab

\aligncontent\tabsize 0cm \cr

1 \aligntab 111\aligntab 1111\aligntab 11\cr

222\aligntab 2 \aligntab 2222\aligntab 22\cr
}

As with \tabskip you need to reset the value explicitly, so that is why we get two wide columns:

P A ¢ Y ¢ ¢ Y A
22202 P222 22
1111 \tabskip

This traditional primitive can be used in the preamble of an alignment and sets the space added
between columns, for example:

276

\halign{%
\aligncontent \aligntab
\aligncontent\tabskip 3cm \aligntab
\aligncontent \aligntab

\aligncontent\tabskip Ocm \cr
1 \aligntab 111\aligntab 1111\aligntab 11\cr
222\aligntab 2 \aligntab 2222\aligntab 22\cr

}

You need to reset the skip explicitly, which is why we get it applied twice here:

1 1 s 1 e 1

22221 22227 272

1112 \textdirection

This set the text direction to 12r (0) or r21 (1). It also triggers additional checking for balanced
flipping in node lists.

1113 \textfont

This primitive is like \ font but with a family number as (first) argument so it is specific for math. It is
the largest one of the three family members; its relatives are \scriptfont and \scriptscriptfont.
1114 \textstyle

One of the main math styles; integer representation: 2.

1115 \the

The \the primitive serializes the following token, when applicable: integers, dimensions, token reg-
isters, special quantities, etc. The catcodes of the result will be according to the current settings, so
in \the\dimen0, the pt will have catcode ‘letter’ and the number and period will become ‘other’.

1116 \thewithoutunit

The \the primitive, when applied to a dimension variable, adds a pt unit. because dimensions are
the only traditional unit with a fractional part they are sometimes used as pseudo floats in which
case \thewithoutunit can be used to avoid the unit. This is more convenient than stripping it off
afterwards (via an expandable macro).

1117 \thickmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
5.0mu plus 3.0mu minus 1.0mu. In traditional TEX most inter atom spacing is hard coded using the
predefined registers.

1118 \thinmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
3.0mu. In traditional TEX most inter atom spacing is hard coded using the predefined registers.

277

1119 \time

This internal number starts out with minute (starting at midnight) that the job started.

1120 \tinymuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
2.0mu minus 1.0mu. This one complements \thinmuskip, \medmuskip, \thickmuskip and the new
\pettymuskip

1121 \tocharacter

The given number is converted into an utf-8 sequence. In LuaTgX this one is named \Uchar.

1122 \toddlerpenalties

This an (possible double entry) array parameter: first the size is given followed by that amount of
penalties (can be pairs). These penalties are injected after (and before) single glyphs bounded by
spaces, going backward from the end of a sequence of them.

1123 \todimension

The following code gives this: 1234.0pt and like its numeric counterparts accepts anything that re-
sembles a number this one goes beyond (user, internal or pseudo) registers values too.

\scratchdimen = 1234pt \todimension\scratchdimen

1124 \tohexadecimal
The following code gives this: 4D2 with uppercase letters.

\scratchcounter = 1234 \tohexadecimal\scratchcounter

1125 \tointeger
The following code gives this: 1234 and is equivalent to \number.

\scratchcounter = 1234 \tointeger\scratchcounter

1126 \tokenized
Just as \expanded has a counterpart \unexpanded, it makes sense to give \detokenize a companion:

\edef\foo{\detokenize{\inframed{foo}}}
\edef\oof{\detokenize{\inframed{oof}}}

\meaning\foo \crlf \dontleavehmode\foo

\edef\foo{\tokenized{\foo\foo}}

278

\meaning\foo \crlf \dontleavehmode\foo
\dontleavehmode\tokenized{\foo\oof}

macro:\inframed {foo}
\inframed {foo}

macro:\inframed {foo}\inframed {foo}
foo|foo

foo|fooloof

This primitive is similar to:
\def\tokenized#1{\scantextokens\expandafter{\expanded{#1}}}

and should be more efficient, not that it matters much as we don’t use it that much (if at all).

1127 \toks

This is the accessor of a token register so it expects a number or \toksdef’d macro.

1128 \toksapp
One way to append something to a token list is the following:
\scratchtoks\expandafter{\the\scratchtoks more stuff}

This works all right, but it involves a copy of what is already in \scratchtoks. This is seldom a real
issue unless we have large token lists and many appends. This is why LuaTgX introduced:

\toksapp\scratchtoks{more stuff}
\toksapp\scratchtoksone\scratchtokstwo

At some point, when working on LuaMetaTgX, I realized that primitives like this one and the next
appenders and prependers to be discussed were always on the radar of Taco and me. Some were even
implemented in what we called eetex: extended e-TEX, and we even found back the prototypes, dating
from pre-pdfTEX times.

1129 \toksdef
The given name (control sequence) will be bound to the given token register (a number). Often this
primitive is hidden in a high level macro that manages allocation.

1130 \tokspre

Where appending something is easy because of the possible \expandafter trickery a prepend would
involve more work, either using temporary token registers and/or using a mixture of the (no)expansion
added by e-TgX, but all are kind of inefficient and cumbersome.

\tokspre\scratchtoks{less stuff}
\tokspre\scratchtoksone\scratchtokstwo

279

This prepends the token list that is provided.

1131 \tolerance

When the par builder runs into a line with a badness larger than this value and when \emergencys-
tretch is set a third pass is enabled. In LuaMetaTEX we can have more than one second pass and
there are more parameters that influence the process.

1132 \tolerant

This prefix tags the following macro as being tolerant with respect to the expected arguments. It only
makes sense when delimited arguments are used or when braces are mandate.

\tolerant\def\foo[#1]1#*[#2]1{(#1) (#2)}
This definition makes \ foo tolerant for various calls:
\foo \foo[1l] \foo [1] \foo[l] [2] \foo [1] [2]

these give: ()()(1)()(1)((1)(2) (1)(2). The spaces after the first call disappear because the macro name
parser gobbles it, while in the second case the #* gobbles them. Here is a variant:

\tolerant\def\foo[#1]#, [#2]{!#1!#2!}

\foo[?] x
\foo[?] [?] X

\tolerant\def\foo[#1]#*[#2]{'#1'#2'}

\foo[?] x
\foo[?] [?] X

We now get the following:

Here the #, remembers that spaces were gobbles and they will be put back when there is no further
match. These are just a few examples of this tolerant feature. More details can be found in the lowlevel
manuals.

1133 \tolimitedfloat

This one is somewhat special: it limits the precision to 5 digits which is what TgX at most will give
you. Here are some examples:

\tolimitedfloat 1223.456789
\tolimitedfloat 1223.50100
\tolimitedfloat 1223.46

\the \floatexpr2.1 * 4.2\relax
\tolimitedfloat \floatexpr2.1l * 4.2\relax

280

\tolimitedfloat \floatexpr11111111111111111111\relax

You'll notice that accuracy is far from perfect which has to do with the fact that at some point for
instance large integers have to be mapped onto a double.

1223.45679

1223.50101

1223.45999

8.819999933

8.82000
11110380280723013632.00000

Something similar happens in Lua:

\startluacode

context("%.

20f\\par", .

11111111111111111111)

context("%.10f\\par",.11111111111111111111)
context("%.20g\\par",.11111111111111111111)
context("%.10g\\par",.11111111111111111111)
context("%.20N\\par",.11111111111111111111)
context("%.10N\\par",.11111111111111111111)
context("%.20f\\par",11111111111111111111)
context("%.10f\\par",11111111111111111111)
context("%.20g\\par",11111111111111111111)
context("%.10g\\par",11111111111111111111)
context("%.20N\\par",11111111111111111111)
context("%.10N\\par",11111111111111111111)
\stopluacode

Fortunately we seldom have weird numbers in a TgX run, so the results are maybe sub-optimal but
seldom so extreme because a TgX integer fits into a double.

0.11111111111111110494
0.1111111111
0.11111111111111110494
0.1111111111
0.1171117111111111110494
0.1111111111
11111111111111110656.00000000000000000000
11111111111111110656.0000000000
11111111111111110656
1.111111111e+19
11111111111111110656.0
11111111111111110656.0

1134 \tomathstyle

Internally math styles are numbers, where \displaystyle is 0 and \crampedscriptscriptstyle is
7. You can convert the verbose style to a number with \tomathstyle.

1135 \topmark

This is a reference to the last mark on the previous (split off) page, it gives back tokens.

281

1136 \topmarks

This is a reference to the last mark with the given id (a number) on the previous page, it gives back
tokens.

1137 \topskip

This is the amount of glue that is added to the top of a (new) page.

1138 \toscaled

The following code gives this: 1234.0 is similar to \todimension but omits the pt so that we don’t
need to revert to some nasty stripping code.

\scratchdimen = 1234pt \toscaled\scratchdimen

1139 \tosparsedimension

The following code gives this: 1234pt where ‘sparse’ indicates that redundant trailing zeros are not
shown.

\scratchdimen = 1234pt \tosparsedimension\scratchdimen

1140 \tosparsescaled
The following code gives this: 1234 where ‘sparse’ means that redundant trailing zeros are omitted.

\scratchdimen = 1234pt \tosparsescaled\scratchdimen

1141 \tpack

This primitive is like \vtop but without the callback overhead.

1142 \tracingadjusts

In LuaMetaTgX the adjust feature has more functionality and also is carried over. When set to a positive
values \vadjust processing reports details. The higher the number, the more you’ll get.

1143 \tracingalignments

When set to a positive value the alignment mechanism will keep you informed about what is done in
various stages. Higher values unleash more information, including what callbacks kick in.

1144 \tracingassigns

When set to a positive values assignments to parameters and variables are reported on the console
and/or in the log file. Because LuaMetaTgX avoids redundant assignments these don’t get reported.

282

1145 \tracingbalancing

When set to a positive some insight in the balancing process is given, kind of like with the par builder,
so it can be noisy.

1146 \tracingcommands

When set to a positive values the commands (primitives) are reported on the console and/or in the log
file.

1147 \tracingexpressions

The extended expression commands like \numexpression and \dimexpression can be traced by set-
ting this parameter to a positive value.

1148 \tracingfitness

Because we have more fitness classes we also have (need) a (bit) more detailed tracing.

1149 \tracingfullboxes

When set to a positive value the box will be shown in case of an overfull box. When a quality callback
is set this will not happen as all reporting is then delegated.

1150 \tracinggroups

When set to a positive values grouping is reported on the console and/or in the log file.

1151 \tracinghyphenation

When set to a positive values the hyphenation process is reported on the console and/or in the log file.

1152 \tracingifs

When set some details of what gets tested and what results are seen is reported.

1153 \tracinginserts

A positive value enables tracing where values larger than 1 will report more details.

1154 \tracinglevels
The lines in a log file can be prefixed with some details, depending on the bits set:

0x1 current group
0x2 current input
0x4 catcode table

283

1155 \tracinglists

At various stages the lists being processed can be shown. This is mostly an option for developers.

1156 \tracingloners

With loners we mean ‘widow’” and ‘club’ lines. This tracer can be handy when \doublepenaltymode is
set and facing pages have different penalty values.

1157 \tracinglooseness

This tracer reports some details about the decision made towards a possible loose result.

1158 \tracinglostchars

When set to one characters not present in a font will be reported in the log file, a value of two will also
report this on the console. In ConTEXt we use the missing character instead. Contrary to in LuaTgX
values larger than two have no special meaning and we don’t error.

1159 \tracingmacros

This parameter controls reporting of what macros are seen and expanded.

1160 \tracingmarks

Marks are information blobs that track states that can be queried when a page is handled over to the
shipout routine. They travel through the system in a bit different than traditionally: like like adjusts
and inserts deeply buried ones bubble up to outer level boxes. This parameters controls what progress
gets reported.

1161 \tracingmath

The higher the value, the more information you will get about the various stages in rendering math.
Because tracing of nodes is rather verbose you need to know a bit what this engine does. Conceptually
there are differences between the LuaMetaTgX and traditional engine, like more passes, inter-atom
spacing, different low level mechanisms. This feature is mostly meant for developers who tweak the
many available parameters.

1162 \tracingmvl

When set to a positive value mvl switching is reported.

1163 \tracingnesting

A positive value triggers log messages about the current level.

1164 \tracingnodes

When set to a positive value more details about nodes (in boxes) will be reported. Because this is also
controlled by callbacks what gets reported is macro package dependent.

284

1165 \tracingonline

The engine has two output channels: the log file and the console and by default most tracing (when
enabled) goes to the log file. When this parameter is set to a positive value tracing will also happen
in the console. Messages from the Lua end can be channeled independently.

1166 \tracingorphans

When set to a positive value handling of orphans is shown.

1167 \tracingoutput

Values larger than zero result in some information about what gets passed to the output routine.

1168 \tracingpages

Values larger than one result in some information about the page building process. In LuaMetaTgX
there is more info for higher values.

1169 \tracingparagraphs

Values larger than one result in some information about the par building process. In LuaMetaTgX
there is more info for higher values.

1170 \tracingpasses

In LuaMetaTgX you can configure additional second stage par builder passes and this parameter con-
trols what gets reported on the console and/or in the log file.

1171 \tracingpenalties

This setting triggers reporting of actions due to special penalties in the page builder.

1172 \tracingrestores

When set to a positive values (re)assignments after grouping to parameters and variables are reported
on the console and/or in the log file. Because LuaMetaTgX avoids redundant assignments these don’t
get reported.

1173 \tracingsnapping

This is an experimental feature what we occasionally come back to, so it’s currently undocumented.

1174 \tracingstats

This parameter is a dummy in LuaMetaTgX. There are anyway some statistic reported when the format
is made but for a regular run it is up to the macro package to come up with useful information.

285

1175 \tracingtoddlers

When set to a positive value handling of toddlers is shown.

1176 \tsplit

This splits like \vsplit but it returns a \vtop box instead.

1177 \uccode

When the \uppercase operation is applied the uppercase code of a character is used for the replace-
ment. This primitive is used to set that code, so it expects two character number.

1178 \uchyph

When set to a positive number words that start with a capital will be hyphenated.

1179 \uleaders

This leader adapts itself after a paragraph has been typeset. Here are a few examples:

test \leaders \hbox {x}I\hfill\ test
test \uleaders \hbox{x x x x}\hfill\ test
test \hbox{x x x x}\hskip 3cm plus lcm\ test

test \uleaders \hbox{x x x x}\hskip 3cm plus 1lcm\ test
When an \uleaders is used the glue in the given box will be adapted to the available space.

test XXXXXXXXXXXX XXX XXX XX XXX XXX XX XXX XX XXX XXX XX XX XXX XXX XX XXX XXX XX XXX XX XXX XXX XX XXX XKXXXXXX test

test x X X X test
testxxx X test
test x X X X test

Optionally the callback followed by a number can be given, in which case a callback kicks in that gets
that the node, a group identifier, and the number passed. It permits (for instance) adaptive graphics:

1=i M 6=vi WM 11=xi W\ 16=xvi WP} 21=xxi PN 26=xxvi WP} 31=xxxi W 36=xxxvi WM 41=xli
46=xlvi W 51=]i 56=1vi N 61=1xi VW 66=1xvi N 71=Ixxi W 76=Ixxvi N 81=Ixxxi
86=lxxxvi P} 91=xci WP} 96=xcvi W#) .

These \uleaders can be used in horizontal and vertical mode so we give a few more examples.

\unexpandedloop 1 30 1 {x \hbox{1 2 3}
}

\unexpandedloop 1 30 1 {x {\uleaders \hbox{1l 2 3}\hskip Opt plus 10pt minus
10pt\relax} X }

\unexpandedloop 1 30 1 {x {\uleaders \hbox{l 2 3}\hskip 0pt plus \interwordstretch
minus \interwordshrink} x }

\unexpandedloop 1 30 1 {x {\uleaders \hbox{l 2 3}\hskip 0pt plus 2\interwordstretch
minus 2\interwordshrink} x }

This renders as:

286

x123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx
123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xXx
123xx123xx123xx123xx123xx123xx123xx123x
x123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx
xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xXx
xx123xx123xx123xx123xx123xx123x
x123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx
xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123x
x123xx123xx123xx123xx123xx123xx123x
x123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx
xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123xx123x
x123xx123xx123xx123xx123xx123xx123x

It is clear that the flexibility of the box plays a role in the line break calculations. But in the end the
backend has to do the work which is why it’s a ‘user’ leader. Here is an example of a vertical one.
Compare:

{\green \hrule width \hsize} \par \vskip2pt
\vbox to 40pt {
{\red\hrule width \hsize} \par \vskip2pt
\vbox {
\vskip2pt {\blue\hrule width \hsize} \par
\vskip 10pt plus 10pt minus 10pt
{\blue\hrule width \hsize} \par \vskip2pt
}
\vskip2pt {\red\hrule width \hsize} \par

}
\vskip2pt {\green \hrule width \hsize} \par

with:

{\green \hrule width \hsize} \par \vskip2pt
\vbox to 40pt {
{\red\hrule width \hsize} \par \vskip2pt
\uleaders\vbox {
\vskip2pt {\blue\hrule width \hsize} \par
\vskip 10pt plus 10pt minus 10pt
{\blue\hrule width \hsize} \par \vskip2pt
H\vskip Opt plus 10pt minus 10pt
\vskip2pt {\red\hrule width \hsize} \par
}
\vskip2pt {\green \hrule width \hsize} \par

In the first case we get the this:

but with \uleaders we get:

287

or this:

In the second case we flatten the leaders in the engine by setting the second bit in the \normal-
izeparmode parameter (0x2). We actually do the same with \normalizelinemode where bit 10 is set
(0x200). The delay keyword can be passed with a box to prevent flattening. If we don’t do this in the
engine, the backend has to take care of it. In principle this permits implementing variants in a macro
package. Eventually there will be plenty examples in the ConTEXt code base and documentation. Till
then, consider this experimental.

1180 \unboundary

When possible a preceding boundary node will be removed.

1181 \undent

When possible the already added indentation will be removed.

1182 \underline

This is a math specific primitive that draws a line under the given content. It is a poor mans replace-
ment for a delimiter. The thickness is set with \Umathunderbarrule, the distance between content
and rule is set by \Umathunderbarvgap and \Umathunderbarkern is added above the rule. The style
used for the content under the rule can be set with \Umathunderlinevariant. See \overline for
what these parameters do.

1183 \unexpanded

This is an e-IgX enhancement. The content will not be expanded in a context where expansion is
happening, like in an \edef. In ConTEXt you need to use \normalunexpanded because we already had
a macro with that name.

\def \A{!} \meaning\A
\def \B{?} \meaning\B
\edef\C{\A\B} \meaning\C

\edef\C{\normalunexpanded{\A}\B} \meaning\C

macro: !
macro:?
macro:!?
macro:\A ?

288

1184 \unexpandedendless

This one loops forever so you need to quit explicitly.

1185 \unexpandedloop
As follow up on \expandedloop we now show its counterpart:

\edef\whatever
{\unexpandedloop 1 10 1
{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter
=0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax

\scratchcounter =0\relax \scratchcounter =0\relax }

The difference between the (un)expanded loops and a local controlled one is shown here. Watch the
out of order injection of A’s.

\edef\TestA{\localcontrolledloop 1 5 1 {A}} % out of order
\edef\TestB{\expandedloop 151 {B}}
\edef\TestC{\unexpandedloop 1 51 {C\relax}}

AAAAA
We show the effective definition as well as the outcome of using them

\meaningasis\TestA
\meaningasis\TestB
\meaningasis\TestC

A: \TestA
B: \TestB
C: \TestC

\def \TestA {}
\def \TestB {BBBBB}
\def \TestC {C\relax C\relax C\relax C\relax C\relax }

A:
B: BBBBB
C: CCcCcc

Watch how because it is empty \TestA has become a constant macro because that’s what deep down
empty boils down to.

1186 \unexpandedrepeat

This one takes one instead of three arguments which looks better in simple loops.

289

1187 \unhbox

A box is a packaged list and once packed travels through the system as a single object with properties,
like dimensions. This primitive injects the original list and discards the wrapper.

1188 \unhcopy

This is like \unhbox but keeps the original. It is one of the more costly operations.

1189 \unhpack

This primitive is like \unhbox but without the callback overhead.

1190 \unkern

This removes the last kern, if possible.

1191 \unless
This e-TgX prefix will negate the test (when applicable).

\ifx\one\two YES\else NO\fi
\unless\ifx\one\two NO\else YES\fi

This primitive is hardly used in ConTgXt and we probably could get rid of these few cases.

1192 \unletfrozen

A frozen macro cannot be redefined: you get an error. But as nothing in TgX is set in stone, you can
do this:

\frozen\def\MyMacro{...}
\unletfrozen\MyMacro

and \MyMacro is no longer protected from overloading. It is still undecided to what extend ConTEXt
will use this feature.
1193 \unletprotected

The complementary operation of \letprotected can be used to unprotect a macro, so that it gets
expandable.

\def \MyMacroA{alpha}

\protected \def \MyMacroB{beta}

\edef \MyMacroC{\MyMacroA\MyMacroB}
\unletprotected \MyMacroB

\edef \MyMacroD{\MyMacroA\MyMacroB}
\meaning \MyMacroC\crlf

\meaning \MyMacroD\par

290

Compare this with the example in the previous section:
macro:alpha\MyMacroB

macro:alphabeta

1194 \unpenalty

This removes the last penalty, if possible.

1195 \unskip

This removes the last glue, if possible.

1196 \untraced

Related to the meaning providers is the \untraced prefix. It marks a macro as to be reported by name
only. It makes the macro look like a primitive.

\def\foo{}
\untraced\def\oof{}

\scratchtoks{\foo\foo\oof\oof}
\tracingall \the\scratchtoks \tracingnone

This will show up in the log as follows:

1:4: {\the}
1:5: \foo ->
1:5: \foo ->
1:5: \oof
1:5: \oof

This is again a trick to avoid too much clutter in a log. Often it doesn’t matter to users what the
meaning of a macro is (if they trace at all).!®

1197 \unvbox

A box is a packaged list and once packed travels through the system as a single object with properties,
like dimensions. This primitive injects the original list and discards the wrapper.

1198 \unvcopy

This is like \unvbox but keeps the original. It is one of the more costly operations.

1199 \unvpack

This primitive is like \unvbox but without the callback overhead.

15 An earlier variant could also hide the expansion completely but that was just confusing.

291

1200 \uppercase

See its counterpart \lowercase for an explanation.

1201 \vadjust

This injects a node that stores material that will injected before or after the line where it has become
part of. In LuaMetaTgX there are more features, driven by keywords.

1202 \valign

This command starts vertically aligned material. Its counterpart \halign is used more frequently.
Most macro packages provide wrappers around these commands. First one specifies a preamble
which is then followed by entries (rows and columns).

1203 \variablefam

In traditional TgX sets the family of what are considered variables (class 7) to the current family
(which often means that they adapt to the current alphabet) and then injects a math character of class
ordinary. This parameter can be used to obey the given class when the family set for a character is
the same as this parameter. So we then use the given class with the current family. It is mostly there
for compatibility with LuaTgX and experimenting (outside ConTgXt).

1204 \vbadness

This sets the threshold for reporting a (vertical) badness value, its current value is 0.

1205 \vbadnessmode

This parameter determines what gets reported when the (in the vertical packer) badness exceeds
some limit. The current value of this bitset is "F.

0x01 wunderfull 0x02 loose 0x04 tight 0x08 overfull

1206 \vbalance

In addition to the page builder and vbox splitter we have what’s called a balancer. This routine splits
a vertical list in pieces (slots) according to a specification (see \balanceshape). It can do so in multi-
ple passes (see \balancepasses). The balancing ‘framework’ operates independently from the page
builder and vsplitter.

Because there are multiple primitives involved and because one will normally write decent wrapper,
wd delegate a more detailed explanation to a ConTgXt low level manual.

\setbox 0 \vbox\bgroup \hsize 10em
line 1\par line 2\par line 3\par
line 4\par line 5\par line 6\par
line 7\par line 8\par

\egroup

292

\balancetopskip \strutht
\balancebottomskip \strutht
\balancevsize 3\lineheight
\balancetolerance 100

\balanceemergencystretch 0Opt

\setbox 2 \vbalance 0

\hbox \bgroup
\vbalancedbox 2 \hskip2em
\vbalancedbox 2 \hskip2em
\vbalancedbox 2

\egroup

Here we use a simple specification (no shape). The balancer does a whole list optimization so it does
honor penalties and works with some tolerance too. Decisions are made on badness and demerits.
Like the par builder you can get overfull slots so in practice one might rebalance with different spec-
ifications if that happens.

The results are collected in a box (in this example box register 2) which destroys the original. With
\setbox 2 \vbalance trial 0

we keep the original and the result will have empty boxes with the dimensions of the slots. You can
loop over the result and check the real height with \balanceshapevsize.
line 1 line 3 line 5

line 2 line 4 line 6

1207 \vbalancedbox

This command take the topmost balanced slot from the given balanced box and wraps it in a \vbox.
When there is is no more to fetch the result is void.

1208 \vbalanceddeinsert

This will convert the inserts in the given balancing result into a form that is useable for the balancer.
This is not mandate but needed if you want split insertions. The keyword descend will locate the rele-
vant box and forcedepth will make sure that we get constant depths (but expects \insertlinedepth
being set.

1209 \vbalanceddiscard

One of the features of balancing is that we can can have discardable content at the top and/or bottom
of slots. This primitive will remove discarded content from the given result of \vbalance, like:

\setbox 2 \vbalance 0
\vbalanceddiscard 2

1210 \vbalancedinsert

This one fetches the inserts from a balanced slot result. This happens per insert class.

293

\setbox 4 \vbalancedinsert 2 4

Instead you can give:

\setbox 4 \vbalancedinsert 2 index 4 descend \relax

Here descend will locate the relevant slot box which is handy in case one already wrapped the result
in a box.

1211 \vbalancedreinsert

This will convert the inserts in the given balancing slot result into a more original form, assuming
that \vbalanceddeinsert was applied.. This is not mandate and depends on what is expected further
down the line (read: this is macro package specific). You can use the keyword descend to locate the
relevant slot box.

1212 \vbalancedtop

This command take the topmost balanced slot from the given balanced box and wraps it in a \vbox.
When there is is no more to fetch the result is void.

1213 \vbox

This creates a vertical box. In the process callbacks can be triggered that can preprocess the content,
influence line breaking as well as assembling the resulting paragraph. More can be found in dedicated
manuals. The baseline is at the bottom.

1214 \vcenter

In traditional TgX this box packer is only permitted in math mode but in LuaMetaTgX it also works in
text mode. The content is centered in the vertical box.

1215 \vfil

This is a shortcut for \vskip plus 1 fil (first order filler).

1216 \vfill

This is a shortcut for \vskip plus 1 fill (second order filler).

1217 \vfilneg

This is a shortcut for \vskip plus - 1 fil so it can compensate \vfil.

1218 \vfuzz

This dimension sets the threshold for reporting vertical boxes that are under- or overfull. The current
value is 0.1pt.

294

1219 \virtualhrule

This is a horizontal rule with zero dimensions from the perspective of the frontend but the backend
can access them as set.

1220 \virtualvrule

This is a vertical rule with zero dimensions from the perspective of the frontend but the backend can
access them as set.

1221 \vkern

This primitive is like \kern but will force the engine into vertical mode if it isn’t yet.

1222 \vpack

This primitive is like \vbox but without the callback overhead.

1223 \vpenalty

This primitive is like \penalty but will force the engine into vertical mode if it isn’t yet.

1224 \vrule

This creates a vertical rule. Unless the height and depth are set they will stretch to fix the available
space. In addition to the traditional width, height and depth specifiers some more are accepted.
These are discussed in other manuals. See \hrule for a simple example.

1225 \vsize

This sets (or gets) the current vertical size. While setting the \hsize inside a \vbox has consequences,
setting the \vsize mostly makes sense at the outer level (the page).

1226 \vskip

The given glue is injected in the vertical list. If possible vertical mode is entered.

1227 \vsplit

This operator splits a given amount from a vertical box. In LuaMetaTgX we can split to but also upto,
so that we don’t have to repack the result in order to see how much is actually in there.

1228 \vsplitchecks

This parameter is passed to the show vsplit callback.

1229 \vss

This is the vertical variant of \hss. See there for what it means.

295

1230 \vtop

This creates a vertical box. In the process callbacks can be triggered that can preprocess the content,
influence line breaking as well as assembling the resulting paragraph. More can be found in dedicated
manuals. The baseline is at the top.

1231 \wd

Returns the width of the given box.

1232 \widowpenalties

This is an array of penalty put before the last lines in a paragraph. High values discourage (or even
prevent) a lone line at the beginning of a next page. This command expects a count value indicating
the number of entries that will follow. The first entry is ends up before the last line.

1233 \widowpenalty

This is the penalty put before a widow line in a paragraph. High values discourage (or even prevent)
a lone line at the beginning of a next page.

1234 \wordboundary

The hypenation routine has to decide where a word begins and ends. If you want to make sure that
there is a proper begin or end of a word you can inject this boundary.

1235 \wrapuppar

What this primitive does can best be shown with an example:

some text\wrapuppar{one} and some\wrapuppar{two} more

We get:

some text and some more twoone

So, it is a complementary command to \everypar. It can only be issued inside a paragraph.

1236 \xdef
This is an alternative for \global\edef:

\xdef\MyMacro{...}

1237 \xdefcsname
This is the companion of \xdef:

\expandafter\xdef\csname MyMacro:1l\endcsname{...}
\xdefcsname MyMacro:1l\endcsname{...}

296

1238 \xleaders

See \gleaders for an explanation.

1239 \xspaceskip

Normally the glue inserted when a space is encountered after a character with a space factor other
than 1000 is taken from the font (fontdimen 7) unless this parameter is set in which case its value is
added.

1240 \xtoks

This is the global variant of \etoks.

1241 \xtoksapp

This is the global variant of \etoksapp.

1242 \xtokspre

This is the global variant of \etokspre.

1243 \year

This internal number starts out with the year that the job started.

6.4 Syntax
6.4.1 accent

tex : \accent
[xoffset dimension] [yoffset
dimension] integer character

6.4.2 aftersomething

luametatex : \afterassigned

{tokens}

tex : \afterassignment
token

tex : \aftergroup
token

luametatex : \aftergrouped
{ tokens}

luametatex : \atendoffile
token

luametatex : \atendoffiled
[reverse] {tokens}
luametatex : \atendofgroup

token
luametatex : \atendofgrouped
{ tokens}

6.4.3 alignmenttab

luatex : \aligntab

6.4.4 alignproperty

luametatex : \alignoption
TODO

6.4.5 arithmic

tex : \advance
quantity [by] quantity
luametatex : \advanceby
quantity quantity
tex : \divide
quantity [by] quantity
luametatex : \divideby
quantity quantity

297

luametatex : \edivide
quantity quantity
luametatex : \edivideby
quantity quantity
tex : \multiply
quantity [by] quantity
luametatex : \multiplyby
quantity quantity
luametatex : \rdivide
quantity quantity
luametatex : \rdivideby
quantity quantity

6.4.6 association

luametatex : \associateunit
\cs [=] integer
> \cs : integer

6.4.7 auxiliary

luametatex : \insertmode
integer
: integer
etex : \interactionmode
integer
: Integer
tex : \prevdepth
dimension
: dimension
tex : \prevgraf
integer
: Integer
tex : \spacefactor
integer
: Integer

6.4.8 begingroup
tex : \begingroup

luametatex : \beginmathgroup
luametatex : \beginsimplegroup

6.4.9 beginlocal

luametatex : \beginlocalcontrol

luametatex : \expandedendless
{ tokens}

luametatex : \expandedloop
integerintegerinteger{tokens}

luametatex : \expandedrepeat
integer { tokens }

luametatex : \localcontrol
tokens\endlocalcontrol

luametatex : \localcontrolled
{ tokens}

luametatex : \localcontrolledendless
{ tokens}

luametatex : \localcontrolledloop
see \expandedloop

luametatex : \localcontrolledrepeat
integer { tokens }

luametatex : \unexpandedendless
{ tokens}

luametatex : \unexpandedloop
see \expandedloop

luametatex : \unexpandedrepeat
integer { tokens }

6.4.10 beginparagraph

tex : \indent
tex : \noindent
luametatex : \parattribute
integer [=] integer
luametatex : \paroptions
[=] integer
luatex : \quitvmode
luametatex : \snapshotpar
cardinal
: Integer
luametatex : \undent
luametatex : \wrapuppar
[reverse] {tokens}

6.4.11 boundary

luametatex : \attributeboundary
[=] integer integer
luametatex : \balanceboundary
[=] integer integer
luametatex : \boundary
[=] integer

298

luametatex : \insertboundary
TODO
luametatex : \luaboundary
[=] integer integer
luametatex : \mathboundary
[=] integer [integer]
luametatex : \noboundary
luametatex : \optionalboundary
[=] integer
luametatex : \pageboundary
[=] integer integer
luametatex : \protrusionboundary
[=] integer
luametatex : \wordboundary

6.4.12 boxproperty

luametatex : \boxadapt
(index | box) [=] integer
> (index | box) : dimension
luametatex : \boxanchor
see \boxadapt
luametatex : \boxanchors
(index|box) [=] integer integer
> (index | box) : integer
luametatex : \boxattribute
(index | box) integer [=] integer
> (index | box) integer : integer
luatex : \boxdirection
see \boxadapt
luametatex : \boxfinalize
see \boxadapt
luametatex : \boxfreeze
see \boxadapt
luametatex : \boxgeometry
see \boxadapt
luametatex : \boxinserts
see \boxadapt
luametatex : \boxlimit
(index | box)
luametatex : \boxlimitate
see \boxadapt
luametatex : \boxmigrate
see \boxadapt
luametatex : \boxorientation
see \boxadapt
luametatex : \boxrepack
see \boxlimit

luametatex : \boxshift
(index | box) [=] dimension
> (index|box): dimension

luametatex : \boxshrink
see \boxlimit
luametatex : \boxsnapping
TODO
luametatex : \boxsource
see \boxadapt
luametatex : \boxstretch
see \boxlimit
luametatex : \boxsubtype
see \boxlimit
luametatex : \boxtarget
see \boxadapt
luametatex : \boxtotal
see \boxlimit
luametatex : \boxvadjust

(index | box) { tokens}
> (index | box) : cardinal

luametatex : \boxxmove
see \boxshift
luametatex : \boxxoffset
see \boxshift
luametatex : \boxymove
see \boxshift
luametatex : \boxyoffset
see \boxshift
tex : \dp
see \boxshift
tex : \ht
see \boxshift
tex : \wd

see \boxshift

6.4.13 breakproperty

luametatex : \breaklasthangindent
TODO

luametatex : \breaklasthangleftindent
TODO

luametatex : \breaklasthangleftslack
TODO

luametatex : \breaklasthangrightindent
TODO

luametatex : \breaklasthangrightslack
TODO

luametatex : \breaklasthangslack
TODO

299

luametatex : \breaklastlinecount
TODO

luametatex : \breaklastlinewidth
TODO

6.4.14 caseshift

tex : \lowercase
{ tokens}

tex : \uppercase
{ tokens}

6.4.15 catcodetable

luatex : \initcatcodetable
integer

luametatex :
integer

luatex : \savecatcodetable
integer

\restorecatcodetable

6.4.16 charnumber

tex : \char
integer

luametatex : \glyph
[xoffset dimension] [yoffset
dimension] [scale integer] [xscale
integer] [yscale integer] [left
dimension] [right dimension] [raise
dimension] [options integer] [font
integer] [id integer] [keepspacing]
integer

6.4.17 combinetoks

luametatex : \etoks
toks { tokens}
luatex : \etoksapp
toks { tokens}
luatex : \etokspre
toks { tokens }
luatex : \gtoksapp
toks { tokens}
luatex : \gtokspre
toks { tokens}

luatex : \toksapp
toks { tokens}
luatex : \tokspre
toks { tokens }
luametatex : \xtoks
toks { tokens}
luatex : \xtoksapp
toks { tokens}
luatex : \xtokspre
toks { tokens }

6.4.18 convert

luametatex : \csactive
> token : tokens
luametatex : \csnamestring
: tokens
luatex : \csstring
> token : tokens
luametatex : \detokened

> (\cs | {tokens} | toks) : tokens

luametatex : \detokenized

> { tokens } : tokens
luatex : \directlua

> { tokens} : tokens
luatex : \expanded

> { tokens} : tokens
luametatex : \fontidentifier

> (font | integer) : tokens
tex : \fontname

> (font | integer) : tokens
luametatex : \fontspecifiedname

> (font | integer) : tokens
luatex : \formatname

: tokens
tex : \jobname

: tokens
luatex : \luabytecode

> integer : tokens
luatex : \luaescapestring

> { tokens } : tokens
luatex : \luafunction

> integer : tokens
luatex : \luatexbanner

: tokens
tex : \meaning

> token : tokens
luametatex : \meaningasis

300

> token : tokens
luametatex : \meaningful

> token : tokens
luametatex : \meaningfull

> token : tokens
luametatex : \meaningles

> token : tokens
luametatex : \meaningless

> token : tokens
tex : \number

> integer : tokens
tex : \romannumeral

> integer : tokens
luametatex : \semiexpanded

> { tokens} : tokens
tex : \string

> token : tokens
luametatex : \tocharacter

> integer : tokens
luametatex : \todimension

> dimension : tokens
luametatex : \tohexadecimal

> integer : tokens
luametatex : \tointeger

> integer : tokens
luametatex : \tolimitedfloat

> float : tokens
luametatex : \tomathstyle

> mathstyle : tokens
luametatex : \toscaled

> dimension : tokens
luametatex : \tosparsedimension

> dimension : tokens
luametatex : \tosparsescaled

> dimension : tokens

6.4.19 csname

luatex : \begincsname

tokens\endcsname
tex : \csname

tokens\endcsname
luatex : \futurecsname

tokens\endcsname

luatex : \lastnamedcs

6.4.20 def

luametatex : \cdef

\cs [preamble] { tokens}
luametatex : \cdefcsname

tokens\endcsname [preamble] { tokens}
tex : \def

\cs [preamble] { tokens}
luametatex : \defcsname

tokens\endcsname [preamble] { tokens}
tex : \edef

\cs [preamble] { tokens}
luametatex : \edefcsname

tokens\endcsname [preamble] { tokens}
tex : \gdef

\cs [preamble] { tokens}
luametatex : \gdefcsname

tokens\endcsname [preamble] { tokens}
tex : \xdef

\cs [preamble] { tokens}
luametatex : \xdefcsname

tokens\endcsname [preamble] { tokens}

6.4.21 definecharcode

luatex : \Udelcode
integer [=] integer
> integer : integer
luatex : \Umathcode
integer [=] integer
> integer : integer
luametatex : \amcode
integer [=] integer
> integer : integer
tex : \catcode
integer [=] integer
> integer : integer
luametatex : \cccode
integer [=] integer
> integer : integer
tex : \delcode
integer [=] integer
> integer : integer
luatex : \hccode
integer [=] integer
> integer : integer
luatex : \hmcode
integer [=] integer

301

> integer : integer
tex : \lccode
integer [=] integer
> integer : integer
tex : \mathcode
integer [=] integer
> integer : integer
tex : \sfcode
integer [=] integer
> integer : integer
tex : \uccode
integer [=] integer
> integer : integer

6.4.22 definefamily

tex : \scriptfont
family (font | integer)
> family : integer
tex : \scriptscriptfont
see \scriptfont
tex : \textfont
see \scriptfont

6.4.23 definefont

tex : \font
\cs ({filename} | filename) [(at
dimension | scaled integer)]
: tokens

6.4.24 delimiternumber

luatex : \Udelimiter
integer integer integer
tex : \delimiter
integer

6.4.25 discretionary

tex : \-

luatex : \automaticdiscretionary

tex : \discretionary
[penalty] [postword] [preword]
[break] [nobreak] [options] [class]
[standalone] { tokens} { tokens}

{ tokens}
luatex : \explicitdiscretionary

6.4.26 endcsname

tex : \endcsname

6.4.27 endgroup

tex : \endgroup
luametatex : \endmathgroup
luametatex : \endsimplegroup

6.4.28 endjob

tex : \dump
tex : \end

6.4.29 endlocal

luatex : \endlocalcontrol

6.4.30 endparagraph

luametatex : \localbreakpar
tex : \par

6.4.31 endtemplate

luametatex : \aligncontent
luametatex : \alignloop
TODO
tex : \cr
tex : \crcr
tex : \noalign
{ tokens}
tex : \omit
luametatex : \realign
{ tokens } { tokens}
tex : \span

302

tex : \leqgno
{ tokens}

6.4.33 expandafter

luametatex : \expand
token

luametatex : \expandactive
token

tex : \expandafter
token token

luametatex : \expandafterpars

token

luametatex : \expandafterspaces
token

luametatex : \expandcstoken
token

luametatex : \expandedafter
token { tokens }

luametatex : \expandparameter
integer

luametatex : \expandtoken
token

luametatex : \expandtoks
{ tokens}

luametatex : \futureexpand
token token token

luametatex : \futureexpandis

TODO

luametatex : \futureexpandisap
TODO

luametatex : \semiexpand
token

etex : \unless

6.4.34 explicitspace

tex : \
luametatex : \explicitspace

6.4.35 fontproperty

luametatex : \cfcode

6.4.32 equationnumber (font | integer) integer [=] integer
> (font | integer) integer : integer
tex : \eqno luatex : \efcode

{tokens} see \cfcode

tex : \fontdimen

(font | integer) integer [=] dimension

> (font | integer) integer : dimension
tex : \hyphenchar
(font | integer) [=] integer
> (font | integer) : integer
luatex : \lpcode
see \fontdimen
luatex : \rpcode
see \fontdimen
luametatex : \scaledfontdimen
see \hyphenchar
luametatex : \scaledfontemwidth
> (font | integer) : dimension
luametatex : \scaledfontexheight
> (font | integer) : dimension
luametatex : \scaledfontextraspace
> (font | integer) : dimension
luametatex : \scaledfontinterwordshrink
> (font | integer) : dimension
luametatex : \scaledfontinterwordspace
> (font | integer) : dimension
luametatex : \scaledfontinterwordstretch
> (font | integer) : dimension
luametatex : \scaledfontslantperpoint
> (font | integer) : dimension
tex : \skewchar
see \hyphenchar

6.4.36 getmark

tex : \botmark

etex : \botmarks
integer

luametatex :
integer

tex : \firstmark

etex : \firstmarks
integer

tex : \splitbotmark

etex : \splitbotmarks
integer

tex : \splitfirstmark

etex : \splitfirstmarks
integer

tex : \topmark

etex : \topmarks
integer

\currentmarks

303

6.4.37 halign

tex : \halign
[attr integer integer] [callback
integer] [callbacks integer]
[discard] [noskips] [nolastskip]
[reverse] [to dimension] [spread
dimension] { tokens}

6.4.38 hmove

tex : \moveleft
dimension box

tex : \moveright
dimension box

6.4.39 hrule

tex : \hrule
[attr integer [=] integer] [width
dimension] [height dimension] [depth
dimension] [pair dimension
dimension] [xoffset dimension]
[yoffset dimension] [linesnapping
linesnapping\or] [running]
[discardable] [keepspacing]
[resetspacing] [left dimension]
[right dimension] [top dimension]
[bottom dimension] [on dimension]
[off dimension]

luatex : \nohrule
see \hrule

luametatex : \virtualhrule
see \hrule

6.4.40 hskip

tex : \hfil
tex : \hfill
tex : \hfilneg
tex : \hskip

dimension [plus
(dimension| fi[n*1])] [minus
(dimension | fi[n*1])]

tex : \hss

6.4.41 hyphenation

luatex : \hjcode
integer [=] integer

tex : \hyphenation
{ tokens}

luametatex : \hyphenationmin
[=] integer

tex : \patterns
{ tokens}

luatex : \postexhyphenchar
[=] integer

luatex : \posthyphenchar
[=] integer

luatex : \preexhyphenchar
[=] integer

luatex : \prehyphenchar
[=] integer

6.4.42 iftest

tex : \else

tex : \fi

tex : \if

luatex : \ifabsdim
dimension

(Y]<[=]>]€le|=]=]=]#]|2)

dimension
luametatex : \ifabsfloat

float (1] <|=|>|€|e|=[<]=|#]#)

float
luatex : \ifabsnum
integer

(1]<]=1>[ele]=|<]=] <] %)

integer

luametatex : \ifarguments

luametatex : \ifboolean
integer

tex : \ifcase
integer

tex : \ifcat
token

luametatex : \ifchkdim
tokens\or

luametatex : \ifchkdimension
tokens\or

luametatex : \ifchkdimexpr
tokens\or

304

luametatex : \ifchknum
tokens\or
luametatex : \ifchknumber
tokens\or
luametatex : \ifchknumexpr
tokens\or
luametatex : \ifcmpdim
dimension dimension
luametatex : \ifcmpnum
integer integer
luatex : \ifcondition
\if...
luametatex : \ifcramped
etex : \ifcsname
tokens\endcsname
luametatex : \ifcstok
tokens\relax
etex : \ifdefined
token
tex : \ifdim
see \ifabsdim

luametatex : \ifdimexpression

tokens\relax
luametatex : \ifdimval
tokens\or
luametatex : \ifempty
(token | {tokens})
tex : \iffalse
luametatex : \ifflags
\cs
luametatex : \iffloat
see \ifabsfloat
etex : \iffontchar
integer integer
luametatex : \ifhaschar
token { tokens }
luametatex : \ifhastok
token { tokens }
luametatex : \ifhastoks
tokens\relax
luametatex : \ifhasxtoks
tokens\relax
tex : \ifhbox
(index | box)
tex : \ifhmode
luametatex : \ifinalignment
luametatex : \ifincsname
tokens\endcsname
tex : \ifinner

luatex : \ifinsert
integer

luametatex : \ifintervaldim
dimension dimension dimension

luametatex : \ifintervalfloat
integer integer integer

luametatex : \ifintervalnum
float float float

luametatex : \iflastnamedcs

luametatex : \iflist
see \ifhbox

luametatex : \ifmathparameter
integer

luametatex : \ifmathstyle
mathstyle

tex : \ifmmode

tex : \ifnum
see \ifabsnum

luametatex : \ifnumexpression
tokens\relax

luametatex : \ifnumval
tokens\or

tex : \ifodd
integer

luametatex : \ifparameter
parameter\or

luametatex : \ifparameters

luametatex : \ifrelax

token

luametatex : \ifspecification
TODO

luametatex : \iftok
tokens\relax

tex : \iftrue
tex : \ifvbox
see \ifhbox
tex : \ifvmode
tex : \ifvoid
see \ifhbox

tex : \ifx
token

luametatex : \ifzerodim
dimension

luametatex : \ifzerofloat
float

luametatex : \ifzeronum
integer

tex : \or

luametatex : \orelse

305

luametatex : \orunless

6.4.43 ignoresomething

luatex : \ignorearguments
luatex : \ignorenestedupto
token
luatex : \ignorepars
luatex : \ignorerest
tex : \ignorespaces
luatex : \ignoreupto
token

6.4.44 input

tex : \endinput
luametatex : \eofinput

{tokens} ({filename} | filename)
luametatex : \ignoretokens

{ tokens}
tex : \input

({filename} | filename)
luametatex : \quitloop
luametatex : \quitloopnow
luametatex : \retokenized

[catcodetable] { tokens}
luatex : \scantextokens

{ tokens}
etex : \scantokens

{ tokens}
luametatex : \tokenized

{ tokens}

6.4.45 insert

tex : \insert
integer

6.4.46 interaction

tex : \batchmode

tex : \errorstopmode
tex : \nonstopmode
tex : \scrollmode

6.4.47 internaldimension

luametatex : \balanceemergencyshrink

[=] dimension
: dimension

luametatex : \balanceemergencystretch

[=] dimension
: dimension
luametatex : \balancelineheight
[=] dimension
: dimension
luametatex : \balancevsize
[=] dimension
: dimension
tex : \boxmaxdepth
[=] dimension
: dimension
tex : \delimitershortfall
[=] dimension
: dimension
tex : \displayindent
[=] dimension
: dimension
tex : \displaywidth
[=] dimension
: dimension
tex : \emergencyextrastretch
[=] dimension
: dimension
tex : \emergencystretch
[=] dimension
: dimension
luametatex : \glyphxoffset
[=] dimension
: dimension
luametatex : \glyphyoffset
[=] dimension
: dimension
tex : \hangindent
[=] dimension
: dimension
tex : \hfuzz
[=] dimension
: dimension
tex : \hsize
[=] dimension
: dimension
luatex : \ignoredepthcriterion
[=] dimension

306

: dimension
tex : \lineskiplimit
[=] dimension
: dimension
luametatex : \linesnappingtolerance
[=] dimension
: dimension
luametatex : \localhangindent
[=] dimension
: dimension
tex : \mathsurround
[=] dimension
: dimension
tex : \maxdepth
[=] dimension
: dimension
tex : \nulldelimiterspace
[=] dimension
: dimension
tex : \overfullrule
[=] dimension
: dimension
luatex : \pageextragoal
[=] dimension
: dimension
tex : \parindent
[=] dimension
: dimension
tex : \predisplaysize
[=] dimension
: dimension
luatex : \pxdimen
[=] dimension
: dimension
tex : \scriptspace
[=] dimension
: dimension
luatex : \shortinlinemaththreshold
[=] dimension
: dimension
luametatex : \splitextraheight
[=] dimension
: dimension
tex : \splitmaxdepth
[=] dimension
: dimension
luametatex : \tabsize
[=] dimension
: dimension

tex : \vfuzz
[=] dimension
: dimension
tex : \vsize
[=] dimension
: dimension

6.4.48 internalglue

tex : \abovedisplayshortskip
[=] glue
: glue
tex : \abovedisplayskip
[=] gtlue
: glue
luametatex : \additionalpageskip
[=] gtlue
: glue
luametatex : \balancebottomskip
[=] gtlue
: glue
luametatex : \balancetopskip
[=] gtlue
: glue
tex : \baselineskip
[=] gtlue
: glue
tex : \belowdisplayshortskip
[=] gtlue
: glue
tex : \belowdisplayskip
[=] gtlue
: glue
luametatex : \bottomskip
[=] gtlue
: glue
luametatex : \emergencyleftskip
[=] gtlue
: glue
luametatex : \emergencyrightskip
[=] gtlue
: glue
luametatex : \initialpageskip
[=] gtlue
: glue
luametatex : \initialtopskip
[=] gtlue
: glue

307

tex : \leftskip
[=] glue
: glue
tex : \lineskip
[=] glue
: glue
luatex : \mathsurroundskip
[=] glue
: glue
luametatex : \maththreshold
[=] glue
: glue
luametatex : \parfillleftskip
[=] glue
: glue
luametatex : \parfillrightskip
[=] glue
: glue
tex : \parfillskip
[=] glue
: glue
luametatex : \parinitleftskip
[=] glue
: glue
luametatex : \parinitrightskip
[=] glue
: glue
tex : \parskip
[=] glue
: glue
tex : \rightskip
[=] glue
: glue
tex : \spaceskip
[=] glue
: glue
tex : \splittopskip
[=] glue
: glue
tex : \tabskip
[=] glue
: glue
tex : \topskip
[=] glue
: glue
tex : \xspaceskip
[=] glue
: glue

6.4.49 internalinteger

tex : \adjdemerits
[=] integer
: Integer
luatex : \adjustspacing
[=] integer
: Integer

luametatex : \adjustspacingshrink

[=] integer
: Integer
luametatex : \adjustspacingstep
[=] integer
: Integer

luametatex : \adjustspacingstretch

[=] integer
: Integer

luametatex : \alignmentcellsource

[=] integer
: Integer

luametatex : \alignmentwrapsource

[=] integer
: Integer
luatex : \automatichyphenpenalty
[=] integer
: Integer
luametatex : \automigrationmode
[=] integer
: Integer
luametatex : \autoparagraphmode
[=] integer
: Integer
luametatex : \balanceadjdemerits
[=] integer
: Integer
luametatex : \balancebreakpasses
[=] integer
: Integer
luametatex : \balancechecks
[=] integer
: Integer
luametatex : \balancelooseness
[=] integer
: Integer
luametatex : \balancepenalty
[=] integer
: Integer
luametatex : \balancetolerance
[=] integer

308

: Integer
tex : \binoppenalty
[=] integer
: integer
luametatex : \boxlimitmode
[=] integer
: integer
tex : \brokenpenalty
[=] integer
: Integer
luatex : \catcodetable
[=] integer
: integer
tex : \clubpenalty
[=] integer
: Integer
tex : \day
[=] integer
: integer
tex : \defaulthyphenchar
[=] integer
: integer
tex : \defaultskewchar
[=] integer
: Integer
tex : \delimiterfactor
[=] integer
: integer

luametatex : \discretionaryoptions

[=] integer
: Integer
tex : \displaywidowpenalty
[=] integer
: integer
tex : \doublehyphendemerits
[=] integer
: integer
luametatex : \doublepenaltymode
[=] integer
: Integer
luametatex : \emptyparagraphmode
[=] integer
: integer
tex : \endlinechar
[=] integer
: Integer
tex : \errorcontextlines
[=] integer
: integer

luametatex : \errorrecoverymode
TODO
tex : \escapechar
[=] integer
: Integer
luametatex : \etexexprmode
[=] integer
: integer
luametatex : \eufactor
[=] integer
: Integer
luametatex : \exapostrophechar
[=] integer
: Integer
luatex : \exceptionpenalty
[=] integer
: Integer
tex : \exhyphenchar
[=] integer
: Integer
tex : \exhyphenpenalty
[=] integer
: integer
luatex : \explicithyphenpenalty
[=] integer
: Integer
tex : \fam
[=] integer
: Integer
tex : \finalhyphendemerits
[=] integer
: integer
luatex : \firstvalidlanguage
[=] integer
: Integer
tex : \floatingpenalty
[=] integer
: integer
tex : \globaldefs
[=] integer
: Integer
luametatex : \glyphdatafield
[=] integer
: Integer
luametatex : \glyphoptions
[=] integer
: integer
luametatex : \glyphscale
[=] integer

309

: Integer
luametatex : \glyphscriptfield
[=] integer
: integer
luametatex : \glyphscriptscale
[=] integer
: integer

luametatex : \glyphscriptscriptscale

[=] integer
: Integer
luametatex : \glyphslant
[=] integer
: integer
luametatex : \glyphstatefield
[=] integer
: Integer
luametatex : \glyphtextscale
[=] integer
: integer
luametatex : \glyphweight
[=] integer
: integer
luametatex : \glyphxscale
[=] integer
: Integer
luametatex : \glyphyscale
[=] integer
: integer
tex : \hangafter
[=] integer
: Integer
tex : \hbadness
[=] integer
: integer
luametatex : \hbadnessmode
[=] integer
: integer
tex : \holdinginserts
[=] integer
: Integer
luametatex : \holdingmigrations
[=] integer
: integer
luatex : \hyphenationmode
[=] integer
: Integer
tex : \hyphenpenalty
[=] integer
: integer

luametatex : \insertoptions
TODO
tex : \interlinepenalty
[=] integer
: Integer
tex : \language
[=] integer
: integer
etex : \lastlinefit
[=] integer
: Integer
tex : \lefthyphenmin
[=] integer
: integer
luametatex : \lefttwindemerits
[=] integer
: integer
luametatex : \linebreakchecks
[=] integer
: integer
luametatex : \linebreakoptional
[=] integer
: integer
luametatex : \linebreakpasses
[=] integer
: Integer
luatex : \linedirection
[=] integer
: integer
tex : \linepenalty
[=] integer
: Integer
luametatex : \linesnappingdpfactor
TODO
luametatex : \linesnappinghtfactor
TODO
luatex : \localbrokenpenalty
[=] integer
: integer
luametatex : \localhangafter
[=] integer
: integer
luatex : \localinterlinepenalty
[=] integer
: integer
luametatex : \localpretolerance
[=] integer
: iInteger

310

luametatex : \localtolerance
[=] integer
: integer
tex : \looseness
[=] integer
: integer
luatex : \luacopyinputnodes
[=] integer
: integer
luametatex : \mathbeginclass
[=] integer
: integer
luametatex : \mathcheckfencesmode
[=] integer
: integer
luametatex : \mathdictgroup
[=] integer
: integer
luametatex : \mathdictproperties
[=] integer
: integer
luatex : \mathdirection
[=] integer
: integer
luametatex : \mathdisplaymode
[=] integer
: integer

luametatex : \mathdisplaypenaltyfactor

[=] integer
: integer
luatex : \mathdisplayskipmode
[=] integer
: integer

luametatex : \mathdoublescriptmode

[=] integer
: integer
luametatex : \mathendclass
[=] integer
: integer
luatex : \matheqgnogapstep
[=] integer
: integer
luametatex : \mathfontcontrol
[=] integer
: integer
luametatex : \mathgluemode
[=] integer
: integer

luametatex : \mathgroupingmode
[=] integer
: Integer
luametatex : \mathinlinepenaltyfactor
[=] integer
: Iinteger
luametatex : \mathleftclass
[=] integer
: integer
luametatex : \mathlimitsmode
[=] integer
: integer
luametatex : \mathoptions
[=] integer
: iInteger
luatex : \mathpenaltiesmode
[=] integer
: integer
luametatex : \mathpretolerance
[=] integer
: integer
luametatex : \mathrightclass
[=] integer
: integer
luatex : \mathrulesfam
[=] integer
: integer
luatex : \mathrulesmode
[=] integer
: Integer
luatex : \mathscriptsmode
[=] integer
: integer
luametatex : \mathslackmode
[=] integer
: Integer
luametatex : \mathspacingmode
[=] integer
: integer
luametatex : \mathsurroundmode
[=] integer
: integer
luametatex : \mathtolerance
[=] integer
: integer
tex : \maxdeadcycles
[=] integer
: iInteger

311

tex : \month
[=] integer
: integer
tex : \newlinechar
[=] integer
: integer
luametatex : \nooutputboxerror
[=] integer
: integer
luametatex : \normalizelinemode
[=] integer
: integer
luametatex : \normalizeparmode
[=] integer
: integer
luatex : \nospaces
[=] integer
: integer
luatex : \outputbox
[=] integer
: integer
tex : \outputpenalty
[=] integer
: integer
luametatex : \overloadmode
[=] integer
: integer
luametatex : \parametermode
[=] integer
: integer
luatex : \pardirection
[=] integer
: integer
tex : \pausing
[=] integer
: integer
tex : \postdisplaypenalty
[=] integer
: integer
luametatex : \postinlinepenalty
[=] integer
: integer
luametatex : \postshortinlinepenalty
[=] integer
: integer
luatex : \prebinoppenalty
[=] integer
: integer

luatex : \predisplaydirection
[=] integer
: Integer
luatex : \predisplaygapfactor
[=] integer
: Iinteger
tex : \predisplaypenalty
[=] integer
: integer
luametatex : \preinlinepenalty
[=] integer
: integer
luatex : \prerelpenalty
[=] integer
: iInteger
luametatex : \preshortinlinepenalty
[=] integer
: integer
tex : \pretolerance
[=] integer
: integer
luatex : \protrudechars
[=] integer
: integer
tex : \relpenalty
[=] integer
: integer
tex : \righthyphenmin
[=] integer
: Integer
luametatex : \righttwindemerits
[=] integer
: integer
etex : \savinghyphcodes
[=] integer
: Integer
etex : \savingvdiscards
[=] integer
: integer
luametatex : \scriptspaceafterfactor
[=] integer
: integer
luametatex : \scriptspacebeforefactor
[=] integer
: integer
luametatex : \scriptspacebetweenfactor
[=] integer
: iInteger

312

luatex : \setfontid
[=] integer
: integer
tex : \setlanguage
[=] integer
: Integer
luametatex : \shapingpenaltiesmode
[=] integer
: integer
luametatex : \shapingpenalty
[=] integer
: integer
luametatex : \shortinlineorphanpenalty
[=] integer
: Integer
tex : \showboxbreadth
[=] integer
: integer
tex : \showhoxdepth
[=] integer
: Integer
tex : \shownodedetails
[=] integer
: Integer
luametatex : \singlelinepenalty
[=] integer
: integer
luametatex : \spacechar
[=] integer
: Integer
luametatex : \spacefactormode
[=] integer
: integer
luametatex : \spacefactoroverload
[=] integer
: Integer
luametatex : \spacefactorshrinklimit
[=] integer
: integer
luametatex : \spacefactorstretchlimit
[=] integer
: integer
luametatex :
TODO
luametatex : \supmarkmode
[=] integer
: integer
luatex : \textdirection
[=] integer

\spaceskipfactor

: Integer
tex : \time
[=] integer
: Integer
tex : \tolerance
[=] integer
: Integer
luametatex : \tracingadjusts
[=] integer
: Integer
luametatex : \tracingalignments
[=] integer
: Integer
etex : \tracingassigns
[=] integer
: Integer
luametatex : \tracingbalancing
[=] integer
: Integer
tex : \tracingcommands
[=] integer
: integer
luametatex : \tracingexpressions
[=] integer
: Integer
luametatex : \tracingfitness
[=] integer
: Integer
luametatex : \tracingfullboxes
[=] integer
: Integer
etex : \tracinggroups
[=] integer
: Integer
luametatex : \tracinghyphenation
[=] integer
: integer
etex : \tracingifs
[=] integer
: Integer
luametatex : \tracinginserts
[=] integer
: Integer
luametatex : \tracinglevels
[=] integer
: Integer
luametatex : \tracinglists
[=] integer
: Integer

313

tex : \tracingloners
[=] integer
: integer
luametatex : \tracinglooseness
[=] integer
: integer
tex : \tracinglostchars
[=] integer
: integer
tex : \tracingmacros
[=] integer
: integer
luametatex : \tracingmarks
[=] integer
: integer
luametatex : \tracingmath
[=] integer
: integer
luametatex : \tracingmvl
[=] integer
: integer
etex : \tracingnesting
[=] integer
: integer
luametatex : \tracingnodes
[=] integer
: integer
tex : \tracingonline
[=] integer
: integer
luametatex : \tracingorphans
[=] integer
: integer
tex : \tracingoutput
[=] integer
: integer
tex : \tracingpages
[=] integer
: integer
tex : \tracingparagraphs
[=] integer
: integer
luametatex : \tracingpasses
[=] integer
: integer
luametatex : \tracingpenalties
[=] integer
: integer

tex : \tracingrestores
[=] integer
: Integer
luametatex : \tracingsnapping
TODO
tex : \tracingstats
[=] integer
: Integer
luametatex : \tracingtoddlers
[=] integer
: integer
tex : \uchyph
[=] integer
: integer
luatex : \variablefam
[=] integer
: integer
tex : \vbadness
[=] integer
: integer
luametatex : \vbadnessmode
[=] integer
: integer
luametatex : \vsplitchecks
[=] integer
: integer
tex : \widowpenalty
[=] integer
: Integer
tex : \year
[=] integer
: Integer

6.4.50 internalmuglue

tex : \medmuskip
[=] muglue
: muglue
luametatex : \pettymuskip
[=] muglue
: muglue
tex : \thickmuskip
[=] muglue
: muglue
tex : \thinmuskip
[=] muglue
: muglue
luametatex : \tinymuskip
[=] muglue

314

: muglue

6.4.51 internaltoks

tex : \errhelp
[=] toks
: toks
luametatex : \everybeforepar
[=] toks
: toks
tex : \everycr
[=] toks
: toks
tex : \everydisplay
[=] toks
: toks
etex : \everyeof
[=] toks
: toks
tex : \everyhbox
[=] toks
: toks
tex : \everyjob
[=] toks
: toks
tex : \everymath
[=] toks
: toks
luametatex : \everymathatom
[=] toks
: toks
tex : \everypar
[=] toks
: toks
luametatex : \everyparbegin
[=] toks
: toks
luametatex : \everyparend
[=] toks
: toks
luametatex : \everytab
[=] toks
: toks
tex : \everyvbox
[=] toks
: toks
tex : \output
[=] toks
: toks

6.4.52 italiccorrection

tex : \/

luametatex : \explicititaliccorrection
luametatex : \forcedleftcorrection
luametatex : \forcedrightcorrection

6.4.53 kern

tex : \hkern

dimension
tex : \kern

dimension
tex : \vkern

dimension

6.4.54 leader

tex : \cleaders

(box | rule| glyph) glue
luatex : \gleaders

see \cleaders
tex : \leaders

see \cleaders
luametatex : \uleaders

[callback integer] [line] [nobreak]

(box | rute| glyph) glue
tex : \xleaders
see \cleaders

6.4.55 legacy

tex : \shipout

{ tokens}
6.4.56 let
luametatex : \futuredef
\cs \cs
tex : \futurelet
\cs [=] \cs
luametatex : \glet
\cs
luametatex : \gletcsname
tokens\endcsname
luametatex : \glettonothing
\cs

315

tex : \let
\cs

luametatex : \letcharcode
\cs

luametatex : \letcsname
tokens\endcsname

luametatex : \letfrozen
\cs

luametatex : \letprotected
\cs

luametatex : \lettolastnamedcs
\Cs

luametatex : \lettonothing
\cs

luametatex : \swapcsvalues
\cs \cs

luametatex : \unletfrozen
\cs

luametatex : \unletprotected
\cs

6.4.57 localbox

luatex : \locallefthox
[always] [index] [keep] [local]
[move] [par] box
luametatex : \localmiddlebox
see \localleftbox
luatex : \localrightbox
see \localleftbox
luametatex : \resetlocalboxes

6.4.58 luafunctioncall

luatex : \luabytecodecall
integer

luatex : \luafunctioncall
integer

6.4.59 makebox

tex : \box
(index | box)

tex : \copy
see \box
luametatex : \dbox

[target integer] [to dimension]

[adapt] [attr integer integer]
[anchor integer] [axis integer]

[shift dimension] [spread dimension]
[source integer] [direction integer]
[delay] [orientation integer]

[xoffset dimension] [xmove
dimension] [yoffset dimension]

[ymove dimension] [linesnapping
linesnapping\or] [reverse] [retain]
[container] [mathtext]

[keepspacing] [class integer] [swap]

{ tokens}
luametatex : \dpack
see \dbox
luametatex : \dsplit
[attr] [to] [upto] {tokens}
luametatex : \flushmvl
integer
tex : \hbox
see \dbox
luametatex : \hpack
see \dbox
luametatex : \insertbox
integer
luametatex : \insertcopy
integer
tex : \lastbhox
luametatex : \localleftboxbox
luametatex : \localmiddleboxbox
luametatex : \localrightboxbox
luametatex : \tpack
see \dbox
luametatex : \tsplit
see \dsplit
luametatex : \vbalance
[exactly] [additional] [trial]
(index | box)
luametatex : \vbalancedbox
see \box
luametatex : \vbalanceddeinsert
(index | box) [descend] [forceheight]
[forcedepth]
luametatex : \vbalanceddiscard
(index | box) [descend] [remove]
luametatex : \vbalancedinsert
(index | box) [index] [descend]
integer
luametatex : \vbalancedreinsert

(index | box) [descend]

316

luametatex : \vbalancedtop
see \box
tex : \vbox
see \dbox
luatex : \vpack
see \dbox
tex : \vsplit
see \dsplit
tex : \vtop
see \dbox

6.4.60 mark

luatex : \clearmarks
integer

luametatex :

tex : \mark
{ tokens}

etex : \marks
integer { tokens }

\flushmarks

6.4.61 mathaccent

luatex : \Umathaccent

[attr integer integer] [center]
[class integer] [exact] [source

integer] [stretch] [shrink]

[fraction integer] [fixed]

[keepbase] [nooverflow] [base]
(both [fixed] character [fixed]

character | bottom [fixed]

character | top [fixed]

character | overlay

character | character)
\mathaccent

{ tokens}

tex :

6.4.62 mathcharnumber

luatex : \Umathchar
integer

tex : \mathchar
integer

luametatex : \mathclass
integer

luametatex : \mathdictionary

integer mathchar

luametatex : \nomathchar

6.4.63 mathchoice

tex : \mathchoice

{ tokens } { tokens} { tokens} { tokens}
luametatex : \mathdiscretionary

[class integer] { tokens} { tokens}

{ tokens}
luametatex : \mathstack

{ tokens}

6.4.64 mathcomponent

luametatex : \mathatom
[attr integer integer] [all integer]
[leftclass integer] [limits]
[rightclass integer] [class integer]
[unpack] [unroll] [single] [source
integer] [textfont] [mathfont]
[options integer] [nolimits]
[nooverflow] [void] [phantom]
[continuation] [integer]

tex : \mathbin

{ tokens}
tex : \mathclose
{ tokens}
tex : \mathinner
{tokens}
tex : \mathop
{ tokens}
tex : \mathopen
{ tokens}
tex : \mathord
{tokens}
tex : \mathpunct
{ tokens}
tex : \mathrel
{ tokens}
tex : \overline
{tokens}
tex : \underline
{ tokens}

6.4.65 mathfence

luametatex : \Uleft
[auto] [attr integer integer] [axis]

317

[bottom dimension] [depth dimension]
[factor integer] [height dimension]
[noaxis] [nocheck] [nolimits]

[nooverflow] [leftclass integer]

[limits] [exact] [void] [phantom]

[class integer] [rightclass integer]
[scale] [source integer] [top]

delimiter
luametatex : \Umiddle
see \Uleft
luametatex : \Uoperator
see \Uleft
luametatex : \Uright
see \Uleft
luatex : \Uvextensible
see \Uleft
tex : \left
see \Uleft
tex : \middle
see \Uleft
tex : \right
see \Uleft

6.4.66 mathfraction

luametatex : \Uabove
dimension [attr integer integer]
[class integer] [center] [exact]
[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]
luametatex : \Uabovewithdelims
delimiter delimiter dimension [attr
integer integer] [class integer]
[center] [exact] [proportional]
[noaxis] [nooverflow] [style
mathstyle] [source integer] [hfactor
integer] [vfactor integer] [font]
[thickness dimension] [usecallback]
luametatex : \Uatop
see \Uabove
luametatex : \Uatopwithdelims
see \Uabovewithdelims
luametatex : \Uover
[attr integer integer] [class
integer] [center] [exact]
[proportional] [noaxis]

[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]
luametatex : \Uoverwithdelims
delimiter delimiter [attr integer
integer] [class integer] [center]
[exact] [proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]
luatex : \Uskewed
delimiter [attr integer integer]
[class integer] [center] [exact]
[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]
luatex : \Uskewedwithdelims
delimiter delimiter delimiter [attr
integer integer] [class integer]
[center] [exact] [proportional]
[noaxis] [nooverflow] [style
mathstyle] [source integer] [hfactor
integer] [vfactor integer] [font]
[thickness dimension] [usecallback]

luametatex : \Ustretched
see \Uskewed
luametatex : \Ustretchedwithdelims

see \Uskewedwithdelims
tex : \above

dimension
tex : \abovewithdelims

delimiter delimiter dimension
tex : \atop

dimension
tex : \atopwithdelims

delimiter delimiter dimension
tex : \over
tex : \overwithdelims

delimiter delimiter

6.4.67 mathmodifier

luametatex : \Umathadapttoleft
luametatex : \Umathadapttoright
luametatex : \Umathlimits

318

luametatex : \Umathnoaxis
luametatex : \Umathnolimits
luametatex : \Umathopenupdepth
dimension
luametatex : \Umathopenupheight
dimension
luametatex : \Umathphantom
luametatex : \Umathsource
[nucleus] integer
luametatex : \Umathuseaxis
luametatex : \Umathvoid

tex : \displaylimits
tex : \limits
tex : \nolimits

6.4.68 mathparameter

luametatex : \Umathaccentbasedepth
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccentbaseheight
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccentbottomovershoot
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccentbottomshiftdown
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccentextendmargin
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccentsuperscriptdrop
mathstyle [=] dimension
> mathstyle : dimension
luametatex :
mathstyle [=] integer
> mathstyle : integer
luametatex : \Umathaccenttopovershoot
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccenttopshiftup
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathaccentvariant
[=] mathstyle
: mathstyle
luatex : \Umathaxis
mathstyle [=] dimension

\Umathaccentsuperscriptpercent

> mathstyle : dimension
luametatex : \Umathbottomaccentvariant
[=] mathstyle
: mathstyle
luatex : \Umathconnectoroverlapmin
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathdegreevariant
[=] mathstyle
: mathstyle
luametatex : \Umathdelimiterextendmargin
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathdelimiterovervariant
[=] mathstyle
: mathstyle
luametatex : \Umathdelimiterpercent
mathstyle [=] integer
> mathstyle: integer
luametatex : \Umathdelimitershortfall
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathdelimiterundervariant
[=] mathstyle
: mathstyle
luametatex : \Umathdenominatorvariant
[=] mathstyle
: mathstyle
luatex : \Umathexheight
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasubpreshift
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasubprespace
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasubshift
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasubspace
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasuppreshift
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasupprespace
mathstyle [=] dimension
> mathstyle : dimension

319

luametatex : \Umathextrasupshift
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathextrasupspace
mathstyle [=] dimension
> mathstyle : dimension
luametatex :
mathstyle [=] dimension
> mathstyle : dimension
luametatex :
mathstyle [=] dimension
> mathstyle : dimension
luametatex :
down
mathstyle [=] dimension
> mathstyle : dimension
luametatex :
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathfractiondelsize
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathfractiondenomdown
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathfractiondenomvgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathfractionnumup
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathfractionnumvgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathfractionrule
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathfractionvariant
[=] mathstyle
: mathstyle
luametatex : \Umathhextensiblevariant
[=] mathstyle
: mathstyle
luatex : \Umathlimitabovebgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathlimitabovekern
mathstyle [=] dimension
> mathstyle : dimension

\Umathflattenedaccentbasedepth

\Umathflattenedaccentbaseheight

\Umathflattenedaccentbottomshift-

\Umathflattenedaccenttopshiftup

luatex : \Umathlimitabovevgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathlimitbelowbgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathlimitbelowkern
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathlimitbelowvgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathnolimitsubfactor
mathstyle [=] integer
> mathstyle : integer
luatex : \Umathnolimitsupfactor
mathstyle [=] integer
> mathstyle : integer
luametatex : \Umathnumeratorvariant
[=] mathstyle
: mathstyle
luatex : \Umathoperatorsize
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathoverbarkern
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathoverbarrule
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathoverbarvgap
mathstyle [=] dimension
> mathstyle : dimension
luatex : \Umathoverdelimiterbgap
mathstyle [=] dimension
> mathstyle : dimension
luametatex : \Umathoverdelimitervariant
[=] mathstyle
: mathstyle
luatex : \Umathoverdelimitervgap
mathstyle [=] dimens