Itluatex.dtx
(LuaTgX-specific support)

David Carlisle and Joseph Wright*

2025 / 12 / 23

Contents

1 Overview 2

2 Core TEX functionality 2

3 Plain TgX interface 3

4 Lua functionality 3
4.1 AllocatorsinLua 3
4.2 Lua access to TEX register numbers 4
4.3 Module utilitieso Lo 5
4.4 Callback management oL)

5 Implementation 6
5.1 Minimum LuaTgX version 6
5.2 Older WTEX/Plain TEX setupo oo 7
5.3 Attributes 9
5.4 Category code tables oL 9
5.5 Named Lua functions 11
5.6 Custom whatsits Lo o 11
5.7 Lua bytecode registers oo 12
5.8 Lua chunk registers o oL 12
59 Lualoader. e 12
5.10 Lua module preliminaries 14
5.11 Lua module utilities L oL 14
5.12 Accessing register numbers from Luao L. 16
5.13 Attribute allocation L. 17
5.14 Custom whatsit allocation 17
5.15 Bytecode register allocation 18
5.16 Lua chunk name allocation 18
5.17 Lua function allocation. 18
5.18 Lua callback management 19

*Significant portions of the code here are adapted/simplified from the packages luatex and

luatexbase written by Heiko Oberdiek, Elie Roux, Manuel Pégourié-Gonnar and Philipp Gesang.

1 Overview

LuaTgX adds a number of engine-specific functions to TEX. Several of these require
set up that is best done in the kernel or need related support functions. This file
provides basic support for LuaTEX at the KTEX 2¢ kernel level plus as a loadable
file which can be used with plain TEX and ETEX.

This file contains code for both TEX (to be stored as part of the format) and
Lua (to be loaded at the start of each job). In the Lua code, the kernel uses the
namespace luatexbase.

The following \count registers are used here for register allocation:

\e@alloc@attribute@count Attributes (default 258)

\e@alloc@ccodetable@count Category code tables (default 259)

\e@alloc@luafunction@count Lua functions (default 260)

\e@alloc@whatsit@count User whatsits (default 261)

\e@alloc@bytecode@count Lua bytecodes (default 262)

\e@alloc@luachunk@count Lua chunks (default 263)

\newattribute

\newcatcodetable

\newluafunction

\newluacmd

\newprotectedluacmd
\newwhatsit

\newluabytecode

(\count 256 is used for \newmarks allocation and \count 257 is used for
\newXeTeXintercharclass with XeTEX, with code defined in 1tfinal.dtx).
With any IWTEX 2¢ kernel from 2015 onward these registers are part of the block
in the extended area reserved by the kernel (prior to 2015 the I¥TEX 2¢ kernel did
not provide any functionality for the extended allocation area).

2 Core TEX functionality

The commands defined here are defined for possible inclusion in a future ETEX
format, however also extracted to the file 1tluatex.tex which may be used with
older TEX formats, and with plain TEX.

\newattribute{(attribute)}

Defines a named \attribute, indexed from 1 (i.e. \attributeO is never defined).
Attributes initially have the marker value -"7FFFFFFF (‘unset’) set by the engine.
\newcatcodetable{(catcodetable)}

Defines a named \catcodetable, indexed from 1 (\catcodetableO is never as-
signed). A new catcode table will be populated with exactly those values assigned
by IniTEX (as described in the LuaTEX manual).

\newluafunction{(function)}

Defines a named \luafunction, indexed from 1. (Lua indexes tables from 1 so
\luafunctionO is not available).

\newluadef{(function)}

Like \newluafunction, but defines the command using \luadef instead of just
assigning an integer.

\newluadef{{function)}

Like \newluacmd, but the defined command is not expandable.
\newwhatsit{(whatsit)}

Defines a custom \whatsit, indexed from 1.

\newluabytecode{(bytecode)}

\newluachunkname

\catcodetable@initex
\catcodetable@string
\catcodetable@latex
\catcodetable@atletter
\setattribute
\unsetattribute

new_attribute

new_whatsit

new_bytecode

new_chunkname

new_luafunction

Allocates a number for Lua bytecode register, indexed from 1.
newluachunkname{(chunkname)}

Allocates a number for Lua chunk register, indexed from 1. Also enters the name
of the register (without backslash) into the lua.name table to be used in stack
traces.

Predefined category code tables with the obvious assignments. Note that the
latex and atletter tables set the full Unicode range to the codes predefined by
the kernel.

\setattributed{(attribute) }{(value)}

\unsetattribute{(attribute)}

Set and unset attributes in a manner analogous to \setlength. Note that at-
tributes take a marker value when unset so this operation is distinct from setting
the value to zero.

3 Plain TEgX interface

The Itluatex interface may be used with plain TEX using \input{ltluatex}. This
inputs 1tluatex.tex which inputs etex.src (or etex.sty if used with ITEX)
if it is not already input, and then defines some internal commands to allow the
[tluatex interface to be defined.

The luatexbase package interface may also be used in plain TEX, as before, by
inputting the package \input luatexbase.sty. The new version of luatexbase
is based on this Itluatex code but implements a compatibility layer providing the
interface of the original package.

4 Lua functionality

4.1 Allocators in Lua

luatexbase.new_attribute ({attribute))

Returns an allocation number for the (attribute), indexed from 1. The attribute
will be initialised with the marker value -"7FFFFFFF (‘unset’). The attribute
allocation sequence is shared with the TEX code but this function does not define
a token using \attributedef. The attribute name is recorded in the attributes
table. A metatable is provided so that the table syntax can be used consistently
for attributes declared in TEX or Lua.

luatexbase.new_whatsit ((whatsit))

Returns an allocation number for the custom (whatsit), indexed from 1.
luatexbase.new_bytecode ({bytecode))

Returns an allocation number for a bytecode register, indexed from 1. The optional
(name) argument is just used for logging.

luatexbase.new_chunkname ((chunkname))

Returns an allocation number for a Lua chunk name for use with \directlua and
\latelua, indexed from 1. The number is returned and also (name) argument is
added to the lua.name array at that index.

luatexbase.new_luafunction ({functionname))

Returns an allocation number for a lua function for use with \luafunction,
\lateluafunction, and \luadef, indexed from 1. The optional {functionname)
argument is just used for logging.

registernumber

These functions all require access to a named TEX count register to manage
their allocations. The standard names are those defined above for access from
TEX, e.g. “e@alloc@attribute@count, but these can be adjusted by defining the
variable (type)_count_name before loading 1tluatex.lua, for example

local attribute_count_name = "attributetracker"
require("ltluatex")

would use a TEX \count (\countdef’d token) called attributetracker in place
of “e@alloc@attribute@count.

4.2 Lua access to TEX register numbers

luatexbase.registernumer ((name))
Sometimes (notably in the case of Lua attributes) it is necessary to access
a register by number that has been allocated by TgX. This package pro-
vides a function to look up the relevant number using LuaTgX’s internal ta-
bles. After for example \newattribute\myattrib, \myattrib would be defined
by (say) \myattrib=\attributel5. luatexbase.registernumer ("myattrib")
would then return the register number, 15 in this case. If the string passed as
argument does not correspond to a token defined by \attributedef, \countdef
or similar commands, the Lua value false is returned.

As an example, consider the input:

\newcommand\test [1]{%

\typeout{#1: \expandafter\meaning\csname#1\endcsname~"J
\space\space\space\space
\directlua{tex.write(luatexbase.registernumber ("#1") or "bad input")}/
1

\test{undefinedrubbish}

\test{space}

\test{hbox}

\test{@MM}

\test{@tempdima}
\test{@tempdimb}

\test{strutbox}
\test{sixt@@n}
\attrbutedef\myattr=12

\myattr=200
\test{myattr}

If the demonstration code is processed with Lual&TEX then the following would
be produced in the log and terminal output.

undefinedrubbish: \relax

bad input
space: macro:-—>

bad input

hbox: \hbox
bad input

@MM: \mathchar"4E20
20000

Q@tempdima: \dimenl14
14

Qtempdimb: \dimenl5
15

strutbox: \char"B
11

sixt@@n: \char"10
16

myattr: \attributel2
12

Notice how undefined commands, or commands unrelated to registers do not
produce an error, just return false and so print bad input here. Note also that
commands defined by \newbox work and return the number of the box register
even though the actual command holding this number is a \chardef defined token
(there is no \boxdef).

4.3 Module utilities

provides_module luatexbase.provides_module ({info))
This function is used by modules to identify themselves; the info should be a table
containing information about the module. The required field name must contain
the name of the module. It is recommended to provide a field date in the usual
BTEX format yyyy/mm/dd. Optional fields version (a string) and description
may be used if present. This information will be recorded in the log. Other fields
are ignored. If the version begins with a digit, a v will be added at the start in
the log.
module_info luatexbase.module_info({module), (text))
module_warning luatexbase.module_warning({module), (text))
module_error luatexbase.module_error ((module), (text))

These functions are similar to ETEX’s \PackageError, \PackageWarning and
\PackageInfo in the way they format the output. No automatic line breaking is
done, you may still use \n as usual for that, and the name of the package will be
prepended to each output line.

Note that luatexbase.module_error raises an actual Lua error with error (),
which currently means a call stack will be dumped. While this may not look pretty,
at least it provides useful information for tracking the error down.

4.4 Callback management

add_to_callback luatexbase.add_to_callback({callback), (function), (description)) Registers
the (function) into the (callback) with a textual (description) of the function.
Functions are inserted into the callback in the order loaded.
remove_from_callback luatexbase.remove_from_callback({callback), (description)) Removes the call-

in_callback

disable_callback

callback_descriptions

create_callback

call_callback

declare_callback_rule

back function with (description) from the (callback). The removed function and
its description are returned as the results of this function.
luatexbase.in_callback({callback), (description)) Checks if the (description)
matches one of the functions added to the list for the (callback), returning a
boolean value.
luatexbase.disable_callback({callback)) Sets the (callback) to false as de-
scribed in the LuaTEX manual for the underlying callback.register built-in.
Callbacks will only be set to false (and thus be skipped entirely) if there are no
functions registered using the callback.
A list of the descriptions of functions registered to the specified callback is re-
turned. {} is returned if there are no functions registered.
luatexbase.create_callback ({name),(type),(default)) Defines a user defined
callback. The last argument is a default function or false.
luatexbase.call_callback((name),...) Calls a user defined callback with the
supplied arguments.
luatexbase.declare_callback_rule({name), (first), (relation), (second)) Adds
an ordering constraint between two callback functions for callback (name).

The kind of constraint added depends on (relation):

before The callback function with description (first) will be executed before the
function with description (second).

after The callback function with description (first) will be executed after the
function with description (second).

incompatible-warning When both a callback function with description (first)
and with description (second) is registered, then a warning is printed when
the callback is executed.

incompatible-error When both a callback function with description (first) and
with description (second) is registered, then an error is printed when the
callback is executed.

unrelated Any previously declared callback rule between (first) and (second)
gets disabled.

Every call to declare_callback_rule with a specific callback (name) and de-
scriptions (first) and (second) overwrites all previous calls with same callback and
descriptions.

The callback functions do not have to be registered yet when the functions is
called. Only the constraints for which both callback descriptions refer to callbacks
registered at the time the callback is called will have an effect.

5 Implementation

1 (x2ekernel | tex | latexrelease)
2 (2ekernel | latexrelease) \ifx\directlua\Qundefined\else

5.1 Minimum LuaTgX version

LuaTgX has changed a lot over time. In the kernel support for ancient versions is
not provided: trying to build a format with a very old binary therefore gives some

information in the log and loading stops. The cut-off selected here relates to the
tree-searching behaviour of require(): from version 0.60, LuaTEX will correctly
find Lua files in the texmf tree without ‘help’.

3 (latexrelease) \IncludeInRelease{2015/10/01}

4 (latexrelease) {\newluafunction}{LuaTeX}}

5 \ifnum\luatexversion<60 ¥
6 \WLog{ssskskskskokskskskokokskskokskookokookookokkokokokokokkfk sk sk ek s sk sk s sk ok

7 \wlog{* LuaTeX version too old for ltluatex support *}
8 \WLog Lk koo ook ook sk sk ok ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk ok

9 \expandafter\endinput
10 \fi

Two simple ETEX macros from 1tdefns.dtx have to be defined here because
ltdefns.dtx is not loaded yet when ltluatex.dtx is executed.

11 \long\def\@gobble#1{}
12 \long\def\@firstofone#1{#1}

5.2 Older BKTEX /Plain TEX setup

13 (*tex)

Older BTEX formats don’t have the primitives with ‘native’ names: sort that
out. If they already exist this will still be safe.
14 \directlua{tex.enableprimitives("",tex.extraprimitives("luatex"))}

15 \ifx\e@alloc\@undefined
In pre-2014 ITEX, or plain TEX, load etex.{sty,src}.

16 \ifx\documentclass\@undefined

17 \ifx\loccount\@undefined

18 \input{etex.src}}

19 \fi

20 \catcode ‘\@=11 7

21 \outer\expandafter\def\csname newfam\endcsname

22 {\alloc@8\fam\chardef\et@xmaxfam}
23 \else

24 \RequirePackage{etex}

25 \expandafter\def\csname newfam\endcsname

26 {\alloc@8\fam\chardef\et@xmaxfam}

27 \expandafter\let\expandafter\new@mathgroup\csname newfam\endcsname
28 \fi

5.2.1 Fixes to etex.src/etex.sty

These could and probably should be made directly in an update to etex.src which
already has some LuaTgX-specific code, but does not define the correct range for
LuaTgX.
2015-07-13 higher range in luatex.

29 \edef \et@xmaxregs {\ifx\directlua\@undefined 32768\else 65536\fi}
luatex/xetex also allow more math fam.

30 \edef \et@xmaxfam {\ifx\Umathcode\@undefined\sixt@@n\else\@cclvi\fi}

31 \count 270=\et@xmaxregs J, locally allocates \count registers

32 \count 271=\et@xmaxregs j, ditto for \dimen registers

33 \count 272=\et@xmaxregs J, ditto for \skip registers
34 \count 273=\et@xmaxregs J, ditto for \muskip registers

35 \count 274=\et@xmaxregs J, ditto for \box registers
36 \count 275=\et@xmaxregs J, ditto for \toks registers
37 \count 276=\et@xmaxregs 7}, ditto for \marks classes

and 256 or 16 fam. (Done above due to plain/BTEX differences in Itluatex.)
38 % \outer\def\newfam{\alloc@8\fam\chardef\et@xmaxfam}

End of proposed changes to etex.src

5.2.2 luatex specific settings

Switch to global cf luatex.sty to leave room for inserts not really needed for
luatex but possibly most compatible with existing use.

39 \expandafter\let\csname newcount\expandafter\expandafter\endcsname

40 \csname globcount\endcsname

41 \expandafter\let\csname newdimen\expandafter\expandafter\endcsname
42 \csname globdimen\endcsname

43 \expandafter\let\csname newskip\expandafter\expandafter\endcsname
44 \csname globskip\endcsname

45 \expandafter\let\csname newbox\expandafter\expandafter\endcsname
46 \csname globbox\endcsname

Define\e@alloc as in BTEX (the existing macros in etex.src are hard to
extend to further register types as they assume specific 26x and 27x count range).
For compatibility the existing register allocation is not changed.

47 \chardef\e@alloc@top=65535
48 \let\e@alloc@chardef\chardef

49 \def\e@alloc#1#2#3#4#5#61),

50 \global\advance#3\@ne

51 \e@chO@ck{#3}{#4}{#5}#1),

52 \allocationnumber#3\relax

53 \global#2#6\allocationnumber

54 \wlog{\string#6=\string#1\the\allocationnumber}}},

55 \gdef\e@ch@ck#1#2#3#4{},
56 \ifnum#1<#2\else

57 \ifnum#1=#2\relax

58 #1\@cclvi

59 \ifx\count#4\advance#1 10 \fi

60 \fi

61 \ifnum#1<#3\relax

62 \else

63 \errmessage{No room for a new \string#4})
64 \fi

65 \fil}}

Fix up allocations not to clash with etex.src.

66 \expandafter\csname newcount\endcsname\e@alloc@attribute@count
67 \expandafter\csname newcount\endcsname\e@alloc@ccodetable@count
68 \expandafter\csname newcount\endcsname\e@alloc@luafunction@count
69 \expandafter\csname newcount\endcsname\e@alloc@whatsit@count

70 \expandafter\csname newcount\endcsname\e@alloc@bytecode@count

71 \expandafter\csname newcount\endcsname\e@alloc@luachunk@count

\newattribute

\setattribute
\unsetattribute

\newcatcodetable

\catcodetable@initex
\catcodetable@string
\catcodetable@latex
\catcodetable@atletter

End of conditional setup for plain TEX / old IATEX.

72 \fi
73 (/tex)

5.3 Attributes

As is generally the case for the LuaTEX registers we start here from 1. Notably,
some code assumes that \attributeO is never used so this is important in this
case.

74 \ifx\e@alloc@attribute@count\@undefined

75 \countdef\e@alloc@attribute@count=258

76 \e@alloc@attribute@count=\z@

77 \fi

78 \def\newattribute#1{%

79 \e@alloc\attribute\attributedef

80 \e@alloc@attribute@count\m@ne\e@alloc@top#1y
81 }

Handy utilities.

82 \def\setattribute#1#2{#1=\numexpr#2\relax}
83 \def\unsetattribute#1{#1=-"7FFFFFFF\relax}

5.4 Category code tables

Category code tables are allocated with a limit half of that used by LuaTgX for
everything else. At the end of allocation there needs to be an initialization step.
Table 0 is already taken (it’s the global one for current use) so the allocation starts
at 1.

84 \ifx\e@alloc@ccodetable@count\@undefined
85 \countdef\e@alloc@ccodetable@count=259
86 \e@alloc@ccodetable@count=\z@

87 \fi

88 \def\newcatcodetable#1{/

89 \e@alloc\catcodetable\chardef

90 \e@alloc@ccodetable@count\m@ne{"8000}#1
91 \initcatcodetable\allocationnumber
92 }

Save a small set of standard tables. The Unicode data is read here in using a parser
simplified from that in load-unicode-data: only the nature of letters needs to
be detected.

93 \newcatcodetable\catcodetable@initex
94 \newcatcodetable\catcodetable@string
95 \begingroup

96 \def\setrangecatcode#1#2#3{J

97 \ifnum#1>#2 %

98 \expandafter\Qgobble

99 \else

100 \expandafter\@firstofone
101 \fi

102 {h

103 \catcode#1=#3 Y,

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

\expandafter\setrangecatcode\expandafter
{\number\numexpr#1 + 1\relax}{#2}{#3}
1A
}
\@firstofone{’,
\catcodetable\catcodetable@initex
\catcode0=12 Y
\catcode13=12 Y,
\catcode37=12 Y
\setrangecatcode{65}{90}{12}/
\setrangecatcode{97}{122}{12}/
\catcode92=12 Y
\catcodel127=12 Y
\savecatcodetable\catcodetable@string
\endgroup
Y

120 \newcatcodetable\catcodetable@latex
121 \newcatcodetable\catcodetable@atletter
122 \begingroup

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

\def\parseunicodedatal#1l;#2;#3;#4\relax{},
\parseunicodedatall#1;#3;#2 First>\relax
Yh
\def\parseunicodedatall#1;#2;#3 First>#4\relax{%
\ifx\relax#4\relax
\expandafter\parseunicodedataIll
\else
\expandafter\parseunicodedataIV
\fi
{#1}#2\relax/,
Y
\def\parseunicodedataIII#1#2#3\relax{%
\ifnum 0%
\if L#21\fi
\if M#21\fi
>0 %
\catcode"#1=11 7
\fi
Y
\def\parseunicodedataIV#1#2#3\relax{},
\read\unicoderead to \unicodedataline
\if L#2%
\countO="#1 7%
\expandafter\parseunicodedataV\unicodedataline\relax
\fi
Yk
\def\parseunicodedataV#1;#2\relax{%
\loop
\unless\ifnum\countO>"#1 7
\catcode\count0=11 %
\advance\count0 by 1 %
\repeat
Y
\def\storedpar{\par}/,
\chardef\unicoderead=\numexpr\count16 + 1\relax

10

158 \openin\unicoderead=UnicodeData.txt %
159 \loop\unless\ifeof\unicoderead %

160 \read\unicoderead to \unicodedataline

161 \unless\ifx\unicodedataline\storedpar

162 \expandafter\parseunicodedatal\unicodedataline\relax
163 \fi

164 \repeat

165 \closein\unicoderead
166 \@firstofone{Y%

167 \catcode64=12 Y,

168 \savecatcodetable\catcodetable@latex
169 \catcode6b4=11 Y

170 \savecatcodetable\catcodetable@atletter
171 }

172 \endgroup

5.5 Named Lua functions

\newluafunction Much the same story for allocating LuaTEX functions except here they are just
numbers so they are allocated in the same way as boxes. Lua indexes from 1 so
once again slot 0 is skipped.

173 \ifx\e@alloc@luafunction@count\@undefined

174 \countdef\e@alloc@luafunction@count=260

175 \e@alloc@luafunction@count=\z@

176 \fi

177 \def\newluafunction{}

178 \e@alloc\luafunction\e@alloc@chardef

179 \e@alloc@luafunction@count\m@ne\e@alloc@top
180 }

\newluacmd Additionally two variants are provided to make the passed control sequence call
\newprotectedluacmd the function directly.

181 \def\newluacmd{%

182 \e@alloc\luafunction\luadef

183 \e@alloc@luafunction@count\m@ne\e@alloc@top
184 }

185 \def\newprotectedluacmd{’

186 \e@alloc\luafunction{\protected\luadef}

187 \e@alloc@luafunction@count\m@ne\e@alloc@top
188 }

5.6 Custom whatsits

\newwhatsit These are only settable from Lua but for consistency are definable here.

189 \ifx\e@alloc@whatsit@count\@undefined

190 \countdef\e@alloc@whatsit@count=261

191 \e@alloc@whatsit@count=\z@

192 \fi

193 \def\newwhatsit#1{/

194 \e@alloc\whatsit\e@alloc@chardef

195 \e@alloc@whatsit@count\m@ne\e@alloc@top#1/
196 }

11

\newluabytecode

\newluachunkname

5.7 Lua bytecode registers

These are only settable from Lua but for consistency are definable here.

197 \ifx\e@alloc@bytecode@count\@undefined

198 \countdef\e@alloc@bytecode@count=262

199 \e@alloc@bytecode@count=\z@

200 \fi

201 \def\newluabytecode#1{%

202 \e@alloc\luabytecode\e@alloc@chardef

203 \e@alloc@bytecode@count\m@ne\eCallocQtop#1%
204 }

5.8 Lua chunk registers

As for bytecode registers, but in addition we need to add a string to the lua.name
table to use in stack tracing. We use the name of the command passed to the
allocator, with no backslash.

205 \ifx\e@alloc@luachunk@count\@undefined
206 \countdef\e@alloc@luachunk@count=263
207 \e@alloc@luachunk@count=\z@

208 \fi

209 \def\newluachunkname#1{%

210 \e@alloc\luachunk\e@alloc@chardef

211 \e@alloc@luachunk@count\m@ne\e@alloc@top#1/
212 \directlua{lua.name[\the\allocationnumber]="\csstring#1"}/,
213 }

5.9 Lua loader

Lua code loaded in the format often has to be loaded again at the beginning of
every job, so we define a helper which allows us to avoid duplicated code:

214 \def\now@and@everyjob#1{%
215 \everyjob\expandafter{\the\everyjob

216 #1Y%,
217 Y%
218 #1%
219 }

Load the Lua code at the start of every job. For the conversion of TEX into
numbers at the Lua side we need some known registers: for convenience we use a
set of systematic names, which means using a group around the Lua loader.

220 (2ekernel) \now@and@everyjobi{}

221 \begingroup

222 \attributedef\attributezero=0 %
223 \chardef \charzero =0 %

Note name change required on older luatex, for hash table access.

224 \countdef \CountZero =0 %
225 \dimendef \dimenzero =0 %
226 \mathchardef \mathcharzero =0 %
227 \muskipdef \muskipzero =0 %
228 \skipdef \skipzero =0 %
229 \toksdef \tokszero =0 %

12

230 \directlua{require("ltluatex")}
231 \endgroup

232 (2ekernel) }

233 (latexrelease) \EndIncludeInRelease

234 (latexrelease) \IncludeInRelease{0000/00/00}

235 (latexrelease {\newluafunction}{LuaTeX}}),
236 (latexrelease)\let\e@alloc@attribute@count\@undefined

237 (latexrelease) \let \newattribute\@undefined

238 (latexrelease) \let\setattribute\@undefined

239 (latexrelease)\let\unsetattribute\Q@undefined

240 (latexrelease)\let\e@alloc@ccodetable@count\Q@undefined
241 (latexrelease) \let\newcatcodetable\@undefined

(

()

()

()

()

()

()

()

()

()
242 (latexrelease) \let\catcodetable@initex\@undefined
243 (latexrelease) \1et\catcodetable@string\@undefined
244 (latexrelease) \1et\catcodetable@latex\@undefined
245 (latexrelease) \let\catcodetable@atletter\Qundefined
246 (latexrelease) \1et\e@alloc@luafunction@count\@undefined
247 (latexrelease) \1et \newluafunction\@undefined
248 (latexrelease)\let\e@alloc@luafunction@count\@undefined
249 (latexrelease) \1et \newwhatsit\@undefined
250 (latexrelease) \1et\e@alloc@whatsit@count\@undefined
251 (latexrelease) \1et \newluabytecode\@undefined
252 (latexrelease) \1et\e@alloc@bytecode@count \Qundefined
253 (latexrelease) \1et \newluachunkname\@undefined
254 (latexrelease) \let\e@alloc@luachunk@count\@undefined
255 (latexrelease) \directlua{luatexbase.uninstall ()}

(

256 (latexrelease) \EndIncludeInRelease

In \everyjob, if luaotfload is available, load it and switch to TU.

257 (latexrelease) \IncludeInRelease{2017/01/01}}
258 (latexrelease) {\fontencoding}{TU in everyjob}’
259 (latexrelease) \fontencoding{TU}\let\encodingdefault\f@encoding
260 (latexrelease)\ifx\directlua\@undefined\else
261 (2ekernel) \everyjob\expandafter{},

262 (2ekernel) \the\everyjob

263 (*2ekernel, latexrelease)

264 \directlua{}

265 if xpcall(function ()7

266 require (’luaotfload-main’)y
267 end, texio.write_nl) then 7

268 local _void = luaotfload.main ()}

269 else %

270 texio.write_nl(’Error in luaotfload: reverting to 0T1’)}
271 tex.print(’\string\\def\string\\encodingdefault{0T1}’)7,
272 end %

273}

274 \let\f@encoding\encodingdefault

275 \expandafter\let\csname ver@luaotfload.sty\endcsname\fmtversion

276 (/2ekernel, latexrelease)

277 (latexrelease) \fi

278 (2ekernel) }

279 (latexrelease) \EndIncludeInRelease

280 (latexrelease) \IncludeInRelease{0000/00/00}%

281 (latexrelease) {\fontencoding}{TU in everyjob}}

13

282
283

latexrelease) \fontencoding{0T1}\1let\encodingdefault\f@encoding
latexrelease) \EndIncludeInRelease

284
285

2ekernel | latexrelease) \fi
/2ekernel | tex | latexrelease)

o~ o~~~

5.10 Lua module preliminaries
286 (*lua)

Some set, up for the Lua module which is needed for all of the Lua functionality
added here.
luatexbase Set up the table for the returned functions. This is used to expose all of the public
functions.

287 luatexbase luatexbase or { }
288 local luatexbase = luatexbase

Some Lua best practice: use local versions of functions where possible.

289 local string_gsub = string.gsub

290 local tex_count = tex.count

291 local tex_setcount = tex.setcount
292 local texio_write_nl = texio.write_nl
293 local flush_list = node.flush_list

294 local luatexbase_warning
295 local luatexbase_error

5.11 Lua module utilities
5.11.1 Module tracking

modules To allow tracking of module usage, a structure is provided to store information
and to return it.

296 local modules = modules or { }

provides_module Local function to write to the log.

297 local function luatexbase_log(text)
298 texio_write_nl("log", text)
299 end

Modelled on \ProvidesPackage, we store much the same information but with
a little more structure.

300 local function provides_module(info)
301 if not (info and info.name) then

302 luatexbase_error("Missing module name for provides_module")
303 end

304 local function spaced(text)

305 return text and (" " .. text) or ""

306 end

307 luatexbase_log(

308 "Lua module: " .. info.name

309 .. spaced(info.date)

310 .. spaced(info.version and string_gsub(info.version or "","~(%d)","v%1"))
311 .. spaced(info.description)

312)

14

313 modules[info.name] = info
314 end

315 luatexbase.provides_module = provides_module

5.11.2 Module messages

There are various warnings and errors that need to be given. For warnings we can
get exactly the same formatting as from TEX. For errors we have to make some
changes. Here we give the text of the error in the IXTEX format then force an error
from Lua to halt the run. Splitting the message text is done using \n which takes

the place of \MessageBreak.

First an auxiliary for the formatting: this measures up the message leader so

we always get the correct indent.

316 local function msg_format(mod, msg_type, text)

317 local leader = ""
318 local cont
319 local first_head

320 if mod == "LaTeX" then

321 cont = string_gsub(leader, ".", " ")

322 first_head = leader .. "LaTeX: "

323 else

324 first_head = leader .. "Module " .. msg_type
325 cont = "(" .. mod .. ")"

326 .. string_gsub(first_head, ".", " ")

327 first_head = leader .. "Module " .. mod .. " " .. msg_type
328 end

329 if msg_type == "Error" then

330 first_head = "\n" .. first_head

331 end

332 if string.sub(text,-1) "= "\n" then

333 text = text .. " "

334 end

335 return first_head .. " "

336 .. string_gsub(

337 text

338 .. "on input line "

339 .. tex.inputlineno, "\n", "\n" cont .. " "
340)

341 .. "\n"

342 end

module_info Write messages.

module_warning 343 local function module_info(mod, text)

module_error 344 texio_write_nl("log", msg_format(mod, "Info", text))

345 end
346 luatexbase.module_info = module_info
347 local function module_warning(mod, text)

348 texio_write_nl("term and log",msg_format(mod, "Warning", text))

349 end

350 luatexbase.module_warning = module_warning
351 local function module_error(mod, text)

352 error(msg_format(mod, "Error", text))
353 end

15

354 luatexbase.module_error = module_error

Dedicated versions for the rest of the code here.

355 function luatexbase_warning(text)
356 module_warning("luatexbase", text)
357 end

358 function luatexbase_error (text)

359 module_error("luatexbase", text)
360 end

5.12 Accessing register numbers from Lua

Collect up the data from the TEX level into a Lua table: from version 0.80, LuaTEX
makes that easy.

361 local luaregisterbasetable = { }
362 local registermap = {

363 attributezero = "assign_attr" ,
364 charzero = "char_given" s
365 CountZero = "assign_int" ,
366 dimenzero = "assign_dimen" ,
367 mathcharzero = "math_given" s
368 muskipzero = "assign_mu_skip" ,
369 skipzero = "assign_skip" ,
370 tokszero = "assign_toks" s
371 }

372 local createtoken

373 if tex.luatexversion > 81 then

374 createtoken = token.create

375 elseif tex.luatexversion > 79 then

376 createtoken = newtoken.create

377 end

378 local hashtokens = tex.hashtokens()
379 local luatexversion = tex.luatexversion
380 for i,j in pairs (registermap) do

381 if luatexversion < 80 then

382 luaregisterbasetable [hashtokens[i] [1]] =

383 hashtokens[i] [2]

384 else

385 luaregisterbasetable[j] = createtoken(i).mode
386 end

387 end

registernumber Working out the correct return value can be done in two ways. For older LuaTEX
releases it has to be extracted from the hashtokens. On the other hand, newer
LuaTgX’s have newtoken, and whilst .mode isn’t currently documented, Hans
Hagen pointed to this approach so we should be OK.
388 local registernumber
389 if luatexversion < 80 then
390 function registernumber (name)

391 local nt = hashtokens[name]

392 if (nt and luaregisterbasetable[nt[1]]) then
393 return nt[2] - luaregisterbasetable[nt[1]]
394 else

16

395 return false

396 end

397 end

398 else

399 function registernumber (name)

400 local nt = createtoken(name)

401 if (luaregisterbasetable[nt.cmdname]) then
402 return nt.mode - luaregisterbasetable[nt.cmdname]
403 else

404 return false

405 end

406 end

407 end

408 luatexbase.registernumber = registernumber

5.13 Attribute allocation

new_attribute As attributes are used for Lua manipulations its useful to be able to assign from
this end.

409 local attributes=setmetatable(

410 {3,

411 {

412 __index = function(t,key)

413 return registernumber(key) or nil
414 end}

415)

416 luatexbase.attributes = attributes

417 local attribute_count_name =

418 attribute_count_name or "e@alloc@attribute@count"
419 local function new_attribute(name)

420 tex_setcount("global", attribute_count_name,

421 tex_count [attribute_count_name] + 1)
422 if tex_count[attribute_count_name] > 65534 then

423 luatexbase_error("No room for a new \\attribute")

424 end

425 attributes[name]= tex_count[attribute_count_name]

426 luatexbase_log("Lua-only attribute " .. name .. " ="

427 tex_count [attribute_count_name])

428 return tex_count[attribute_count_namel]

429 end

430 luatexbase.new_attribute = new_attribute

5.14 Custom whatsit allocation

new_whatsit Much the same as for attribute allocation in Lua.

431 local whatsit_count_name = whatsit_count_name or "e@alloc@whatsit@count"
432 local function new_whatsit(name)
433 tex_setcount("global", whatsit_count_name,

434 tex_count [whatsit_count_name] + 1)
435 if tex_count[whatsit_count_name] > 65534 then

436 luatexbase_error("No room for a new custom whatsit")
437 end

438 luatexbase_log("Custom whatsit " .. (name or "") .. " ="

17

439 tex_count [whatsit_count_name])
440 return tex_count[whatsit_count_name]

441 end

442 luatexbase.new_whatsit = new_whatsit

5.15 Bytecode register allocation

new_bytecode Much the same as for attribute allocation in Lua. The optional (name) argument
is used in the log if given.

443 local bytecode_count_name =

444 bytecode_count_name or "e@alloc@bytecode@count"
445 local function new_bytecode (name)

446 tex_setcount("global", bytecode_count_name,

447 tex_count [bytecode_count_name] + 1)
448 if tex_count[bytecode_count_name] > 65534 then

449 luatexbase_error("No room for a new bytecode register")
450 end

451 luatexbase_log("Lua bytecode " .. (name or "") .. " ="
452 tex_count [bytecode_count_name])

453 return tex_count[bytecode_count_name]

454 end

455 luatexbase.new_bytecode = new_bytecode

5.16 Lua chunk name allocation

new_chunkname As for bytecode registers but also store the name in the lua.name table.

456 local chunkname_count_name =

457 chunkname_count_name or "e@alloc@luachunk@count"
458 local function new_chunkname (name)

459 tex_setcount("global", chunkname_count_name,

460 tex_count [chunkname_count_name] + 1)

461 local chunkname_count = tex_count [chunkname_count_name]

462 chunkname_count = chunkname_count + 1

463 if chunkname_count > 65534 then

464 luatexbase_error("No room for a new chunkname")

465 end

466 lua.name [chunkname_count]=name

467 luatexbase_log("Lua chunkname " .. (name or "") .. " ="
468 chunkname_count .. "\n")

469 return chunkname_count

470 end

471 luatexbase.new_chunkname = new_chunkname

5.17 Lua function allocation

new_luafunction Much the same as for attribute allocation in Lua. The optional (name) argument
is used in the log if given.

472 local luafunction_count_name =

473 luafunction_count_name or "e@alloc@luafunction®@count"
474 local function new_luafunction(name)

475 tex_setcount ("global", luafunction_count_name,

476 math.max (

18

477 #(lua.get_functions_table()),

478 tex_count [luafunction_count_name])

479 + 1)

480 lua.get_functions_table() [tex_count[luafunction_count_name]] = false
481 if tex_count[luafunction_count_name] > 65534 then

482 luatexbase_error("No room for a new luafunction register")
483 end

484 luatexbase_log("Lua function " .. (name or "") .. " ="

485 tex_count [luafunction_count_name])

486 return tex_count[luafunction_count_name]

487 end

488 luatexbase.new_luafunction = new_luafunction

5.18 Lua callback management

The native mechanism for callbacks in LuaTgX allows only one per function. That
is extremely restrictive and so a mechanism is needed to add and remove callbacks
from the appropriate hooks.

5.18.1 Housekeeping

The main table: keys are callback names, and values are the associated lists of
functions. More precisely, the entries in the list are tables holding the actual
function as func and the identifying description as description. Only callbacks
with a non-empty list of functions have an entry in this list.

Actually there are two tables: realcallbacklist directly contains the entries
as described above while callbacklist only directly contains the already sorted
entries. Other entries can be queried through callbacklist too which triggers a
resort.

Additionally callbackrules describes the ordering constraints: It contains
two element tables with the descriptions of the constrained callback implemen-
tations. It can additionally contain a type entry indicating the kind of rule. A
missing value indicates a normal ordering constraint.

489 local realcallbacklist = {}

490 local callbackrules = {}
491 local callbacklist = setmetatable({}, {

492 __index = function(t, name)

493 local list = realcallbacklist[name]

494 local rules = callbackrules[name]

495 if list and rules then

496 local meta = {}

497 for i, entry in ipairs(list) do

498 local t = {value = entry, count = 0, pos = i}
499 metal[entry.description], list[i] = t, t

500 end

501 local count = #list

502 local pos = count

503 for i, rule in ipairs(rules) do

504 local rule = rules[i]

505 local pre, post = meta[rule[1]], meta[rule[2]]
506 if pre and post then

507 if rule.type then

19

508 if not rule.hidden then

509 assert(rule.type == ’incompatible-warning’ and luatexbase_warning
510 or rule.type == ’incompatible-error’ and luatexbase_error) (
511 "Incompatible functions \"" .. rule[1] .. "\" and \"" .. rule[2]
512 .. "\" specified for callback \"" .. name .. "\".")
513 rule.hidden = true

514 end

515 else

516 local post_count = post.count

517 post.count = post_count+1

518 if post_count == 0 then

519 local post_pos = post.pos

520 if post_pos "= pos then

521 local new_post_pos = list[pos]

522 new_post_pos.pos = post_pos

523 list [post_pos] = new_post_pos

524 end

525 list[pos] = nil

526 pos = pos - 1

527 end

528 pre[#pre+1] = post

529 end

530 end

531 end

532 for i=1, count do -- The actual sort begins

533 local current = list[i]

534 if current then

535 meta[current.value.description] = nil

536 for j, cur in ipairs(current) do

537 local count = cur.count

538 if count == 1 then

539 pos = pos + 1

540 list[pos] = cur

541 else

542 cur.count = count - 1

543 end

544 end

545 list[i] = current.value

546 else

547 -- Cycle occurred. TODO: Show cycle for debugging
548 -- list[i] = ...

549 local remaining = {}

550 for name, entry in next, meta do

551 local value = entry.value

552 list[#1list + 1] = entry.value

553 remaining [#remaining + 1] = name

554 end

555 table.sort(remaining)

556 local first_name = remaining[1]

557 for j, name in ipairs(remaining) do

558 local entry = meta[name]

559 list[i + j - 1] = entry.value

560 for _, post_entry in ipairs(entry) do

561 local post_name = post_entry.value.description

20

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

if not remaining[post_name] then
remaining[post_name] = name
end
end
end
local cycle = {first_name}
local index 1
local last_name = first_name
repeat
cycle[last_name] = index
last_name = remaining[last_name]
index = index + 1
cycle[index] = last_name
until cycle[last_name]
local length = index - cycle[last_name] + 1
table.move(cycle, cycle[last_name], index, 1)
for i=2, length//2 do
cycle[i], cycle[length + 1 - i] = cycle[length + 1 - i], cycle[i]
end
error(’Cycle occurred at ’ .. table.concat(cycle, ’> -> ’, 1, length))
end
end
end
realcallbacklist [name] = list
t[name] = list
return list
end

B

Numerical codes for callback types, and name-to-value association (the table
keys are strings, the values are numbers).

590
591
592
593
594
595
596
597

local list, data, exclusive, simple, reverselist =1, 2, 3, 4, 5
local types = {

list = list,

data = data,

exclusive = exclusive,

simple = simple,

reverselist = reverselist,
¥

Now, list all predefined callbacks with their current type, based on the LuaTEX
manual version 1.01. A full list of the currently-available callbacks can be obtained

using
\directlua{
for i,_ in pairs(callback.list()) do
texio.write_nl("- " .. i)
end
}
\bye

in plain LuaTEX. (Some undocumented callbacks are omitted as they are to be
removed.)

598 local callbacktypes = callbacktypes or {

21

Section 8.2: file discovery callbacks.

599 find_read_file = exclusive,
600 find_write_file = exclusive,
601 find_font_£file = data,
602 find_output_file = data,
603 find_format_file = data,
604 find_vf_file = data,
605 find_map_file = data,
606 find_enc_file = data,
607 find_pk_file = data,
608 find_data_file = data,

609 find_opentype_file = data,
610 find_truetype_file = data,

611 find_typel_file = data,

612 find_image_file = data,

613 open_read_file = exclusive,
614 read_font_file = exclusive,
615 read_vf_file = exclusive,
616 read_map_file = exclusive,
617 read_enc_file = exclusive,
618 read_pk_file = exclusive,
619 read_data_file = exclusive,
620 read_truetype_file = exclusive,
621 read_typel_file = exclusive,

622 read_opentype_file = exclusive,
Not currently used by luatex but included for completeness. may be used by a
font handler.

623 find_cidmap_file data,
624 read_cidmap_file = exclusive,

Section 8.3: data processing callbacks.

625 process_input_buffer = data,
626 process_output_buffer = data,
627 process_jobname = data,

Section 8.4: node list processing callbacks.

628 contribute_filter = simple,

629 buildpage_filter = simple,

630 build_page_insert = exclusive,
631 pre_linebreak_filter = list,

632 linebreak_filter = exclusive,
633 append_to_vlist_filter = exclusive,
634 post_linebreak_filter = reverselist,
635 hpack_filter = list,

636 vpack_filter = list,

637 hpack_quality = exclusive,
638 vpack_quality = exclusive,
639 pre_output_filter = list,

640 process_rule = exclusive,
641 hyphenate = simple,

642 ligaturing = simple,

643 kerning = simple,

644 insert_local_par = simple,

22

645 % mlist_to_hlist
new_graf

646

exclusive,
exclusive,

Section 8.5: information reporting callbacks.

647
648
649
650
651
652
653
654
655
656
657
658
659
660

pre_dump = simple,
start_run = simple,
stop_run = simple,
start_page_number = simple,
stop_page_number = simple,
show_error_hook = simple,
show_warning_message = simple,
show_error_message = simple,
show_lua_error_hook = simple,
start_file = simple,
stop_file = simple,
call_edit = simple,
finish_synctex = simple,
wrapup_run = simple,

Section 8.6: PDF-related callbacks.
finish_pdffile
finish_pdfpage
page_objnum_provider = data,
page_order_index

661
662
663
664
665

process_pdf_image_content

= data,

Section 8.7: font-related callbacks.

666
667
668
669
670
671
672
673

674 }

define_font

glyph_info

glyph_not_found
glyph_stream_provider
make_extensible

font_descriptor_objnum_provider

input_level_string
provide_charproc_data

data,

data,
data,

exclusive,
exclusive,
exclusive,
exclusive,
exclusive,
exclusive,
exclusive,
exclusive,

675 luatexbase.callbacktypes=callbacktypes

Sometimes multiple callbacks correspond to a single underlying engine level
callback. Then the engine level callback should be registered as long as at least
one of these callbacks is in use. This is implemented though a shared table which
counts how many of the involved callbacks are currently in use. The enging level

callback is registered iff this count is not 0.

We add mlist_to_hlist directly to the list to demonstrate this, but the han-
dler gets added later when it is actually defined.
All callbacks in this list are treated as user defined callbacks.

676 local shared_callbacks = {
mlist_to_hlist =
callback = "mlist_to_hlist",

677
678
679
680
681
682 }

}!

count =
handler

0,

nil,

{

683 shared_callbacks.pre_mlist_to_hlist_filter = shared_callbacks.mlist_to_hlist
684 shared_callbacks.post_mlist_to_hlist_filter =

23

shared_callbacks.mlist_to_hlist

callback.register Save the original function for registering callbacks and prevent the original be-
ing used. The original is saved in a place that remains available so other more
sophisticated code can override the approach taken by the kernel if desired.
685 local callback_register = callback_register or callback.register
686 function callback.register()
687 luatexbase_error("Attempt to use callback.register() directly\n")
688 end

5.18.2 Handlers

The handler function is registered into the callback when the first function is added
to this callback’s list. Then, when the callback is called, the handler takes care
of running all functions in the list. When the last function is removed from the
callback’s list, the handler is unregistered.

More precisely, the functions below are used to generate a specialized function
(closure) for a given callback, which is the actual handler.

The way the functions are combined together depends on the type of the call-
back. There are currently 4 types of callback, depending on the calling convention
of the functions the callback can hold:

simple is for functions that don’t return anything: they are called in order, all
with the same argument;

data is for functions receiving a piece of data of any type except node list head
(and possibly other arguments) and returning it (possibly modified): the
functions are called in order, and each is passed the return value of the
previous (and the other arguments untouched, if any). The return value is
that of the last function;

list is a specialized variant of data for functions filtering node lists. Such functions
are called with a node list head as the first argument and may return either
the head of a modified node list, or the boolean values true or false. The
functions are chained the same way as for data except for the following
cases. If a function returns false, then false is immediately returned and
the following functions are not called. If a function returns true, then the
same head is passed to the next function. If all functions return true, then
the original head is returned, otherwise the return value of the last function
not returning true is used.

reverselist is a specialized variant of list which executes functions in inverse
order.

exclusive is for functions with more complex signatures; functions in this type
of callback are not combined: An error is raised if a second callback is
registered.

Handler for data callbacks.

689 local function data_handler (name)

690 return function(data, ...)

691 for _,i in ipairs(callbacklist[name]) do
692 data = i.func(data,...)

693 end

694 return data

24

695 end
696 end
Default for user-defined data callbacks without explicit default.

697 local function data_handler_default(value)
698 return value
699 end

Handler for exclusive callbacks. We can assume callbacklist[name] is not
empty: otherwise, the function wouldn’t be registered in the callback any more.

700 local function exclusive_handler (name)
701 return function(...)

702 return callbacklist[name] [1].func(...)
703 end
704 end

Handler for 1ist callbacks.

705 local function list_handler (name)

706 return function(head, ...)

707 local ret

708 for _,i in ipairs(callbacklist[name]) do
709 ret = i.func(head, ...)

710 if ret == false then

711 luatexbase_warning(

712 "Function " i.description .. "’ returned false\n"
713 .. "in callback ‘" .. name .."’"
714)

715 return false

716 end

717 if ret "= true then

718 head = ret

719 end

720 end

721 return head

722 end

723 end

Default for user-defined 1ist and reverselist callbacks without explicit default.

724 local function list_handler_default (head)
725 return head
726 end

Handler for reverselist callbacks.

727 local function reverselist_handler (name)

728 return function(head, ...)

729 local ret

730 local callbacks = callbacklist[name]

731 for i = #callbacks, 1, -1 do

732 local cb = callbacks[i]

733 ret = cb.func(head, ...)

734 if ret == false then

735 luatexbase_warning(

736 "Function ‘" .. cb.description .. "’ returned false\n"
737 .. "in callback ‘" .. name .."’"
738)

739 return false

25

740 end

741 if ret "= true then
742 head = ret

743 end

744 end

745 return head

746 end

747 end

Handler for simple callbacks.

748 local function simple_handler (name)
749 return function(...)

750 for _,i in ipairs(callbacklist[name]) do
751 i.func(...)

752 end

753 end

754 end

Default for user-defined simple callbacks without explicit default.

755 local function simple_handler_default()
756 end

Keep a handlers table for indexed access and a table with the corresponding
default functions.

757 local handlers = {

758 [datal = data_handler,

759 [exclusive] = exclusive_handler,
760 [list] = list_handler,

761 [reverselist] = reverselist_handler,
762 [simple] = simple_handler,

763 }

764 local defaults = {

765 [datal = data_handler_default,
766 [exclusive] = nil,

767 [list] = list_handler_default,
768 [reverselist] = list_handler_default,
769 [simple] = simple_handler_default,
770 }

5.18.3 Public functions for callback management

Defining user callbacks perhaps should be in package code, but impacts on
add_to_callback. If a default function is not required, it may be declared as
false. First we need a list of user callbacks.

771 local user_callbacks_defaults = {}

create_callback The allocator itself.

772 local function create_callback(name, ctype, default)
773 local ctype_id = types[ctypel

774 if not name or name == ""

775 or not ctype_id

776 then

T luatexbase_error("Unable to create callback:\n" ..

778 "valid callback name and type required")
779 end

26

780 if callbacktypes[name] then

781 luatexbase_error ("Unable to create callback ‘" .. name
782 "> :\ncallback is already defined")
783 end

784 default = default or defaults[ctype_id]
785 if not default then

786 luatexbase_error("Unable to create callback ‘" .. name
787 "2 :\ndefault is required for ‘" .. ctype
788 "> callbacks")

789 elseif type (default) ~= "function" then

790 luatexbase_error ("Unable to create callback ‘" .. name
791 "’ :\ndefault is not a function")

792 end

793 user_callbacks_defaults[name] = default
794 callbacktypes[name] = ctype_id

795 end

796 luatexbase.create_callback = create_callback

call_callback Call a user defined callback. First check arguments.

797 local function call_callback(name,...)

798 if not name or name == "" then

799 luatexbase_error("Unable to create callback:\n"

800 "valid callback name required")

801 end

802 if user_callbacks_defaults[name] == nil then

803 luatexbase_error("Unable to call callback ‘" .. name
804 .. "’ :\nunknown or empty")

805 end

806 local 1 = callbacklist[name]
807 local £
808 if not 1 then

809 f = user_callbacks_defaults[name]

810 else

811 f = handlers[callbacktypes[name]] (name)
812 end

813 return f(...)

814 end

815 luatexbase.call_callback=call_callback

add_to_callback Add a function to a callback. First check arguments.

816 local function add_to_callback(name, func, description)

817 if not name or name == "" then

818 luatexbase_error("Unable to register callback:\n"
819 "valid callback name required")
820 end

821 if not callbacktypes[name] or

822 type(func) ~= "function" or

823 not description or

824 description == "" then

825 luatexbase_error(

826 "Unable to register callback.\n\n"

827 .. "Correct usage:\n"

828 .. "add_to_callback(<callback>, <function>, <description>)"
829)

27

830 end

Then test if this callback is already in use. If not, initialise its list and register the
proper handler.

831 local 1 = realcallbacklist[name]

832 if 1 == nil then

833 1=4{1}
834 realcallbacklist[name] = 1

Handle count for shared engine callbacks.

835 local shared = shared_callbacks[name]

836 if shared then

837 shared.count = shared.count + 1

838 if shared.count == 1 then

839 callback_register(shared.callback, shared.handler)
840 end

If it is not a user defined callback use the primitive callback register.

841 elseif user_callbacks_defaults[name] == nil then

842 callback_register(name, handlers[callbacktypes[name]] (name))
843 end

844 end

Actually register the function and give an error if more than one exclusive one
is registered.
845 local f = {

846 func = func,

847 description = description,

848 }

849 if callbacktypes[name] == exclusive then

850 if #1 == 1 then

851 luatexbase_error(

852 "Cannot add second callback to exclusive function\n‘"
853 name .. "’")

854 end

855 end

856 table.insert(l, f)
857 callbacklist[name] = nil

Keep user informed.

858 luatexbase_log(

859 "Inserting ‘" .. description .. "’ in ‘" .. name .. "’."
860)
861 end

862 luatexbase.add_to_callback = add_to_callback

declare_callback_rule Add an ordering constraint between two callback implementations

863 local function declare_callback_rule(name, descl, relation, desc2)
864 if not callbacktypes[name] or

865 not descl or not desc2 or

866 descl == "" or desc2 == "" then

867 luatexbase_error (

868 "Unable to create ordering constraint. "

869 .. "Correct usage:\n"

870 .. "declare_callback_rule(<callback>, <description_a>, <description_b>)"
871)

28

872 end

873 if relation == ’before’ then

874 relation = nil

875 elseif relation == ’after’ then

876 desc2, descl = descl, desc2

877 relation = nil

878 elseif relation == ’incompatible-warning’ or relation == ’incompatible-error’ then
879 elseif relation == ’unrelated’ then

880 else

881 luatexbase_error(

882 "Unknown relation type in declare_callback_rule"
883)

884 end

885 callbacklist[name] = nil
886 local rules = callbackrules[name]
887 if rules then

888 for i, rule in ipairs(rules) do

889 if rule[1] == descl and rule[2] == desc2 or rule[1] == desc2 and rule[2] == descl then
890 if relation == ’unrelated’ then

891 table.remove(rules, i)

892 else

893 rule[1], rule[2], rule.type = descl, desc2, relation
894 end

895 return

896 end

897 end

898 if relation "= ’unrelated’ then

899 rules[#rules + 1] = {descl, desc2, type = relation}

900 end

901 elseif relation "= ’unrelated’ then

902 callbackrules[name] = {{descl, desc2, type = relation}}
903 end

904 end

905 luatexbase.declare_callback_rule = declare_callback_rule

remove_from_callback Remove a function from a callback. First check arguments.

906 local function remove_from_callback(name, description)

907 if not name or name == "" then

908 luatexbase_error("Unable to remove function from callback:\n"
909 "valid callback name required")

910 end

911 if not callbacktypes[name] or

912 not description or

913 description == "" then

914 luatexbase_error(

915 "Unable to remove function from callback.\n\n"

916 .. "Correct usage:\n"

917 .. "remove_from_callback(<callback>, <description>)"
918)

919 end

920 local 1 = realcallbacklist[name]

921 if not 1 then

922 luatexbase_error(

923 "No callback list for ‘" .. name .. "’\n")

29

924 end
Loop over the callback’s function list until we find a matching entry. Remove it
and check if the list is empty: if so, unregister the callback handler.

925 local index = false
926 for i,j in ipairs(l) do

927 if j.description == description then

928 index = i

929 break

930 end

931 end

932 if not index then

933 luatexbase_error(

934 "No callback ‘" .. description .. "’ registered for ‘"
935 name .. "’\n")

936 end

937 local cb = 1[index]
938 table.remove(l, index)
939 luatexbase_log(

940 "Removing ‘" description .. "’ from ‘" .. name .. "’."
941)

942 if #1 == 0 then

943 realcallbacklist[name] = nil

944 callbacklist[name] = nil

945 local shared = shared_callbacks[name]

946 if shared then

947 shared.count = shared.count - 1

948 if shared.count == 0 then

949 callback_register(shared.callback, nil)

950 end

951 elseif user_callbacks_defaults[name] == nil then
952 callback_register(name, nil)

953 end

954 end

955 return cb.func,cb.description

956 end

957 luatexbase.remove_from_callback = remove_from_callback

in_callback Look for a function description in a callback.

958 local function in_callback(name, description)
959 if not name

960 or name == ""

961 or not realcallbacklist[name]

962 or not callbacktypes[name]

963 or not description then

964 return false

965 end

966 for _, i in pairs(realcallbacklist[name]) do
967 if i.description == description then
968 return true

969 end

970 end

971 return false

972 end

973 luatexbase.in_callback = in_callback

30

disable_callback As we subvert the engine interface we need to provide a way to access this func-

tionality.

974 local function disable_callback(name)

975 if (realcallbacklist[name] == nil) then

976 callback_register(name, false)

977 else

978 luatexbase_error("Callback list for " .. name .. " not empty")
979 end

980 end

981 luatexbase.disable_callback = disable_callback

callback_descriptions List the descriptions of functions registered for the given callback. This will sort
the list if necessary.
982 local function callback_descriptions (name)

983 local d = {}
984 if not name

985 or name == ""

986 or not realcallbacklist[name]
987 or not callbacktypes[name]
988 then

989 return d

990 else

991 for k, i in pairs(callbacklist[name]) do
992 d[k]= i.description

993 end

994 end

995 return d

996 end

997 luatexbase.callback_descriptions =callback_descriptions

uninstall Unlike at the TEX level, we have to provide a back-out mechanism here at the
same time as the rest of the code. This is not meant for use by anything other
than latexrelease: as such this is deliberately not documented for users!

998 local function uninstall()
999 module_info(

1000 "luatexbase",
1001 "Uninstalling kernel luatexbase code"
1002)

1003 callback.register = callback_register
1004 luatexbase = nil

1005 end

1006 luatexbase.uninstall = uninstall

mlist_to_hlist To emulate these callbacks, the “real” mlist_to_hlist is replaced by a wrapper
calling the wrappers before and after.

1007 create_callback(’pre_mlist_to_hlist_filter’, ’list’)

1008 create_callback(’mlist_to_hlist’, ’exclusive’, node.mlist_to_hlist)

1009 create_callback(’post_mlist_to_hlist_filter’, ’reverselist’)

1010 function shared_callbacks.mlist_to_hlist.handler(head, display_type, need_penalties)

1011 local current = call_callback("pre_mlist_to_hlist_filter" , head, display_type, need_penalt

1012 if current == false then
1013 flush_list (head)
1014 return nil

31

1015 end

1016 current = call_callback("mlist_to_hlist", current, display_type, need_penalties)

1017 local post = call_callback("post_mlist_to_hlist_filter", current, display_type, need_penal
1018 if post == false then

1019 flush_list(current)

1020 return nil

1021 end

1022 return post

1023 end

1024 (/lua)

Reset the catcode of @.
1025 (tex)\catcode‘\@=\etatcatcode\relax

32

	Contents
	1 Overview
	2 Core TeX functionality
	3 Plain TeX interface
	4 Lua functionality
	4.1 Allocators in Lua
	4.2 Lua access to TeX register numbers
	4.3 Module utilities
	4.4 Callback management

	5 Implementation
	5.1 Minimum LuaTeX version
	5.2 Older LaTeX/Plain TeX setup
	5.3 Attributes
	5.4 Category code tables
	5.5 Named Lua functions
	5.6 Custom whatsits
	5.7 Lua bytecode registers
	5.8 Lua chunk registers
	5.9 Lua loader
	5.10 Lua module preliminaries
	5.11 Lua module utilities
	5.12 Accessing register numbers from Lua
	5.13 Attribute allocation
	5.14 Custom whatsit allocation
	5.15 Bytecode register allocation
	5.16 Lua chunk name allocation
	5.17 Lua function allocation
	5.18 Lua callback management

