This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 8714
Network Working Group                                            D. Levi
Request for Comments: 4363                               Nortel Networks
Obsoletes: 2674                                            D. Harrington
Category: Standards Track                             Effective Software
                                                            January 2006


        Definitions of Managed Objects for Bridges with Traffic
        Classes, Multicast Filtering, and Virtual LAN Extensions

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in TCP/IP-based internets.
   In particular, it defines two MIB modules for managing the
   capabilities of MAC bridges defined by the IEEE 802.1D-1998 (TM) MAC
   Bridges and the IEEE 802.1Q-2003 (TM) Virtual LAN (VLAN) standards
   for bridging between Local Area Network (LAN) segments.  One MIB
   module defines objects for managing the 'Traffic Classes' and
   'Enhanced Multicast Filtering' components of IEEE 802.1D-1998 and
   P802.1t-2001 (TM).  The other MIB module defines objects for managing
   VLANs, as specified in IEEE 802.1Q-2003, P802.1u (TM), and P802.1v
   (TM).

   Provisions are made for support of transparent bridging.  Provisions
   are also made so that these objects apply to bridges connected by
   subnetworks other than LAN segments.

   This memo supplements RFC 4188 and obsoletes RFC 2674.

Table of Contents

   1. The Internet-Standard Management Framework ......................3
   2. Overview ........................................................3
      2.1. Scope ......................................................3
   3. Structure of MIBs ...............................................4
      3.1. Structure of Extended Bridge MIB Module ....................5
           3.1.1. Relationship to IEEE 802.1D-1998 Manageable
                  Objects .............................................5
           3.1.2. Relationship to IEEE 802.1Q Manageable Objects ......6
           3.1.3. The dot1dExtBase Subtree ............................7
           3.1.4. The dot1dPriority Subtree ...........................7
           3.1.5. The dot1dGarp Subtree ...............................7
           3.1.6. The dot1dGmrp Subtree ...............................7
           3.1.7. The dot1dTpHCPortTable ..............................8
           3.1.8. The dot1dTpPortOverflowTable ........................8
      3.2. Structure of Virtual Bridge MIB module .....................8
           3.2.1. Relationship to IEEE 802.1Q Manageable Objects ......8
           3.2.2. The dot1qBase Subtree ..............................12
           3.2.3. The dot1qTp Subtree ................................12
           3.2.4. The dot1qStatic Subtree ............................12
           3.2.5. The dot1qVlan Subtree ..............................12
      3.3. Textual Conventions .......................................12
      3.4. Relationship to Other MIBs ................................13
           3.4.1. Relationship to the SNMPv2-MIB .....................13
           3.4.2. Relationship to the IF-MIB .........................13
                  3.4.2.1. Layering Model ............................14
                  3.4.2.2. ifStackTable ..............................15
                  3.4.2.3. ifRcvAddressTable .........................15
           3.4.3. Relationship to the BRIDGE-MIB .....................16
                  3.4.3.1. The dot1dBase Subtree .....................16
                  3.4.3.2. The dot1dStp Subtree ......................16
                  3.4.3.3. The dot1dTp Subtree .......................16
                  3.4.3.4. The dot1dStatic Subtree ...................17
                  3.4.3.5. Additions to the BRIDGE-MIB ...............17
   4. Definitions for Extended Bridge MIB ............................18
   5. Definitions for Virtual Bridge MIB .............................42
   6. Acknowledgements ...............................................91
   7. Security Considerations ........................................91
   8. Normative References ...........................................94
   9. Informative References .........................................95
   Appendix A. Email from Tony Jeffrey from IEEE .....................96

1.  The Internet-Standard Management Framework

   For a detailed overview of the documents that describe the current
   Internet-Standard Management Framework, please refer to section 7 of
   RFC 3410 [RFC3410].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  MIB objects are generally
   accessed through the Simple Network Management Protocol (SNMP).
   Objects in the MIB are defined using the mechanisms defined in the
   Structure of Management Information (SMI).  This memo specifies a MIB
   module that is compliant to the SMIv2, which is described in STD 58,
   RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
   [RFC2580].

2.  Overview

   A common device present in many networks is the Bridge.  This device
   is used to connect Local Area Network segments below the network
   layer.  These devices are often known as 'layer 2 switches'.

   The transparent method of bridging is defined by IEEE 802.1D-1998
   [802.1D].  Managed objects for transparent bridging are defined in
   the BRIDGE-MIB [BRIDGE-MIB].

   The original IEEE 802.1D is augmented by IEEE 802.1Q-2003 [802.1Q] to
   provide support for 'virtual bridged LANs' where a single bridged
   physical LAN network may be used to support multiple logical bridged
   LANs, each of which offers a service approximately the same as that
   defined by IEEE 802.1D.  Such virtual LANs (VLANs) are an integral
   feature of switched LAN networks.  A VLAN can be viewed as a group of
   end-stations on multiple LAN segments and can communicate as if they
   were on a single LAN.  IEEE 802.1Q defines port-based Virtual LANs
   where membership is determined by the bridge port on which data
   frames are received, and port-and-protocol-based Virtual LANs where
   membership is determined by the bridge port on which frames are
   received and the protocol identifier of the frame.  This memo defines
   the objects needed for the management of port-based VLANs in bridge
   entities.

   This memo supplements RFC 4188 [BRIDGE-MIB] and obsoletes RFC 2674
   [RFC2674].

2.1.  Scope

   The MIB modules defined in this document include a comprehensive set
   of managed objects that attempts to match the set defined in IEEE
   802.1D and IEEE 802.1Q.  However, to be consistent with the spirit of

   the SNMP Framework, a subjective judgement was made to omit the
   objects from those standards most 'costly' to implement in an agent
   and least 'essential' for fault and configuration management.  The
   omissions are described in Section 3 below.

   Historical note:

   The original BRIDGE-MIB [RFC1493] used the following principles for
   determining inclusion of an object in the BRIDGE-MIB module:

   (1)   Start with a small set of essential objects and add only as
         further objects are needed.

   (2)   Require that objects be essential for either fault or
         configuration management.

   (3)   Consider evidence of current use and/or utility.

   (4)   Limit the total number of objects.

   (5)   Exclude objects that are simply derivable from others in this
         or other MIBs.

   (6)   Avoid causing critical sections to be heavily instrumented.
         The guideline that was followed is one counter per critical
         section per layer.

3.  Structure of MIBs

   This document defines objects that supplement those in the BRIDGE-MIB
   module [BRIDGE-MIB].  Section 3.4.3 of the present document contains
   some recommendations regarding usage of objects in the BRIDGE-MIB by
   devices implementing the enhancements defined here.

   An extended bridge MIB module P-BRIDGE-MIB defines managed objects
   for the traffic class and multicast filtering enhancements defined by
   IEEE 802.1D-1998 [802.1D], including the Restricted Group
   Registration control defined by IEEE P802.1t [802.1t].

   A virtual bridge MIB module Q-BRIDGE-MIB defines managed objects for
   the Virtual LAN bridging enhancements defined by IEEE 802.1Q-2003
   [802.1Q], including the Restricted VLAN Registration control, defined
   by IEEE P802.1u [802.1u], and the VLAN Classification by Protocol and
   Port enhancement, defined by IEEE P802.1v [802.1v].

3.1.  Structure of Extended Bridge MIB Module

   Objects in this MIB are arranged into subtrees.  Each subtree is
   organized as a set of related objects.  The overall structure and
   assignment of objects to their subtrees is shown below.

3.1.1.  Relationship to IEEE 802.1D-1998 Manageable Objects

   This section contains a cross-reference to the objects defined in
   IEEE 802.1D-1998 [802.1D].  It also details those objects that are
   not considered necessary in this MIB module.

   Some objects defined by IEEE 802.1D-1998 have been included in the
   virtual bridge MIB module rather than this one: entries in
   dot1qTpGroupTable, dot1qForwardAllTable, and
   dot1qForwardUnregisteredTable are required for virtual bridged LANs
   with additional indexing (e.g., per-VLAN, per-Filtering-Database
   (per-FDB)) and so are not defined here.  Instead, devices that do not
   implement virtual bridged LANs but do implement the Extended
   Forwarding Services defined by IEEE 802.1D (i.e., dynamic learning of
   multicast group addresses and group service requirements in the
   filtering database) should implement these tables with a fixed value
   for dot1qFdbId (the value 1 is recommended) or dot1qVlanIndex (the
   value 1 is recommended).  Devices that support Extended Filtering
   Services should support dot1qTpGroupTable, dot1qForwardAllTable, and
   dot1qForwardUnregisteredTable.

   Extended Bridge MIB Name            IEEE 802.1D-1998 Name

   dot1dExtBase                        Bridge
     dot1dDeviceCapabilities
       dot1dExtendedFilteringServices
       dot1dTrafficClasses
     dot1dTrafficClassesEnabled
     dot1dGmrpStatus                    .ApplicantAdministrativeControl
   dot1dPriority
     dot1dPortPriorityTable
       dot1dPortDefaultUserPriority     .UserPriority
       dot1dPortNumTrafficClasses
     dot1dUserPriorityRegenTable        .UserPriorityRegenerationTable
       dot1dUserPriority
       dot1dRegenUserPriority
     dot1dTrafficClassTable             .TrafficClassTable
       dot1dTrafficClassPriority
       dot1dTrafficClass
     dot1dPortOutboundAccessPriorityTable
                                        .OutboundAccessPriorityTable
   dot1dPortOutboundAccessPriority

   dot1dGarp
     dot1dPortGarpTable
       dot1dPortGarpJoinTime            .JoinTime
       dot1dPortGarpLeaveTime           .LeaveTime
       dot1dPortGarpLeaveAllTime        .LeaveAllTime
   dot1dGmrp
     dot1dPortGmrpTable
       dot1dPortGmrpStatus             .ApplicantAdministrativeControl
       dot1dPortGmrpFailedRegistrations .FailedRegistrations
       dot1dPortGmrpLastPduOrigin       .OriginatorOfLastPDU
       dot1dPortRestrictedGroupRegistration
                                        Restricted Group Registration
                                        (Ref. IEEE 802.1t 10.3.2.3)
   dot1dTp
     dot1dTpHCPortTable
       dot1dTpHCPortInFrames            .BridgePort.FramesReceived
       dot1dTpHCPortOutFrames             .ForwardOutBound
       dot1dTpHCPortInDiscards            .DiscardInbound
     dot1dTpPortOverflowTable
       dot1dTpPortInOverflowFrames      .BridgePort.FramesReceived
       dot1dTpPortOutOverflowFrames       .ForwardOutBound
       dot1dTpPortInOverflowDiscards      .DiscardInbound

   The following IEEE 802.1D-1998 management objects have not been
   included in the Bridge MIB for the indicated reasons.

   IEEE 802.1D-1998 Object           Disposition

   Bridge.StateValue                 not considered useful
   Bridge.ApplicantAdministrativeControl
                                     not provided per-attribute
                                     (e.g., per-VLAN, per-Group).
                                     Only per-{device,port,application}
                                     control is provided in this MIB.

   notify group registration failure    not considered useful
     (IEEE 802.1t 14.10.1.2)

3.1.2.  Relationship to IEEE 802.1Q Manageable Objects

   This section contains section number cross-references to manageable
   objects defined in IEEE 802.1Q-2003 [802.1Q].  These objects have
   been included in this MIB as they provide a natural fit with the IEEE
   802.1D objects with which they are co-located.

   Extended Bridge MIB Name            IEEE 802.1Q-2003 Section and Name

   dot1dExtBase                        Bridge
     dot1dDeviceCapabilities
       dot1qStaticEntryIndividualPort   5.2 implementation options
       dot1qIVLCapable
       dot1qSVLCapable
       dot1qHybridCapable
       dot1qConfigurablePvidTagging     12.10.1.1 read bridge vlan
                                                 config
       dot1dLocalVlanCapable
     dot1dPortCapabilitiesTable
       dot1dPortCapabilities
         dot1qDot1qTagging              5.2 implementation options
         dot1qConfigurableAcceptableFrameTypes
                                        5.2 implementation options
         dot1qIngressFiltering          5.2 implementation options

3.1.3.  The dot1dExtBase Subtree

   This subtree contains the objects that are applicable to all bridges
   implementing the traffic class and multicast filtering features of
   IEEE 802.1D-1998 [802.1D].  It includes per-device configuration of
   Generic Attribute Registration Protocol (GARP) and GARP Multicast
   Registration Protocol (GMRP) protocols.

3.1.4.  The dot1dPriority Subtree

   This subtree contains the objects for configuring and reporting
   status of priority-based queuing mechanisms in a bridge.  This
   includes per-port user_priority treatment, mapping of user_priority
   in frames into internal traffic classes, and outbound user_priority
   and access_priority.

3.1.5.  The dot1dGarp Subtree

   This subtree contains the objects for configuring and reporting on
   operation of the Generic Attribute Registration Protocol (GARP).

3.1.6.  The dot1dGmrp Subtree

   This subtree contains the objects for configuring and reporting on
   operation of the GARP Multicast Registration Protocol (GMRP).

3.1.7.  The dot1dTpHCPortTable

   This table extends the dot1dTp subtree from the BRIDGE-MIB
   [BRIDGE-MIB] and contains the objects for reporting port-bridging
   statistics for high-capacity network interfaces.

3.1.8.  The dot1dTpPortOverflowTable

   This table extends the dot1dTp subtree from the BRIDGE-MIB
   [BRIDGE-MIB] and contains the objects for reporting the upper bits of
   port-bridging statistics for high-capacity network interfaces for
   when 32-bit counters are inadequate.

3.2.  Structure of Virtual Bridge MIB module

   Objects in this MIB are arranged into subtrees.  Each subtree is
   organized as a set of related objects.  The overall structure and
   assignment of objects to their subtrees is shown below.  Some
   manageable objects defined in the BRIDGE-MIB [BRIDGE-MIB] need to be
   indexed differently when they are used in a VLAN bridging
   environment: these objects are, therefore, effectively duplicated by
   new objects with different indexing, which are defined in the Virtual
   Bridge MIB.

3.2.1.  Relationship to IEEE 802.1Q Manageable Objects

   This section contains section-number cross-references to manageable
   objects defined in clause 12 of IEEE 802.1Q-2003 [802.1Q].  It also
   details those objects that are not considered necessary in this MIB
   module.

   Note: Unlike IEEE 802.1D-1998, IEEE 802.1Q-2003 [802.1Q] did not
   define exact syntax for a set of managed objects.  The following
   cross-references indicate the section numbering of the descriptions
   of management operations from clause 12 in the latter document.

   Virtual Bridge MIB object          IEEE 802.1Q-2003 Reference

   dot1qBase
     dot1qVlanVersionNumber           12.10.1.1 read bridge vlan config
     dot1qMaxVlanId                   12.10.1.1 read bridge vlan config
     dot1qMaxSupportedVlans           12.10.1.1 read bridge vlan config
     dot1qNumVlans
     dot1qGvrpStatus                  12.9.2.1/2 read/set garp
                                                applicant controls
   dot1qTp
     dot1qFdbTable
       dot1qFdbId

       dot1qFdbDynamicCount           12.7.1.1.3 read filtering d/base
     dot1qTpFdbTable
       dot1qTpFdbAddress
       dot1qTpFdbPort
       dot1qTpFdbStatus
     dot1qTpGroupTable                12.7.7.1 read filtering entry
       dot1qTpGroupAddress
       dot1qTpGroupEgressPorts
       dot1qTpGroupLearnt
     dot1qForwardAllTable             12.7.7.1 read filtering entry
       dot1qForwardAllPorts
       dot1qForwardAllStaticPorts
       dot1qForwardAllForbiddenPorts
     dot1qForwardUnregisteredTable    12.7.7.1 read filtering entry
       dot1qForwardUnregisteredPorts
       dot1qForwardUnregisteredStaticPorts
       dot1qForwardUnregisteredForbiddenPorts
   dot1qStatic
     dot1qStaticUnicastTable          12.7.7.1 create/delete/read
                                                filtering entry
                                      12.7.6.1 read permanent database
       dot1qStaticUnicastAddress
       dot1qStaticUnicastReceivePort
       dot1qStaticUnicastAllowedToGoTo
       dot1qStaticUnicastStatus
     dot1qStaticMulticastTable        12.7.7.1 create/delete/read
                                                filtering entry
                                      12.7.6.1 read permanent database
       dot1qStaticMulticastAddress
       dot1qStaticMulticastReceivePort
       dot1qStaticMulticastStaticEgressPorts
       dot1qStaticMulticastForbiddenEgressPorts
       dot1qStaticMulticastStatus
   dot1qVlan
     dot1qVlanNumDeletes
     dot1qVlanCurrentTable            12.10.2.1 read vlan configuration
                                      12.10.3.5 read VID to FID
                                                allocations
                                      12.10.3.6 read FID allocated to
                                                VID
                                      12.10.3.7 read VIDs allocated to
                                                FID
       dot1qVlanTimeMark
       dot1qVlanIndex
       dot1qVlanFdbId
       dot1qVlanCurrentEgressPorts
       dot1qVlanCurrentUntaggedPorts
       dot1qVlanStatus

       dot1qVlanCreationTime
     dot1qVlanStaticTable             12.7.7.1/2/3 create/delete/read
                                                filtering entry
                                      12.7.6.1 read permanent database
                                      12.10.2.2 create vlan config
                                      12.10.2.3 delete vlan config
       dot1qVlanStaticName            12.4.1.3 set bridge name
       dot1qVlanStaticEgressPorts
       dot1qVlanForbiddenEgressPorts
       dot1qVlanStaticUntaggedPorts
       dot1qVlanStaticRowStatus
     dot1qNextFreeLocalVlanIndex
     dot1qPortVlanTable               12.10.1.1 read bridge vlan
                                                configuration
       dot1qPvid                      12.10.1.2 configure PVID values
       dot1qPortAcceptableFrameTypes  12.10.1.3 configure acceptable
                                                frame types parameter
       dot1qPortIngressFiltering      12.10.1.4 configure ingress
                                                filtering parameters
       dot1qPortGvrpStatus            12.9.2.2 read/set garp applicant
                                                controls
       dot1qPortGvrpFailedRegistrations
       dot1qPortGvrpLastPduOrigin
       dot1qPortRestrictedVlanRegistration
                                      IEEE 802.1u 11.2.3.2.3
                                           Restricted VLAN Registration
     dot1qPortVlanStatisticsTable     12.6.1.1 read forwarding port
                                                counters
       dot1qTpVlanPortInFrames
       dot1qTpVlanPortOutFrames
       dot1qTpVlanPortInDiscards
       dot1qTpVlanPortInOverflowFrames
       dot1qTpVlanPortOutOverflowFrames
       dot1qTpVlanPortInOverflowDiscards
     dot1qPortVlanHCStatisticsTable   12.6.1.1 read forwarding port
                                                counters
       dot1qTpVlanPortHCInFrames
       dot1qTpVlanPortHCOutFrames
       dot1qTpVlanPortHCInDiscards
     dot1qLearningConstraintsTable    12.10.3.1/3/4 read/set/delete
                                              vlan learning constraints
                                      12.10.3.2 read vlan learning
                                              constraints for VID
       dot1qConstraintVlan
       dot1qConstraintSet
       dot1qConstraintType
       dot1qConstraintStatus
     dot1qConstraintSetDefault

     dot1qConstraintTypeDefault

   dot1vProtocol                      IEEE 802.1v Reference:
     dot1vProtocolGroupTable            8.6.4 Protocol Group Database,
                                        8.6.2 Protocol Template
       dot1vProtocolTemplateFrameType
       dot1vProtocolTemplateProtocolValue
       dot1vProtocolGroupId             8.6.3 Protocol Group Identifier
       dot1vProtocolGroupRowStatus
     dot1vProtocolPortTable             8.4.4 VID Set for each Port
       dot1vProtocolPortGroupId
       dot1vProtocolGroupVid
       dot1vProtocolPortRowStatus


   The following IEEE 802.1Q management objects have not been included
   in the Bridge MIB for the indicated reasons.

      IEEE 802.1Q-2003 Operation          Disposition

      reset bridge (12.4.1.4)             not considered useful

      reset vlan bridge (12.10.1.5)       not considered useful

      read forwarding port counters (12.6.1.1)
        discard on error details          not considered useful

      read permanent database (12.7.6.1)
        permanent database size           not considered useful
        number of static filtering        count rows in
           entries                          dot1qStaticUnicastTable +
                                            dot1qStaticMulticastTable
        number of static VLAN             count rows in
          registration entries              dot1qVlanStaticTable
      read filtering entry range          use GetNext operation.
         (12.7.7.4)

      read filtering database (12.7.1.1)
        filtering database size           not considered useful
        number of dynamic group address   count rows applicable to each
            entries (12.7.1.3)            FDB in dot1dTpGroupTable

      read garp state (12.9.3.1)          not considered useful

      notify vlan registration failure    not considered useful
        (12.10.1.6)

      notify learning constraint violation
        (12.10.3.10)                      not considered useful

3.2.2.  The dot1qBase Subtree

   This subtree contains the objects that are applicable to all bridges
   implementing IEEE 802.1Q virtual LANs.

3.2.3.  The dot1qTp Subtree

   This subtree contains objects that control the operation and report
   the status of transparent bridging.  This includes management of the
   dynamic Filtering Databases for both unicast and multicast
   forwarding.  This subtree will be implemented by all bridges that
   perform destination-address filtering.

3.2.4.  The dot1qStatic Subtree

   This subtree contains objects that control static configuration
   information for transparent bridging.  This includes management of
   the static entries in the Filtering Databases for both unicast and
   multicast forwarding.

3.2.5.  The dot1qVlan Subtree

   This subtree contains objects that control configuration and report
   status of the Virtual LANs known to a bridge.  This includes
   management of the statically configured VLANs as well as reporting
   VLANs discovered by other means (e.g., GARP VLAN Registration
   Protocol (GVRP)).  It also controls configuration and reports status
   of per-port objects relating to VLANs and reports traffic statistics.
   It also provides for management of the VLAN Learning Constraints.

3.3.  Textual Conventions

   Various Working Groups have defined standards-track MIB documents
   (for example, [RFC2613] and [RFC3318]), that contain objects and
   Textual Conventions to represent a Virtual Local Area Network
   Identifier (VLAN-ID) [802.1Q].  New definitions are showing up in
   various documents (for example, [RFC4323] and [RFC4149]).
   Unfortunately, the result is a set of different definitions for the
   same piece of management information.  This may lead to confusion and
   unnecessary complexity.  In order to address this situation, three
   new textual conventions are defined in the Q-BRIDGE-MIB, called
   VlanIdOrAny, VlanIdOrNone, and VlanIdOrAnyOrNone.  These new textual
   conventions should be (re)used in MIB modules so that they all
   represent a VLAN-ID in the same way.

   These textual conventions provide a means to specify MIB objects that
   refer to a specific VLAN, to any VLAN, or to no VLAN.  For an example
   of how these textual conventions might be used, consider a MIB
   object, with SYNTAX of VlanIdOrAnyOrNone, that specifies the VLAN on
   which to accept incoming packets of a particular protocol.  Such an
   object would allow the device to be configured to accept packets of
   this protocol received with a specific 802.1q tag value, with any
   802.1q tag value, or with no 802.1q tag.  Note that a MIB object that
   is defined using one of these textual conventions should clarify the
   meaning of 'any VLAN' and/or 'no VLAN' in its DESCRIPTION clause.

3.4.  Relationship to Other MIBs

   As described above, some IEEE 802.1D management objects have not been
   included in this MIB because they overlap with objects in other MIBs
   applicable to a bridge implementing this MIB module.

3.4.1.  Relationship to the SNMPv2-MIB

   The SNMPv2-MIB [RFC3418] defines objects that are generally
   applicable to managed devices.  These objects apply to the device as
   a whole, irrespective of whether bridging is the device's sole
   functionality or only a subset of the device's functionality.

   Full support for the 802.1D management objects requires that the
   SNMPv2-MIB objects sysDescr and sysUpTime be implemented.  Note that
   compliance to the current SNMPv2-MIB module requires additional
   objects and notifications to be implemented as specified in RFC 3418
   [RFC3418].

3.4.2.  Relationship to the IF-MIB

   The IF-MIB, [RFC2863], requires that any MIB that is an adjunct of
   the IF-MIB clarify specific areas within the IF-MIB.  These areas
   were intentionally left vague in the IF-MIB in order to avoid over-
   constraining the MIB, thereby precluding management of certain
   media-types.

   The IF-MIB enumerates several areas that a media-specific MIB must
   clarify.  Each of these areas is addressed in a following subsection.
   The implementor is referred to the IF-MIB in order to understand the
   general intent of these areas.

   The IF-MIB [RFC2863] defines managed objects for managing network
   interfaces.  A network interface is considered attached to a
   'subnetwork'.  (Note that this term is not to be confused with
   'subnet', which refers to an addressing partitioning scheme used in
   the Internet suite of protocols.)  The term 'segment' is used in this

   memo to refer to such a subnetwork, whether it be an Ethernet
   segment, a 'ring', a WAN link, or even an X.25 virtual circuit.

   Full support for the 802.1D management objects requires that the
   IF-MIB objects ifIndex, ifType, ifDescr, ifPhysAddress, and
   ifLastChange are implemented.  Note that compliance to the current
   IF-MIB module requires additional objects and notifications to be
   implemented as specified in RFC 2863 [RFC2863].

   Implicit in this Extended Bridge MIB is the notion of ports on a
   bridge.  Each of these ports is associated with one interface of the
   'interfaces' subtree (one row in ifTable), and, in most situations,
   each port is associated with a different interface.  However, there
   are situations in which multiple ports are associated with the same
   interface.  An example of such a situation would be several ports
   each corresponding one-to-one with several X.25 virtual circuits but
   all on the same interface.

   Each port is uniquely identified by a port number.  A port number has
   no mandatory relationship to an interface number, but in the simple
   case a port number will have the same value as the corresponding
   interface's interface number.  Port numbers are in the range
   (1..dot1dBaseNumPorts).

   Some entities perform other functionality as well as bridging through
   the sending and receiving of data on their interfaces.  In such
   situations, only a subset of the data sent/received on an interface
   is within the domain of the entity's bridging functionality.  This
   subset is considered delineated according to a set of protocols, with
   some protocols being bridged, and other protocols not being bridged.
   For example, in an entity that exclusively performed bridging, all
   protocols would be considered bridged, whereas in an entity that
   performed IP routing on IP datagrams and only bridged other
   protocols, only the non-IP data would be considered bridged.

   Thus, this Extended Bridge MIB (and in particular, its counters) is
   applicable only to that subset of the data on an entity's interfaces
   that is sent/received for a protocol being bridged.  All such data is
   sent/received via the ports of the bridge.

3.4.2.1.  Layering Model

   This memo assumes the interpretation of the Interfaces Subtree to be
   in accordance with the IF-MIB [RFC2863], which states that the
   interfaces table (ifTable) contains information on the managed
   resource's interfaces and that each sub-layer below the internetwork
   layer of a network interface is considered an interface.

   This document does not make any assumption that within an entity,
   VLANs that are instantiated as an entry in dot1qVlanCurrentTable by
   either management configuration through dot1qVlanStaticTable or by
   dynamic means (e.g., through GVRP) are also represented by an entry
   in ifTable.

   Where an entity contains higher-layer protocol entities (e.g.,
   IP-layer interfaces that transmit and receive traffic to/from a
   VLAN), these should be represented in the ifTable as interfaces of
   type propVirtual(53).  Protocol-specific types such as l3ipxvlan(137)
   should not be used here, since there is no implication that the
   bridge will perform any protocol filtering before delivering up to
   these virtual interfaces.

3.4.2.2.  ifStackTable

   In addition, the IF-MIB [RFC2863] defines a table 'ifStackTable' for
   describing the relationship between logical interfaces within an
   entity.  It is anticipated that implementors will use this table to
   describe the binding of (for example) IP interfaces to physical
   ports, although the presence of VLANs makes the representation less
   than perfect for showing connectivity.  The ifStackTable cannot
   represent the full capability of the IEEE 802.1Q VLAN bridging
   standard, since that makes a distinction between VLAN bindings on
   'ingress' to and 'egress' from a port: these relationships may or may
   not be symmetrical whereas Interface MIB Evolution assumes a
   symmetrical binding for transmit and receive.  This makes it
   necessary to define other manageable objects for configuring which
   ports are members of which VLANs.

3.4.2.3.  ifRcvAddressTable

   This table contains all MAC addresses, unicast, multicast, and
   broadcast, for which an interface will receive packets and forward
   them up to a higher-layer entity for local consumption.  Note that
   this does not include addresses for data-link layer control protocols
   such as Spanning-Tree, GMRP, or GVRP.  The format of the address,
   contained in ifRcvAddressAddress, is the same as for ifPhysAddress.

   This table does not include unicast or multicast addresses that are
   accepted for possible forwarding out some other port.  This table is
   explicitly not intended to provide a bridge address filtering
   mechanism.

3.4.3.  Relationship to the BRIDGE-MIB

   This section defines how objects in the BRIDGE-MIB module
   [BRIDGE-MIB] should be represented for devices that implement the
   extensions: some of the old objects are less useful in such devices
   but must still be implemented for reasons of backwards compatibility.

3.4.3.1.  The dot1dBase Subtree

   This subtree contains objects that are applicable to all types of
   bridges.  Interpretation of this subtree is unchanged.

3.4.3.2.  The dot1dStp Subtree

   This subtree contains the objects that denote the bridge's state with
   respect to the Spanning Tree Protocol.  Interpretation of this
   subtree is unchanged.

3.4.3.3.  The dot1dTp Subtree

   This subtree contains objects that describe the entity's state with
   respect to transparent bridging.

   In a device operating with a single Filtering Database,
   interpretation of this subtree is unchanged.

   In a device supporting multiple Filtering Databases, this subtree is
   interpreted as follows:

   dot1dTpLearnedEntryDiscards

        The number of times that *any* of the FDBs became full.

   dot1dTpAgingTime

        This applies to all Filtering Databases.

   dot1dTpFdbTable

        Report MAC addresses learned on each port, regardless of which
        Filtering Database they have been learned in.  If an address has
        been learned in multiple databases on a single port, report it
        only once.  If an address has been learned in multiple databases
        on more than one port, report the entry on any one of the valid
        ports.

   dot1dTpPortTable

        This table is port-based and is not affected by multiple
        Filtering Databases or multiple VLANs.  The counters should
        include frames received or transmitted for all VLANs.  Note that
        equivalent 64-bit port statistics counters, as well as other
        objects to represent the upper 32 bits of these counters, are
        defined in this document for high-capacity network interfaces.
        These have conformance statements to indicate for which speeds
        of interface they are required.

3.4.3.4.  The dot1dStatic Subtree

   This optional subtree contains objects that describe the
   configuration of destination-address filtering.

   In a device operating with a single Filtering Database,
   interpretation of this subtree is unchanged.

   In a device supporting multiple Filtering Databases, this subtree is
   interpreted as follows:

   dot1dStaticTable

        Entries read from this table include all static entries from all
        of the Filtering Databases.  Entries for the same MAC address
        and receive port in more than one Filtering Database must appear
        only once, since these are the indices of this table.  This
        table should be implemented as read-only in devices that support
        multiple Forwarding Databases.  Instead, write access should be
        provided through dot1qStaticUnicastTable and
        dot1qStaticMulticastTable, as defined in this document.

3.4.3.5.  Additions to the BRIDGE-MIB

   To supplement the BRIDGE-MIB [BRIDGE-MIB], this module contains:

   (1)   support for multiple traffic classes and dynamic multicast
         filtering as per IEEE 802.1D-1998 [802.1D].

   (2)   support for bridged Virtual LANs as per IEEE 802.1Q-2003
         [802.1Q].

   (3)   support for 64-bit versions of BRIDGE-MIB [BRIDGE-MIB] port
         counters.

4.  Definitions for Extended Bridge MIB

P-BRIDGE-MIB DEFINITIONS ::= BEGIN

-- -------------------------------------------------------------
-- MIB for IEEE 802.1p devices
-- -------------------------------------------------------------

IMPORTS
    MODULE-IDENTITY, OBJECT-TYPE, Counter32, Integer32, Counter64
        FROM SNMPv2-SMI
    TruthValue, TimeInterval, MacAddress, TEXTUAL-CONVENTION
        FROM SNMPv2-TC
    MODULE-COMPLIANCE, OBJECT-GROUP
        FROM SNMPv2-CONF
    dot1dTp, dot1dTpPort, dot1dBridge,
    dot1dBasePortEntry, dot1dBasePort
        FROM BRIDGE-MIB;

pBridgeMIB MODULE-IDENTITY
    LAST-UPDATED "200601090000Z"
    ORGANIZATION "IETF Bridge MIB Working Group"
    CONTACT-INFO
        "Email:  bridge-mib@ietf.org
                 ietfmibs@ops.ietf.org

                 David Levi
         Postal: Nortel Networks
                 4655 Great America Parkway
                 Santa Clara, CA 95054
                 USA
                 Phone: +1 865 686 0432
                 Email: dlevi@nortel.com

                 David Harrington
         Postal: Effective Software
                 50 Harding Rd.
                 Portsmouth, NH 03801
                 USA
                 Phone: +1 603 436 8634
                 Email: ietfdbh@comcast.net

                 Les Bell
         Postal: Hemel Hempstead, Herts. HP2 7YU
                 UK
          Email: elbell@ntlworld.com

                 Vivian Ngai

          Email: vivian_ngai@acm.org

                 Andrew Smith
         Postal: Beijing Harbour Networks
                 Jiuling Building
                 21 North Xisanhuan Ave.
                 Beijing, 100089
                 PRC
            Fax: +1 415 345 1827
          Email: ah_smith@acm.org

                 Paul Langille
         Postal: Newbridge Networks
                 5 Corporate Drive
                 Andover, MA 01810
                 USA
          Phone: +1 978 691 4665
          Email: langille@newbridge.com

                 Anil Rijhsinghani
         Postal: Accton Technology Corporation
                 5 Mount Royal Ave
                 Marlboro, MA 01752
                 USA
          Phone:
          Email: anil@accton.com

                 Keith McCloghrie
         Postal: Cisco Systems, Inc.
                 170 West Tasman Drive
                 San Jose, CA 95134-1706
                 USA
          Phone: +1 408 526 5260
          Email: kzm@cisco.com"
    DESCRIPTION
        "The Bridge MIB Extension module for managing Priority
        and Multicast Filtering, defined by IEEE 802.1D-1998,
        including Restricted Group Registration defined by
        IEEE 802.1t-2001.

        Copyright (C) The Internet Society (2006).  This version of
        this MIB module is part of RFC 4363; See the RFC itself for
        full legal notices."
    REVISION     "200601090000Z"
    DESCRIPTION
         "Added dot1dPortRestrictedGroupRegistration.
          Deprecated pBridgePortGmrpGroup and pBridgeCompliance
          and added pBridgePortGmrpGroup2 and pBridgeCompliance2."

    REVISION     "199908250000Z"
    DESCRIPTION
         "The Bridge MIB Extension module for managing Priority
          and Multicast Filtering, defined by IEEE 802.1D-1998.

          Initial version, published as RFC 2674."

    ::= { dot1dBridge 6 }

pBridgeMIBObjects OBJECT IDENTIFIER ::= { pBridgeMIB 1 }

-- -------------------------------------------------------------
-- Textual Conventions
-- -------------------------------------------------------------

EnabledStatus ::= TEXTUAL-CONVENTION
    STATUS      current
    DESCRIPTION
        "A simple status value for the object."
    SYNTAX      INTEGER { enabled(1), disabled(2) }

-- -------------------------------------------------------------
-- subtrees in the P-BRIDGE MIB
-- -------------------------------------------------------------

dot1dExtBase    OBJECT IDENTIFIER ::= { pBridgeMIBObjects 1 }
dot1dPriority   OBJECT IDENTIFIER ::= { pBridgeMIBObjects 2 }
dot1dGarp       OBJECT IDENTIFIER ::= { pBridgeMIBObjects 3 }
dot1dGmrp       OBJECT IDENTIFIER ::= { pBridgeMIBObjects 4 }

-- -------------------------------------------------------------
-- the dot1dExtBase subtree
-- -------------------------------------------------------------

dot1dDeviceCapabilities OBJECT-TYPE
    SYNTAX      BITS {
        dot1dExtendedFilteringServices(0),
        dot1dTrafficClasses(1),
        dot1qStaticEntryIndividualPort(2),
        dot1qIVLCapable(3),
        dot1qSVLCapable(4),
        dot1qHybridCapable(5),
        dot1qConfigurablePvidTagging(6),
        dot1dLocalVlanCapable(7)
    }
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION

        "Indicates the optional parts of IEEE 802.1D and 802.1Q
        that are implemented by this device and are manageable
        through this MIB.  Capabilities that are allowed on a
        per-port basis are indicated in dot1dPortCapabilities.

        dot1dExtendedFilteringServices(0),
                              -- can perform filtering of
                              -- individual multicast addresses
                              -- controlled by GMRP.
        dot1dTrafficClasses(1),
                              -- can map user priority to
                              -- multiple traffic classes.
        dot1qStaticEntryIndividualPort(2),
                              -- dot1qStaticUnicastReceivePort &
                              -- dot1qStaticMulticastReceivePort
                              -- can represent non-zero entries.
        dot1qIVLCapable(3),   -- Independent VLAN Learning (IVL).
        dot1qSVLCapable(4),   -- Shared VLAN Learning (SVL).
        dot1qHybridCapable(5),
                              -- both IVL & SVL simultaneously.
        dot1qConfigurablePvidTagging(6),
                              -- whether the implementation
                              -- supports the ability to
                              -- override the default PVID
                              -- setting and its egress status
                              -- (VLAN-Tagged or Untagged) on
                              -- each port.
        dot1dLocalVlanCapable(7)
                              -- can support multiple local
                              -- bridges, outside of the scope
                              -- of 802.1Q defined VLANs."
    REFERENCE
        "ISO/IEC 15802-3 Section 5.2,
        IEEE 802.1Q/D11 Section 5.2, 12.10.1.1.3/b/2"
    ::= { dot1dExtBase 1 }

dot1dTrafficClassesEnabled OBJECT-TYPE
    SYNTAX      TruthValue
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The value true(1) indicates that Traffic Classes are
        enabled on this bridge.  When false(2), the bridge
        operates with a single priority level for all traffic.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { true }

    ::= { dot1dExtBase 2 }

dot1dGmrpStatus OBJECT-TYPE
    SYNTAX      EnabledStatus
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The administrative status requested by management for
        GMRP.  The value enabled(1) indicates that GMRP should
        be enabled on this device, in all VLANs, on all ports
        for which it has not been specifically disabled.  When
        disabled(2), GMRP is disabled, in all VLANs and on all
        ports, and all GMRP packets will be forwarded
        transparently.  This object affects both Applicant and
        Registrar state machines.  A transition from disabled(2)
        to enabled(1) will cause a reset of all GMRP state
        machines on all ports.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { enabled }
    ::= { dot1dExtBase 3 }

-- -------------------------------------------------------------
-- Port Capabilities Table
-- -------------------------------------------------------------

dot1dPortCapabilitiesTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dPortCapabilitiesEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table that contains capabilities information about
        every port that is associated with this bridge."
    ::= { dot1dExtBase 4 }

dot1dPortCapabilitiesEntry OBJECT-TYPE
    SYNTAX      Dot1dPortCapabilitiesEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A set of capabilities information about this port
        indexed by dot1dBasePort."
    AUGMENTS { dot1dBasePortEntry }
    ::= { dot1dPortCapabilitiesTable 1 }

Dot1dPortCapabilitiesEntry ::=
    SEQUENCE {

        dot1dPortCapabilities
            BITS
    }

dot1dPortCapabilities OBJECT-TYPE
    SYNTAX      BITS {
        dot1qDot1qTagging(0),
        dot1qConfigurableAcceptableFrameTypes(1),
        dot1qIngressFiltering(2)
    }
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "Indicates the parts of IEEE 802.1D and 802.1Q that are
        optional on a per-port basis, that are implemented by
        this device, and that are manageable through this MIB.

        dot1qDot1qTagging(0), -- supports 802.1Q VLAN tagging of
                              -- frames and GVRP.
        dot1qConfigurableAcceptableFrameTypes(1),
                              -- allows modified values of
                              -- dot1qPortAcceptableFrameTypes.
        dot1qIngressFiltering(2)
                              -- supports the discarding of any
                              -- frame received on a Port whose
                              -- VLAN classification does not
                              -- include that Port in its Member
                              -- set."
    REFERENCE
        "ISO/IEC 15802-3 Section 5.2,
        IEEE 802.1Q/D11 Section 5.2"
    ::= { dot1dPortCapabilitiesEntry 1 }

-- -------------------------------------------------------------
-- the dot1dPriority subtree
-- -------------------------------------------------------------

-- -------------------------------------------------------------
-- Port Priority Table
-- -------------------------------------------------------------

dot1dPortPriorityTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dPortPriorityEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table that contains information about every port that
        is associated with this transparent bridge."

    ::= { dot1dPriority 1 }

dot1dPortPriorityEntry OBJECT-TYPE
    SYNTAX      Dot1dPortPriorityEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A list of Default User Priorities for each port of a
        transparent bridge.  This is indexed by dot1dBasePort."
    AUGMENTS { dot1dBasePortEntry }
    ::= { dot1dPortPriorityTable 1 }

Dot1dPortPriorityEntry ::=
    SEQUENCE {
        dot1dPortDefaultUserPriority
            Integer32,
        dot1dPortNumTrafficClasses
            Integer32
    }

dot1dPortDefaultUserPriority OBJECT-TYPE
    SYNTAX      Integer32 (0..7)
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The default ingress User Priority for this port.  This
        only has effect on media, such as Ethernet, that do not
        support native User Priority.

        The value of this object MUST be retained across
        reinitializations of the management system."
    ::= { dot1dPortPriorityEntry 1 }

dot1dPortNumTrafficClasses OBJECT-TYPE
    SYNTAX      Integer32 (1..8)
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The number of egress traffic classes supported on this
        port.  This object may optionally be read-only.

        The value of this object MUST be retained across
        reinitializations of the management system."
    ::= { dot1dPortPriorityEntry 2 }

-- -------------------------------------------------------------
-- User Priority Regeneration Table
-- -------------------------------------------------------------

dot1dUserPriorityRegenTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dUserPriorityRegenEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A list of Regenerated User Priorities for each received
        User Priority on each port of a bridge.  The Regenerated
        User Priority value may be used to index the Traffic
        Class Table for each input port.  This only has effect
        on media that support native User Priority.  The default
        values for Regenerated User Priorities are the same as
        the User Priorities."
    REFERENCE
        "ISO/IEC 15802-3 Section 6.4"
    ::= { dot1dPriority 2 }

dot1dUserPriorityRegenEntry OBJECT-TYPE
    SYNTAX      Dot1dUserPriorityRegenEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A mapping of incoming User Priority to a Regenerated
        User Priority."
    INDEX   { dot1dBasePort, dot1dUserPriority }
    ::= { dot1dUserPriorityRegenTable 1 }

Dot1dUserPriorityRegenEntry ::=
    SEQUENCE {
        dot1dUserPriority
            Integer32,
        dot1dRegenUserPriority
            Integer32
    }

dot1dUserPriority OBJECT-TYPE
    SYNTAX      Integer32 (0..7)
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "The User Priority for a frame received on this port."
    ::= { dot1dUserPriorityRegenEntry 1 }

dot1dRegenUserPriority OBJECT-TYPE
    SYNTAX      Integer32 (0..7)
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The Regenerated User Priority that the incoming User

        Priority is mapped to for this port.

        The value of this object MUST be retained across
        reinitializations of the management system."
    ::= { dot1dUserPriorityRegenEntry 2 }

-- -------------------------------------------------------------
-- Traffic Class Table
-- -------------------------------------------------------------

dot1dTrafficClassTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dTrafficClassEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table mapping evaluated User Priority to Traffic
        Class, for forwarding by the bridge.  Traffic class is a
        number in the range (0..(dot1dPortNumTrafficClasses-1))."
    REFERENCE
        "ISO/IEC 15802-3 Table 7-2"
    ::= { dot1dPriority 3 }

dot1dTrafficClassEntry OBJECT-TYPE
    SYNTAX      Dot1dTrafficClassEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "User Priority to Traffic Class mapping."
    INDEX   { dot1dBasePort, dot1dTrafficClassPriority }
    ::= { dot1dTrafficClassTable 1 }

Dot1dTrafficClassEntry ::=
    SEQUENCE {
        dot1dTrafficClassPriority
            Integer32,
        dot1dTrafficClass
            Integer32
    }

dot1dTrafficClassPriority OBJECT-TYPE
    SYNTAX      Integer32 (0..7)
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "The Priority value determined for the received frame.
        This value is equivalent to the priority indicated in
        the tagged frame received, or one of the evaluated
        priorities, determined according to the media-type.

        For untagged frames received from Ethernet media, this
        value is equal to the dot1dPortDefaultUserPriority value
        for the ingress port.

        For untagged frames received from non-Ethernet media,
        this value is equal to the dot1dRegenUserPriority value
        for the ingress port and media-specific user priority."
    ::= { dot1dTrafficClassEntry 1 }

dot1dTrafficClass OBJECT-TYPE
    SYNTAX      Integer32 (0..7)
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The Traffic Class the received frame is mapped to.

        The value of this object MUST be retained across
        reinitializations of the management system."
    ::= { dot1dTrafficClassEntry 2 }

-- -------------------------------------------------------------
-- Outbound Access Priority Table
-- -------------------------------------------------------------

dot1dPortOutboundAccessPriorityTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dPortOutboundAccessPriorityEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table mapping Regenerated User Priority to Outbound
        Access Priority.  This is a fixed mapping for all port
        types, with two options for 802.5 Token Ring."
    REFERENCE
        "ISO/IEC 15802-3 Table 7-3"
    ::= { dot1dPriority 4 }

dot1dPortOutboundAccessPriorityEntry OBJECT-TYPE
    SYNTAX      Dot1dPortOutboundAccessPriorityEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "Regenerated User Priority to Outbound Access Priority
        mapping."
    INDEX   { dot1dBasePort, dot1dRegenUserPriority }
    ::= { dot1dPortOutboundAccessPriorityTable 1 }

Dot1dPortOutboundAccessPriorityEntry ::=
    SEQUENCE {

        dot1dPortOutboundAccessPriority
            Integer32
    }

dot1dPortOutboundAccessPriority OBJECT-TYPE
    SYNTAX      Integer32 (0..7)
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The Outbound Access Priority the received frame is
        mapped to."
    ::= { dot1dPortOutboundAccessPriorityEntry 1 }

-- -------------------------------------------------------------
-- the dot1dGarp subtree
-- -------------------------------------------------------------

-- -------------------------------------------------------------
-- The GARP Port Table
-- -------------------------------------------------------------

dot1dPortGarpTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dPortGarpEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table of GARP control information about every bridge
        port.  This is indexed by dot1dBasePort."
    ::= { dot1dGarp 1 }

dot1dPortGarpEntry OBJECT-TYPE
    SYNTAX      Dot1dPortGarpEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "GARP control information for a bridge port."
    AUGMENTS { dot1dBasePortEntry }
    ::= { dot1dPortGarpTable 1 }

Dot1dPortGarpEntry ::=
    SEQUENCE {
        dot1dPortGarpJoinTime
            TimeInterval,
        dot1dPortGarpLeaveTime
            TimeInterval,
        dot1dPortGarpLeaveAllTime
            TimeInterval
    }

dot1dPortGarpJoinTime OBJECT-TYPE
    SYNTAX      TimeInterval
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The GARP Join time, in centiseconds.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { 20 }
    ::= { dot1dPortGarpEntry 1 }

dot1dPortGarpLeaveTime OBJECT-TYPE
    SYNTAX      TimeInterval
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The GARP Leave time, in centiseconds.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { 60 }
    ::= { dot1dPortGarpEntry 2 }

dot1dPortGarpLeaveAllTime OBJECT-TYPE
    SYNTAX      TimeInterval
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The GARP LeaveAll time, in centiseconds.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { 1000 }
    ::= { dot1dPortGarpEntry 3 }

-- -------------------------------------------------------------
-- The GMRP Port Configuration and Status Table
-- -------------------------------------------------------------

dot1dPortGmrpTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dPortGmrpEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table of GMRP control and status information about
        every bridge port.  Augments the dot1dBasePortTable."
    ::= { dot1dGmrp 1 }

dot1dPortGmrpEntry OBJECT-TYPE
    SYNTAX      Dot1dPortGmrpEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "GMRP control and status information for a bridge port."
    AUGMENTS { dot1dBasePortEntry }
    ::= { dot1dPortGmrpTable 1 }

Dot1dPortGmrpEntry ::=
    SEQUENCE {
        dot1dPortGmrpStatus
            EnabledStatus,
        dot1dPortGmrpFailedRegistrations
            Counter32,
        dot1dPortGmrpLastPduOrigin
            MacAddress,
        dot1dPortRestrictedGroupRegistration
            TruthValue
    }

dot1dPortGmrpStatus OBJECT-TYPE
    SYNTAX      EnabledStatus
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The administrative state of GMRP operation on this port.  The
        value enabled(1) indicates that GMRP is enabled on this port
        in all VLANs as long as dot1dGmrpStatus is also enabled(1).
        A value of disabled(2) indicates that GMRP is disabled on
        this port in all VLANs: any GMRP packets received will
        be silently discarded, and no GMRP registrations will be
        propagated from other ports.  Setting this to a value of
        enabled(1) will be stored by the agent but will only take
        effect on the GMRP protocol operation if dot1dGmrpStatus
        also indicates the value enabled(1).  This object affects
        all GMRP Applicant and Registrar state machines on this
        port.  A transition from disabled(2) to enabled(1) will
        cause a reset of all GMRP state machines on this port.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { enabled }
    ::= { dot1dPortGmrpEntry 1 }

dot1dPortGmrpFailedRegistrations OBJECT-TYPE
    SYNTAX      Counter32
    MAX-ACCESS  read-only

    STATUS      current
    DESCRIPTION
        "The total number of failed GMRP registrations, for any
        reason, in all VLANs, on this port."
    ::= { dot1dPortGmrpEntry 2 }

dot1dPortGmrpLastPduOrigin OBJECT-TYPE
    SYNTAX      MacAddress
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The Source MAC Address of the last GMRP message
        received on this port."
    ::= { dot1dPortGmrpEntry 3 }

dot1dPortRestrictedGroupRegistration OBJECT-TYPE
    SYNTAX      TruthValue
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The state of Restricted Group Registration on this port.
         If the value of this control is true(1), then creation
         of a new dynamic entry is permitted only if there is a
         Static Filtering Entry for the VLAN concerned, in which
         the Registrar Administrative Control value is Normal
         Registration.

        The value of this object MUST be retained across
        reinitializations of the management system."
    REFERENCE
        "IEEE 802.1t clause 10.3.2.3, 14.10.1.3."
    DEFVAL      { false }
    ::= { dot1dPortGmrpEntry 4 }

-- -------------------------------------------------------------
--  High-Capacity Port Table for Transparent Bridges
-- -------------------------------------------------------------

dot1dTpHCPortTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dTpHCPortEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table that contains information about every high-
        capacity port that is associated with this transparent
        bridge."
    ::= { dot1dTp 5 }

dot1dTpHCPortEntry OBJECT-TYPE
    SYNTAX      Dot1dTpHCPortEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "Statistics information for each high-capacity port of a
        transparent bridge."
    INDEX   { dot1dTpPort }
    ::= { dot1dTpHCPortTable 1 }

Dot1dTpHCPortEntry ::=
    SEQUENCE {
        dot1dTpHCPortInFrames
            Counter64,
        dot1dTpHCPortOutFrames
            Counter64,
        dot1dTpHCPortInDiscards
            Counter64
    }

dot1dTpHCPortInFrames OBJECT-TYPE
    SYNTAX      Counter64
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The number of frames that have been received by this
        port from its segment.  Note that a frame received on
        the interface corresponding to this port is only counted
        by this object if and only if it is for a protocol being
        processed by the local bridging function, including
        bridge management frames."
    REFERENCE
        "ISO/IEC 15802-3 Section 14.6.1.1.3"
    ::= { dot1dTpHCPortEntry 1 }

dot1dTpHCPortOutFrames OBJECT-TYPE
    SYNTAX      Counter64
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The number of frames that have been transmitted by this
        port to its segment.  Note that a frame transmitted on
        the interface corresponding to this port is only counted
        by this object if and only if it is for a protocol being
        processed by the local bridging function, including
        bridge management frames."
    REFERENCE
        "ISO/IEC 15802-3 Section 14.6.1.1.3"

    ::= { dot1dTpHCPortEntry 2 }

dot1dTpHCPortInDiscards OBJECT-TYPE
    SYNTAX      Counter64
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "Count of valid frames that have been received by this
        port from its segment that were discarded (i.e.,
        filtered) by the Forwarding Process."
    REFERENCE
        "ISO/IEC 15802-3 Section 14.6.1.1.3"
    ::= { dot1dTpHCPortEntry 3 }

-- ----------------------------------------------------
--  Upper part of High-Capacity Port Table for Transparent Bridges
-- ----------------------------------------------------

dot1dTpPortOverflowTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1dTpPortOverflowEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table that contains the most-significant bits of
        statistics counters for ports that are associated with this
        transparent bridge that are on high-capacity interfaces, as
        defined in the conformance clauses for this table.  This table
        is provided as a way to read 64-bit counters for agents that
        support only SNMPv1.

        Note that the reporting of most-significant and
        least-significant counter bits separately runs the risk of
        missing an overflow of the lower bits in the interval between
        sampling.  The manager must be aware of this possibility, even
        within the same varbindlist, when interpreting the results of
        a request or asynchronous notification."
    ::= { dot1dTp 6 }

dot1dTpPortOverflowEntry OBJECT-TYPE
    SYNTAX      Dot1dTpPortOverflowEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "The most significant bits of statistics counters for a high-
        capacity interface of a transparent bridge.  Each object is
        associated with a corresponding object in dot1dTpPortTable
        that indicates the least significant bits of the counter."
    INDEX   { dot1dTpPort }

    ::= { dot1dTpPortOverflowTable 1 }

Dot1dTpPortOverflowEntry ::=
    SEQUENCE {
        dot1dTpPortInOverflowFrames
            Counter32,
        dot1dTpPortOutOverflowFrames
            Counter32,
        dot1dTpPortInOverflowDiscards
            Counter32
    }

dot1dTpPortInOverflowFrames OBJECT-TYPE
    SYNTAX      Counter32
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The number of times the associated dot1dTpPortInFrames
        counter has overflowed."
    REFERENCE
        "ISO/IEC 15802-3 Section 14.6.1.1.3"
    ::= { dot1dTpPortOverflowEntry 1 }

dot1dTpPortOutOverflowFrames OBJECT-TYPE
    SYNTAX      Counter32
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The number of times the associated dot1dTpPortOutFrames
        counter has overflowed."
    REFERENCE
        "ISO/IEC 15802-3 Section 14.6.1.1.3"
    ::= { dot1dTpPortOverflowEntry 2 }

dot1dTpPortInOverflowDiscards OBJECT-TYPE
    SYNTAX      Counter32
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The number of times the associated
        dot1dTpPortInDiscards counter has overflowed."
    REFERENCE
        "ISO/IEC 15802-3 Section 14.6.1.1.3"
    ::= { dot1dTpPortOverflowEntry 3 }

-- -------------------------------------------------------------
-- IEEE 802.1p MIB - Conformance Information
-- -------------------------------------------------------------

pBridgeConformance OBJECT IDENTIFIER ::= { pBridgeMIB 2 }

pBridgeGroups OBJECT IDENTIFIER ::= { pBridgeConformance 1 }

pBridgeCompliances OBJECT IDENTIFIER
    ::= { pBridgeConformance 2 }

-- -------------------------------------------------------------
-- units of conformance
-- -------------------------------------------------------------

pBridgeExtCapGroup OBJECT-GROUP
    OBJECTS {
        dot1dDeviceCapabilities,
        dot1dPortCapabilities
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects indicating the optional
        capabilities of the device."
    ::= { pBridgeGroups 1 }

pBridgeDeviceGmrpGroup OBJECT-GROUP
    OBJECTS {
        dot1dGmrpStatus
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects providing device-level control
        for the Multicast Filtering extended bridge services."
    ::= { pBridgeGroups 2 }

pBridgeDevicePriorityGroup OBJECT-GROUP
    OBJECTS {
        dot1dTrafficClassesEnabled
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects providing device-level control
        for the Priority services."
    ::= { pBridgeGroups 3 }

pBridgeDefaultPriorityGroup OBJECT-GROUP
    OBJECTS {
        dot1dPortDefaultUserPriority
    }
    STATUS      current
    DESCRIPTION

        "A collection of objects defining the User Priority
        applicable to each port for media that do not support
        native User Priority."
    ::= { pBridgeGroups 4 }

pBridgeRegenPriorityGroup OBJECT-GROUP
    OBJECTS {
        dot1dRegenUserPriority
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects defining the User Priorities
        applicable to each port for media that support native
        User Priority."
    ::= { pBridgeGroups 5 }

pBridgePriorityGroup OBJECT-GROUP
    OBJECTS {
        dot1dPortNumTrafficClasses,
        dot1dTrafficClass
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects defining the traffic classes
        within a bridge for each evaluated User Priority."
    ::= { pBridgeGroups 6 }

pBridgeAccessPriorityGroup OBJECT-GROUP
    OBJECTS {
        dot1dPortOutboundAccessPriority
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects defining the media-dependent
        outbound access level for each priority."
    ::= { pBridgeGroups 7 }

pBridgePortGarpGroup OBJECT-GROUP
    OBJECTS {
        dot1dPortGarpJoinTime,
        dot1dPortGarpLeaveTime,
        dot1dPortGarpLeaveAllTime
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects providing port level control
        and status information for GARP operation."
    ::= { pBridgeGroups 8 }

pBridgePortGmrpGroup OBJECT-GROUP
    OBJECTS {
        dot1dPortGmrpStatus,
        dot1dPortGmrpFailedRegistrations,
        dot1dPortGmrpLastPduOrigin
    }
    STATUS      deprecated
    DESCRIPTION
        "A collection of objects providing port level control
        and status information for GMRP operation."
    ::= { pBridgeGroups 9 }

pBridgeHCPortGroup OBJECT-GROUP
    OBJECTS {
        dot1dTpHCPortInFrames,
        dot1dTpHCPortOutFrames,
        dot1dTpHCPortInDiscards
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects providing 64-bit statistics
         counters for high-capacity bridge ports."
    ::= { pBridgeGroups 10 }

pBridgePortOverflowGroup OBJECT-GROUP
    OBJECTS {
        dot1dTpPortInOverflowFrames,
        dot1dTpPortOutOverflowFrames,
        dot1dTpPortInOverflowDiscards
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects providing overflow statistics
        counters for high-capacity bridge ports."
    ::= { pBridgeGroups 11 }

pBridgePortGmrpGroup2 OBJECT-GROUP
    OBJECTS {
        dot1dPortGmrpStatus,
        dot1dPortGmrpFailedRegistrations,
        dot1dPortGmrpLastPduOrigin,
        dot1dPortRestrictedGroupRegistration
    }
    STATUS      current
    DESCRIPTION
        "A collection of objects providing port level control
        and status information for GMRP operation."
    ::= { pBridgeGroups 12 }

-- -------------------------------------------------------------
-- compliance statements
-- -------------------------------------------------------------

pBridgeCompliance MODULE-COMPLIANCE
    STATUS  deprecated
    DESCRIPTION
        "The compliance statement for device support of Priority
        and Multicast Filtering extended bridging services."

    MODULE
        MANDATORY-GROUPS { pBridgeExtCapGroup }

        GROUP       pBridgeDeviceGmrpGroup
        DESCRIPTION
            "This group is mandatory for devices supporting the GMRP
            application, defined by IEEE 802.1D Extended Filtering
            Services."

        GROUP       pBridgeDevicePriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by IEEE
            802.1D."

        GROUP       pBridgeDefaultPriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by the
            extended bridge services with media types, such as
            Ethernet, that do not support native User Priority."

        GROUP       pBridgeRegenPriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by IEEE 802.1D
            and that have interface media types that support
            native User Priority, e.g., IEEE 802.5."

        GROUP       pBridgePriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by IEEE 802.1D."

        GROUP       pBridgeAccessPriorityGroup
        DESCRIPTION
            "This group is optional and is relevant only for devices
            supporting the priority forwarding operations defined by

            IEEE 802.1D and that have interface media types that
            support native Access Priority, e.g., IEEE 802.5."

        GROUP       pBridgePortGarpGroup
        DESCRIPTION
            "This group is mandatory for devices supporting any
            of the GARP applications: e.g., GMRP, defined by the
            extended filtering services of 802.1D; or GVRP,
            defined by 802.1Q (refer to the Q-BRIDGE-MIB for
            conformance statements for GVRP)."

        GROUP       pBridgePortGmrpGroup
        DESCRIPTION
            "This group is mandatory for devices supporting the
            GMRP application, as defined by IEEE 802.1D Extended
            Filtering Services."

        GROUP       pBridgeHCPortGroup
        DESCRIPTION
            "Support for this group in a device is mandatory for those
            bridge ports that map to network interfaces that have the
            value of the corresponding instance of ifSpeed
            greater than 650,000,000 bits/second."

        GROUP       pBridgePortOverflowGroup
        DESCRIPTION
            "Support for this group in a device is mandatory for those
            bridge ports that map to network interfaces that have the
            value of the corresponding instance of ifSpeed
            greater than 650,000,000 bits/second."

        OBJECT      dot1dPortNumTrafficClasses
        MIN-ACCESS  read-only
        DESCRIPTION
            "Write access is not required."

        OBJECT      dot1dTrafficClass
        MIN-ACCESS  read-only
        DESCRIPTION
            "Write access is not required."

        OBJECT      dot1dRegenUserPriority
        MIN-ACCESS  read-only
        DESCRIPTION
            "Write access is not required."

       ::= { pBridgeCompliances 1 }

pBridgeCompliance2 MODULE-COMPLIANCE
    STATUS  current
    DESCRIPTION
        "The compliance statement for device support of Priority
        and Multicast Filtering extended bridging services."

    MODULE
        MANDATORY-GROUPS { pBridgeExtCapGroup }

        GROUP       pBridgeDeviceGmrpGroup
        DESCRIPTION
            "This group is mandatory for devices supporting the GMRP
            application, defined by IEEE 802.1D Extended Filtering
            Services."

        GROUP       pBridgeDevicePriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by IEEE
            802.1D."

        GROUP       pBridgeDefaultPriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by the
            extended bridge services with media types, such as
            Ethernet, that do not support native User Priority."

        GROUP       pBridgeRegenPriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by IEEE 802.1D
            and that have interface media types that support
            native User Priority, e.g., IEEE 802.5."

        GROUP       pBridgePriorityGroup
        DESCRIPTION
            "This group is mandatory only for devices supporting
            the priority forwarding operations defined by IEEE 802.1D."

        GROUP       pBridgeAccessPriorityGroup
        DESCRIPTION
            "This group is optional and is relevant only for devices
            supporting the priority forwarding operations defined by
            IEEE 802.1D and that have interface media types that
            support native Access Priority, e.g., IEEE 802.5."

        GROUP       pBridgePortGarpGroup

        DESCRIPTION
            "This group is mandatory for devices supporting any
            of the GARP applications: e.g., GMRP, defined by the
            extended filtering services of 802.1D; or GVRP,
            defined by 802.1Q (refer to the Q-BRIDGE-MIB for
            conformance statements for GVRP)."

        GROUP       pBridgePortGmrpGroup2
        DESCRIPTION
            "This group is mandatory for devices supporting the
            GMRP application, as defined by IEEE 802.1D Extended
            Filtering Services."

        GROUP       pBridgeHCPortGroup
        DESCRIPTION
            "Support for this group in a device is mandatory for those
            bridge ports that map to network interfaces that have the
            value of the corresponding instance of ifSpeed
            greater than 650,000,000 bits/second."

        GROUP       pBridgePortOverflowGroup
        DESCRIPTION
            "Support for this group in a device is mandatory for those
            bridge ports that map to network interfaces that have the
            value of the corresponding instance of ifSpeed
            greater than 650,000,000 bits/second."

        OBJECT      dot1dPortNumTrafficClasses
        MIN-ACCESS  read-only
        DESCRIPTION
            "Write access is not required."

        OBJECT      dot1dTrafficClass
        MIN-ACCESS  read-only
        DESCRIPTION
            "Write access is not required."

        OBJECT      dot1dRegenUserPriority
        MIN-ACCESS  read-only
        DESCRIPTION
            "Write access is not required."

       ::= { pBridgeCompliances 2 }

END

5.  Definitions for Virtual Bridge MIB

Q-BRIDGE-MIB DEFINITIONS ::= BEGIN

-- -------------------------------------------------------------
-- MIB for IEEE 802.1Q Devices
-- -------------------------------------------------------------

IMPORTS
    MODULE-IDENTITY, OBJECT-TYPE,
    Counter32, Counter64, Unsigned32, TimeTicks, Integer32
        FROM SNMPv2-SMI
    RowStatus, TruthValue, TEXTUAL-CONVENTION, MacAddress
        FROM SNMPv2-TC
    SnmpAdminString
        FROM SNMP-FRAMEWORK-MIB
    MODULE-COMPLIANCE, OBJECT-GROUP
        FROM SNMPv2-CONF
    dot1dBridge, dot1dBasePortEntry, dot1dBasePort
        FROM BRIDGE-MIB
    EnabledStatus
        FROM P-BRIDGE-MIB
    TimeFilter
        FROM RMON2-MIB;

qBridgeMIB MODULE-IDENTITY
    LAST-UPDATED "200601090000Z"
    ORGANIZATION "IETF Bridge MIB Working Group"
    CONTACT-INFO
        "Email:  Bridge-mib@ietf.org
                 ietfmibs@ops.ietf.org

                 David Levi
         Postal: Nortel Networks
                 4655 Great America Parkway
                 Santa Clara, CA 95054
                 USA
         Phone:  +1 865 686 0432
         Email:  dlevi@nortel.com

                 David Harrington
         Postal: Effective Software
                 50 Harding Rd.
                 Portsmouth, NH 03801
                 USA
         Phone:  +1 603 436 8634
         Email:  ietfdbh@comcast.net

                 Les Bell
         Postal: Hemel Hempstead, Herts. HP2 7YU
                 UK
          Email: elbell@ntlworld.com

                 Andrew Smith
         Postal: Beijing Harbour Networks
                 Jiuling Building
                 21 North Xisanhuan Ave.
                 Beijing, 100089
                 PRC
            Fax: +1 415 345 1827
          Email: ah_smith@acm.org

                 Paul Langille
         Postal: Newbridge Networks
                 5 Corporate Drive
                 Andover, MA 01810
                 USA
          Phone: +1 978 691 4665
          Email: langille@newbridge.com

                 Anil Rijhsinghani
         Postal: Accton Technology Corporation
                 5 Mount Royal Ave
                 Marlboro, MA 01752
                 USA
          Phone:
          Email: anil@accton.com

                 Keith McCloghrie
         Postal: Cisco Systems, Inc.
                 170 West Tasman Drive
                 San Jose, CA 95134-1706
                 USA
          Phone: +1 408 526 5260
          Email: kzm@cisco.com"
    DESCRIPTION
        "The VLAN Bridge MIB module for managing Virtual Bridged
        Local Area Networks, as defined by IEEE 802.1Q-2003,
        including Restricted Vlan Registration defined by
        IEEE 802.1u-2001 and Vlan Classification defined by
        IEEE 802.1v-2001.

        Copyright (C) The Internet Society (2006).  This version of
        this MIB module is part of RFC 4363; See the RFC itself for
        full legal notices."
    REVISION     "200601090000Z"

    DESCRIPTION
         "Added Vlan TEXTUAL-CONVENTIONs,
          dot1qPortRestrictedVlanRegistration, dot1vProtocol subtree,
          qBridgeClassificationDeviceGroup, qBridgePortGroup2,
          qBridgeClassificationPortGroup, and qBridgeCompliance2.
          Clarified dot1qForwardAllStaticPorts,
          qPortAcceptableFrameTypes, and qBridgeCompliance.
          Deprecated qBridgePortGroup and qBridgeCompliance."

    REVISION     "199908250000Z"
    DESCRIPTION
         "The VLAN Bridge MIB module for managing Virtual Bridged
        Local Area Networks, as defined by IEEE 802.1Q-1998.

        Initial version, published as RFC 2674."

    ::= { dot1dBridge 7 }

qBridgeMIBObjects OBJECT IDENTIFIER ::= { qBridgeMIB 1 }

-- -------------------------------------------------------------
-- Textual Conventions
-- -------------------------------------------------------------

PortList ::= TEXTUAL-CONVENTION
    STATUS      current
    DESCRIPTION
        "Each octet within this value specifies a set of eight
        ports, with the first octet specifying ports 1 through
        8, the second octet specifying ports 9 through 16, etc.
        Within each octet, the most significant bit represents
        the lowest numbered port, and the least significant bit
        represents the highest numbered port.  Thus, each port
        of the bridge is represented by a single bit within the
        value of this object.  If that bit has a value of '1',
        then that port is included in the set of ports; the port
        is not included if its bit has a value of '0'."
    SYNTAX      OCTET STRING

VlanIndex ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS      current
    DESCRIPTION
        "A value used to index per-VLAN tables: values of 0 and
        4095 are not permitted.  If the value is between 1 and
        4094 inclusive, it represents an IEEE 802.1Q VLAN-ID with
        global scope within a given bridged domain (see VlanId
        textual convention).  If the value is greater than 4095,
        then it represents a VLAN with scope local to the
        particular agent, i.e., one without a global VLAN-ID
        assigned to it.  Such VLANs are outside the scope of
        IEEE 802.1Q, but it is convenient to be able to manage them
        in the same way using this MIB."
    SYNTAX      Unsigned32

VlanId ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS      current
    DESCRIPTION
        "The VLAN-ID that uniquely identifies a VLAN.  This
        is the 12-bit VLAN-ID used in the VLAN Tag header.
        The range is defined by the REFERENCEd specification."
    REFERENCE
        "IEEE Std 802.1Q 2003 Edition, Virtual Bridged
        Local Area Networks."
    SYNTAX      Integer32 (1..4094)

VlanIdOrAny ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS       current
    DESCRIPTION
        "The VLAN-ID that uniquely identifies a specific VLAN,
        or any VLAN.  The special value of 4095 is used to
        indicate a wildcard, i.e., any VLAN.  This can be used
        in any situation where an object or table entry must
        refer either to a specific VLAN or to any VLAN.

        Note that a MIB object that is defined using this
        TEXTUAL-CONVENTION should clarify the meaning of
        'any VLAN' (i.e., the special value 4095)."
    SYNTAX       Integer32 (1..4094 | 4095)

VlanIdOrNone ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS       current
    DESCRIPTION
        "The VLAN-ID that uniquely identifies a specific VLAN,
        or no VLAN.  The special value of zero is used to
        indicate that no VLAN-ID is present or used.  This can
        be used in any situation where an object or a table entry
        must refer either to a specific VLAN, or to no VLAN.

        Note that a MIB object that is defined using this
        TEXTUAL-CONVENTION should clarify the meaning of
        'no VLAN' (i.e., the special value 0)."
    SYNTAX       Integer32 (0 | 1..4094)

VlanIdOrAnyOrNone ::= TEXTUAL-CONVENTION
    DISPLAY-HINT "d"
    STATUS       current
    DESCRIPTION
        "The VLAN-ID that uniquely identifies a specific VLAN,
        any VLAN, or no VLAN.  The special values 0 and 4095
        have the same meaning as described in the VlanIdOrAny
        and VlanIdOrNone TEXTUAL-CONVENTIONs.

        Note that a MIB object that is defined using this
        TEXTUAL-CONVENTION should clarify the meaning of
        'any VLAN' and 'no VLAN' (i.e., the special values
        0 and 4095)."
    SYNTAX       Integer32 (0 | 1..4094 | 4095)

-- -------------------------------------------------------------
-- subtrees in the Q-BRIDGE MIB
-- -------------------------------------------------------------

dot1qBase       OBJECT IDENTIFIER ::= { qBridgeMIBObjects 1 }
dot1qTp         OBJECT IDENTIFIER ::= { qBridgeMIBObjects 2 }
dot1qStatic     OBJECT IDENTIFIER ::= { qBridgeMIBObjects 3 }
dot1qVlan       OBJECT IDENTIFIER ::= { qBridgeMIBObjects 4 }
dot1vProtocol   OBJECT IDENTIFIER ::= { qBridgeMIBObjects 5 }

-- -------------------------------------------------------------
-- dot1qBase subtree
-- -------------------------------------------------------------

dot1qVlanVersionNumber OBJECT-TYPE
    SYNTAX      INTEGER {
                    version1(1)
                }
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The version number of IEEE 802.1Q that this device
        supports."
    REFERENCE
        "IEEE 802.1Q/D11 Section 12.10.1.1"
    ::= { dot1qBase 1 }

dot1qMaxVlanId OBJECT-TYPE
    SYNTAX      VlanId
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The maximum IEEE 802.1Q VLAN-ID that this device

        supports."
    REFERENCE
        "IEEE 802.1Q/D11 Section 9.3.2.3"
    ::= { dot1qBase 2 }

dot1qMaxSupportedVlans OBJECT-TYPE
    SYNTAX      Unsigned32
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The maximum number of IEEE 802.1Q VLANs that this
        device supports."
    REFERENCE
        "IEEE 802.1Q/D11 Section 12.10.1.1"
    ::= { dot1qBase 3 }

dot1qNumVlans OBJECT-TYPE
    SYNTAX      Unsigned32
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The current number of IEEE 802.1Q VLANs that are
        configured in this device."
    REFERENCE
        "IEEE 802.1Q/D11 Section 12.7.1.1"
    ::= { dot1qBase 4 }

dot1qGvrpStatus OBJECT-TYPE
    SYNTAX      EnabledStatus
    MAX-ACCESS  read-write
    STATUS      current
    DESCRIPTION
        "The administrative status requested by management for
        GVRP.  The value enabled(1) indicates that GVRP should
        be enabled on this device, on all ports for which it has
        not been specifically disabled.  When disabled(2), GVRP
        is disabled on all ports, and all GVRP packets will be
        forwarded transparently.  This object affects all GVRP
        Applicant and Registrar state machines.  A transition
        from disabled(2) to enabled(1) will cause a reset of all
        GVRP state machines on all ports.

        The value of this object MUST be retained across
        reinitializations of the management system."
    DEFVAL      { enabled }
    ::= { dot1qBase 5 }

-- -------------------------------------------------------------

-- the dot1qTp subtree
-- -------------------------------------------------------------

-- -------------------------------------------------------------
-- the current Filtering Database Table
-- -------------------------------------------------------------

dot1qFdbTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1qFdbEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table that contains configuration and control
        information for each Filtering Database currently
        operating on this device.  Entries in this table appear
        automatically when VLANs are assigned FDB IDs in the
        dot1qVlanCurrentTable."
    ::= { dot1qTp 1 }

dot1qFdbEntry OBJECT-TYPE
    SYNTAX      Dot1qFdbEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "Information about a specific Filtering Database."
    INDEX   { dot1qFdbId }
    ::= { dot1qFdbTable 1 }

Dot1qFdbEntry ::=
    SEQUENCE {
        dot1qFdbId
            Unsigned32,
        dot1qFdbDynamicCount
            Counter32
    }

dot1qFdbId OBJECT-TYPE
    SYNTAX       Unsigned32
    MAX-ACCESS   not-accessible
    STATUS       current
    DESCRIPTION
        "The identity of this Filtering Database."
    ::= { dot1qFdbEntry 1 }

dot1qFdbDynamicCount OBJECT-TYPE
    SYNTAX       Counter32
    MAX-ACCESS   read-only
    STATUS       current

    DESCRIPTION
        "The current number of dynamic entries in this
        Filtering Database."
    REFERENCE
        "IEEE 802.1Q/D11 Section 12.7.1.1.3"
    ::= { dot1qFdbEntry 2 }

-- -------------------------------------------------------------
-- Multiple Forwarding Databases for 802.1Q Transparent Devices
-- This table is an alternative to the dot1dTpFdbTable,
-- previously defined for 802.1D devices that only support a
-- single Forwarding Database.
-- -------------------------------------------------------------

dot1qTpFdbTable OBJECT-TYPE
    SYNTAX      SEQUENCE OF Dot1qTpFdbEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A table that contains information about unicast entries
        for which the device has forwarding and/or filtering
        information.  This information is used by the
        transparent bridging function in determining how to
        propagate a received frame."
    REFERENCE
        "IEEE 802.1Q/D11 Section 12.7.7"
    ::= { dot1qTp 2 }

dot1qTpFdbEntry OBJECT-TYPE
    SYNTAX      Dot1qTpFdbEntry
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "Information about a specific unicast MAC address for
        which the device has some forwarding and/or filtering
        information."
    INDEX   { dot1qFdbId, dot1qTpFdbAddress }
    ::= { dot1qTpFdbTable 1 }

Dot1qTpFdbEntry ::=
    SEQUENCE {
        dot1qTpFdbAddress
            MacAddress,
        dot1qTpFdbPort
            Integer32,
        dot1qTpFdbStatus
            INTEGER
    }

dot1qTpFdbAddress OBJECT-TYPE
    SYNTAX      MacAddress
    MAX-ACCESS  not-accessible
    STATUS      current
    DESCRIPTION
        "A unicast MAC address for which the device has
        forwarding and/or filtering information."
    ::= { dot1qTpFdbEntry 1 }

dot1qTpFdbPort OBJECT-TYPE
    SYNTAX      Integer32 (0..65535)
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "Either the value '0', or the port number of the port on
        which a frame having a source address equal to the value
        of the corresponding instance of dot1qTpFdbAddress has
        been seen.  A value of '0' indicates that the port
        number has not been learned but that the device does
        have some forwarding/filtering information about this
        address (e.g., in the dot1qStaticUnicastTable).
        Implementors are encouraged to assign the port value to
        this object whenever it is learned, even for addresses
        for which the corresponding value of dot1qTpFdbStatus is
        not learned(3)."
    ::= { dot1qTpFdbEntry 2 }

dot1qTpFdbStatus OBJECT-TYPE
    SYNTAX      INTEGER {
                    other(1),
                    invalid(2),
                    learned(3),
                    self(4),
                    mgmt(5)
                }
    MAX-ACCESS  read-only
    STATUS      current
    DESCRIPTION
        "The status of this entry.  The meanings of the values
        are:
            other(1) - none of the following.  This may include
                the case where some other MIB object (not the
                corresponding instance of dot1qTpFdbPort, nor an
                entry in the dot1qStaticUnicastTable) is being
                used to determine if and how frames addressed to
                the value of the corresponding instance of
                dot1qTpFdbAddress are being forwarded.
            invalid(2) - this entry is no longer valid (e.g., it

                was learned but has since aged out), but has not
                yet been flushed from the table.
            learned(3) - the value of the corresponding instance
                of dot1qTpFdbPort was learned and is being used.
            self(4) - the value of the corresponding instance of
                dot1qTpFdbAddress represents one of the device's
                addresses.  The corresponding instance of
                dot1qTpFdbPort indicates which of the device's
                ports has this address.
                        mgmt(5) - the value of the corresponding instance of 
                dot1qTpFdbAddress is also the value of an
                existing instance of dot1qStaticUnicastAddress."
EID 8714 (Verified) is as follows:

Section: 5

Original Text:

            mgmt(5) - the value of the corresponding instance of
                dot1qTpFdbAddress is also the value of an
                existing instance of dot1qStaticAddress."

Corrected Text:

            mgmt(5) - the value of the corresponding instance of
                dot1qTpFdbAddress is also the value of an
                existing instance of dot1qStaticUnicastAddress."
Notes:
The RFC says for dot1qTpFdbStatus:

mgmt(5) - the value of the corresponding instance of
dot1qTpFdbAddress is also the value of an
existing instance of dot1qStaticAddress."

It is referring to dot1qStaticAddress. But there is no such object. Instead, it
should refer to 'dot1qStaticUnicastAddress'.

Verifier Notes: No objections received on marking this as Verfiied. See the thread - https://mailarchive.ietf.org/arch/msg/netmod/E5lPDoFUfUH6fWNlIY_YPdfemMo/
::= { dot1qTpFdbEntry 3 } -- ------------------------------------------------------------- -- Dynamic Group Registration Table -- ------------------------------------------------------------- dot1qTpGroupTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qTpGroupEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing filtering information for VLANs configured into the bridge by (local or network) management, or learned dynamically, specifying the set of ports to which frames received on a VLAN for this FDB and containing a specific Group destination address are allowed to be forwarded." ::= { dot1qTp 3 } dot1qTpGroupEntry OBJECT-TYPE SYNTAX Dot1qTpGroupEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Filtering information configured into the bridge by management, or learned dynamically, specifying the set of ports to which frames received on a VLAN and containing a specific Group destination address are allowed to be forwarded. The subset of these ports learned dynamically is also provided." INDEX { dot1qVlanIndex, dot1qTpGroupAddress } ::= { dot1qTpGroupTable 1 } Dot1qTpGroupEntry ::= SEQUENCE { dot1qTpGroupAddress MacAddress, dot1qTpGroupEgressPorts PortList, dot1qTpGroupLearnt PortList } dot1qTpGroupAddress OBJECT-TYPE SYNTAX MacAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The destination Group MAC address in a frame to which this entry's filtering information applies." ::= { dot1qTpGroupEntry 1 } dot1qTpGroupEgressPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-only STATUS current DESCRIPTION "The complete set of ports, in this VLAN, to which frames destined for this Group MAC address are currently being explicitly forwarded. This does not include ports for which this address is only implicitly forwarded, in the dot1qForwardAllPorts list." ::= { dot1qTpGroupEntry 2 } dot1qTpGroupLearnt OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-only STATUS current DESCRIPTION "The subset of ports in dot1qTpGroupEgressPorts that were learned by GMRP or some other dynamic mechanism, in this Filtering database." ::= { dot1qTpGroupEntry 3 } -- ------------------------------------------------------------- -- Service Requirements subtree -- ------------------------------------------------------------- dot1qForwardAllTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qForwardAllEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing forwarding information for each VLAN, specifying the set of ports to which forwarding of all multicasts applies, configured statically by management or dynamically by GMRP. An entry appears in this table for all VLANs that are currently instantiated." REFERENCE "IEEE 802.1Q/D11 Section 12.7.2, 12.7.7" ::= { dot1qTp 4 } dot1qForwardAllEntry OBJECT-TYPE SYNTAX Dot1qForwardAllEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Forwarding information for a VLAN, specifying the set of ports to which all multicasts should be forwarded, configured statically by management or dynamically by GMRP." INDEX { dot1qVlanIndex } ::= { dot1qForwardAllTable 1 } Dot1qForwardAllEntry ::= SEQUENCE { dot1qForwardAllPorts PortList, dot1qForwardAllStaticPorts PortList, dot1qForwardAllForbiddenPorts PortList } dot1qForwardAllPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-only STATUS current DESCRIPTION "The complete set of ports in this VLAN to which all multicast group-addressed frames are to be forwarded. This includes ports for which this need has been determined dynamically by GMRP, or configured statically by management." ::= { dot1qForwardAllEntry 1 } dot1qForwardAllStaticPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports configured by management in this VLAN to which all multicast group-addressed frames are to be forwarded. Ports entered in this list will also appear in the complete set shown by dot1qForwardAllPorts. This value will be restored after the device is reset. This only applies to ports that are members of the VLAN, defined by dot1qVlanCurrentEgressPorts. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardAllForbiddenPorts. The default value is a string of ones of appropriate length, to indicate the standard behaviour of using basic filtering services, i.e., forward all multicasts to all ports. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qForwardAllEntry 2 } dot1qForwardAllForbiddenPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports configured by management in this VLAN for which the Service Requirement attribute Forward All Multicast Groups may not be dynamically registered by GMRP. This value will be restored after the device is reset. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardAllStaticPorts. The default value is a string of zeros of appropriate length. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qForwardAllEntry 3 } dot1qForwardUnregisteredTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qForwardUnregisteredEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing forwarding information for each VLAN, specifying the set of ports to which forwarding of multicast group-addressed frames for which no more specific forwarding information applies. This is configured statically by management and determined dynamically by GMRP. An entry appears in this table for all VLANs that are currently instantiated." REFERENCE "IEEE 802.1Q/D11 Section 12.7.2, 12.7.7" ::= { dot1qTp 5 } dot1qForwardUnregisteredEntry OBJECT-TYPE SYNTAX Dot1qForwardUnregisteredEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Forwarding information for a VLAN, specifying the set of ports to which all multicasts for which there is no more specific forwarding information shall be forwarded. This is configured statically by management or dynamically by GMRP." INDEX { dot1qVlanIndex } ::= { dot1qForwardUnregisteredTable 1 } Dot1qForwardUnregisteredEntry ::= SEQUENCE { dot1qForwardUnregisteredPorts PortList, dot1qForwardUnregisteredStaticPorts PortList, dot1qForwardUnregisteredForbiddenPorts PortList } dot1qForwardUnregisteredPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-only STATUS current DESCRIPTION "The complete set of ports in this VLAN to which multicast group-addressed frames for which there is no more specific forwarding information will be forwarded. This includes ports for which this need has been determined dynamically by GMRP, or configured statically by management." ::= { dot1qForwardUnregisteredEntry 1 } dot1qForwardUnregisteredStaticPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports configured by management, in this VLAN, to which multicast group-addressed frames for which there is no more specific forwarding information are to be forwarded. Ports entered in this list will also appear in the complete set shown by dot1qForwardUnregisteredPorts. This value will be restored after the device is reset. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardUnregisteredForbiddenPorts. The default value is a string of zeros of appropriate length, although this has no effect with the default value of dot1qForwardAllStaticPorts. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qForwardUnregisteredEntry 2 } dot1qForwardUnregisteredForbiddenPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports configured by management in this VLAN for which the Service Requirement attribute Forward Unregistered Multicast Groups may not be dynamically registered by GMRP. This value will be restored after the device is reset. A port may not be added in this set if it is already a member of the set of ports in dot1qForwardUnregisteredStaticPorts. The default value is a string of zeros of appropriate length. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qForwardUnregisteredEntry 3 } -- ------------------------------------------------------------- -- The Static (Destination-Address Filtering) Database -- ------------------------------------------------------------- dot1qStaticUnicastTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qStaticUnicastEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing filtering information for Unicast MAC addresses for each Filtering Database, configured into the device by (local or network) management specifying the set of ports to which frames received from specific ports and containing specific unicast destination addresses are allowed to be forwarded. A value of zero in this table (as the port number from which frames with a specific destination address are received) is used to specify all ports for which there is no specific entry in this table for that particular destination address. Entries are valid for unicast addresses only." REFERENCE "IEEE 802.1Q/D11 Section 12.7.7, ISO/IEC 15802-3 Section 7.9.1" ::= { dot1qStatic 1 } dot1qStaticUnicastEntry OBJECT-TYPE SYNTAX Dot1qStaticUnicastEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Filtering information configured into the device by (local or network) management specifying the set of ports to which frames received from a specific port and containing a specific unicast destination address are allowed to be forwarded." INDEX { dot1qFdbId, dot1qStaticUnicastAddress, dot1qStaticUnicastReceivePort } ::= { dot1qStaticUnicastTable 1 } Dot1qStaticUnicastEntry ::= SEQUENCE { dot1qStaticUnicastAddress MacAddress, dot1qStaticUnicastReceivePort Integer32, dot1qStaticUnicastAllowedToGoTo PortList, dot1qStaticUnicastStatus INTEGER } dot1qStaticUnicastAddress OBJECT-TYPE SYNTAX MacAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The destination MAC address in a frame to which this entry's filtering information applies. This object must take the value of a unicast address." ::= { dot1qStaticUnicastEntry 1 } dot1qStaticUnicastReceivePort OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS not-accessible STATUS current DESCRIPTION "Either the value '0' or the port number of the port from which a frame must be received in order for this entry's filtering information to apply. A value of zero indicates that this entry applies on all ports of the device for which there is no other applicable entry." ::= { dot1qStaticUnicastEntry 2 } dot1qStaticUnicastAllowedToGoTo OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports for which a frame with a specific unicast address will be flooded in the event that it has not been learned. It also specifies the set of ports on which a specific unicast address may be dynamically learned. The dot1qTpFdbTable will have an equivalent entry with a dot1qTpFdbPort value of '0' until this address has been learned, at which point it will be updated with the port the address has been seen on. This only applies to ports that are members of the VLAN, defined by dot1qVlanCurrentEgressPorts. The default value of this object is a string of ones of appropriate length. The value of this object MUST be retained across reinitializations of the management system." REFERENCE "IEEE 802.1Q/D11 Table 8-5, ISO/IEC 15802-3 Table 7-5" ::= { dot1qStaticUnicastEntry 3 } dot1qStaticUnicastStatus OBJECT-TYPE SYNTAX INTEGER { other(1), invalid(2), permanent(3), deleteOnReset(4), deleteOnTimeout(5) } MAX-ACCESS read-write STATUS current DESCRIPTION "This object indicates the status of this entry. other(1) - this entry is currently in use, but the conditions under which it will remain so differ from the following values. invalid(2) - writing this value to the object removes the corresponding entry. permanent(3) - this entry is currently in use and will remain so after the next reset of the bridge. deleteOnReset(4) - this entry is currently in use and will remain so until the next reset of the bridge. deleteOnTimeout(5) - this entry is currently in use and will remain so until it is aged out. The value of this object MUST be retained across reinitializations of the management system." DEFVAL { permanent } ::= { dot1qStaticUnicastEntry 4 } dot1qStaticMulticastTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qStaticMulticastEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing filtering information for Multicast and Broadcast MAC addresses for each VLAN, configured into the device by (local or network) management specifying the set of ports to which frames received from specific ports and containing specific Multicast and Broadcast destination addresses are allowed to be forwarded. A value of zero in this table (as the port number from which frames with a specific destination address are received) is used to specify all ports for which there is no specific entry in this table for that particular destination address. Entries are valid for Multicast and Broadcast addresses only." REFERENCE "IEEE 802.1Q/D11 Section 12.7.7, ISO/IEC 15802-3 Section 7.9.1" ::= { dot1qStatic 2 } dot1qStaticMulticastEntry OBJECT-TYPE SYNTAX Dot1qStaticMulticastEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Filtering information configured into the device by (local or network) management specifying the set of ports to which frames received from this specific port for this VLAN and containing this Multicast or Broadcast destination address are allowed to be forwarded." INDEX { dot1qVlanIndex, dot1qStaticMulticastAddress, dot1qStaticMulticastReceivePort } ::= { dot1qStaticMulticastTable 1 } Dot1qStaticMulticastEntry ::= SEQUENCE { dot1qStaticMulticastAddress MacAddress, dot1qStaticMulticastReceivePort Integer32, dot1qStaticMulticastStaticEgressPorts PortList, dot1qStaticMulticastForbiddenEgressPorts PortList, dot1qStaticMulticastStatus INTEGER } dot1qStaticMulticastAddress OBJECT-TYPE SYNTAX MacAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The destination MAC address in a frame to which this entry's filtering information applies. This object must take the value of a Multicast or Broadcast address." ::= { dot1qStaticMulticastEntry 1 } dot1qStaticMulticastReceivePort OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS not-accessible STATUS current DESCRIPTION "Either the value '0' or the port number of the port from which a frame must be received in order for this entry's filtering information to apply. A value of zero indicates that this entry applies on all ports of the device for which there is no other applicable entry." ::= { dot1qStaticMulticastEntry 2 } dot1qStaticMulticastStaticEgressPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports to which frames received from a specific port and destined for a specific Multicast or Broadcast MAC address must be forwarded, regardless of any dynamic information, e.g., from GMRP. A port may not be added in this set if it is already a member of the set of ports in dot1qStaticMulticastForbiddenEgressPorts. The default value of this object is a string of ones of appropriate length. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qStaticMulticastEntry 3 } dot1qStaticMulticastForbiddenEgressPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-write STATUS current DESCRIPTION "The set of ports to which frames received from a specific port and destined for a specific Multicast or Broadcast MAC address must not be forwarded, regardless of any dynamic information, e.g., from GMRP. A port may not be added in this set if it is already a member of the set of ports in dot1qStaticMulticastStaticEgressPorts. The default value of this object is a string of zeros of appropriate length. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qStaticMulticastEntry 4 } dot1qStaticMulticastStatus OBJECT-TYPE SYNTAX INTEGER { other(1), invalid(2), permanent(3), deleteOnReset(4), deleteOnTimeout(5) } MAX-ACCESS read-write STATUS current DESCRIPTION "This object indicates the status of this entry. other(1) - this entry is currently in use, but the conditions under which it will remain so differ from the following values. invalid(2) - writing this value to the object removes the corresponding entry. permanent(3) - this entry is currently in use and will remain so after the next reset of the bridge. deleteOnReset(4) - this entry is currently in use and will remain so until the next reset of the bridge. deleteOnTimeout(5) - this entry is currently in use and will remain so until it is aged out. The value of this object MUST be retained across reinitializations of the management system." DEFVAL { permanent } ::= { dot1qStaticMulticastEntry 5 } -- ------------------------------------------------------------- -- The Current VLAN Database -- ------------------------------------------------------------- dot1qVlanNumDeletes OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times a VLAN entry has been deleted from the dot1qVlanCurrentTable (for any reason). If an entry is deleted, then inserted, and then deleted, this counter will be incremented by 2." ::= { dot1qVlan 1 } dot1qVlanCurrentTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qVlanCurrentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing current configuration information for each VLAN currently configured into the device by (local or network) management, or dynamically created as a result of GVRP requests received." ::= { dot1qVlan 2 } dot1qVlanCurrentEntry OBJECT-TYPE SYNTAX Dot1qVlanCurrentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information for a VLAN configured into the device by (local or network) management, or dynamically created as a result of GVRP requests received." INDEX { dot1qVlanTimeMark, dot1qVlanIndex } ::= { dot1qVlanCurrentTable 1 } Dot1qVlanCurrentEntry ::= SEQUENCE { dot1qVlanTimeMark TimeFilter, dot1qVlanIndex VlanIndex, dot1qVlanFdbId Unsigned32, dot1qVlanCurrentEgressPorts PortList, dot1qVlanCurrentUntaggedPorts PortList, dot1qVlanStatus INTEGER, dot1qVlanCreationTime TimeTicks } dot1qVlanTimeMark OBJECT-TYPE SYNTAX TimeFilter MAX-ACCESS not-accessible STATUS current DESCRIPTION "A TimeFilter for this entry. See the TimeFilter textual convention to see how this works." ::= { dot1qVlanCurrentEntry 1 } dot1qVlanIndex OBJECT-TYPE SYNTAX VlanIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The VLAN-ID or other identifier referring to this VLAN." ::= { dot1qVlanCurrentEntry 2 } dot1qVlanFdbId OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The Filtering Database used by this VLAN. This is one of the dot1qFdbId values in the dot1qFdbTable. This value is allocated automatically by the device whenever the VLAN is created: either dynamically by GVRP, or by management, in dot1qVlanStaticTable. Allocation of this value follows the learning constraints defined for this VLAN in dot1qLearningConstraintsTable." ::= { dot1qVlanCurrentEntry 3 } dot1qVlanCurrentEgressPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-only STATUS current DESCRIPTION "The set of ports that are transmitting traffic for this VLAN as either tagged or untagged frames." REFERENCE "IEEE 802.1Q/D11 Section 12.10.2.1" ::= { dot1qVlanCurrentEntry 4 } dot1qVlanCurrentUntaggedPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-only STATUS current DESCRIPTION "The set of ports that are transmitting traffic for this VLAN as untagged frames." REFERENCE "IEEE 802.1Q/D11 Section 12.10.2.1" ::= { dot1qVlanCurrentEntry 5 } dot1qVlanStatus OBJECT-TYPE SYNTAX INTEGER { other(1), permanent(2), dynamicGvrp(3) } MAX-ACCESS read-only STATUS current DESCRIPTION "This object indicates the status of this entry. other(1) - this entry is currently in use, but the conditions under which it will remain so differ from the following values. permanent(2) - this entry, corresponding to an entry in dot1qVlanStaticTable, is currently in use and will remain so after the next reset of the device. The port lists for this entry include ports from the equivalent dot1qVlanStaticTable entry and ports learned dynamically. dynamicGvrp(3) - this entry is currently in use and will remain so until removed by GVRP. There is no static entry for this VLAN, and it will be removed when the last port leaves the VLAN." ::= { dot1qVlanCurrentEntry 6 } dot1qVlanCreationTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when this VLAN was created." ::= { dot1qVlanCurrentEntry 7 } -- ------------------------------------------------------------- -- The Static VLAN Database -- ------------------------------------------------------------- dot1qVlanStaticTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qVlanStaticEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing static configuration information for each VLAN configured into the device by (local or network) management. All entries are permanent and will be restored after the device is reset." ::= { dot1qVlan 3 } dot1qVlanStaticEntry OBJECT-TYPE SYNTAX Dot1qVlanStaticEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Static information for a VLAN configured into the device by (local or network) management." INDEX { dot1qVlanIndex } ::= { dot1qVlanStaticTable 1 } Dot1qVlanStaticEntry ::= SEQUENCE { dot1qVlanStaticName SnmpAdminString, dot1qVlanStaticEgressPorts PortList, dot1qVlanForbiddenEgressPorts PortList, dot1qVlanStaticUntaggedPorts PortList, dot1qVlanStaticRowStatus RowStatus } dot1qVlanStaticName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE (0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "An administratively assigned string, which may be used to identify the VLAN." REFERENCE "IEEE 802.1Q/D11 Section 12.10.2.1" ::= { dot1qVlanStaticEntry 1 } dot1qVlanStaticEgressPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-create STATUS current DESCRIPTION "The set of ports that are permanently assigned to the egress list for this VLAN by management. Changes to a bit in this object affect the per-port, per-VLAN Registrar control for Registration Fixed for the relevant GVRP state machine on each port. A port may not be added in this set if it is already a member of the set of ports in dot1qVlanForbiddenEgressPorts. The default value of this object is a string of zeros of appropriate length, indicating not fixed." REFERENCE "IEEE 802.1Q/D11 Section 12.7.7.3, 11.2.3.2.3" ::= { dot1qVlanStaticEntry 2 } dot1qVlanForbiddenEgressPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-create STATUS current DESCRIPTION "The set of ports that are prohibited by management from being included in the egress list for this VLAN. Changes to this object that cause a port to be included or excluded affect the per-port, per-VLAN Registrar control for Registration Forbidden for the relevant GVRP state machine on each port. A port may not be added in this set if it is already a member of the set of ports in dot1qVlanStaticEgressPorts. The default value of this object is a string of zeros of appropriate length, excluding all ports from the forbidden set." REFERENCE "IEEE 802.1Q/D11 Section 12.7.7.3, 11.2.3.2.3" ::= { dot1qVlanStaticEntry 3 } dot1qVlanStaticUntaggedPorts OBJECT-TYPE SYNTAX PortList MAX-ACCESS read-create STATUS current DESCRIPTION "The set of ports that should transmit egress packets for this VLAN as untagged. The default value of this object for the default VLAN (dot1qVlanIndex = 1) is a string of appropriate length including all ports. There is no specified default for other VLANs. If a device agent cannot support the set of ports being set, then it will reject the set operation with an error. For example, a manager might attempt to set more than one VLAN to be untagged on egress where the device does not support this IEEE 802.1Q option." REFERENCE "IEEE 802.1Q/D11 Section 12.10.2.1" ::= { dot1qVlanStaticEntry 4 } dot1qVlanStaticRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the status of this entry." ::= { dot1qVlanStaticEntry 5 } dot1qNextFreeLocalVlanIndex OBJECT-TYPE SYNTAX Integer32 (0|4096..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The next available value for dot1qVlanIndex of a local VLAN entry in dot1qVlanStaticTable. This will report values >=4096 if a new Local VLAN may be created or else the value 0 if this is not possible. A row creation operation in this table for an entry with a local VlanIndex value may fail if the current value of this object is not used as the index. Even if the value read is used, there is no guarantee that it will still be the valid index when the create operation is attempted; another manager may have already got in during the intervening time interval. In this case, dot1qNextFreeLocalVlanIndex should be re-read and the creation re-tried with the new value. This value will automatically change when the current value is used to create a new row." ::= { dot1qVlan 4 } -- ------------------------------------------------------------- -- The VLAN Port Configuration Table -- ------------------------------------------------------------- dot1qPortVlanTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qPortVlanEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing per-port control and status information for VLAN configuration in the device." ::= { dot1qVlan 5 } dot1qPortVlanEntry OBJECT-TYPE SYNTAX Dot1qPortVlanEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information controlling VLAN configuration for a port on the device. This is indexed by dot1dBasePort." AUGMENTS { dot1dBasePortEntry } ::= { dot1qPortVlanTable 1 } Dot1qPortVlanEntry ::= SEQUENCE { dot1qPvid VlanIndex, dot1qPortAcceptableFrameTypes INTEGER, dot1qPortIngressFiltering TruthValue, dot1qPortGvrpStatus EnabledStatus, dot1qPortGvrpFailedRegistrations Counter32, dot1qPortGvrpLastPduOrigin MacAddress, dot1qPortRestrictedVlanRegistration TruthValue } dot1qPvid OBJECT-TYPE SYNTAX VlanIndex MAX-ACCESS read-write STATUS current DESCRIPTION "The PVID, the VLAN-ID assigned to untagged frames or Priority-Tagged frames received on this port. The value of this object MUST be retained across reinitializations of the management system." REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.1" DEFVAL { 1 } ::= { dot1qPortVlanEntry 1 } dot1qPortAcceptableFrameTypes OBJECT-TYPE SYNTAX INTEGER { admitAll(1), admitOnlyVlanTagged(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "When this is admitOnlyVlanTagged(2), the device will discard untagged frames or Priority-Tagged frames received on this port. When admitAll(1), untagged frames or Priority-Tagged frames received on this port will be accepted and assigned to a VID based on the PVID and VID Set for this port. This control does not affect VLAN-independent Bridge Protocol Data Unit (BPDU) frames, such as GVRP and Spanning Tree Protocol (STP). It does affect VLAN- dependent BPDU frames, such as GMRP. The value of this object MUST be retained across reinitializations of the management system." REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.3" DEFVAL { admitAll } ::= { dot1qPortVlanEntry 2 } dot1qPortIngressFiltering OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "When this is true(1), the device will discard incoming frames for VLANs that do not include this Port in its Member set. When false(2), the port will accept all incoming frames. This control does not affect VLAN-independent BPDU frames, such as GVRP and STP. It does affect VLAN- dependent BPDU frames, such as GMRP. The value of this object MUST be retained across reinitializations of the management system." REFERENCE "IEEE 802.1Q/D11 Section 12.10.1.4" DEFVAL { false } ::= { dot1qPortVlanEntry 3 } dot1qPortGvrpStatus OBJECT-TYPE SYNTAX EnabledStatus MAX-ACCESS read-write STATUS current DESCRIPTION "The state of GVRP operation on this port. The value enabled(1) indicates that GVRP is enabled on this port, as long as dot1qGvrpStatus is also enabled for this device. When disabled(2) but dot1qGvrpStatus is still enabled for the device, GVRP is disabled on this port: any GVRP packets received will be silently discarded, and no GVRP registrations will be propagated from other ports. This object affects all GVRP Applicant and Registrar state machines on this port. A transition from disabled(2) to enabled(1) will cause a reset of all GVRP state machines on this port. The value of this object MUST be retained across reinitializations of the management system." DEFVAL { enabled } ::= { dot1qPortVlanEntry 4 } dot1qPortGvrpFailedRegistrations OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of failed GVRP registrations, for any reason, on this port." ::= { dot1qPortVlanEntry 5 } dot1qPortGvrpLastPduOrigin OBJECT-TYPE SYNTAX MacAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The Source MAC Address of the last GVRP message received on this port." ::= { dot1qPortVlanEntry 6 } dot1qPortRestrictedVlanRegistration OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "The state of Restricted VLAN Registration on this port. If the value of this control is true(1), then creation of a new dynamic VLAN entry is permitted only if there is a Static VLAN Registration Entry for the VLAN concerned, in which the Registrar Administrative Control value for this port is Normal Registration. The value of this object MUST be retained across reinitializations of the management system." REFERENCE "IEEE 802.1u clause 11.2.3.2.3, 12.10.1.7." DEFVAL { false } ::= { dot1qPortVlanEntry 7 } -- ------------------------------------------------------------- -- Per port VLAN Statistics Table -- ------------------------------------------------------------- dot1qPortVlanStatisticsTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qPortVlanStatisticsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing per-port, per-VLAN statistics for traffic received. Separate objects are provided for both the most-significant and least-significant bits of statistics counters for ports that are associated with this transparent bridge. The most-significant bit objects are only required on high-capacity interfaces, as defined in the conformance clauses for these objects. This mechanism is provided as a way to read 64-bit counters for agents that support only SNMPv1. Note that the reporting of most-significant and least- significant counter bits separately runs the risk of missing an overflow of the lower bits in the interval between sampling. The manager must be aware of this possibility, even within the same varbindlist, when interpreting the results of a request or asynchronous notification." ::= { dot1qVlan 6 } dot1qPortVlanStatisticsEntry OBJECT-TYPE SYNTAX Dot1qPortVlanStatisticsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Traffic statistics for a VLAN on an interface." INDEX { dot1dBasePort, dot1qVlanIndex } ::= { dot1qPortVlanStatisticsTable 1 } Dot1qPortVlanStatisticsEntry ::= SEQUENCE { dot1qTpVlanPortInFrames Counter32, dot1qTpVlanPortOutFrames Counter32, dot1qTpVlanPortInDiscards Counter32, dot1qTpVlanPortInOverflowFrames Counter32, dot1qTpVlanPortOutOverflowFrames Counter32, dot1qTpVlanPortInOverflowDiscards Counter32 } dot1qTpVlanPortInFrames OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of valid frames received by this port from its segment that were classified as belonging to this VLAN. Note that a frame received on this port is counted by this object if and only if it is for a protocol being processed by the local forwarding process for this VLAN. This object includes received bridge management frames classified as belonging to this VLAN (e.g., GMRP, but not GVRP or STP." REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3(a)" ::= { dot1qPortVlanStatisticsEntry 1 } dot1qTpVlanPortOutFrames OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of valid frames transmitted by this port to its segment from the local forwarding process for this VLAN. This includes bridge management frames originated by this device that are classified as belonging to this VLAN (e.g., GMRP, but not GVRP or STP)." REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3(d)" ::= { dot1qPortVlanStatisticsEntry 2 } dot1qTpVlanPortInDiscards OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of valid frames received by this port from its segment that were classified as belonging to this VLAN and that were discarded due to VLAN-related reasons. Specifically, the IEEE 802.1Q counters for Discard Inbound and Discard on Ingress Filtering." REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3" ::= { dot1qPortVlanStatisticsEntry 3 } dot1qTpVlanPortInOverflowFrames OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times the associated dot1qTpVlanPortInFrames counter has overflowed." REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3" ::= { dot1qPortVlanStatisticsEntry 4 } dot1qTpVlanPortOutOverflowFrames OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times the associated dot1qTpVlanPortOutFrames counter has overflowed." REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3" ::= { dot1qPortVlanStatisticsEntry 5 } dot1qTpVlanPortInOverflowDiscards OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times the associated dot1qTpVlanPortInDiscards counter has overflowed." REFERENCE "ISO/IEC 15802-3 Section 14.6.1.1.3" ::= { dot1qPortVlanStatisticsEntry 6 } dot1qPortVlanHCStatisticsTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qPortVlanHCStatisticsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing per-port, per-VLAN statistics for traffic on high-capacity interfaces." ::= { dot1qVlan 7 } dot1qPortVlanHCStatisticsEntry OBJECT-TYPE SYNTAX Dot1qPortVlanHCStatisticsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Traffic statistics for a VLAN on a high-capacity interface." INDEX { dot1dBasePort, dot1qVlanIndex } ::= { dot1qPortVlanHCStatisticsTable 1 } Dot1qPortVlanHCStatisticsEntry ::= SEQUENCE { dot1qTpVlanPortHCInFrames Counter64, dot1qTpVlanPortHCOutFrames Counter64, dot1qTpVlanPortHCInDiscards Counter64 } dot1qTpVlanPortHCInFrames OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of valid frames received by this port from its segment that were classified as belonging to this VLAN. Note that a frame received on this port is counted by this object if and only if it is for a protocol being processed by the local forwarding process for this VLAN. This object includes received bridge management frames classified as belonging to this VLAN (e.g., GMRP, but not GVRP or STP)." REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3(a)" ::= { dot1qPortVlanHCStatisticsEntry 1 } dot1qTpVlanPortHCOutFrames OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of valid frames transmitted by this port to its segment from the local forwarding process for this VLAN. This includes bridge management frames originated by this device that are classified as belonging to this VLAN (e.g., GMRP, but not GVRP or STP)." REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3(d)" ::= { dot1qPortVlanHCStatisticsEntry 2 } dot1qTpVlanPortHCInDiscards OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of valid frames received by this port from its segment that were classified as belonging to this VLAN and that were discarded due to VLAN-related reasons. Specifically, the IEEE 802.1Q counters for Discard Inbound and Discard on Ingress Filtering." REFERENCE "IEEE 802.1Q/D11 Section 12.6.1.1.3" ::= { dot1qPortVlanHCStatisticsEntry 3 } -- ------------------------------------------------------------- -- The VLAN Learning Constraints Table -- ------------------------------------------------------------- dot1qLearningConstraintsTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1qLearningConstraintsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing learning constraints for sets of Shared and Independent VLANs." REFERENCE "IEEE 802.1Q/D11 Section 12.10.3.1" ::= { dot1qVlan 8 } dot1qLearningConstraintsEntry OBJECT-TYPE SYNTAX Dot1qLearningConstraintsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A learning constraint defined for a VLAN." INDEX { dot1qConstraintVlan, dot1qConstraintSet } ::= { dot1qLearningConstraintsTable 1 } Dot1qLearningConstraintsEntry ::= SEQUENCE { dot1qConstraintVlan VlanIndex, dot1qConstraintSet Integer32, dot1qConstraintType INTEGER, dot1qConstraintStatus RowStatus } dot1qConstraintVlan OBJECT-TYPE SYNTAX VlanIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The index of the row in dot1qVlanCurrentTable for the VLAN constrained by this entry." ::= { dot1qLearningConstraintsEntry 1 } dot1qConstraintSet OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The identity of the constraint set to which dot1qConstraintVlan belongs. These values may be chosen by the management station." ::= { dot1qLearningConstraintsEntry 2 } dot1qConstraintType OBJECT-TYPE SYNTAX INTEGER { independent(1), shared(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "The type of constraint this entry defines. independent(1) - the VLAN, dot1qConstraintVlan, uses a filtering database independent from all other VLANs in the same set, defined by dot1qConstraintSet. shared(2) - the VLAN, dot1qConstraintVlan, shares the same filtering database as all other VLANs in the same set, defined by dot1qConstraintSet." ::= { dot1qLearningConstraintsEntry 3 } dot1qConstraintStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this entry." ::= { dot1qLearningConstraintsEntry 4 } dot1qConstraintSetDefault OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS read-write STATUS current DESCRIPTION "The identity of the constraint set to which a VLAN belongs, if there is not an explicit entry for that VLAN in dot1qLearningConstraintsTable. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qVlan 9 } dot1qConstraintTypeDefault OBJECT-TYPE SYNTAX INTEGER { independent(1), shared(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "The type of constraint set to which a VLAN belongs, if there is not an explicit entry for that VLAN in dot1qLearningConstraintsTable. The types are as defined for dot1qConstraintType. The value of this object MUST be retained across reinitializations of the management system." ::= { dot1qVlan 10 } -- ------------------------------------------------------------- -- dot1vProtocol subtree -- ------------------------------------------------------------- dot1vProtocolGroupTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1vProtocolGroupEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table that contains mappings from Protocol Templates to Protocol Group Identifiers used for Port-and-Protocol-based VLAN Classification." REFERENCE "IEEE 802.1v clause 8.6.4" ::= { dot1vProtocol 1 } dot1vProtocolGroupEntry OBJECT-TYPE SYNTAX Dot1vProtocolGroupEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A mapping from a Protocol Template to a Protocol Group Identifier." INDEX { dot1vProtocolTemplateFrameType, dot1vProtocolTemplateProtocolValue } ::= { dot1vProtocolGroupTable 1 } Dot1vProtocolGroupEntry ::= SEQUENCE { dot1vProtocolTemplateFrameType INTEGER, dot1vProtocolTemplateProtocolValue OCTET STRING, dot1vProtocolGroupId Integer32, dot1vProtocolGroupRowStatus RowStatus } dot1vProtocolTemplateFrameType OBJECT-TYPE SYNTAX INTEGER { ethernet (1), rfc1042 (2), snap8021H (3), snapOther (4), llcOther (5) } MAX-ACCESS not-accessible STATUS current DESCRIPTION "The data-link encapsulation format or the 'detagged_frame_type' in a Protocol Template." REFERENCE "IEEE 802.1v clause 8.6.2" ::= { dot1vProtocolGroupEntry 1 } dot1vProtocolTemplateProtocolValue OBJECT-TYPE SYNTAX OCTET STRING (SIZE (2 | 5)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The identification of the protocol above the data-link layer in a Protocol Template. Depending on the frame type, the octet string will have one of the following values: For 'ethernet', 'rfc1042' and 'snap8021H', this is the 16-bit (2-octet) IEEE 802.3 Type Field. For 'snapOther', this is the 40-bit (5-octet) PID. For 'llcOther', this is the 2-octet IEEE 802.2 Link Service Access Point (LSAP) pair: first octet for Destination Service Access Point (DSAP) and second octet for Source Service Access Point (SSAP)." REFERENCE "IEEE 802.1v clause 8.6.2" ::= { dot1vProtocolGroupEntry 2 } dot1vProtocolGroupId OBJECT-TYPE SYNTAX Integer32 (0..2147483647) MAX-ACCESS read-create STATUS current DESCRIPTION "Represents a group of protocols that are associated together when assigning a VID to a frame." REFERENCE "IEEE 802.1v clause 8.6.3, 12.10.2.1" ::= { dot1vProtocolGroupEntry 3 } dot1vProtocolGroupRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the status of this entry." ::= { dot1vProtocolGroupEntry 4 } dot1vProtocolPortTable OBJECT-TYPE SYNTAX SEQUENCE OF Dot1vProtocolPortEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table that contains VID sets used for Port-and-Protocol-based VLAN Classification." REFERENCE "IEEE 802.1v clause 8.4.4" ::= { dot1vProtocol 2 } dot1vProtocolPortEntry OBJECT-TYPE SYNTAX Dot1vProtocolPortEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A VID set for a port." INDEX { dot1dBasePort, dot1vProtocolPortGroupId } ::= { dot1vProtocolPortTable 1 } Dot1vProtocolPortEntry ::= SEQUENCE { dot1vProtocolPortGroupId Integer32, dot1vProtocolPortGroupVid Integer32, dot1vProtocolPortRowStatus RowStatus } dot1vProtocolPortGroupId OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "Designates a group of protocols in the Protocol Group Database." REFERENCE "IEEE 802.1v clause 8.6.3, 12.10.1.2" ::= { dot1vProtocolPortEntry 1 } dot1vProtocolPortGroupVid OBJECT-TYPE SYNTAX Integer32 (1..4094) MAX-ACCESS read-create STATUS current DESCRIPTION "The VID associated with a group of protocols for each port." REFERENCE "IEEE 802.1v clause 8.4.4, 12.10.1.2" ::= { dot1vProtocolPortEntry 2 } dot1vProtocolPortRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the status of this entry." ::= { dot1vProtocolPortEntry 3 } -- ------------------------------------------------------------- -- IEEE 802.1Q MIB - Conformance Information -- ------------------------------------------------------------- qBridgeConformance OBJECT IDENTIFIER ::= { qBridgeMIB 2 } qBridgeGroups OBJECT IDENTIFIER ::= { qBridgeConformance 1 } qBridgeCompliances OBJECT IDENTIFIER ::= { qBridgeConformance 2 } -- ------------------------------------------------------------- -- units of conformance -- ------------------------------------------------------------- qBridgeBaseGroup OBJECT-GROUP OBJECTS { dot1qVlanVersionNumber, dot1qMaxVlanId, dot1qMaxSupportedVlans, dot1qNumVlans, dot1qGvrpStatus } STATUS current DESCRIPTION "A collection of objects providing device-level control and status information for the Virtual LAN bridge services." ::= { qBridgeGroups 1 } qBridgeFdbUnicastGroup OBJECT-GROUP OBJECTS { dot1qFdbDynamicCount, dot1qTpFdbPort, dot1qTpFdbStatus } STATUS current DESCRIPTION "A collection of objects providing information about all unicast addresses, learned dynamically or statically configured by management, in each Filtering Database." ::= { qBridgeGroups 2 } qBridgeFdbMulticastGroup OBJECT-GROUP OBJECTS { dot1qTpGroupEgressPorts, dot1qTpGroupLearnt } STATUS current DESCRIPTION "A collection of objects providing information about all multicast addresses, learned dynamically or statically configured by management, in each Filtering Database." ::= { qBridgeGroups 3 } qBridgeServiceRequirementsGroup OBJECT-GROUP OBJECTS { dot1qForwardAllPorts, dot1qForwardAllStaticPorts, dot1qForwardAllForbiddenPorts, dot1qForwardUnregisteredPorts, dot1qForwardUnregisteredStaticPorts, dot1qForwardUnregisteredForbiddenPorts } STATUS current DESCRIPTION "A collection of objects providing information about service requirements, learned dynamically or statically configured by management, in each Filtering Database." ::= { qBridgeGroups 4 } qBridgeFdbStaticGroup OBJECT-GROUP OBJECTS { dot1qStaticUnicastAllowedToGoTo, dot1qStaticUnicastStatus, dot1qStaticMulticastStaticEgressPorts, dot1qStaticMulticastForbiddenEgressPorts, dot1qStaticMulticastStatus } STATUS current DESCRIPTION "A collection of objects providing information about unicast and multicast addresses statically configured by management, in each Filtering Database or VLAN." ::= { qBridgeGroups 5 } qBridgeVlanGroup OBJECT-GROUP OBJECTS { dot1qVlanNumDeletes, dot1qVlanFdbId, dot1qVlanCurrentEgressPorts, dot1qVlanCurrentUntaggedPorts, dot1qVlanStatus, dot1qVlanCreationTime } STATUS current DESCRIPTION "A collection of objects providing information about all VLANs currently configured on this device." ::= { qBridgeGroups 6 } qBridgeVlanStaticGroup OBJECT-GROUP OBJECTS { dot1qVlanStaticName, dot1qVlanStaticEgressPorts, dot1qVlanForbiddenEgressPorts, dot1qVlanStaticUntaggedPorts, dot1qVlanStaticRowStatus, dot1qNextFreeLocalVlanIndex } STATUS current DESCRIPTION "A collection of objects providing information about VLANs statically configured by management." ::= { qBridgeGroups 7 } qBridgePortGroup OBJECT-GROUP OBJECTS { dot1qPvid, dot1qPortAcceptableFrameTypes, dot1qPortIngressFiltering, dot1qPortGvrpStatus, dot1qPortGvrpFailedRegistrations, dot1qPortGvrpLastPduOrigin } STATUS deprecated DESCRIPTION "A collection of objects providing port-level VLAN control and status information for all ports." ::= { qBridgeGroups 8 } qBridgeVlanStatisticsGroup OBJECT-GROUP OBJECTS { dot1qTpVlanPortInFrames, dot1qTpVlanPortOutFrames, dot1qTpVlanPortInDiscards } STATUS current DESCRIPTION "A collection of objects providing per-port packet statistics for all VLANs currently configured on this device." ::= { qBridgeGroups 9 } qBridgeVlanStatisticsOverflowGroup OBJECT-GROUP OBJECTS { dot1qTpVlanPortInOverflowFrames, dot1qTpVlanPortOutOverflowFrames, dot1qTpVlanPortInOverflowDiscards } STATUS current DESCRIPTION "A collection of objects providing overflow counters for per-port packet statistics for all VLANs currently configured on this device for high-capacity interfaces, defined as those that have the value of the corresponding instance of ifSpeed greater than 650,000,000 bits/second." ::= { qBridgeGroups 10 } qBridgeVlanHCStatisticsGroup OBJECT-GROUP OBJECTS { dot1qTpVlanPortHCInFrames, dot1qTpVlanPortHCOutFrames, dot1qTpVlanPortHCInDiscards } STATUS current DESCRIPTION "A collection of objects providing per-port packet statistics for all VLANs currently configured on this device for high-capacity interfaces, defined as those that have the value of the corresponding instance of ifSpeed greater than 650,000,000 bits/second." ::= { qBridgeGroups 11 } qBridgeLearningConstraintsGroup OBJECT-GROUP OBJECTS { dot1qConstraintType, dot1qConstraintStatus } STATUS current DESCRIPTION "A collection of objects defining the Filtering Database constraints all VLANs have with each other." ::= { qBridgeGroups 12 } qBridgeLearningConstraintDefaultGroup OBJECT-GROUP OBJECTS { dot1qConstraintSetDefault, dot1qConstraintTypeDefault } STATUS current DESCRIPTION "A collection of objects defining the default Filtering Database constraints for VLANs that have no specific constraints defined." ::= { qBridgeGroups 13 } qBridgeClassificationDeviceGroup OBJECT-GROUP OBJECTS { dot1vProtocolGroupId, dot1vProtocolGroupRowStatus } STATUS current DESCRIPTION "VLAN classification information for the bridge." ::= { qBridgeGroups 14 } qBridgeClassificationPortGroup OBJECT-GROUP OBJECTS { dot1vProtocolPortGroupVid, dot1vProtocolPortRowStatus } STATUS current DESCRIPTION "VLAN classification information for individual ports." ::= { qBridgeGroups 15 } qBridgePortGroup2 OBJECT-GROUP OBJECTS { dot1qPvid, dot1qPortAcceptableFrameTypes, dot1qPortIngressFiltering, dot1qPortGvrpStatus, dot1qPortGvrpFailedRegistrations, dot1qPortGvrpLastPduOrigin, dot1qPortRestrictedVlanRegistration } STATUS current DESCRIPTION "A collection of objects providing port-level VLAN control and status information for all ports." ::= { qBridgeGroups 16 } -- ------------------------------------------------------------- -- compliance statements -- ------------------------------------------------------------- qBridgeCompliance MODULE-COMPLIANCE STATUS deprecated DESCRIPTION "The compliance statement for device support of Virtual LAN Bridge services. RFC2674 was silent about the expected persistence of the read-write objects in this MIB module. Applications MUST NOT assume that the values of the read-write objects are persistent across reinitializations of the management system and MUST NOT assume that the values are not persistent across reinitializations of the management system." MODULE MANDATORY-GROUPS { qBridgeBaseGroup, qBridgeVlanGroup, qBridgeVlanStaticGroup, qBridgePortGroup } GROUP qBridgeFdbUnicastGroup DESCRIPTION "This group is mandatory for bridges that implement 802.1Q transparent bridging." GROUP qBridgeFdbMulticastGroup DESCRIPTION "This group is mandatory for bridges that implement 802.1Q transparent bridging." GROUP qBridgeServiceRequirementsGroup DESCRIPTION "This group is mandatory for bridges that implement extended filtering services. All objects must be read-write if extended-filtering services are enabled." GROUP qBridgeFdbStaticGroup DESCRIPTION "This group is optional." GROUP qBridgeVlanStatisticsGroup DESCRIPTION "This group is optional as there may be significant implementation cost associated with its support." GROUP qBridgeVlanStatisticsOverflowGroup DESCRIPTION "This group is optional as there may be significant implementation cost associated with its support. It is most relevant for high-capacity interfaces where the SNMP agent supports only SNMPv1." GROUP qBridgeVlanHCStatisticsGroup DESCRIPTION "This group is optional as there may be significant implementation cost associated with its support. It is most relevant for high-capacity interfaces." GROUP qBridgeLearningConstraintsGroup DESCRIPTION "This group is mandatory for devices implementing both Independent VLAN Learning (IVL) and Shared VLAN Learning (SVL) modes of operation of the filtering database, as defined by IEEE 802.1Q." GROUP qBridgeLearningConstraintDefaultGroup DESCRIPTION "This group is mandatory for devices implementing both Independent VLAN Learning (IVL) and Shared VLAN Learning (SVL) modes of operation of the filtering database, as defined by IEEE 802.1Q." OBJECT dot1qPortAcceptableFrameTypes MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1qPortIngressFiltering MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1qConstraintSetDefault MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1qConstraintTypeDefault MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." ::= { qBridgeCompliances 1 } qBridgeCompliance2 MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for device support of Virtual LAN Bridge services. This document clarifies the persistence requirements for the read-write objects in this MIB module. All implementations claiming compliance to qBridgeCompliance2 MUST retain the values of those read-write objects that specify this requirement." MODULE MANDATORY-GROUPS { qBridgeBaseGroup, qBridgeVlanGroup, qBridgeVlanStaticGroup, qBridgePortGroup2 } GROUP qBridgeFdbUnicastGroup DESCRIPTION "This group is mandatory for bridges that implement 802.1Q transparent bridging." GROUP qBridgeFdbMulticastGroup DESCRIPTION "This group is mandatory for bridges that implement 802.1Q transparent bridging." GROUP qBridgeServiceRequirementsGroup DESCRIPTION "This group is mandatory for bridges that implement extended filtering services. All objects must be read-write if extended-filtering services are enabled." GROUP qBridgeFdbStaticGroup DESCRIPTION "This group is optional." GROUP qBridgeVlanStatisticsGroup DESCRIPTION "This group is optional as there may be significant implementation cost associated with its support." GROUP qBridgeVlanStatisticsOverflowGroup DESCRIPTION "This group is optional as there may be significant implementation cost associated with its support. It is most relevant for high-capacity interfaces where the SNMP agent supports only SNMPv1." GROUP qBridgeVlanHCStatisticsGroup DESCRIPTION "This group is optional as there may be significant implementation cost associated with its support. It is most relevant for high-capacity interfaces." GROUP qBridgeLearningConstraintsGroup DESCRIPTION "This group is mandatory for devices implementing both Independent VLAN Learning (IVL) and Shared VLAN Learning (SVL) modes of operation of the filtering database, as defined by IEEE 802.1Q." GROUP qBridgeLearningConstraintDefaultGroup DESCRIPTION "This group is mandatory for devices implementing both Independent VLAN Learning (IVL) and Shared VLAN Learning (SVL) modes of operation of the filtering database, as defined by IEEE 802.1Q." GROUP qBridgeClassificationDeviceGroup DESCRIPTION "This group is mandatory ONLY for devices implementing VLAN Classification as specified in IEEE 802.1v." GROUP qBridgeClassificationPortGroup DESCRIPTION "This group is mandatory ONLY for devices implementing VLAN Classification as specified in IEEE 802.1v." OBJECT dot1qPortAcceptableFrameTypes MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1qPortIngressFiltering MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1qConstraintSetDefault MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1qConstraintTypeDefault MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1Q." OBJECT dot1vProtocolGroupId MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1v." OBJECT dot1vProtocolGroupRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required as this is an optional capability in IEEE 802.1v." ::= { qBridgeCompliances 2 } END 6. Acknowledgements Much of the groundwork for this document was performed by the IEEE 802.1 working group during the definition of the IEEE 802.1D updates [802.1D] and IEEE 802.1Q [802.1Q]. The authors wish to thank the members of the Bridge Working Group, and David Harrington, Anders SW Christensen, Andrew Smith, Paul Langille, Anil Rijhsinghani, and Keith McCloghrie in particular for their comments and suggestions, which improved this effort. Editing for the final version was done by David Levi. The new textual conventions related to VLAN-IDs were produced as a result of a review of the use of VLAN-ID in several MIB modules. Further investigation found that VLAN-ID objects were defined in a few other MIB modules. The editor would like to thank all who contributed to the discussion that resulted in these new textual conventions. Specifically, Bert Wijnen, Les Bell, Andrew Smith, Mike Heard, Randy Presuhn, Dan Romascanu, Eduardo Cardona, Tom Petch, Juergen Schoenwaelder, Richard Woundy, Tony Jeffree, and William Murwin. We also received input and feedback from IEEE confirming that the values 0 and 4095 are not used for identifying a specific VLAN-ID and so can be used to represent none or a wildcard (see Appendix A). 7. Security Considerations There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These tables and objects and their sensitivity/vulnerability are described below. The following tables and objects in the P-BRIDGE-MIB can be manipulated to interfere with the operation of priority classes. This could, for example, be used to force a reinitialization of state machines, thus causing network instability. Another possibility would be for an attacker to override established policy on port priorities, thus giving a user (or an attacker) unauthorized preferential treatment. dot1dTrafficClassesEnabled dot1dGmrpStatus dot1dPortPriorityTable dot1dUserPriorityRegenTable dot1dTrafficClassTable dot1dPortGarpTable dot1dPortGmrpTable The following tables and objects in the Q-BRIDGE-MIB could be manipulated to interfere with the operation of virtual LANs. This could, for example, be used to force a reinitialization of state machines to cause network instability, or changing the forwarding and filtering policies. dot1qGvrpStatus dot1qForwardAllTable dot1qStaticUnicastTable dot1qStaticMulticastTable dot1qVlanStaticTable dot1qPortVlanTable dot1qLearningConstraintsTable dot1vProtocolGroupTable dot1vProtocolPortTable Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability. The objects dot1dDeviceCapabilities and dot1dPortCapabilitiesTable in the P-BRIDGE-MIB could be used by an attacker to determine which attacks might be useful to attempt against a given device. The following read-only tables and objects in the Q-BRIDGE-MIB could be used by an attacker to determine which attacks might be useful to attempt against a given device, could be used by an attacker to detect whether their attacks are being blocked or filtered, or could be used to understand the logical topology of the network. dot1qMaxVlanID dot1qMaxSupportedVlans dot1qNumVlans dot1qFdbTable dot1qTpFdbTable dot1qTpGroupTable dot1qVlanCurrentTable dot1qPortVlanStatisticsTable SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module. It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy). Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them. 8. Normative References [BRIDGE-MIB] Norseth, K. and E. Bell, "Definitions of Managed Objects for Bridges", RFC 4188, September 2005. [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999. [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999. [RFC2674] Bell, E., Smith, A., Langille, P., Rijhsinghani, A., and K. McCloghrie, "Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions", RFC 2674, August 1999. [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000. [RFC3418] Presuhn, R., "Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)", STD 62, RFC 3418, December 2002. [802.1D] "Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Common specifications - Part 3: Media Access Control (MAC) Bridges: Revision. This is a revision of ISO/IEC 10038: 1993, 802.1j-1992 and 802.6k-1992. It incorporates P802.11c, P802.1p and P802.12e." ISO/IEC 15802-3: 1998. [802.1Q] ANSI/IEEE Standard 802.1Q, "IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks", 2003. [802.1t] IEEE 802.1t-2001, "(Amendment to IEEE Standard 802.1D) IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Common specifications - Part 3: Media Access Control (MAC) Bridges: Technical and Editorial Corrections". [802.1u] IEEE 802.1u-2001, "(Amendment to IEEE Standard 802.1Q) IEEE Standard for Local and metropolitan area networks - Virtual Bridged Local Area Networks - Amendment 1: Technical and Editorial Corrections". [802.1v] IEEE 802.1v-2001, "(Amendment to IEEE Standard 802.1Q) IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks--Amendment 2: VLAN Classification by Protocol and Port". 9. Informative References [RFC1493] Decker, E., Langille, P., Rijsinghani, A. and K. McCloghrie, "Definitions of Managed Objects for Bridges", RFC 1493, July 1993. [RFC4323] Patrick, M. and W. Murwin, "Data Over Cable System Interface Specification Quality of Service Management Information Base (DOCSIS-QOS MIB)", RFC 4323, January 2006. [RFC4149] Kalbfleisch, C., Cole, R., and D. Romascanu, "Definition of Managed Objects for Synthetic Sources for Performance Monitoring Algorithms", RFC 4149, August 2005. [RFC2613] Waterman, R., Lahaye, B., Romascanu, D., and S. Waldbusser, "Remote Network Monitoring MIB Extensions for Switched Networks Version 1.0", RFC 2613, June 1999. [RFC3318] Sahita, R., Hahn, S., Chan, K., and K. McCloghrie, "Framework Policy Information Base", RFC 3318, March 2003. [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002. Appendix A. Email from Tony Jeffrey from IEEE -----Original Message----- From: Tony Jeffree [mailto:tony@jeffree.co.uk] Sent: Friday, 6th of June 2003 17:16 To: Wijnen, Bert (Bert) [mailto:bwijnen@lucent.com] Subject: RE: VLAn ID Bert et al - We have concluded that the use of 4095 as a wildcard is acceptable to 802.1, and we will make any necessary changes to 802.1Q in due course to relax the current stated restriction. However, we need to know whether that is all that needs to be done to 802.1Q - i.e., is there any need to change our definitions of the managed objects in the document (Clause 12) to reflect the interpretation of 4095 as a wildcard, or is this simply an issue for the SNMP machinery to handle? Regards, Tony Authors' Adresses David Levi Nortel Networks 4655 Great America Parkway Santa Clara, CA 95054 USA Phone: +1 865 686 0432 EMail: dlevi@nortel.com David Harrington Effective Software 50 Harding Rd. Portsmouth, NH 03801 USA Phone: +1 603 436 8634 EMail: ietfdbh@comcast.net Vivian Ngai Salt lake City, UT USA EMail: vivian_ngai@acm.org Les Bell Hemel Hempstead Herts. HP2 7YU UK EMail: elbell@ntlworld.com Andrew Smith Beijing Harbour Networks Jiuling Building 21 North Xisanhuan Ave. Beijing, 100089 PRC Fax: +1 415 345 1827 EMail: ah_smith@acm.org Paul Langille Newbridge Networks 5 Corporate Drive Andover, MA 01810 USA Phone: +1 978 691 4665 EMail: langille@newbridge.com Anil Rijhsinghani Accton Technology Corporation 5 Mount Royal Ave Marlboro, MA 01752 USA EMail: anil@accton.com Keith McCloghrie Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA Phone: +1 408 526 5260 EMail: kzm@cisco.com Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).