patch-2.1.124 linux/arch/ppc/8xx_io/fec.c
Next file: linux/arch/ppc/8xx_io/uart.c
Previous file: linux/arch/ppc/8xx_io/enet.c
Back to the patch index
Back to the overall index
- Lines: 986
- Date:
Wed Sep 30 10:14:16 1998
- Orig file:
v2.1.123/linux/arch/ppc/8xx_io/fec.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.1.123/linux/arch/ppc/8xx_io/fec.c linux/arch/ppc/8xx_io/fec.c
@@ -0,0 +1,985 @@
+/*
+ * Fast Ethernet Controller (FECC) driver for Motorola MPC8xx.
+ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is specific to the FADS implementation,
+ * since the board contains control registers external to the processor
+ * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
+ * describes connections using the internal parallel port I/O, which
+ * is basically all of Port D.
+ *
+ * Right now, I am very watseful with the buffers. I allocate memory
+ * pages and then divide them into 2K frame buffers. This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/malloc.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+
+#include <asm/8xx_immap.h>
+#include <asm/pgtable.h>
+#include <asm/fads.h>
+#include <asm/irq.h>
+#include <asm/bitops.h>
+#include <asm/uaccess.h>
+#include "commproc.h"
+
+/* The number of Tx and Rx buffers. These are allocated from the page
+ * pool. The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter. We just use
+ * the skbuffer directly.
+ */
+#if 1
+#define FEC_ENET_RX_PAGES 4
+#define FEC_ENET_RX_FRSIZE 2048
+#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define TX_RING_SIZE 8 /* Must be power of two */
+#define TX_RING_MOD_MASK 7 /* for this to work */
+#else
+#define FEC_ENET_RX_PAGES 16
+#define FEC_ENET_RX_FRSIZE 2048
+#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define TX_RING_SIZE 16 /* Must be power of two */
+#define TX_RING_MOD_MASK 15 /* for this to work */
+#endif
+
+/* Interrupt events/masks.
+*/
+#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
+#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
+#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
+#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
+#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
+#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
+#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
+#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
+#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
+#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
+
+/* The FEC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE 1518
+#define PKT_MINBUF_SIZE 64
+#define PKT_MAXBLR_SIZE 1520
+
+/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors. The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller. The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions. The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fec_enet_private {
+ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
+ struct sk_buff* tx_skbuff[TX_RING_SIZE];
+ ushort skb_cur;
+ ushort skb_dirty;
+
+ /* CPM dual port RAM relative addresses.
+ */
+ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
+ cbd_t *tx_bd_base;
+ cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
+ cbd_t *dirty_tx; /* The ring entries to be free()ed. */
+ scc_t *sccp;
+ struct net_device_stats stats;
+ char tx_full;
+ unsigned long lock;
+};
+
+static int fec_enet_open(struct device *dev);
+static int fec_enet_start_xmit(struct sk_buff *skb, struct device *dev);
+static int fec_enet_rx(struct device *dev);
+static void fec_enet_mii(struct device *dev);
+static void fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static int fec_enet_close(struct device *dev);
+static struct net_device_stats *fec_enet_get_stats(struct device *dev);
+static void set_multicast_list(struct device *dev);
+
+static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };
+
+/* MII processing. We keep this as simple as possible. Requests are
+ * placed on the list (if there is room). When the request is finished
+ * by the MII, an optional function may be called.
+ */
+typedef struct mii_list {
+ uint mii_regval;
+ void (*mii_func)(uint val);
+ struct mii_list *mii_next;
+} mii_list_t;
+
+#define NMII 10
+mii_list_t mii_cmds[NMII];
+mii_list_t *mii_free;
+mii_list_t *mii_head;
+mii_list_t *mii_tail;
+
+static int mii_queue(int request, void (*func)(int));
+
+/* Make MII read/write commands for the FEC.
+*/
+#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
+#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
+ (VAL & 0xffff))
+
+static int
+fec_enet_open(struct device *dev)
+{
+
+ /* I should reset the ring buffers here, but I don't yet know
+ * a simple way to do that.
+ */
+
+ dev->tbusy = 0;
+ dev->interrupt = 0;
+ dev->start = 1;
+
+ return 0; /* Always succeed */
+}
+
+static int
+fec_enet_start_xmit(struct sk_buff *skb, struct device *dev)
+{
+ struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
+ volatile cbd_t *bdp;
+ unsigned long flags;
+
+ /* Transmitter timeout, serious problems. */
+ if (dev->tbusy) {
+ int tickssofar = jiffies - dev->trans_start;
+ if (tickssofar < 20)
+ return 1;
+ printk("%s: transmit timed out.\n", dev->name);
+ fep->stats.tx_errors++;
+#ifndef final_version
+ {
+ int i;
+ cbd_t *bdp;
+ printk(" Ring data dump: cur_tx %x%s cur_rx %x.\n",
+ fep->cur_tx, fep->tx_full ? " (full)" : "",
+ fep->cur_rx);
+ bdp = fep->tx_bd_base;
+ for (i = 0 ; i < TX_RING_SIZE; i++)
+ printk("%04x %04x %08x\n",
+ bdp->cbd_sc,
+ bdp->cbd_datlen,
+ bdp->cbd_bufaddr);
+ bdp = fep->rx_bd_base;
+ for (i = 0 ; i < RX_RING_SIZE; i++)
+ printk("%04x %04x %08x\n",
+ bdp->cbd_sc,
+ bdp->cbd_datlen,
+ bdp->cbd_bufaddr);
+ }
+#endif
+
+ dev->tbusy=0;
+ dev->trans_start = jiffies;
+
+ return 0;
+ }
+
+ /* Block a timer-based transmit from overlapping. This could better be
+ done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
+ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
+ printk("%s: Transmitter access conflict.\n", dev->name);
+ return 1;
+ }
+
+ if (test_and_set_bit(0, (void*)&fep->lock) != 0) {
+ printk("%s: tx queue lock!.\n", dev->name);
+ /* don't clear dev->tbusy flag. */
+ return 1;
+ }
+
+ /* Fill in a Tx ring entry */
+ bdp = fep->cur_tx;
+
+#ifndef final_version
+ if (bdp->cbd_sc & BD_ENET_TX_READY) {
+ /* Ooops. All transmit buffers are full. Bail out.
+ * This should not happen, since dev->tbusy should be set.
+ */
+ printk("%s: tx queue full!.\n", dev->name);
+ fep->lock = 0;
+ return 1;
+ }
+#endif
+
+ /* Clear all of the status flags.
+ */
+ bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+ /* Set buffer length and buffer pointer.
+ */
+ bdp->cbd_bufaddr = __pa(skb->data);
+ bdp->cbd_datlen = skb->len;
+
+ /* Save skb pointer.
+ */
+ fep->tx_skbuff[fep->skb_cur] = skb;
+
+ fep->stats.tx_bytes += skb->len;
+ fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
+
+ /* Push the data cache so the CPM does not get stale memory
+ * data.
+ */
+ /*flush_dcache_range(skb->data, skb->data + skb->len);*/
+
+ /* Send it on its way. Tell CPM its ready, interrupt when done,
+ * its the last BD of the frame, and to put the CRC on the end.
+ */
+ save_flags(flags);
+ cli();
+
+ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+ dev->trans_start = jiffies;
+ (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_x_des_active = 0x01000000;
+
+ /* If this was the last BD in the ring, start at the beginning again.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ fep->lock = 0;
+ if (bdp->cbd_sc & BD_ENET_TX_READY)
+ fep->tx_full = 1;
+ else
+ dev->tbusy=0;
+ restore_flags(flags);
+
+ fep->cur_tx = (cbd_t *)bdp;
+
+ return 0;
+}
+
+/* The interrupt handler.
+ * This is called from the MPC core interrupt.
+ */
+static void
+fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+ struct device *dev = dev_id;
+ struct fec_enet_private *fep;
+ volatile cbd_t *bdp;
+ volatile fec_t *ep;
+ uint int_events;
+ int c=0;
+
+ fep = (struct fec_enet_private *)dev->priv;
+ ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+ if (dev->interrupt)
+ printk("%s: Re-entering the interrupt handler.\n", dev->name);
+ dev->interrupt = 1;
+
+ /* Get the interrupt events that caused us to be here.
+ */
+ while ((int_events = ep->fec_ievent) != 0) {
+ ep->fec_ievent = int_events;
+ if ((int_events &
+ (FEC_ENET_HBERR | FEC_ENET_BABR |
+ FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
+ printk("FEC ERROR %x\n", int_events);
+
+ /* Handle receive event in its own function.
+ */
+ if (int_events & (FEC_ENET_RXF | FEC_ENET_RXB))
+ fec_enet_rx(dev_id);
+
+ /* Transmit OK, or non-fatal error. Update the buffer descriptors.
+ * FEC handles all errors, we just discover them as part of the
+ * transmit process.
+ */
+ if (int_events & (FEC_ENET_TXF | FEC_ENET_TXB)) {
+ bdp = fep->dirty_tx;
+ while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
+#if 1
+ if (bdp==fep->cur_tx)
+ break;
+#endif
+ if (++c>1) {/*we go here when an it has been lost*/};
+
+
+ if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
+ fep->stats.tx_heartbeat_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
+ fep->stats.tx_window_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
+ fep->stats.tx_aborted_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
+ fep->stats.tx_fifo_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
+ fep->stats.tx_carrier_errors++;
+
+ fep->stats.tx_errors++;
+
+ fep->stats.tx_packets++;
+
+#ifndef final_version
+ if (bdp->cbd_sc & BD_ENET_TX_READY)
+ printk("HEY! Enet xmit interrupt and TX_READY.\n");
+#endif
+ /* Deferred means some collisions occurred during transmit,
+ * but we eventually sent the packet OK.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_DEF)
+ fep->stats.collisions++;
+
+ /* Free the sk buffer associated with this last transmit.
+ */
+ dev_kfree_skb(fep->tx_skbuff[fep->skb_dirty]/*, FREE_WRITE*/);
+ fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+ /* Update pointer to next buffer descriptor to be transmitted.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ /* Since we have freed up a buffer, the ring is no longer
+ * full.
+ */
+ if (fep->tx_full && dev->tbusy) {
+ fep->tx_full = 0;
+ dev->tbusy = 0;
+ mark_bh(NET_BH);
+ }
+
+ fep->dirty_tx = (cbd_t *)bdp;
+#if 0
+ if (bdp==fep->cur_tx)
+ break;
+#endif
+ }/*while (bdp->cbd_sc&BD_ENET_TX_READY)==0*/
+ } /* if tx events */
+
+ if (int_events & FEC_ENET_MII)
+ fec_enet_mii(dev_id);
+
+ } /* while any events */
+
+ dev->interrupt = 0;
+
+ return;
+}
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static int
+fec_enet_rx(struct device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile cbd_t *bdp;
+ struct sk_buff *skb;
+ ushort pkt_len;
+ volatile fec_t *ep;
+
+ fep = (struct fec_enet_private *)dev->priv;
+ ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+
+ /* First, grab all of the stats for the incoming packet.
+ * These get messed up if we get called due to a busy condition.
+ */
+ bdp = fep->cur_rx;
+
+for (;;) {
+ if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
+ break;
+
+#ifndef final_version
+ /* Since we have allocated space to hold a complete frame,
+ * the last indicator should be set.
+ */
+ if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
+ printk("FEC ENET: rcv is not +last\n");
+#endif
+
+ /* Frame too long or too short.
+ */
+ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
+ fep->stats.rx_length_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
+ fep->stats.rx_frame_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
+ fep->stats.rx_crc_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
+ fep->stats.rx_crc_errors++;
+
+ /* Report late collisions as a frame error.
+ * On this error, the BD is closed, but we don't know what we
+ * have in the buffer. So, just drop this frame on the floor.
+ */
+ if (bdp->cbd_sc & BD_ENET_RX_CL) {
+ fep->stats.rx_frame_errors++;
+ }
+ else {
+
+ /* Process the incoming frame.
+ */
+ fep->stats.rx_packets++;
+ pkt_len = bdp->cbd_datlen;
+ fep->stats.rx_bytes += pkt_len;
+
+ /* This does 16 byte alignment, exactly what we need.
+ */
+ skb = dev_alloc_skb(pkt_len);
+
+ if (skb == NULL) {
+ printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+ fep->stats.rx_dropped++;
+ }
+ else {
+ skb->dev = dev;
+ skb_put(skb,pkt_len); /* Make room */
+ eth_copy_and_sum(skb,
+ (unsigned char *)__va(bdp->cbd_bufaddr),
+ pkt_len, 0);
+ skb->protocol=eth_type_trans(skb,dev);
+ netif_rx(skb);
+ }
+ }
+
+ /* Clear the status flags for this buffer.
+ */
+ bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+ /* Mark the buffer empty.
+ */
+ bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+ /* Update BD pointer to next entry.
+ */
+ if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+ bdp = fep->rx_bd_base;
+ else
+ bdp++;
+
+#if 1
+ /* Doing this here will keep the FEC running while we process
+ * incoming frames. On a heavily loaded network, we should be
+ * able to keep up at the expense of system resources.
+ */
+ ep->fec_r_des_active = 0x01000000;
+#endif
+ }
+ fep->cur_rx = (cbd_t *)bdp;
+
+#if 0
+ /* Doing this here will allow us to process all frames in the
+ * ring before the FEC is allowed to put more there. On a heavily
+ * loaded network, some frames may be lost. Unfortunately, this
+ * increases the interrupt overhead since we can potentially work
+ * our way back to the interrupt return only to come right back
+ * here.
+ */
+ ep->fec_r_des_active = 0x01000000;
+#endif
+
+ return 0;
+}
+
+static void
+fec_enet_mii(struct device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *ep;
+ mii_list_t *mip;
+ uint mii_reg;
+
+ fep = (struct fec_enet_private *)dev->priv;
+ ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+ mii_reg = ep->fec_mii_data;
+
+ if ((mip = mii_head) == NULL) {
+ printk("MII and no head!\n");
+ return;
+ }
+
+ if (mip->mii_func != NULL)
+ (*(mip->mii_func))(mii_reg);
+
+ mii_head = mip->mii_next;
+ mip->mii_next = mii_free;
+ mii_free = mip;
+
+ if ((mip = mii_head) != NULL)
+ ep->fec_mii_data = mip->mii_regval;
+}
+
+static int
+mii_queue(int regval, void (*func)(int))
+{
+ unsigned long flags;
+ mii_list_t *mip;
+ int retval;
+
+ retval = 0;
+
+ save_flags(flags);
+ cli();
+
+ if ((mip = mii_free) != NULL) {
+ mii_free = mip->mii_next;
+ mip->mii_regval = regval;
+ mip->mii_func = func;
+ mip->mii_next = NULL;
+ if (mii_head) {
+ mii_tail->mii_next = mip;
+ mii_tail = mip;
+ }
+ else {
+ mii_head = mii_tail = mip;
+ (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
+ }
+ }
+ else {
+ retval = 1;
+ }
+
+ restore_flags(flags);
+
+ return(retval);
+}
+
+static void
+mii_status(uint mii_reg)
+{
+ if (((mii_reg >> 18) & 0x1f) == 1) {
+ /* status register.
+ */
+ printk("fec: ");
+ if (mii_reg & 0x0004)
+ printk("link up");
+ else
+ printk("link down");
+
+ if (mii_reg & 0x0010)
+ printk(",remote fault");
+ if (mii_reg & 0x0020)
+ printk(",auto complete");
+ printk("\n");
+ }
+ if (((mii_reg >> 18) & 0x1f) == 0x14) {
+ /* Extended chip status register.
+ */
+ printk("fec: ");
+ if (mii_reg & 0x0800)
+ printk("100 Mbps");
+ else
+ printk("10 Mbps");
+
+ if (mii_reg & 0x1000)
+ printk(", Full-Duplex\n");
+ else
+ printk(", Half-Duplex\n");
+ }
+}
+
+static void
+mii_startup_cmds(void)
+{
+
+ /* Read status registers to clear any pending interrupt.
+ */
+ mii_queue(mk_mii_read(1), mii_status);
+ mii_queue(mk_mii_read(18), mii_status);
+
+ /* Read extended chip status register.
+ */
+ mii_queue(mk_mii_read(0x14), mii_status);
+
+ /* Enable Link status change interrupts.
+ mii_queue(mk_mii_write(0x11, 0x0002), NULL);
+ */
+}
+
+/* This supports the mii_link interrupt below.
+ * We should get called three times. Once for register 1, once for
+ * register 18, and once for register 20.
+ */
+static uint mii_saved_reg1;
+
+static void
+mii_relink(uint mii_reg)
+{
+ if (((mii_reg >> 18) & 0x1f) == 1) {
+ /* Just save the status register and get out.
+ */
+ mii_saved_reg1 = mii_reg;
+ return;
+ }
+ if (((mii_reg >> 18) & 0x1f) == 18) {
+ /* Not much here, but has to be read to clear the
+ * interrupt condition.
+ */
+ if ((mii_reg & 0x8000) == 0)
+ printk("fec: re-link and no IRQ?\n");
+ if ((mii_reg & 0x4000) == 0)
+ printk("fec: no PHY power?\n");
+ }
+ if (((mii_reg >> 18) & 0x1f) == 20) {
+ /* Extended chip status register.
+ * OK, now we have it all, so figure out what is going on.
+ */
+ printk("fec: ");
+ if (mii_saved_reg1 & 0x0004)
+ printk("link up");
+ else
+ printk("link down");
+
+ if (mii_saved_reg1 & 0x0010)
+ printk(", remote fault");
+ if (mii_saved_reg1 & 0x0020)
+ printk(", auto complete");
+
+ if (mii_reg & 0x0800)
+ printk(", 100 Mbps");
+ else
+ printk(", 10 Mbps");
+
+ if (mii_reg & 0x1000)
+ printk(", Full-Duplex\n");
+ else
+ printk(", Half-Duplex\n");
+ }
+}
+
+/* This interrupt occurs when the LTX970 detects a link change.
+*/
+static void
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+ struct device *dev = dev_id;
+ struct fec_enet_private *fep;
+ volatile fec_t *ep;
+
+ fep = (struct fec_enet_private *)dev->priv;
+ ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+
+ /* We need to sequentially read registers 1 and 18 to clear
+ * the interrupt. We don't need to do that here because this
+ * is an edge triggered interrupt that has already been acknowledged
+ * by the top level handler. We also read the extended status
+ * register 20. We just queue the commands and let them happen
+ * as part of the "normal" processing.
+ */
+ mii_queue(mk_mii_read(1), mii_relink);
+ mii_queue(mk_mii_read(18), mii_relink);
+ mii_queue(mk_mii_read(20), mii_relink);
+}
+
+static int
+fec_enet_close(struct device *dev)
+{
+ /* Don't know what to do yet.
+ */
+
+ return 0;
+}
+
+static struct net_device_stats *fec_enet_get_stats(struct device *dev)
+{
+ struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
+
+ return &fep->stats;
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering. Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not. I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+
+static void set_multicast_list(struct device *dev)
+{
+ struct fec_enet_private *fep;
+ struct dev_mc_list *dmi;
+ u_char *mcptr, *tdptr;
+ volatile fec_t *ep;
+ int i, j;
+
+ fep = (struct fec_enet_private *)dev->priv;
+ ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
+
+ if (dev->flags&IFF_PROMISC) {
+
+ /* Log any net taps. */
+ printk("%s: Promiscuous mode enabled.\n", dev->name);
+ ep->fec_r_cntrl |= 0x0008;
+ } else {
+
+ ep->fec_r_cntrl &= ~0x0008;
+
+ if (dev->flags & IFF_ALLMULTI) {
+ /* Catch all multicast addresses, so set the
+ * filter to all 1's.
+ */
+ ep->fec_hash_table_high = 0xffffffff;
+ ep->fec_hash_table_low = 0xffffffff;
+ }
+#if 0
+ else {
+ /* Clear filter and add the addresses in the list.
+ */
+ ep->sen_gaddr1 = 0;
+ ep->sen_gaddr2 = 0;
+ ep->sen_gaddr3 = 0;
+ ep->sen_gaddr4 = 0;
+
+ dmi = dev->mc_list;
+
+ for (i=0; i<dev->mc_count; i++) {
+
+ /* Only support group multicast for now.
+ */
+ if (!(dmi->dmi_addr[0] & 1))
+ continue;
+
+ /* The address in dmi_addr is LSB first,
+ * and taddr is MSB first. We have to
+ * copy bytes MSB first from dmi_addr.
+ */
+ mcptr = (u_char *)dmi->dmi_addr + 5;
+ tdptr = (u_char *)&ep->sen_taddrh;
+ for (j=0; j<6; j++)
+ *tdptr++ = *mcptr--;
+
+ /* Ask CPM to run CRC and set bit in
+ * filter mask.
+ */
+ cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
+ /* this delay is necessary here -- Cort */
+ udelay(10);
+ while (cpmp->cp_cpcr & CPM_CR_FLG);
+ }
+ }
+#endif
+ }
+}
+
+/* Initialize the FECC Ethernet on 860T.
+ */
+__initfunc(int m8xx_enet_init(void))
+{
+ struct device *dev;
+ struct fec_enet_private *fep;
+ int i, j;
+ unsigned char *eap;
+ unsigned long mem_addr;
+ pte_t *pte;
+ volatile cbd_t *bdp;
+ cbd_t *cbd_base;
+ volatile immap_t *immap;
+ volatile fec_t *fecp;
+ unsigned char rtc_save_cfg, rtc_val;
+
+ immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
+
+ /* Allocate some private information.
+ */
+ fep = (struct fec_enet_private *)kmalloc(sizeof(*fep), GFP_KERNEL);
+ __clear_user(fep,sizeof(*fep));
+
+ /* Create an Ethernet device instance.
+ */
+ dev = init_etherdev(0, 0);
+
+ fecp = &(immap->im_cpm.cp_fec);
+
+ /* Whack a reset. We should wait for this.
+ */
+ fecp->fec_ecntrl = 1;
+ udelay(10);
+
+ /* Enable interrupts we wish to service.
+ */
+ fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
+ FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
+
+ /* Clear any outstanding interrupt.
+ */
+ fecp->fec_ievent = 0xffc0;
+
+ fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
+
+ /* Set station address.
+ */
+ fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
+ fecp->fec_addr_high = my_enet_addr[2];
+
+ eap = (unsigned char *)&my_enet_addr[0];
+ for (i=0; i<6; i++)
+ dev->dev_addr[i] = *eap++;
+
+ /* Reset all multicast.
+ */
+ fecp->fec_hash_table_high = 0;
+ fecp->fec_hash_table_low = 0;
+
+ /* Set maximum receive buffer size.
+ */
+ fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
+ fecp->fec_r_hash = PKT_MAXBUF_SIZE;
+
+ /* Allocate memory for buffer descriptors.
+ */
+ if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
+ printk("FECC init error. Need more space.\n");
+ printk("FECC initialization failed.\n");
+ return 1;
+ }
+ mem_addr = __get_free_page(GFP_KERNEL);
+ cbd_base = (cbd_t *)mem_addr;
+
+ /* Make it uncached.
+ */
+ pte = va_to_pte(&init_task, (int)mem_addr);
+ pte_val(*pte) |= _PAGE_NO_CACHE;
+ flush_tlb_page(current->mm->mmap, mem_addr);
+
+ /* Set receive and transmit descriptor base.
+ */
+ fecp->fec_r_des_start = __pa(mem_addr);
+ fep->rx_bd_base = cbd_base;
+ fecp->fec_x_des_start = __pa((unsigned long)(cbd_base + RX_RING_SIZE));
+ fep->tx_bd_base = cbd_base + RX_RING_SIZE;
+
+ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+ fep->cur_rx = fep->rx_bd_base;
+
+ fep->skb_cur = fep->skb_dirty = 0;
+
+ /* Initialize the receive buffer descriptors.
+ */
+ bdp = fep->rx_bd_base;
+ for (i=0; i<FEC_ENET_RX_PAGES; i++) {
+
+ /* Allocate a page.
+ */
+ mem_addr = __get_free_page(GFP_KERNEL);
+
+ /* Make it uncached.
+ */
+ pte = va_to_pte(&init_task, mem_addr);
+ pte_val(*pte) |= _PAGE_NO_CACHE;
+ flush_tlb_page(current->mm->mmap, mem_addr);
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
+ bdp->cbd_sc = BD_ENET_RX_EMPTY;
+ bdp->cbd_bufaddr = __pa(mem_addr);
+ mem_addr += FEC_ENET_RX_FRSIZE;
+ bdp++;
+ }
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* ...and the same for transmmit.
+ */
+ bdp = fep->tx_bd_base;
+ for (i=0; i<TX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* Enable MII mode, half-duplex until we know better..
+ */
+ fecp->fec_r_cntrl = 0x0c;
+ fecp->fec_x_cntrl = 0x00;
+
+ /* Enable big endian and don't care about SDMA FC.
+ */
+ fecp->fec_fun_code = 0x78000000;
+
+ /* Set MII speed (50 MHz core).
+ */
+ fecp->fec_mii_speed = 0x14;
+
+ /* Configure all of port D for MII.
+ */
+ immap->im_ioport.iop_pdpar = 0x1fff;
+ immap->im_ioport.iop_pddir = 0x1c58;
+
+ /* Install our interrupt handlers. The 860T FADS board uses
+ * IRQ2 for the MII interrupt.
+ */
+ if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
+ panic("Could not allocate FEC IRQ!");
+ if (request_irq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
+ panic("Could not allocate MII IRQ!");
+
+ dev->base_addr = (unsigned long)fecp;
+ dev->priv = fep;
+ dev->name = "fec";
+
+ /* The FEC Ethernet specific entries in the device structure. */
+ dev->open = fec_enet_open;
+ dev->hard_start_xmit = fec_enet_start_xmit;
+ dev->stop = fec_enet_close;
+ dev->get_stats = fec_enet_get_stats;
+ dev->set_multicast_list = set_multicast_list;
+
+ /* And last, enable the transmit and receive processing.
+ */
+ fecp->fec_ecntrl = 2;
+ fecp->fec_r_des_active = 0x01000000;
+
+ printk("FEC ENET Version 0.1, ");
+ for (i=0; i<5; i++)
+ printk("%02x:", dev->dev_addr[i]);
+ printk("%02x\n", dev->dev_addr[5]);
+
+ for (i=0; i<NMII-1; i++)
+ mii_cmds[i].mii_next = &mii_cmds[i+1];
+ mii_free = mii_cmds;
+
+ mii_startup_cmds();
+
+ return 0;
+}
+
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov