patch-2.3.4 linux/arch/sparc/math-emu/math.c
Next file: linux/arch/sparc/math-emu/sfp-machine.h
Previous file: linux/arch/sparc/math-emu/fstoq.c
Back to the patch index
Back to the overall index
- Lines: 660
- Date:
Sat May 29 11:09:04 1999
- Orig file:
v2.3.3/linux/arch/sparc/math-emu/math.c
- Orig date:
Wed Mar 10 16:53:36 1999
diff -u --recursive --new-file v2.3.3/linux/arch/sparc/math-emu/math.c linux/arch/sparc/math-emu/math.c
@@ -1,26 +1,19 @@
-/*
+/*
* arch/sparc/math-emu/math.c
*
* Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
- * Based on the sparc64 code by Jakub Jelinek.
+ * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
+ * Copyright (C) 1999 David S. Miller (davem@redhat.com)
*
* This is a good place to start if you're trying to understand the
- * emulation code, because it's pretty simple. What we do is
+ * emulation code, because it's pretty simple. What we do is
* essentially analyse the instruction to work out what the operation
* is and which registers are involved. We then execute the appropriate
* FXXXX function. [The floating point queue introduces a minor wrinkle;
* see below...]
* The fxxxxx.c files each emulate a single insn. They look relatively
* simple because the complexity is hidden away in an unholy tangle
- * of preprocessor macros.
- *
- * WARNING : don't look at the macro definitions unless you
- * absolutely have to! They're extremely ugly, rather complicated
- * and a single line in an fxxxx.c file can expand to the equivalent
- * of 30 lines or more of C. Of course, any error in those 30 lines
- * is reported by the compiler as an error in the single line with the
- * macro usage...
- * Question: should we replace them with inline functions?
+ * of preprocessor macros.
*
* The first layer of macros is single.h, double.h, quad.h. Generally
* these files define macros for working with floating point numbers
@@ -29,11 +22,11 @@
* generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
* of machine words required to store the given IEEE format is passed
* as a parameter. [double.h and co check the number of bits in a word
- * and define FP_ADD_D & co appropriately].
+ * and define FP_ADD_D & co appropriately].
* The generic macros are defined in op-common.h. This is where all
* the grotty stuff like handling NaNs is coded. To handle the possible
* word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
- * where wc is the 'number of machine words' parameter (here 2).
+ * where wc is the 'number of machine words' parameter (here 2).
* These are defined in the third layer of macros: op-1.h, op-2.h
* and op-4.h. These handle operations on floating point numbers composed
* of 1,2 and 4 machine words respectively. [For example, on sparc64
@@ -41,7 +34,7 @@
* constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
* soft-fp.h is on the same level as op-common.h, and defines some
* macros which are independent of both word size and FP format.
- * Finally, sfp-machine.h is the machine dependent part of the
+ * Finally, sfp-machine.h is the machine dependent part of the
* code: it defines the word size and what type a word is. It also
* defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
* provide several possible flavours of multiply algorithm, most
@@ -64,59 +57,11 @@
* so we follow that practice...
*/
-/* WISHLIST:
- *
- * + Replace all the macros with inline functions. These should
- * have the same effect but be much easier to work with.
- *
- * + Emulate the IEEE exception flags. We don't currently do this
- * because a) it would require significant alterations to
- * the emulation macros [see the comments about _FP_NEG()
- * in op-common.c and note that we'd need to invent a convention
- * for passing in the flags to FXXXX fns and returning them] and
- * b) SPARClinux doesn't let users access the flags anyway
- * [contrast Solaris, which allows you to examine, clear or set
- * the flags, and request that exceptions cause SIGFPE
- * [which you then set up a signal handler for, obviously...]].
- * Erm, (b) may quite possibly be garbage. %fsr is user-writable
- * so you don't need a syscall. There may or may not be library
- * support.
- *
- * + Emulation of FMULQ, FDIVQ, FSQRTQ, FDMULQ needs to be
- * written!
- *
- * + reindent code to conform to Linux kernel standard :->
- *
- * + work out whether all the compile-time warnings are bogus
- *
- * + check that conversion to/from integers works
- *
- * + check with the SPARC architecture manual to see if we resolve
- * the implementation-dependent bits of the IEEE spec in the
- * same manner as the hardware.
- *
- * + more test cases for the test script always welcome!
- *
- * + illegal opcodes currently cause SIGFPEs. We should arrange
- * to tell the traps.c code to SIGILL instead. Currently,
- * everywhere that we return 0 should cause SIGILL, I think.
- * SIGFPE should only be caused if we set an IEEE exception bit
- * and the relevant trap bit is also set. (this means that
- * traps.c should do this; also it should handle the case of
- * IEEE exception generated directly by the hardware.)
- * Should illegal_fp_register (which is a flavour of fp exception)
- * cause SIGFPE or SIGILL?
- *
- * + the test script needs to be extended to handle the quadword
- * and comparison insns.
- *
- * + _FP_DIV_MEAT_2_udiv_64() appears to work but it should be
- * checked by somebody who understands the algorithm :->
- *
- * + fpsave() saves the FP queue but fpload() doesn't reload it.
+/* TODO:
+ * fpsave() saves the FP queue but fpload() doesn't reload it.
* Therefore when we context switch or change FPU ownership
* we have to check to see if the queue had anything in it and
- * emulate it if it did. This is going to be a pain.
+ * emulate it if it did. This is going to be a pain.
*/
#include <linux/types.h>
@@ -124,38 +69,21 @@
#include <linux/mm.h>
#include <asm/uaccess.h>
+#include "sfp-util.h"
#include "soft-fp.h"
#define FLOATFUNC(x) extern int x(void *,void *,void *)
-/* Current status: we don't properly emulate the difficult quadword
- * insns (MUL, DIV, SQRT).
- * There are also some ops involving the FP registers which we don't
- * emulate: the branch on FP condition flags and the load/store to
- * FP regs or FSR. I'm assuming that these will never generate traps
- * (not unreasonable if there's an FPU at all; comments in the NetBSD
- * kernel source agree on this point). If we wanted to allow
- * purely software-emulation of the FPU with FPU totally disabled
- * or non-existent, we'd have to emulate these as well. We'd also
- * need to alter the fp_disabled trap handler to call the math-emu
- * code appropriately. The structure of do_one_mathemu() is also
- * inappropriate for these ops (as it has no way to alter the pc,
- * for a start) and it might be better to special-case them in do_mathemu().
- * Oh, and you'd need to alter the traps.c code so it didn't try to
- * fpsave() and fpload(). If there's genuinely no FPU then there's
- * probably bits of kernel stuff that just won't work anyway...
- */
-
/* The Vn labels indicate what version of the SPARC architecture gas thinks
- * each insn is. This is from the binutils source :->
+ * each insn is. This is from the binutils source :->
*/
/* quadword instructions */
-FLOATFUNC(FSQRTQ); /* v8 NYI */
+FLOATFUNC(FSQRTQ); /* v8 */
FLOATFUNC(FADDQ); /* v8 */
FLOATFUNC(FSUBQ); /* v8 */
-FLOATFUNC(FMULQ); /* v8 NYI */
-FLOATFUNC(FDIVQ); /* v8 NYI */
-FLOATFUNC(FDMULQ); /* v8 NYI */
+FLOATFUNC(FMULQ); /* v8 */
+FLOATFUNC(FDIVQ); /* v8 */
+FLOATFUNC(FDMULQ); /* v8 */
FLOATFUNC(FQTOS); /* v8 */
FLOATFUNC(FQTOD); /* v8 */
FLOATFUNC(FITOQ); /* v8 */
@@ -197,7 +125,7 @@
#define FSR_CEXC_SHIFT 0UL
#define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
-static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
+static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
/* Unlike the Sparc64 version (which has a struct fpustate), we
* pass the taskstruct corresponding to the task which currently owns the
@@ -210,65 +138,65 @@
*/
int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
{
- /* regs->pc isn't necessarily the PC at which the offending insn is sitting.
- * The FPU maintains a queue of FPops which cause traps.
- * When it hits an instruction that requires that the trapped op succeeded
- * (usually because it reads a reg. that the trapped op wrote) then it
- * causes this exception. We need to emulate all the insns on the queue
- * and then allow the op to proceed.
- * This code should also handle the case where the trap was precise,
- * in which case the queue length is zero and regs->pc points at the
- * single FPop to be emulated. (this case is untested, though :->)
- * You'll need this case if you want to be able to emulate all FPops
- * because the FPU either doesn't exist or has been software-disabled.
- * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
- * might sound because the Ultra does funky things with a superscalar
- * architecture.]
- */
-
- /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
-
- int i;
- int retcode = 0; /* assume all succeed */
- unsigned long insn;
-
-#ifdef DEBUG_MATHEMU
- printk("In do_mathemu()... pc is %08lx\n", regs->pc);
- printk("fpqdepth is %ld\n",fpt->tss.fpqdepth);
- for (i = 0; i < fpt->tss.fpqdepth; i++)
- printk("%d: %08lx at %08lx\n",i,fpt->tss.fpqueue[i].insn, (unsigned long)fpt->tss.fpqueue[i].insn_addr);
-#endif
-
- if (fpt->tss.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */
-#ifdef DEBUG_MATHEMU
- printk("precise trap at %08lx\n", regs->pc);
+ /* regs->pc isn't necessarily the PC at which the offending insn is sitting.
+ * The FPU maintains a queue of FPops which cause traps.
+ * When it hits an instruction that requires that the trapped op succeeded
+ * (usually because it reads a reg. that the trapped op wrote) then it
+ * causes this exception. We need to emulate all the insns on the queue
+ * and then allow the op to proceed.
+ * This code should also handle the case where the trap was precise,
+ * in which case the queue length is zero and regs->pc points at the
+ * single FPop to be emulated. (this case is untested, though :->)
+ * You'll need this case if you want to be able to emulate all FPops
+ * because the FPU either doesn't exist or has been software-disabled.
+ * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
+ * might sound because the Ultra does funky things with a superscalar
+ * architecture.]
+ */
+
+ /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
+
+ int i;
+ int retcode = 0; /* assume all succeed */
+ unsigned long insn;
+
+#ifdef DEBUG_MATHEMU
+ printk("In do_mathemu()... pc is %08lx\n", regs->pc);
+ printk("fpqdepth is %ld\n", fpt->tss.fpqdepth);
+ for (i = 0; i < fpt->tss.fpqdepth; i++)
+ printk("%d: %08lx at %08lx\n", i, fpt->tss.fpqueue[i].insn,
+ (unsigned long)fpt->tss.fpqueue[i].insn_addr);
#endif
- if (!get_user(insn, (u32 *)regs->pc)) {
- retcode = do_one_mathemu(insn, &fpt->tss.fsr, fpt->tss.float_regs);
- if (retcode) {
- /* in this case we need to fix up PC & nPC */
- regs->pc = regs->npc;
- regs->npc += 4;
- }
- }
- return retcode;
- }
-
- /* Normal case: need to empty the queue... */
- for (i = 0; i < fpt->tss.fpqdepth; i++)
- {
- retcode = do_one_mathemu(fpt->tss.fpqueue[i].insn, &(fpt->tss.fsr), fpt->tss.float_regs);
- if (!retcode) /* insn failed, no point doing any more */
- break;
- }
- /* Now empty the queue and clear the queue_not_empty flag */
- if(retcode)
- fpt->tss.fsr &= ~(0x3000 | FSR_CEXC_MASK);
- else
- fpt->tss.fsr &= ~0x3000;
- fpt->tss.fpqdepth = 0;
-
- return retcode;
+
+ if (fpt->tss.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */
+#ifdef DEBUG_MATHEMU
+ printk("precise trap at %08lx\n", regs->pc);
+#endif
+ if (!get_user(insn, (u32 *)regs->pc)) {
+ retcode = do_one_mathemu(insn, &fpt->tss.fsr, fpt->tss.float_regs);
+ if (retcode) {
+ /* in this case we need to fix up PC & nPC */
+ regs->pc = regs->npc;
+ regs->npc += 4;
+ }
+ }
+ return retcode;
+ }
+
+ /* Normal case: need to empty the queue... */
+ for (i = 0; i < fpt->tss.fpqdepth; i++) {
+ retcode = do_one_mathemu(fpt->tss.fpqueue[i].insn, &(fpt->tss.fsr), fpt->tss.float_regs);
+ if (!retcode) /* insn failed, no point doing any more */
+ break;
+ }
+ /* Now empty the queue and clear the queue_not_empty flag */
+ if(retcode)
+ fpt->tss.fsr &= ~(0x3000 | FSR_CEXC_MASK);
+ else
+ fpt->tss.fsr &= ~0x3000;
+ fpt->tss.fpqdepth = 0;
+
+ return retcode;
}
/* All routines returning an exception to raise should detect
@@ -291,46 +219,36 @@
if(would_trap != 0) {
eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
if((eflag & (eflag - 1)) != 0) {
- if(eflag & EFLAG_INVALID)
- eflag = EFLAG_INVALID;
- else if(eflag & EFLAG_DIVZERO)
- eflag = EFLAG_DIVZERO;
- else if(eflag & EFLAG_INEXACT)
- eflag = EFLAG_INEXACT;
+ if(eflag & FP_EX_INVALID)
+ eflag = FP_EX_INVALID;
+ else if(eflag & FP_EX_OVERFLOW)
+ eflag = FP_EX_OVERFLOW;
+ else if(eflag & FP_EX_UNDERFLOW)
+ eflag = FP_EX_UNDERFLOW;
+ else if(eflag & FP_EX_DIVZERO)
+ eflag = FP_EX_DIVZERO;
+ else if(eflag & FP_EX_INEXACT)
+ eflag = FP_EX_INEXACT;
}
}
- /* Set CEXC, here are the rules:
+ /* Set CEXC, here is the rule:
*
- * 1) In general all FPU ops will set one and only one
+ * In general all FPU ops will set one and only one
* bit in the CEXC field, this is always the case
* when the IEEE exception trap is enabled in TEM.
- *
- * 2) As a special case, if an overflow or underflow
- * is being signalled, AND the trap is not enabled
- * in TEM, then the inexact field shall also be set.
*/
fsr &= ~(FSR_CEXC_MASK);
- if(would_trap ||
- (eflag & (EFLAG_OVERFLOW | EFLAG_UNDERFLOW)) == 0) {
- fsr |= ((long)eflag << FSR_CEXC_SHIFT);
- } else {
- fsr |= (((long)eflag << FSR_CEXC_SHIFT) |
- (EFLAG_INEXACT << FSR_CEXC_SHIFT));
- }
+ fsr |= ((long)eflag << FSR_CEXC_SHIFT);
- /* Set the AEXC field, rules are:
+ /* Set the AEXC field, rule is:
*
- * 1) If a trap would not be generated, the
+ * If a trap would not be generated, the
* CEXC just generated is OR'd into the
* existing value of AEXC.
- *
- * 2) When a trap is generated, AEXC is cleared.
*/
if(would_trap == 0)
fsr |= ((long)eflag << FSR_AEXC_SHIFT);
- else
- fsr &= ~(FSR_AEXC_MASK);
/* If trapping, indicate fault trap type IEEE. */
if(would_trap != 0)
@@ -343,157 +261,150 @@
static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs)
{
- /* Emulate the given insn, updating fsr and fregs appropriately. */
- int type = 0;
- /* 01 is single, 10 is double, 11 is quad,
- * 000011 is rs1, 001100 is rs2, 110000 is rd (00 in rd is fcc)
- * 111100000000 tells which ftt that may happen in
- * (this field not used on sparc32 code, as we can't
- * extract trap type info for ops on the FP queue)
- */
- int freg, eflag;
- int (*func)(void *,void *,void *) = NULL;
- void *rs1 = NULL, *rs2 = NULL, *rd = NULL;
+ /* Emulate the given insn, updating fsr and fregs appropriately. */
+ int type = 0;
+ /* 01 is single, 10 is double, 11 is quad,
+ * 000011 is rs1, 001100 is rs2, 110000 is rd (00 in rd is fcc)
+ * 111100000000 tells which ftt that may happen in
+ * (this field not used on sparc32 code, as we can't
+ * extract trap type info for ops on the FP queue)
+ */
+ int freg, eflag;
+ int (*func)(void *,void *,void *) = NULL;
+ void *rs1 = NULL, *rs2 = NULL, *rd = NULL;
+
+#ifdef DEBUG_MATHEMU
+ printk("In do_mathemu(), emulating %08lx\n", insn);
+#endif
+
+ if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
+ switch ((insn >> 5) & 0x1ff) {
+ /* QUAD - ftt == 3 */
+ case 0x001: type = 0x314; func = FMOVS; break;
+ case 0x005: type = 0x314; func = FNEGS; break;
+ case 0x009: type = 0x314; func = FABSS; break;
+ case 0x02b: type = 0x33c; func = FSQRTQ; break;
+ case 0x043: type = 0x33f; func = FADDQ; break;
+ case 0x047: type = 0x33f; func = FSUBQ; break;
+ case 0x04b: type = 0x33f; func = FMULQ; break;
+ case 0x04f: type = 0x33f; func = FDIVQ; break;
+ case 0x06e: type = 0x33a; func = FDMULQ; break;
+ case 0x0c7: type = 0x31c; func = FQTOS; break;
+ case 0x0cb: type = 0x32c; func = FQTOD; break;
+ case 0x0cc: type = 0x334; func = FITOQ; break;
+ case 0x0cd: type = 0x334; func = FSTOQ; break;
+ case 0x0ce: type = 0x338; func = FDTOQ; break;
+ case 0x0d3: type = 0x31c; func = FQTOI; break;
+ /* SUBNORMAL - ftt == 2 */
+ case 0x029: type = 0x214; func = FSQRTS; break;
+ case 0x02a: type = 0x228; func = FSQRTD; break;
+ case 0x041: type = 0x215; func = FADDS; break;
+ case 0x042: type = 0x22a; func = FADDD; break;
+ case 0x045: type = 0x215; func = FSUBS; break;
+ case 0x046: type = 0x22a; func = FSUBD; break;
+ case 0x049: type = 0x215; func = FMULS; break;
+ case 0x04a: type = 0x22a; func = FMULD; break;
+ case 0x04d: type = 0x215; func = FDIVS; break;
+ case 0x04e: type = 0x22a; func = FDIVD; break;
+ case 0x069: type = 0x225; func = FSMULD; break;
+ case 0x0c6: type = 0x218; func = FDTOS; break;
+ case 0x0c9: type = 0x224; func = FSTOD; break;
+ case 0x0d1: type = 0x214; func = FSTOI; break;
+ case 0x0d2: type = 0x218; func = FDTOI; break;
+ default:
+#ifdef DEBUG_MATHEMU
+ printk("unknown FPop1: %03lx\n",(insn>>5)&0x1ff);
+#endif
+ }
+ } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
+ switch ((insn >> 5) & 0x1ff) {
+ case 0x051: type = 0x305; func = FCMPS; break;
+ case 0x052: type = 0x30a; func = FCMPD; break;
+ case 0x053: type = 0x30f; func = FCMPQ; break;
+ case 0x055: type = 0x305; func = FCMPES; break;
+ case 0x056: type = 0x30a; func = FCMPED; break;
+ case 0x057: type = 0x30f; func = FCMPEQ; break;
+ default:
+#ifdef DEBUG_MATHEMU
+ printk("unknown FPop2: %03lx\n",(insn>>5)&0x1ff);
+#endif
+ }
+ }
+
+ if (!type) { /* oops, didn't recognise that FPop */
+ printk("attempt to emulate unrecognised FPop!\n");
+ return 0;
+ }
+
+ /* Decode the registers to be used */
+ freg = (*fsr >> 14) & 0xf;
+ *fsr &= ~0x1c000; /* clear the traptype bits */
+
+ freg = ((insn >> 14) & 0x1f);
+ switch (type & 0x3) { /* is rs1 single, double or quad? */
+ case 3:
+ if (freg & 3) { /* quadwords must have bits 4&5 of the */
+ /* encoded reg. number set to zero. */
+ *fsr |= (6 << 14);
+ return 0; /* simulate invalid_fp_register exception */
+ }
+ /* fall through */
+ case 2:
+ if (freg & 1) { /* doublewords must have bit 5 zeroed */
+ *fsr |= (6 << 14);
+ return 0;
+ }
+ }
+ rs1 = (void *)&fregs[freg];
+ freg = (insn & 0x1f);
+ switch ((type >> 2) & 0x3) { /* same again for rs2 */
+ case 3:
+ if (freg & 3) { /* quadwords must have bits 4&5 of the */
+ /* encoded reg. number set to zero. */
+ *fsr |= (6 << 14);
+ return 0; /* simulate invalid_fp_register exception */
+ }
+ /* fall through */
+ case 2:
+ if (freg & 1) { /* doublewords must have bit 5 zeroed */
+ *fsr |= (6 << 14);
+ return 0;
+ }
+ }
+ rs2 = (void *)&fregs[freg];
+ freg = ((insn >> 25) & 0x1f);
+ switch ((type >> 4) & 0x3) { /* and finally rd. This one's a bit different */
+ case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
+ if (freg) { /* V8 has only one set of condition codes, so */
+ /* anything but 0 in the rd field is an error */
+ *fsr |= (6 << 14); /* (should probably flag as invalid opcode */
+ return 0; /* but SIGFPE will do :-> ) */
+ }
+ rd = (void *)(fsr); /* FCMPQ and FCMPEQ are special and only */
+ break; /* set bits they're supposed to :-> */
+ case 3:
+ if (freg & 3) { /* quadwords must have bits 4&5 of the */
+ /* encoded reg. number set to zero. */
+ *fsr |= (6 << 14);
+ return 0; /* simulate invalid_fp_register exception */
+ }
+ /* fall through */
+ case 2:
+ if (freg & 1) { /* doublewords must have bit 5 zeroed */
+ *fsr |= (6 << 14);
+ return 0;
+ }
+ /* fall through */
+ case 1:
+ rd = (void *)&fregs[freg];
+ break;
+ }
#ifdef DEBUG_MATHEMU
- printk("In do_mathemu(), emulating %08lx\n", insn);
-#endif
-
- if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
- switch ((insn >> 5) & 0x1ff) {
- /* QUAD - ftt == 3 */
- case 0x001: type = 0x314; func = FMOVS; break;
- case 0x005: type = 0x314; func = FNEGS; break;
- case 0x009: type = 0x314; func = FABSS; break;
- case 0x02b: type = 0x33c; func = FSQRTQ; break;
- case 0x043: type = 0x33f; func = FADDQ; break;
- case 0x047: type = 0x33f; func = FSUBQ; break;
- case 0x04b: type = 0x33f; func = FMULQ; break;
- case 0x04f: type = 0x33f; func = FDIVQ; break;
- case 0x06e: type = 0x33a; func = FDMULQ; break;
- case 0x0c7: type = 0x31c; func = FQTOS; break;
- case 0x0cb: type = 0x32c; func = FQTOD; break;
- case 0x0cc: type = 0x334; func = FITOQ; break;
- case 0x0cd: type = 0x334; func = FSTOQ; break;
- case 0x0ce: type = 0x338; func = FDTOQ; break;
- case 0x0d3: type = 0x31c; func = FQTOI; break;
- /* SUBNORMAL - ftt == 2 */
- case 0x029: type = 0x214; func = FSQRTS; break;
- case 0x02a: type = 0x228; func = FSQRTD; break;
- case 0x041: type = 0x215; func = FADDS; break;
- case 0x042: type = 0x22a; func = FADDD; break;
- case 0x045: type = 0x215; func = FSUBS; break;
- case 0x046: type = 0x22a; func = FSUBD; break;
- case 0x049: type = 0x215; func = FMULS; break;
- case 0x04a: type = 0x22a; func = FMULD; break;
- case 0x04d: type = 0x215; func = FDIVS; break;
- case 0x04e: type = 0x22a; func = FDIVD; break;
- case 0x069: type = 0x225; func = FSMULD; break;
- case 0x0c6: type = 0x218; func = FDTOS; break;
- case 0x0c9: type = 0x224; func = FSTOD; break;
- case 0x0d1: type = 0x214; func = FSTOI; break;
- case 0x0d2: type = 0x218; func = FDTOI; break;
- default:
-#ifdef DEBUG_MATHEMU
- printk("unknown FPop1: %03lx\n",(insn>>5)&0x1ff);
-#endif
- }
- }
- else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
- switch ((insn >> 5) & 0x1ff) {
- case 0x051: type = 0x305; func = FCMPS; break;
- case 0x052: type = 0x30a; func = FCMPD; break;
- case 0x053: type = 0x30f; func = FCMPQ; break;
- case 0x055: type = 0x305; func = FCMPES; break;
- case 0x056: type = 0x30a; func = FCMPED; break;
- case 0x057: type = 0x30f; func = FCMPEQ; break;
- default:
-#ifdef DEBUG_MATHEMU
- printk("unknown FPop2: %03lx\n",(insn>>5)&0x1ff);
-#endif
- }
- }
-
- if (!type) { /* oops, didn't recognise that FPop */
- printk("attempt to emulate unrecognised FPop!\n");
- return 0;
- }
-
- /* Decode the registers to be used */
- freg = (*fsr >> 14) & 0xf;
-
- *fsr &= ~0x1c000; /* clear the traptype bits */
-
- freg = ((insn >> 14) & 0x1f);
- switch (type & 0x3) /* is rs1 single, double or quad? */
- {
- case 3:
- if (freg & 3) /* quadwords must have bits 4&5 of the */
- { /* encoded reg. number set to zero. */
- *fsr |= (6 << 14);
- return 0; /* simulate invalid_fp_register exception */
- }
- /* fall through */
- case 2:
- if (freg & 1) /* doublewords must have bit 5 zeroed */
- {
- *fsr |= (6 << 14);
- return 0;
- }
- }
- rs1 = (void *)&fregs[freg];
- freg = (insn & 0x1f);
- switch ((type >> 2) & 0x3)
- { /* same again for rs2 */
- case 3:
- if (freg & 3) /* quadwords must have bits 4&5 of the */
- { /* encoded reg. number set to zero. */
- *fsr |= (6 << 14);
- return 0; /* simulate invalid_fp_register exception */
- }
- /* fall through */
- case 2:
- if (freg & 1) /* doublewords must have bit 5 zeroed */
- {
- *fsr |= (6 << 14);
- return 0;
- }
- }
- rs2 = (void *)&fregs[freg];
- freg = ((insn >> 25) & 0x1f);
- switch ((type >> 4) & 0x3) /* and finally rd. This one's a bit different */
- {
- case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */
- if (freg) /* V8 has only one set of condition codes, so */
- { /* anything but 0 in the rd field is an error */
- *fsr |= (6 << 14); /* (should probably flag as invalid opcode */
- return 0; /* but SIGFPE will do :-> ) */
- }
- rd = (void *)(fsr); /* FCMPQ and FCMPEQ are special and only */
- break; /* set bits they're supposed to :-> */
- case 3:
- if (freg & 3) /* quadwords must have bits 4&5 of the */
- { /* encoded reg. number set to zero. */
- *fsr |= (6 << 14);
- return 0; /* simulate invalid_fp_register exception */
- }
- /* fall through */
- case 2:
- if (freg & 1) /* doublewords must have bit 5 zeroed */
- {
- *fsr |= (6 << 14);
- return 0;
- }
- /* fall through */
- case 1:
- rd = (void *)&fregs[freg];
- break;
- }
-#ifdef DEBUG_MATHEMU
- printk("executing insn...\n");
-#endif
- eflag = func(rd, rs2, rs1); /* do the Right Thing */
- if(eflag == 0)
- return 1; /* success! */
- return record_exception(fsr, eflag);
+ printk("executing insn...\n");
+#endif
+ eflag = func(rd, rs2, rs1); /* do the Right Thing */
+ if(eflag == 0)
+ return 1; /* success! */
+ return record_exception(fsr, eflag);
}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)