patch-2.4.22 linux-2.4.22/include/asm-sh64/pgtable.h
Next file: linux-2.4.22/include/asm-sh64/platform.h
Previous file: linux-2.4.22/include/asm-sh64/pgalloc.h
Back to the patch index
Back to the overall index
- Lines: 525
- Date:
2003-08-25 04:44:44.000000000 -0700
- Orig file:
linux-2.4.21/include/asm-sh64/pgtable.h
- Orig date:
1969-12-31 16:00:00.000000000 -0800
diff -urN linux-2.4.21/include/asm-sh64/pgtable.h linux-2.4.22/include/asm-sh64/pgtable.h
@@ -0,0 +1,524 @@
+#ifndef __ASM_SH64_PGTABLE_H
+#define __ASM_SH64_PGTABLE_H
+
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * include/asm-sh64/pgtable.h
+ *
+ * Copyright (C) 2000, 2001 Paolo Alberelli
+ * Copyright (C) 2003 Paul Mundt
+ * Copyright (C) 2003 Richard Curnow
+ *
+ * This file contains the functions and defines necessary to modify and use
+ * the SuperH page table tree.
+ */
+
+#ifndef __ASSEMBLY__
+#include <asm/processor.h>
+#include <asm/page.h>
+#include <linux/threads.h>
+#include <linux/config.h>
+
+extern void paging_init(void);
+
+extern void flush_cache_all(void);
+extern void flush_cache_mm(struct mm_struct *mm);
+extern void flush_cache_range(struct mm_struct *mm, unsigned long start,
+ unsigned long end);
+extern void flush_cache_page(struct vm_area_struct *vma, unsigned long addr);
+
+extern void flush_page_to_ram(struct page *page);
+
+extern void flush_icache_range(unsigned long start, unsigned long end);
+extern void flush_icache_page(struct vm_area_struct *vma, struct page *pg);
+
+extern void flush_dcache_page(struct page *pg);
+
+extern void flush_cache_sigtramp(unsigned long start, unsigned long end);
+
+#ifdef CONFIG_DCACHE_DISABLED
+
+#define sh64_dcache_purge_sets(base,sets) do { } while (0)
+#define sh64_dcache_purge_all() do { } while (0)
+#define sh64_dcache_purge_kernel_range(start,end) do { } while (0)
+#define sh64_dcache_purge_coloured_phy_page(addr,eaddr) do { } while (0)
+#define sh64_dcache_purge_phy_page(pg) do { } while (0)
+#define sh64_dcache_purge_virt_page(mm,eaddr) do { } while (0)
+#define sh64_dcache_purge_user_page(mm,eaddr) do { } while (0)
+#define sh64_dcache_purge_user_range(mm,start,end) do { } while (0)
+#define sh64_dcache_wback_current_user_range(start,end) do { } while (0)
+
+#define copy_user_page(to, from, addr) memcpy(to, from, PAGE_SIZE)
+#define clear_user_page(to, addr) memset(to, 0, PAGE_SIZE)
+
+#endif /* CONFIG_DCACHE_DISABLED */
+
+#ifdef CONFIG_ICACHE_DISABLED
+
+#define sh64_icache_inv_all() do { } while (0)
+#define sh64_icache_inv_kernel_range(start,end) do { } while (0)
+#define sh64_icache_inv_user_page(vma,eaddr) do { } while (0)
+#define sh64_icache_inv_user_page_range(mm,start,end) do { } while (0)
+#define sh64_icache_inv_user_small_range(mm,start,len) do { } while (0)
+#define sh64_icache_inv_current_user_range(start,end) do { } while (0)
+
+#endif /* CONFIG_ICACHE_DISABLED */
+
+/* We provide our own get_unmapped_area to avoid cache synonym issue */
+#define HAVE_ARCH_UNMAPPED_AREA
+
+/*
+ * Basically we have the same two-level (which is the logical three level
+ * Linux page table layout folded) page tables as the i386.
+ */
+
+/*
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern unsigned char empty_zero_page[PAGE_SIZE];
+#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
+
+#endif /* !__ASSEMBLY__ */
+
+/*
+ * NEFF and NPHYS related defines.
+ * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
+ * implement 32 bits effective and 32 bits physical. But future implementations may
+ * extend beyond this.
+ */
+#define NEFF 32
+#define NEFF_SIGN (1LL << (NEFF - 1))
+#define NEFF_MASK (-1LL << NEFF)
+
+#define NPHYS 32
+#define NPHYS_SIGN (1LL << (NPHYS - 1))
+#define NPHYS_MASK (-1LL << NPHYS)
+
+/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
+ that 3-level would be appropriate. */
+#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
+/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
+#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
+#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
+#define PTE_SHIFT PAGE_SHIFT
+#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
+
+/* top level: PMD. */
+#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
+#define PGD_BITS (NEFF - PGDIR_SHIFT)
+#define PTRS_PER_PGD (1<<PGD_BITS)
+
+/* middle level: PMD. This doesn't do anything for the 2-level case. */
+#define PTRS_PER_PMD (1)
+
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+#define PMD_SHIFT PGDIR_SHIFT
+#define PMD_SIZE PGDIR_SIZE
+#define PMD_MASK PGDIR_MASK
+
+#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
+/*
+ * three-level asymmetric paging structure: PGD is top level.
+ * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
+ */
+/* bottom level: PTE. It's 9 bits = 512 pointers */
+#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
+#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
+#define PTE_SHIFT PAGE_SHIFT
+#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
+
+/* middle level: PMD. It's 10 bits = 1024 pointers */
+#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
+#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
+#define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
+#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
+
+/* top level: PMD. It's 1 bit = 2 pointers */
+#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
+#define PGD_BITS (NEFF - PGDIR_SHIFT)
+#define PTRS_PER_PGD (1<<PGD_BITS)
+
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+#else
+#error "No defined number of page table levels"
+#endif
+
+/*
+ * Error outputs.
+ */
+#define pte_ERROR(e) \
+ printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
+#define pmd_ERROR(e) \
+ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
+#define pgd_ERROR(e) \
+ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
+
+/*
+ * Table setting routines. Used within arch/mm only.
+ */
+#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
+#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
+
+static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
+{
+ unsigned long long x = ((unsigned long long) pteval.pte);
+ unsigned long long *xp = (unsigned long long *) pteptr;
+ /*
+ * Sign-extend based on NPHYS.
+ */
+ *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
+}
+
+static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
+{
+ pmd_val(*pmdp) = (unsigned long) ptep;
+}
+
+/*
+ * PGD defines. Top level.
+ */
+
+/* To find an entry in a generic PGD. */
+#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
+#define __pgd_offset(address) pgd_index(address)
+#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
+
+/* To find an entry in a kernel PGD. */
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
+
+/*
+ * PGD level access routines.
+ *
+ * Note1:
+ * There's no need to use physical addresses since the tree walk is all
+ * in performed in software, until the PTE translation.
+ *
+ * Note 2:
+ * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
+ * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
+ * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
+ * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
+ * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
+ * bad pgd that must be notified via printk().
+ *
+ */
+#define _PGD_EMPTY 0x0
+
+#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
+static inline int pgd_none(pgd_t pgd) { return 0; }
+static inline int pgd_bad(pgd_t pgd) { return 0; }
+static inline int pgd_present(pgd_t pgd) { return 1; }
+#define pgd_clear(xx) do { } while(0)
+
+#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
+#define pgd_present(pgd_entry) (1)
+#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
+/* TODO: Think later about what a useful definition of 'bad' would be now. */
+#define pgd_bad(pgd_entry) (0)
+#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
+
+#endif
+
+
+#define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
+
+/*
+ * PMD defines. Middle level.
+ */
+
+/* PGD to PMD dereferencing */
+#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
+static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
+{
+ return (pmd_t *) dir;
+}
+#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
+#define __pmd_offset(address) \
+ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
+#define pmd_offset(dir, addr) \
+ ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
+#endif
+
+/*
+ * PMD level access routines. Same notes as above.
+ */
+#define _PMD_EMPTY 0x0
+/* Either the PMD is empty or present, it's not paged out */
+#define pmd_present(pmd_entry) (1)
+#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
+#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
+/* TODO: Think later about what a useful definition of 'bad' would be now. */
+#define pmd_bad(pmd_entry) (0)
+#define pmd_page(pmd_entry) ((unsigned long) (pmd_val(pmd_entry) & PAGE_MASK))
+
+/* PMD to PTE dereferencing */
+#define __pte_offset(address) \
+ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
+
+#define pte_offset(dir, addr) \
+ ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + __pte_offset((addr)))
+
+/* Round it up ! */
+#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
+#define FIRST_USER_PGD_NR 0
+
+#ifndef __ASSEMBLY__
+#define VMALLOC_END 0xff000000
+#define VMALLOC_START 0xf0000000
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+
+#define IOBASE_VADDR 0xff000000
+#define IOBASE_END 0xffffffff
+
+/*
+ * PTEL coherent flags.
+ * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
+ */
+/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
+ positions, to avoid expensive bit shuffling on every refill. The remaining
+ bits are used for s/w purposes and masked out on each refill.
+
+ Note, the PTE slots are used to hold data of type swp_entry_t when a page is
+ swapped out. Only the _PAGE_PRESENT flag is significant when the page is
+ swapped out, and it must be placed so that it doesn't overlap either the
+ type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
+ at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
+ scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
+ [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
+ into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
+#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
+#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
+#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
+#define _PAGE_PRESENT 0x004 /* software: if allocated */
+#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
+#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
+#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
+#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
+#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
+#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
+#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
+#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
+#define _PAGE_ACCESSED 0x800 /* software: page referenced */
+
+/* Mask which drops software flags */
+#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
+/* Flags default: 4KB, Read, Not write, Not execute, Not user */
+#define _PAGE_FLAGS_HARDWARE_DEFAULT 0x0000000000000040LL
+
+/*
+ * Default flags for a Kernel page.
+ * This is fundametally also SHARED because the main use of this define
+ * (other than for PGD/PMD entries) is for the VMALLOC pool which is
+ * contextless.
+ *
+ * _PAGE_EXECUTE is required for modules
+ *
+ */
+#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
+ _PAGE_EXECUTE | \
+ _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
+ _PAGE_SHARED)
+
+/* Default flags for a User page */
+#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
+
+#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
+
+#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
+#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
+ _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
+ _PAGE_SHARED)
+/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
+ * protection mode for the stack. */
+#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
+ _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
+#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
+ _PAGE_ACCESSED | _PAGE_USER)
+#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
+
+
+/*
+ * In ST50 we have full permissions (Read/Write/Execute/Shared).
+ * Just match'em all. These are for mmap(), therefore all at least
+ * User/Cachable/Present/Accessed. No point in making Fault on Write.
+ */
+#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
+ /* sxwr */
+#define __P000 __pgprot(__MMAP_COMMON)
+#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
+#define __P010 __pgprot(__MMAP_COMMON)
+#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
+#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
+#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
+#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
+#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
+
+#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
+#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
+#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
+#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
+#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
+#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
+#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
+#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
+
+/* Make it a device mapping for maximum safety (e.g. for mapping device
+ registers into user-space via /dev/map). */
+#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
+
+/*
+ * Handling allocation failures during page table setup.
+ */
+extern void __handle_bad_pmd_kernel(pmd_t * pmd);
+#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
+
+/*
+ * PTE level access routines.
+ *
+ * Note1:
+ * It's the tree walk leaf. This is physical address to be stored.
+ *
+ * Note 2:
+ * Regarding the choice of _PTE_EMPTY:
+
+ We must choose a bit pattern that cannot be valid, whether or not the page
+ is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
+ out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
+ left for us to select. If we force bit[7]==0 when swapped out, we could use
+ the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
+ we force bit[7]==1 when swapped out, we can use all zeroes to indicate
+ empty. This is convenient, because the page tables get cleared to zero
+ when they are allocated.
+
+ */
+#define _PTE_EMPTY 0x0
+#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
+#define pte_clear(xp) (set_pte(xp, __pte(_PTE_EMPTY)))
+#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
+
+/*
+ * Some definitions to translate between mem_map, PTEs, and page
+ * addresses:
+ */
+
+/*
+ * Given a PTE, return the index of the mem_map[] entry corresponding
+ * to the page frame the PTE. Get the absolute physical address, make
+ * a relative physical address and translate it to an index.
+ */
+#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
+ __MEMORY_START) >> PAGE_SHIFT)
+
+/*
+ * Given a PTE, return the "struct page *".
+ */
+#define pte_page(x) (mem_map + pte_pagenr(x))
+
+/*
+ * Return number of (down rounded) MB corresponding to x pages.
+ */
+#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
+
+
+/*
+ * The following have defined behavior only work if pte_present() is true.
+ */
+extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
+extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
+extern inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
+extern inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
+extern inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
+
+extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
+extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
+extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
+extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
+extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
+
+extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
+extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
+extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
+extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
+extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
+
+/*
+ * Conversion functions: convert a page and protection to a page entry.
+ *
+ * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
+ */
+#define mk_pte(page,pgprot) \
+({ \
+ pte_t __pte; \
+ \
+ set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
+ __MEMORY_START | pgprot_val((pgprot)))); \
+ __pte; \
+})
+
+/*
+ * This takes a (absolute) physical page address that is used
+ * by the remapping functions
+ */
+#define mk_pte_phys(physpage, pgprot) \
+({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
+
+extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
+
+#define page_pte_prot(page, prot) mk_pte(page, prot)
+#define page_pte(page) page_pte_prot(page, __pgprot(0))
+
+#define pte_same(A,B) (pte_val(A) == pte_val(B))
+
+
+extern void update_mmu_cache(struct vm_area_struct * vma,
+ unsigned long address, pte_t pte);
+
+
+/* Swap-related things */
+extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
+
+/* Encode and de-code a swap entry */
+#define SWP_TYPE(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
+#define SWP_OFFSET(x) ((x).val >> 8)
+
+/* Avoid bit 2 for type */
+static inline swp_entry_t SWP_ENTRY(unsigned long type, unsigned long offset)
+{
+ unsigned long result;
+ /* Assert bit[7], to make swapped out page table entries distinct
+ from unused/uninitialised ones */
+ result = (offset << 8) + 0x80 + ((type & 0x3c) << 1) + (type & 3);
+ return (swp_entry_t) {result};
+}
+#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
+#define swp_entry_to_pte(x) ((pte_t) { (x).val })
+
+/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
+#define PageSkip(page) (0)
+#define kern_addr_valid(addr) (1)
+
+#define io_remap_page_range remap_page_range
+#endif /* !__ASSEMBLY__ */
+
+/*
+ * No page table caches to initialise
+ */
+#define pgtable_cache_init() do { } while (0)
+
+/* This must be implemented for ptrace() */
+#if 0
+#define flush_icache_user_range(vma,pg,adr,len) do { } while (0)
+#endif
+
+
+#endif /* __ASM_SH64_PGTABLE_H */
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)