patch-2.4.6 linux/drivers/mtd/docecc.c

Next file: linux/drivers/mtd/docprobe.c
Previous file: linux/drivers/mtd/doc2001.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.4.5/linux/drivers/mtd/docecc.c linux/drivers/mtd/docecc.c
@@ -1,522 +0,0 @@
-/*
- * ECC algorithm for M-systems disk on chip. We use the excellent Reed
- * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
- * GNU GPL License. The rest is simply to convert the disk on chip
- * syndrom into a standard syndom.
- *
- * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 
- * Copyright (C) 2000 Netgem S.A.
- *
- * $Id: docecc.c,v 1.1 2000/11/03 12:43:43 dwmw2 Exp $
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
- */
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <asm/errno.h>
-#include <asm/io.h>
-#include <asm/uaccess.h>
-#include <linux/miscdevice.h>
-#include <linux/pci.h>
-#include <linux/delay.h>
-#include <linux/slab.h>
-#include <linux/sched.h>
-#include <linux/init.h>
-#include <linux/types.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/doc2000.h>
-
-/* need to undef it (from asm/termbits.h) */
-#undef B0
-
-#define MM 10 /* Symbol size in bits */
-#define KK (1023-4) /* Number of data symbols per block */
-#define B0 510 /* First root of generator polynomial, alpha form */
-#define PRIM 1 /* power of alpha used to generate roots of generator poly */
-#define	NN ((1 << MM) - 1)
-
-typedef unsigned short dtype;
-
-/* 1+x^3+x^10 */
-static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
-
-/* This defines the type used to store an element of the Galois Field
- * used by the code. Make sure this is something larger than a char if
- * if anything larger than GF(256) is used.
- *
- * Note: unsigned char will work up to GF(256) but int seems to run
- * faster on the Pentium.
- */
-typedef int gf;
-
-/* No legal value in index form represents zero, so
- * we need a special value for this purpose
- */
-#define A0	(NN)
-
-/* Compute x % NN, where NN is 2**MM - 1,
- * without a slow divide
- */
-static inline gf
-modnn(int x)
-{
-  while (x >= NN) {
-    x -= NN;
-    x = (x >> MM) + (x & NN);
-  }
-  return x;
-}
-
-#define	min(a,b)	((a) < (b) ? (a) : (b))
-
-#define	CLEAR(a,n) {\
-int ci;\
-for(ci=(n)-1;ci >=0;ci--)\
-(a)[ci] = 0;\
-}
-
-#define	COPY(a,b,n) {\
-int ci;\
-for(ci=(n)-1;ci >=0;ci--)\
-(a)[ci] = (b)[ci];\
-}
-
-#define	COPYDOWN(a,b,n) {\
-int ci;\
-for(ci=(n)-1;ci >=0;ci--)\
-(a)[ci] = (b)[ci];\
-}
-
-#define Ldec 1
-
-/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
-   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
-                   polynomial form -> index form  index_of[j=alpha**i] = i
-   alpha=2 is the primitive element of GF(2**m)
-   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
-        Let @ represent the primitive element commonly called "alpha" that
-   is the root of the primitive polynomial p(x). Then in GF(2^m), for any
-   0 <= i <= 2^m-2,
-        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
-   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
-   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
-   example the polynomial representation of @^5 would be given by the binary
-   representation of the integer "alpha_to[5]".
-                   Similarily, index_of[] can be used as follows:
-        As above, let @ represent the primitive element of GF(2^m) that is
-   the root of the primitive polynomial p(x). In order to find the power
-   of @ (alpha) that has the polynomial representation
-        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
-   we consider the integer "i" whose binary representation with a(0) being LSB
-   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
-   "index_of[i]". Now, @^index_of[i] is that element whose polynomial 
-    representation is (a(0),a(1),a(2),...,a(m-1)).
-   NOTE:
-        The element alpha_to[2^m-1] = 0 always signifying that the
-   representation of "@^infinity" = 0 is (0,0,0,...,0).
-        Similarily, the element index_of[0] = A0 always signifying
-   that the power of alpha which has the polynomial representation
-   (0,0,...,0) is "infinity".
- 
-*/
-
-static void
-generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
-{
-  register int i, mask;
-
-  mask = 1;
-  Alpha_to[MM] = 0;
-  for (i = 0; i < MM; i++) {
-    Alpha_to[i] = mask;
-    Index_of[Alpha_to[i]] = i;
-    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
-    if (Pp[i] != 0)
-      Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */
-    mask <<= 1;	/* single left-shift */
-  }
-  Index_of[Alpha_to[MM]] = MM;
-  /*
-   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
-   * poly-repr of @^i shifted left one-bit and accounting for any @^MM
-   * term that may occur when poly-repr of @^i is shifted.
-   */
-  mask >>= 1;
-  for (i = MM + 1; i < NN; i++) {
-    if (Alpha_to[i - 1] >= mask)
-      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
-    else
-      Alpha_to[i] = Alpha_to[i - 1] << 1;
-    Index_of[Alpha_to[i]] = i;
-  }
-  Index_of[0] = A0;
-  Alpha_to[NN] = 0;
-}
-
-/*
- * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
- * of the feedback shift register after having processed the data and
- * the ECC.
- *
- * Return number of symbols corrected, or -1 if codeword is illegal
- * or uncorrectable. If eras_pos is non-null, the detected error locations
- * are written back. NOTE! This array must be at least NN-KK elements long.
- * The corrected data are written in eras_val[]. They must be xor with the data
- * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
- * 
- * First "no_eras" erasures are declared by the calling program. Then, the
- * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
- * If the number of channel errors is not greater than "t_after_eras" the
- * transmitted codeword will be recovered. Details of algorithm can be found
- * in R. Blahut's "Theory ... of Error-Correcting Codes".
-
- * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
- * will result. The decoder *could* check for this condition, but it would involve
- * extra time on every decoding operation.
- * */
-static int
-eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
-            gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], 
-            int no_eras)
-{
-  int deg_lambda, el, deg_omega;
-  int i, j, r,k;
-  gf u,q,tmp,num1,num2,den,discr_r;
-  gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly
-					 * and syndrome poly */
-  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
-  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
-  int syn_error, count;
-
-  syn_error = 0;
-  for(i=0;i<NN-KK;i++)
-      syn_error |= bb[i];
-
-  if (!syn_error) {
-    /* if remainder is zero, data[] is a codeword and there are no
-     * errors to correct. So return data[] unmodified
-     */
-    count = 0;
-    goto finish;
-  }
-  
-  for(i=1;i<=NN-KK;i++){
-    s[i] = bb[0];
-  }
-  for(j=1;j<NN-KK;j++){
-    if(bb[j] == 0)
-      continue;
-    tmp = Index_of[bb[j]];
-    
-    for(i=1;i<=NN-KK;i++)
-      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
-  }
-
-  /* undo the feedback register implicit multiplication and convert
-     syndromes to index form */
-
-  for(i=1;i<=NN-KK;i++) {
-      tmp = Index_of[s[i]];
-      if (tmp != A0)
-          tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
-      s[i] = tmp;
-  }
-  
-  CLEAR(&lambda[1],NN-KK);
-  lambda[0] = 1;
-
-  if (no_eras > 0) {
-    /* Init lambda to be the erasure locator polynomial */
-    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
-    for (i = 1; i < no_eras; i++) {
-      u = modnn(PRIM*eras_pos[i]);
-      for (j = i+1; j > 0; j--) {
-	tmp = Index_of[lambda[j - 1]];
-	if(tmp != A0)
-	  lambda[j] ^= Alpha_to[modnn(u + tmp)];
-      }
-    }
-#if DEBUG >= 1
-    /* Test code that verifies the erasure locator polynomial just constructed
-       Needed only for decoder debugging. */
-    
-    /* find roots of the erasure location polynomial */
-    for(i=1;i<=no_eras;i++)
-      reg[i] = Index_of[lambda[i]];
-    count = 0;
-    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
-      q = 1;
-      for (j = 1; j <= no_eras; j++)
-	if (reg[j] != A0) {
-	  reg[j] = modnn(reg[j] + j);
-	  q ^= Alpha_to[reg[j]];
-	}
-      if (q != 0)
-	continue;
-      /* store root and error location number indices */
-      root[count] = i;
-      loc[count] = k;
-      count++;
-    }
-    if (count != no_eras) {
-      printf("\n lambda(x) is WRONG\n");
-      count = -1;
-      goto finish;
-    }
-#if DEBUG >= 2
-    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
-    for (i = 0; i < count; i++)
-      printf("%d ", loc[i]);
-    printf("\n");
-#endif
-#endif
-  }
-  for(i=0;i<NN-KK+1;i++)
-    b[i] = Index_of[lambda[i]];
-  
-  /*
-   * Begin Berlekamp-Massey algorithm to determine error+erasure
-   * locator polynomial
-   */
-  r = no_eras;
-  el = no_eras;
-  while (++r <= NN-KK) {	/* r is the step number */
-    /* Compute discrepancy at the r-th step in poly-form */
-    discr_r = 0;
-    for (i = 0; i < r; i++){
-      if ((lambda[i] != 0) && (s[r - i] != A0)) {
-	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
-      }
-    }
-    discr_r = Index_of[discr_r];	/* Index form */
-    if (discr_r == A0) {
-      /* 2 lines below: B(x) <-- x*B(x) */
-      COPYDOWN(&b[1],b,NN-KK);
-      b[0] = A0;
-    } else {
-      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
-      t[0] = lambda[0];
-      for (i = 0 ; i < NN-KK; i++) {
-	if(b[i] != A0)
-	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
-	else
-	  t[i+1] = lambda[i+1];
-      }
-      if (2 * el <= r + no_eras - 1) {
-	el = r + no_eras - el;
-	/*
-	 * 2 lines below: B(x) <-- inv(discr_r) *
-	 * lambda(x)
-	 */
-	for (i = 0; i <= NN-KK; i++)
-	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
-      } else {
-	/* 2 lines below: B(x) <-- x*B(x) */
-	COPYDOWN(&b[1],b,NN-KK);
-	b[0] = A0;
-      }
-      COPY(lambda,t,NN-KK+1);
-    }
-  }
-
-  /* Convert lambda to index form and compute deg(lambda(x)) */
-  deg_lambda = 0;
-  for(i=0;i<NN-KK+1;i++){
-    lambda[i] = Index_of[lambda[i]];
-    if(lambda[i] != A0)
-      deg_lambda = i;
-  }
-  /*
-   * Find roots of the error+erasure locator polynomial by Chien
-   * Search
-   */
-  COPY(&reg[1],&lambda[1],NN-KK);
-  count = 0;		/* Number of roots of lambda(x) */
-  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
-    q = 1;
-    for (j = deg_lambda; j > 0; j--){
-      if (reg[j] != A0) {
-	reg[j] = modnn(reg[j] + j);
-	q ^= Alpha_to[reg[j]];
-      }
-    }
-    if (q != 0)
-      continue;
-    /* store root (index-form) and error location number */
-    root[count] = i;
-    loc[count] = k;
-    /* If we've already found max possible roots,
-     * abort the search to save time
-     */
-    if(++count == deg_lambda)
-      break;
-  }
-  if (deg_lambda != count) {
-    /*
-     * deg(lambda) unequal to number of roots => uncorrectable
-     * error detected
-     */
-    count = -1;
-    goto finish;
-  }
-  /*
-   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
-   * x**(NN-KK)). in index form. Also find deg(omega).
-   */
-  deg_omega = 0;
-  for (i = 0; i < NN-KK;i++){
-    tmp = 0;
-    j = (deg_lambda < i) ? deg_lambda : i;
-    for(;j >= 0; j--){
-      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
-	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
-    }
-    if(tmp != 0)
-      deg_omega = i;
-    omega[i] = Index_of[tmp];
-  }
-  omega[NN-KK] = A0;
-  
-  /*
-   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
-   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
-   */
-  for (j = count-1; j >=0; j--) {
-    num1 = 0;
-    for (i = deg_omega; i >= 0; i--) {
-      if (omega[i] != A0)
-	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
-    }
-    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
-    den = 0;
-    
-    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
-    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
-      if(lambda[i+1] != A0)
-	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
-    }
-    if (den == 0) {
-#if DEBUG >= 1
-      printf("\n ERROR: denominator = 0\n");
-#endif
-      /* Convert to dual- basis */
-      count = -1;
-      goto finish;
-    }
-    /* Apply error to data */
-    if (num1 != 0) {
-        eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
-    } else {
-        eras_val[j] = 0;
-    }
-  }
- finish:
-  for(i=0;i<count;i++)
-      eras_pos[i] = loc[i];
-  return count;
-}
-
-/***************************************************************************/
-/* The DOC specific code begins here */
-
-#define SECTOR_SIZE 512
-/* The sector bytes are packed into NB_DATA MM bits words */
-#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
-
-/* 
- * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
- * content of the feedback shift register applyied to the sector and
- * the ECC. Return the number of errors corrected (and correct them in
- * sector), or -1 if error 
- */
-int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
-{
-    int parity, i, nb_errors;
-    gf bb[NN - KK + 1];
-    gf error_val[NN-KK];
-    int error_pos[NN-KK], pos, bitpos, index, val;
-    dtype *Alpha_to, *Index_of;
-
-    /* init log and exp tables here to save memory. However, it is slower */
-    Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
-    if (!Alpha_to)
-        return -1;
-    
-    Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
-    if (!Index_of) {
-        kfree(Alpha_to);
-        return -1;
-    }
-
-    generate_gf(Alpha_to, Index_of);
-
-    parity = ecc1[1];
-
-    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
-    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
-    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
-    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
-
-    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, 
-                            error_val, error_pos, 0);
-    if (nb_errors <= 0)
-        goto the_end;
-
-    /* correct the errors */
-    for(i=0;i<nb_errors;i++) {
-        pos = error_pos[i];
-        if (pos >= NB_DATA && pos < KK) {
-            nb_errors = -1;
-            goto the_end;
-        }
-        if (pos < NB_DATA) {
-            /* extract bit position (MSB first) */
-            pos = 10 * (NB_DATA - 1 - pos) - 6;
-            /* now correct the following 10 bits. At most two bytes
-               can be modified since pos is even */
-            index = (pos >> 3) ^ 1;
-            bitpos = pos & 7;
-            if ((index >= 0 && index < SECTOR_SIZE) || 
-                index == (SECTOR_SIZE + 1)) {
-                val = error_val[i] >> (2 + bitpos);
-                parity ^= val;
-                if (index < SECTOR_SIZE)
-                    sector[index] ^= val;
-            }
-            index = ((pos >> 3) + 1) ^ 1;
-            bitpos = (bitpos + 10) & 7;
-            if (bitpos == 0)
-                bitpos = 8;
-            if ((index >= 0 && index < SECTOR_SIZE) || 
-                index == (SECTOR_SIZE + 1)) {
-                val = error_val[i] << (8 - bitpos);
-                parity ^= val;
-                if (index < SECTOR_SIZE)
-                    sector[index] ^= val;
-            }
-        }
-    }
-    
-    /* use parity to test extra errors */
-    if ((parity & 0xff) != 0)
-        nb_errors = -1;
-
- the_end:
-    kfree(Alpha_to);
-    kfree(Index_of);
-    return nb_errors;
-}
-

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)