
700 Reference Guide Introduction

CHAPTER 1

NOTE: The Commodore 700 refers to the E-128.

INTRODUCTION

The Commodore 7G0 computers are among the most modern
microcomputers in the world. Commodore has an international
reputation for technological innovation and this can be seen in
the exceptional design and price/performance ratio offered by
these computers.

These computers - the CBM 7005 - represent the further development
of existing models, including improvements in hardware and
software which are totally original. These are some of the most
important features of the CBM 7@@:-

- User memory size 128K
- Enlarged BASIC 4.6+ interpreter
- Screen with 25 lines each with 8% columns (program lines

are not limited to 80 characters)
— Fully programmable three voice sound synthesizer
- Serial interface RS232

If the computer is to be used in the office or in professional
surroundings, you will profit from the advantages of the new and
extended BASIC 4.0+. This extension includes automatic processing
of the greatly increased memory, a highly developed "error
tracker" as well as the implementation of the PRINT USING command
and the IF...THEN...ELSE program structure.

The CBM 700 screen with its 25 lines, each with 80 columns has the
standard format for efficient, professional program packages in
areas such as word processing, accounting, information processing,
data transfer, auditing and finance.

1.1 CBM 70$ Enlarged Memory

one of the most important features of the Commodore 700 computer
is the memory which forms the heart of the 760 range thanks to the
progressive technology of the 6569 microprocessor. The 65G9 has
20 address lines, compared to the 16 lines of other, less
efficient, microprocessors. The four extra address lines mean
that the 706 can address sixteen times as much memory.

760 Reference Guide Introduction

Some 700 machines have 128K of memory fitted as standard; others
have 256K memory as standard.

The banks (6 and 15) are reserved for the 6509 and the 700
operating system.

1.2 BASIC 4.0 plus.

The Commodore 7G0 computers are equipped with a considerably
enlarged BASIC 4.G+ interpreter. BASIC is the most widely used
programming language for microcomputers. There are thus thousands
of BASIC programs for almost every conceivable application.

However, programs designed and written by you are also possible
with this language.

The enlarged and improved BASIC interpreter is built into every
CBM 700 as ROM (Read Only Memory). Your new computer needs only
to be switched on and a BASIC program can be started.

The programmer does not need to consider the memory processing.
The BASIC interpreter will use the memory automatically. The
increase in available memory permits BASIC programs which can cope
with more work at increased speed.

Additional possibilities with the new BASIC 4.0+ interpreter are:-

- VDU commands
- Formatted data output.
- IF...THEN...ELSE program structures
-- Editing and directory processing
- Variables and data processing
- RS232 interface
- Memory processing

70% Reference Guide Introduction

1.3 Sound Effects and Music.

The Commodore 70% has one of the most modern digital sound chips:
the 6581 sound interface device (SID). This contains:-

- 3 independent programmable sound generators
- 3 envelope generators
- programmable filter

Each of the three generators has its own programmable oscillator
and wave generator. Each one also has its own envelope generator
with which the amplitude of the signal (volume) can be defined as
a function of time. It is thus possible to simulate simple
characteristic waves for many musical instruments. Completely new
sounds can also be produced. All three envelope generators are
connected to a programmable filter — this can be programmed as
high pass, band pass or low pass. This filter is probably the
most important feature of the synthesizer since very complex
sounds can be produced by simple programming. All tone generators
can be interconnected for synchronisation or ring modulation
effects to make the production of very interesting and unusual
sounds simple.

1.4 Serial Interface.

The 70% has an RS232 interface. This enables the connection of
many of the printers, terminals and modems on the market.

The 6551 asynchronous interface (ACIA) is responsible for the
RS232 interface. The new BASIC 4.6+ interpreter has software to
program this interface easily. A channel is simply opened and
used, as for a file or a printer, with the standard Input/Output
commands in BASIC.

1.5 Installation.

None of the models in the 700 range have any special requirements
as regards temperature. The computers function in every climate
even where you personally may find it only bearable.

The electrical side also presents no problem. The mains supply
has enough capacity to "smooth" larger deviations in the current
or voltage peaks. Disturbances may only happen whilst switching
on if very large electric motors are close by.

Worries about electrical supply to your computer need also not
concern you, since it takes only the same amount of current as two
normal desk lights (about 130 Watts).

To be thorough, however, it must also be noted that very high
radio activity or "hard x—rays" can lead to problems.

700 Reference Guide Introduction

1.6 Setting Up.

Make sure your computer is switched off before beginning
installation. Also check that the monitor is switched off in low
profile models - pay attention to the operation instructions for
the monitor supplied with the machine. The mains switch is
situated at the back of the computer. Starting a computer in the
low profile range varies from that in the high profile range only
in the first point. Your B-128 System is low profile.

1. Low profile - Connect your computer to the monitor. Use a
video cable. There is a 5-pin socket for this at the rear. High
profile - Connect the keyboard to the socket on the front of the
computer. The Commodore logo on the plug should be uppermost.

2. Next, your peripherals must be connected. For this you need
an IEEE to Edge connector cable. The edge connector of this lead
goes to the IEEE socket on the computer. The writing on this plug
should be uppermost. The other plug is connected to one of the
peripherals. For each further connection of a peripheral a
further IEEE to IEEE cable is required. One of the ends is pushed
onto the plug of a peripheral already connected (pick—a—back) and
the other joined to the new peripheral. (Ensure that the securing
screws are tightened so that the plugs sit squarely upon one
another).

3. Now you can connect the mains electricity lead. Your computer
is ready for operation.

1.7 On/Off Switch.

The on/off switch on the Commodore 700 computer is on the back of
the machine.

when the computer is switched on, a test routine is run, during
which the computer checks itself for errors. After 4-6 seconds
(depending on memory type) the "ready" message will appear. Your
machine is now ready to go and you can start straight away.
(Should the computer fail to work, try again. If it still fails,
consult your dealer).

Before switching off, ensure that you have saved your data (i.e.
transferred it onto disk), if you need it at a later date. The
same applies, of course, to programs you have written yourself.

700 Reference Guide The Keyboard

CHAPTER 2.

THE KEYBOARD.

The 760 has a keyboard which is_very similar to a typewriter
keyboard. However, on a closer inspection you will discover a
whole range of keys and characters not found on a normal
typewriter.

2.1 RETURN and ENTER.

These keys enter data into the computer and/or start processing of
data. They have the same effect.

2.2 SHIFT

This key corresponds to the SHIFT key on a normal typewriter. If
you press the shift key at the same time as a letter key, you will
obtain the corresponding letter in capitals or, with keys having 2
characters, the top character. Having switched your micro to the
graphic mode however, capital letters will appear without pressing
the SHIFT key and if SHIFT is pressed, the graphic characters on
the front of the key will be obtained.

2.3 SHIFT LOCK.

This is a standard Shift Lock key.

2.4 OFF/RVS.

After pressing this key, all subsequent characters are displayed
in inverse (REVERSE) video, therefore what is normally light
becomes dark and vice—versa. When this key is pressed
simultaneously with the shift key, the reverse mode is switched
off again.

2.5 NORM/GRAPH.

This key selects the graphics character set of your computer.
Instead of small and capital letters, capitals and a set of
graphic characters appear. The special characters are shown on
the front of the key and are reached by using SHIFT (letters) or
by CTRL (other keys). The NORM/GRAPH together with SHIFT will
switch the VDU screen back to capital/small letters (normal
display).

2.6 Cursor Control Keys.

These keys move the cursor (which is the position where the next
character will appear) in the direction shown on the key. Keep
the key depressed to move the cursor over longer distances. i.e.
repeat.

709 Reference Guide The Keyboard

2.7 INST/DEL.

when this key is pressed the character immediately before the
cursor is erased and all subsequent characters on that line are
moved to the left to fill the gap.

"Line" here means the logical line — i.e. all the characters which
have been entered into the computer until a RETURN or ENTER key is
pressed. This "logical Line" could fill the entire VDU screen,
but the computer can only interpret lines of up to 160 characters.
The INST/DEL with the SHIFT key produces a free space at the
position marked by the cursor. All characters following will be
pushed one space to the right.

2.8 CLR/HOME.

This key moves the cursor back to its start position top left
(HOME). If it is used with the shift key the entire screen is
cleared (CLEAR). By depressing the CLR/HOME key twice, any
predefined window is cleared and control of the whole screen is
re-established.

2.9 CTRL

"When pressed during a scroll in direct mode this key slows the
scroll rate. When pressed together with other non-letter keys,
the character on the front of the key is displayed. A range of
special functions is possible with some letter keys.

Functions of the control key:—

Without SHIFT with SHIFT
d Delete Delete
g Enable bell —

i Tab Tab
m Return Return
n Set text mode -

o Set top Set top
q Cursor down Cursor down
r RVS on RVS on
s HOME HOME
t Delete Delete

2.19 RUN/STOP

This key interrupts a program (if the programmer has not entered
this function into the program already). Pressed together with
SHIFT (in direct mode), the first program from disk in drive G is
loaded and started.

2.ll Commodore Key

when listing programs or data output, the screen display is
automatically "rolled" upwards (SCROLL) when the lowest line is
reached. By pressing this key, the scrolling is stopped, and is
started again by any other key.

__6__

760 Reference Guide The Keyboard

2.12 ESC Key.

This key resets from quotes mode and insert mode.

The computer is in quotes mode after pressing the " key (double
inverted commas). After this, some of the special keys mentioned
above no longer function as described, but the screen shows that
the relevant key has been pressed. This mode is ended by pressing
the " again or by using the ESC key. The purpose of this mode is
to store the control keys in a string for later display. (See
PRINT).

If SHIFT-INST/DEL are used together, the computer is switched to
insert mode. Here also, the cursor movements are not displayed
directly, but the key—pressing action is stored (the insert could
have occurred in a string in inverted commas).

The insert mode is switched off when all available places are
filled or by using the ESC key. The ESC key has a further special
function. when it is pressed the following letters generate
functions of their own:-

Letter Special
Key Function

a Sets Insert mode on.
b Sets bottom RH corner of the text window at

cursor position.
Resets insert mode off.
Deletes cursor line and closes up from below.
Non-flashing cursor selected.
Resets normal cursor (flashes).
Sets internal bell on (enable).
Resets internal bell off (disable).
Inserts a line on cursor line and moves text down.
Moves cursor to start (LH) of text on line.
Moves cursor to end (RH) of text on line.
Reset wrap mode off (enable scroll).
Set wrap mode on (disable scroll).
Reset screen to normal video.
Clear quotes and RVS, but not insert mode.
Erase to start-(LH) of cursor line.
Erase to end (RH) of cursor line.
Set screen to reverse video.
Reset solid cursor (from underscore).
Sets top (LH) corner of text window.
Sets underscore cursor.
Scroll vertically up one line.
Scroll down one line.
Reset from ESC sequence
(as if you had never pressed ESC).
Select normal character set chip.
Select alternate character set chip.u

*<
>

<
£
<

C
.r

rm
H

o
O

'U
O

:I
3
|*

-‘
7
"U

-'
-"

D
'k

Q
*‘

h
0
0
-0

Note: y and 2 only have an apparent effect if the character sets
are not identical.

__7._

7E0 Reference Guide The Keyboard

2.13 Numeric Keypad.

Sometimes you will want to use your 700 simply as a calculator.
All keys for this purpose are situated together on the RH side of
the keyboard (some are repeated on the main keyboard and have the
same effect).

On the keypad, with the exception of the ENTER key, all the keys
have the same function with or without SHIFT. Apart from the ten
numbers, you will find a decimal point, a double zero (for
convenience), the four calculation signs +, —, *, / and the CLEAR
ENTRY (CE) key with which you can erase the last number typed. Do
not use commas or colons in numbers.

The Question Mark key may be used as an abbreviation for the word
PRINT.

2.14 Function Keys.

Finally, there are 10 further useful keys - F1 to Fla - which are
situated top left on your keyboard. Each one of these keys can
take a command, a text or even a whole program, according to your
requirements. Each key may be used twice, since, when used with
the SHIFT key, each one of these function keys receives a second
meaning (Fll to F20). The functions allocated to each key are
listed on the screen after the command KEY. After switching on,
type KEY and then RETURN and the following list will appear:—

Key l,"print"
Key 2,“list"
Key 3,"dload“+chr$(34)
Key 4,"dsave"+chr$(34)
Key 5,"dopen"
Key 6,"dclose"
Key 7,"copy"
Key 8,"directory“
Key 9,"scratch"
Key lfl,"chr$("

Keys ll-26 (attainable together with SHIFT) are not defined at
power on. You can change the list at any time and also define
keys 11-20. For example, if you want to use Fll so that a BASIC
program from line 300 will be LISTed. You must obtain a free line
on the screen, type KEY 11, "LIST-3G0" + CHR$ (13) Now press
SHIFT Fl (F11) and the pro ram will list starting t line 366.
i‘E‘fiWTfi‘ RETUR

Function keys remain programmed until the machine is turned off.

7G0 Reference Guide BASIC 4.6+

CHAPTER 3

INTRODUCTION TO THE NEW ENLARGED BASIC 4.0+

The 7$G series computers are equipped with a considerably enlarged
BASIC 4.3+ interpreter. The new BASIC 4.6+ permits problems to be
solved by using individual programs exactly tailored for the
purpose. Whatever the solution, the new BASIC 4.6+ with a built-in
screen editor will do it quickly, easily and without problems.
The interpreter is built into every 70% computer as ROM(Read Only
Memory). This means that when the machine is switched on BASIC
programs can be loaded and started immediately.

This enormous memory capacity means that BASIC programs can deal
with more work more efficiently. Complicated algorithms for data
exchange between working storage and mass storage are no longer
necessary, as there is enough available work space. Room for
comprehensive error trapping in the user program no longer poses a
problem. It is now possible to use programs which previously were
only associated with very large machines. The most important
features of the new interpreter are:-

- Screen commands
- Formatted data output
- IF..THEN..ELSE structures
- Editing and directory processing
- Variable and data processing
- Error trapping
- Memory processing

76% Reference Guide BASIC 4.0+

3.1 Formatted data output

Processing programs need the facility to easily format print-outs
and tables. Commodore has therefore implemented the PRINT USING
statement. The number format on the printer or in a file is
easily defined with this statement. The most important features
are:-

- Positioning of numeric sign
- Positioning of commas and decimal points
- Exponent output
- Positioning of text

3.2 IF..THEN..ELSE Structures

The IF..THEN..ELSE structure is a very useful element in every
programming language. Existing programs which contain these
structures may now be used with the new interpreter. To
accentuate its efficiency, we will take a simple example:-

Variable C should be assigned the value of variables A or B,
depending on the larger of the two. Without the IF..THEN..ELSE
statement, the solution for this simple problem would be:-

A C=B:IF Q,>B Tl-Iél~7C.;5A
B

IF A>B THEN C
IF B>A THEN C

Using the IF..THEN..ELSE statement, however, the solution is
simplified:-

IF A>B THEN C = A: ELSE C = B

This simplification makes the program quicker, easier to
understand and simplifies the changing or expansion of an existing
program. This in turn saves time and money.

3.3 Editing Function, Directory Processing

The new BASIC has a DELETE command in order to erase BASIC program
lines. For example:-

DELETE 10-106

can be entered to erase all program lines between 10 and 100.

The new DIRECTORY command presents a list of all files in the
disk. For example:-

DIRECTORY "edu*"

(The * is a pattern matching symbol-see the disk drive manual).
This command will only fetch those file names beginning with the
letters "edu".

__1o__

790 Reference Guide BASIC 4.0+

3.4 Variable and Data Processing

The interpreter also offers an enhanced RESTORE statement in
conjunction with DATA and READ statements. Sometimes it is
necessary to re—read certain parts of DATA statements. With the
new RESTORE, the line number of the DATA statement to be read by
the next READ operation can be given. For example:-

RESTORE 503%

Sets the DATA pointer to the first item in the DATA statement in
line SGGG. Additionally, the interpreter has the string function
INSTR. Using this, one string can be sought within another
examp1e:—

11$ A$= "FIND THIS STRING"
20 LOC = INSTR (A$,"THIS")

The variable LOC now receives value 6 - the start position of the
word "THIS" in A$.

3.5 Error Trapping.

Sometimes it is sensible to trap errors which are normally
processed by BASIC, for example division by zero. In this
instance BASIC would normally give an error message and stop the
program. If a TRAP statement is used, such an error can be dealt
with by the program itself, allowing you to restart the program
where the error occurred. There are several ways of treating an
error. Variables can be corrected in the statement and
re—executed. The program execution can also be restarted at
another point. Error trapping in BASIC 4.6+ also gives
information on the type of error, on the line number in which it
occurred and, if necessary, the text of the standard BASIC error
message which BASIC would have displayed if the error had not been
trapped.

3.6 RS232 Interface.

The 70% is equipped with an RS232 interface as standard. This
interface allows connection with numerous types of printers,
screens and modems. The transfer procedure is internationally
standardised. Using the interface in BASIC is very simple: after
opening a data channel for the interface with an OPEN statement,
further programming takes place with PRINT or INPUT statements, as
used for a printer or disk.

__]'|__

700 Reference Guide BASIC 4.6+

3.7 Memory Processing.

In order to make use of all of the memory, some commands from the
BASIC interpreter have been enlarged and others added. These
commands and statements permit:-

- Direct working with PEEK and POKE statements in specified areas
of the enlarged memory,

- BLOAD or BSAVE commands for specified areas of the enlarged
memory,

— Detection of the free memory space in certain areas of the
enlarged memory.

_.]2__

700 Reference Guide Data Types: BASIC

CHAPTER 4

DATA TYPES IN BASIC.

Programs in every processing language process data. The
interpreter in the enlarged BASIC 4.6+ uses three data types:
real, integer and string. Arrays can be defined of each of these
types. An array is a combination of elements of the same type in
a form which can be visualised as a table of data. Generally,
real numbers are used to present fractional numbers — i.e. numbers
which have places after the decimal point as in 193.8899 or -9.66.
Integer expressions have no places after the point, as in 10 or
-3. Strings are used to present letters or text, for example:—

"Fred Bloggs" or "This is text".

4.1 Variables in BASIC.

Each variable receives its own name. A variable name consists of
up to 159 alpha-numerical characters and must start with a letter.
The last character may be a special character to determine the
type of variable. A variable name may not contain BASIC commands,
for example:— TOMATO is a syntax error because it contains the
BASIC word TO. Only the first two characters and, if present, the
last special character are stored. Differing variables, therefore
use this last character for identification. The data type is
determined by the variable name. Real numbers are defined by the
first two letters of the name for example:-

Al,BD,TD,I,J,K,Z8.

Integers are defined by the first two letters of the variable name
and a % (percent) sign. for example:-

A1% , zz% ,E‘8% ,J%, INCREMENT% .

Strings are defined by the first two characters of the name and by
a dollar sign (S) as last character for example:-

Al$,B$,AXE$.

The enlarged interpreter has several internally defined names and
words. These reserved words must not be used as variable names.
The reserved words are:-

- All function names
- Input/Output status (ST)
- Disk status (DS and DS$)
— Error status variables (EL and ER)
- Time variable (TIS)

NOTE: TI is not a reserved word.

__13__

700 Reference Guide Data Types: BASIC

4.2 Real Numbers.

The interpreter executes arithmetical operations in real format,
even if integer expressions are included. In this way, all
constants are stored in real format. A real number can be either a

whole number or a number with decimal places, and can be positive
or negative. For example:-

2.4442, —G.555S, 6.7893, 21, 778612, 441777.

Numerical data in this format have 5 bytes and are stored in two
parts as mantissa and exponent. The mantissa and the exponent
give the location of the decimal point. The Interpreter permits a

resolution of more than 1% decimal places for the mantissa.

The exponential form is a compact format for very large or very
small numbers. There are limits, however, for the absolute value
of numbers in real form. These are:-

Largest absolute value: approx. l.7E+38
Smallest absolute value: approx. 2.9E-39

If the maximum value is exceeded, the error message ? OVERFLOW
appears. If the minimum value is undercut, the value of the
variable becomes 0. An underflow error message does not appear.
These limits are also applicable for internal intermediate results
in arithmetic expressions. Exceeding the range in the intermediate
results can be the reason for unexpected error messages.

4.3 Integers.

A further way of storing numerical data is to use the integer
format. Integer variables are defined by a percent (%) sign as the
last character of the variable name. only integers may be stored
in this format, with a positive or negative sign. For example:-

1, 4711, 320G0, 8032, -5774, -22, 166.

As with real numbers, there are also limits for the absolute
values of integers:—

Largest integer = +32767
Smallest integer = -32768

If this range is exceeded, the error message ? ILLEGAL QUANTITY
will appear. All internal calculations use the real number
format. Integer values are converted into real format before
being used in a calculation. The result also appears in real
format. If such a result is changed into an integer, the places
after the decimal point are simply cut off and not rounded up or
down. So the expression A% = 5.9/2 will round up value 2 for the
integer variable A%, and will not round up the value to 3.

]4

766 Reference Guide Data Types: BASIC

4.4 Character Processing.

The third data format is text format (string). It is defined by a

dollar sign (S) as the last character of the variable name. Text
variables have a string of text characters, one byte per
character. The whole string of characters is referred to as a
single variable. Text constants are put within inverted commas in
order to be used in a BASIC program. For example:-

"Do you wish to continue?"
"l23456789"
"BASIC 4.G+"
"Any number or a word"

A text variable may contain:-

Alphabetical characters (A...Z, a...z)
Numerical characters (G...9)
Special characters (S/%:+—...)

The characters in a text variable are presented normally. The
control characters are presented in a reverse video if they appear
in a text variable. Text which is entered via the keyboard has a
maximum length of 157 characters for each text variable. In
addition, longer text variables can be produced by linking the
contents of more than one text variable by concatenation (+
operator).

For example: "TEXT l" + "TEXT 2" is "TEXT ITEXT 2"

But there are limits here too, the maximum length of a text
variable is 255 characters. If this length is exceeded, the error
message ?STRING TOO LONG appears. BASIC 4.0+ has a whole series
of functions to process text variables. There are functions to
establish the length of a text variable, to scan for a certain
text withinla variable, to convert a text variable containing
numerical characters into number format, and many others. A text
variable must never be used in a numerical expression, even if it
only contains figures. It must first be converted to a numeric
format.

__15__

700 Reference Guide Data Types: BASIC

4.5 Arrays.

An array is a collection of elements of the same data type, as in
a table. The whole array is described by a single name.‘ Each
element has a fixed position within the array and the position is
determined by an index. Let us take as an example a class of no
more than 50 students whose names are to be used in a program. It
would be highly impractical to process 50 different variable
names, one for each student. Instead, an array of 5% text
variables is used and the processing becomes very simple. The DIM
statement is used to define such an array in order to reserve the
relevant memory space:-

DIM NAME$ (49)

The NAMES array is uni-dimensional, and can be described using a
single index. The index lies within the range 0-49. Larger or
smaller values lead to an error message. Now the program may
print the names of some students. This could look like this:-

PRINT NAME$(0) to print the first name
PRINT NAME$(4) to print the fourth name
PRINT NAME$(49) to print the last name.

As you can see, a certain array element can be reached by entering
the index number. In the example the indices were numerical
constants but variables can also be used. To express the whole
array a FOR..NEXT loop can be used:—

10 FOR I = 0 TO 49
20 PRINT NAME$(I)
30 NEXT I

This example shows the simplest form of a data array —

unidimensional. The BASIC interpreter in the 706 allows for
multi-dimensional arrays within the following limits:-

Maximum number of dimensions = 255
Maximum number of elements per dimension = 32767

Theoretically, therefore, one array could be dimensioned with 255
different indices of which each can assume the value G-32767. If
the maximum value defined for the index is exceeded, or if one
tries to define a negative index, the error message ?BAD SUBSCRIPT
appears. If one tries to define an array with more than 32767
elements per dimension, the error message ?ILLEGAL QUANTITY
appears. If the defined array size exceeds the memory space
available in the system, the error message ?OUT OF MEMORY appears.
In BASIC 4.0+ the number range for the index starts with 0 and
ends with the maximum value defined in the DIM Statement. So an
array with the definition A (5) has 6, not 5 elements - the
indices can be between 0 and 5. Unidimensional arrays with not
more than 11 elements do not need to be previously defined by a

DIM statement. The actual array size is limited by the available
system memory.

__]6__

700 Reference Guide Data Types: BASIC

In the 7G9, this size is some 64 Kbytes for a uni-dimensional
array. To give an example of multi-dimensional arrays, let us
expand the number of students‘ names to 10 different classes, each
of which may have up to 56 students. The dimensioning of the array
1S now:-

DIM NAME$ (9,49)

In this dimensioning statement, the first index is used to address
the class and the second to find one child within that class. One
can imagine this as a table with 10 columns (B-9), one for each
class and 50 lines (fl-49), one for each student in the class.
This array can take 50$ students (10 columns * 5% lines). To find
an individual student in this array, one could write:-

PRINT NAMES ($,l3) to find the 14th child in the first class
PRINT NAME$ (9,1) to find the 2nd child in the 16th class.

It is sometimes confusing to use the G element of an array. If no
consideration of the memory limitation is to be taken, one can
simply ignore this element and start the counting with l, or use
this element for special purposes (to form sums for example).

__17__

760 Reference Guide Structure of BASIC

CHAPTER 5

STRUCTURE OF BASIC.

This chapter contains a summary of the fundamental elements of the
programming language BASIC and, in particular, describes the
language additions for the 7G0. If you are not already familiar
with BASIC and would like to learn it, you should use one of the
many introductions to BASIC which are readily available in
bookshops (see bibliography). This chapter does not replace an
introduction to the BASIC language. BASIC is an efficient and
easily understood programming language,simplifying the creation of
well—structured solutions to programming problems. Basic language
statements are of several types:-

Commands
Statements/Expressions
Functions

A command, an expression, or a function are given by specific
keywords. The keyword is recognised by the BASIC interpreter
during program processing and the operation associated with that
keyword is executed. For example, in the statement PRINT AS, the
keyword PRINT is recognised as a statement to print something.
The section of the BASIC interpreter which is responsible for data
print-out now analyses the rest of the statement (AS) in order to
ascertain what should be printed. In this instance it is the
contents of the string AS which will appear on the screen.

The classification of BASIC keywords into commands, statements or
functions depends on the type of action required by the
interpreter. Commands are used in order to do something with the
program. A program can be changed, listed, loaded, erased,
started, etc. by a command. Statements are the words which make
up the program. The computer is told by statements what it is to
do during the program run. Functions perform operations that
evaluate data for the program to process further. For example the
length of a string can be determined by a function. Functions are
always carried out as part of a Statement.

There are two ways to execute commands and statements in BASIC.
Either they are executed as part of a BASIC program (program mode)
or they are executed immediately after entry by entering them
without line number (direct mode). A BASIC Program line always
begins with a line number within the range G-63999. The entry of
a statement without line number in a direct mode is very useful
when looking for an error, one can see the value of the variables
straight away and change them if necessary.

__13__

700 Reference Guide Structure of BASIC

BASIC statements can be divided into four types:—

1. Declaration statements to define data and the user's own
functions in the program.

2. Program flow instructions to control the execution order
of a BASIC program and to permit certain parts to be re-run
or bypassed.

3. Expressions containing operations to calculate variables.

4. Input/output statements to regulate the data flow.

5.1 BASIC Commands.

Commands are used to prepare, change or print out a program. To
do this, program texts must be stored or loaded, the contents of
disks listed and the program started or stopped. In most cases
direct mode commands are used. There is a detailed description of
all BASIC commands in a later chapter and the following table
represents a brief summary:-

BASIC Commands Summary

BLOAD Load a file from disk.
BSAVE Save a file to disk.
CONT Restart an interrupted program.
DELETE Erase certain program lines.
DIRECTORY List the contents of a disk.
DLOAD Load a program from disk.
DSAVE Saving a program to disk.
HEADER Format a disk.
LIST List the program.
LOAD Load a program from a disk drive or

another device.
NEW Erase the whole program in memory.
RUN Start the program.
SAVE Save the program to disk drive or

other device.
SCRATCH Erase a file or program on the disk.
VERIFY Compare the program in memory with

a stored copy.
DCLEAR Initialise the disk operating

system.

__19__

7$0 Reference Guide Structure of BASIC

5.2 Declaration Statements.

Statements of this type have no direct influence on the running of
a program, even if they are executed during a program run. They
serve to define certain characteristics which may be used later in
the program. An earlier chapter described in detail how the data
type of a variable is defined by selecting the last character of a
variable name:-

No special character - real number
% character - integer
$ character - text (string)

This definition of the data type represents the simplest form of a

declaration statement for the BASIC interpreter. Further
statements of this type are shown in the following table:—

Further declaration Statements

DATA defines data tables which can be transferred to variables
by using READ statements

DEFFN defines a user function which can be used in later program
statements.

DIM variable (index l.....index n) defines an array variable
and reserves space for it.

The DATA statement is discussed in more detail in a later chapter.

Sometimes it is necessary to carry out the same calculation at
different points in the program. In such cases it is easier to
define this function with a DEF statement at a single point in the
program and use the function thus defined as and when required.
This saves time in program preparation and uses less memory than
if one were to repeat the same calculation over and over again.
The DEF statement is explained in detail in a later chapter.

The DIM statement defines data arrays. It is always used when an
indexed variable needs more than 11 elements. The use of arrays
and DIM statements is discussed in more detail in another chapter.

__2o__

706 Reference Guide Structure of BASIC

5.3 Statements for Program Control.

Statements of this type are used either to alter the sequence in
which certain parts of the program are processed, or to control
some aspect of the computer or program environment. In the
absence of special statements, the program will run in a
pre—determined sequence dictated by the line numbers. This means
program control always goes from one completed program line to the
next program line. However, sometimes not all the program lines
are to be processed in order. BASIC therefore has a group of
statements which allow the continuation of the program from
another point.

Sometimes it is necessary to alter certain parts of the program
environment. For example the CLR statement can be used to erase
all variables. Other statements from this group control the
memory.

The program control statements are:-

GOTO ON...GOSUB
USR ON...GOT0
CLR DISPOSE
RESUME TRAP
END RESTORE
FOR...NEXT RETURN
GOSUB STOP

IF...THEN...ELSE, WAIT, BANK, and SYS are described in a later
chapter.

__21__

700 Reference Guide

5.3.1

Structure of BASIC

Control of the program run.

BASIC has many statements which determine the sequence in which
the individual program parts are to be processed. These
statements can be split into three types:—

1.

20

Unconditional statements.
is always executed.

The jump in the program

Conditional statements. The program jump is
executed under certain conditions, otherwise no jump
occurs and execution carries on undisturbed.

Loop statements. A group of instructions are repeated
until a pre-condition is met. Then the loop is
completed.

Unconditional jump statements.

END

GOSUB linenumber

GOTO

RETURN

STOP

The normal end of program - READY appears on
the screen.

The program is continued at the line
whose number is after the GOSUB
statement;- used with RETURN to execute
a sub-routine before returning to the main
body of the program.

linenumber The program is continued on the
corresponding line;- used to jump over other
statements.

The program is continued at the
statement following the last GOSUB
statement;— used with GOSUB to continue
in the main body of the program.

The program is interrupted. BREAK IN
linenumber appears on the screen.
Subsequently the program may be
aborted or continued.

__22__

760 Reference Guide Structure of BASIC

Conditional jump statements.

IF condition THEN linenumber
or: IE condition GOTO linenumber

The program branches only when the
given condition is true.

Example: IF a = b THEN 50%

The program continues at line 560 only if a and b are equal.

IF condition THEN statement 1: ELSE statement 2
If the given condition is true, statement 1 is
executed, otherwise statement 2 is executed.

Example: IF a=b THEN c=d+1: r=sqr(a): ELSE c=d-1: r=sqr(b)

If a=b then c=d+1 and r=sqr(a), otherwise if a is not equal to b,
c=d-1 and r=sqr(b)

ON variable GOSUB jumplist
The sub-routine whose position corresponds to
the variable in the jump list is called by
the GOSUB statement.

Example: ON I GOSUB lflG,200,560

If I is 2 then gosub 2E0 is executed.

ON variable GOTO jumplist
The same as ON GOSUB, but the call is a GOTO.

._.23_

700 Reference Guide Structure of BASIC

Loop Statements.

FOR variable = start To end STEP stepsize...BASIC
statement(s)...NEXT variable

All instructions between FOR and NEXT are
repeated as a loop. Therefore the variable
before the first loop run is set at start.
When NEXT is executed, the value step size is
added to the loop variable or, if STEP is not
given, value 1 (by default). If the variable
is still smaller or equal to end, then the
whole loop is executed again.

Example: FOR I = 1 T0 10 STEP 2: PRINT A(I): NEXT I

All uneven elements of array a() between 1 and 16 are printed.

WAIT address, mask 1, mask 2

The byte in the address is tested. Firstly
the exclusive OR is formed between the
contents of the address and the value of mask
2. This intermediate result is ANDed with the
value of mask 1. If the result is 0, the WAIT
statement is executed again.

Example: WAIT 62255, 1, l

The program waits at this point until the lowest bit in location
62255 is 0. (If mask 2 is ommitted the default value of G is
assumed).

Structured programming.

The statements GOSUB, ON...GOSUB and IF...THEN...ELSE form the
basis of structured programming. It is possible, using these
statements, to divide a large program into small and easily
manageable sections.

GGSUB and ON...GOSUB can call a sub-routine from any part in the
main program. By using GOSUB and 0N...GOSUB statements, a
programming problem can be split into several smaller problems
which are linked via GOSUB statements. This split clarifies the
overall appearance and facilitates debugging when the program is
being tested.

The IF...THEN...ELSE statement is one of the most elegant methods
of structuring a program. The simplicity and efficiency of this
statement saves time and greatly increases the legibility of a
program.

__24__

700 Reference Guide Structure of BASIC

5.3.2 Interception of Program Errors.

One of the most important features of the new BASIC 4.0 + is its
capacity to treat errors (bugs) arising in the program. The bug
can be trapped, analysed, and the program restarted at the
relevant point when suitable changes have been made. The
statements TRAP, DISPOSE and RESUME work with the pre-determined
variables ER and EL and the function ERR$ (ST, DS and DSS may also
be involved in the handling routines).

Tracking the bug.

The statement TRAP diverts the program to the relevant line.
BASICS own treatment of errors (which can still interrupt a
program in more complicated cases) is not involved and errors can
be treated independently.

Analysis.

The bug treatment routine shows which error has occurred by the
variable ER which contains the "error number". The variable EL
contains the line number where the error occurred. The text
variable ERR$ contains the normal BASIC error message which the
computer would otherwise have used in its own error routine. This
message can be printed out if required.

Switching off Error Treatment.

A TRAP command without line number parameter reactivates the
system's own error treatment. This is of interest if errors have
to be trapped only in certain parts of the program, but if the
normal error treatment is required otherwise.

Error Treatment and the Stack.

When instructions like GOSUB, ON...GOSUB or FOR are executed,
values are placed on the Stack. The DISPOSE statement is used for
removing these values. The RESUME statement can continue the
program afterwards.

25.

700 Reference Guide

Statements for Error Treatment.

DISPOSE FOR/GOSUB

Structure of BASIC

The Stack entries of a FOR...NEXT loop
or a GOSUB...RETURN structure are cleared.
Then the program can be continued by using
RESUME.

RESUME NEXT/linenumber

when debugging has been completed, RESUME
then dictates whether the program carries on
at the next statement after the error
statement (NEXT) or at any point in the
program (linenumber).

TRAP linenumber

When an error occurs the program jumps to
the given line number. If the linenumber
parameter is not given, then standard error
handling is invoked.

Error Messages.
These are accessible using ERR$().

k
)k

)l
\)

t\
)f

-‘
I-

‘I
-‘
P

-‘
I’
-‘
\D

®
\l
O

\U
|o

l>
L

a
J
l\
)I

4
Q

b
u
lb

)!
-‘
Q

O
\U

1
-B

l-
‘Q

STOP KEY DETECTED
TOO MANY FILES
FILE OPEN
FILE NOT OPEN
FILE NOT FOUND
DEVICE NOT PRESENT
NOT INPUT FILE
NOT OUTPUT FILE
MISSING FILE NAME
ILLEGAL DEVICE NUMBER
ARE YOU SURE?
BAD DISK
BREAK
EXTRA IGNORED
REDO FROM START
NEXT WITHOUT FOR
SYNTAX ERROR
RETURN WITHOUT GOSUB
OUT OF DATA

.26

ILLEGAL QUANTITY
OVERFLOW
OUT OF MEMORY
UNDEFINED STATEMENT
BAD SUBSCRIPT
REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT
TYPE MISMATCH
STRING TOO LONG
FILE DATA
FORMULA TOO COMPLEX
UNDEFINED FUNCTION
?LOAD ERROR
?VERIFY ERROR
OUT OF STACK
UNABLE TO RESUME
UNABLE TO DISPOSE

769 Reference Guide Structure of BASIC

5.3.3 Program environment in BASIC.

There are two statements which alter the environment of a

program:-

CLR and RESTORE.

CLR - clears all variables (and resets the Stack)

RESTORE line number - The data pointer to the start of the given
line or, if no line number is given, to the start of the first
DATA statement in the program.

5.4 Arithmetic Expressions.

Arithmetic expressions are used at many points in a BASIC program.
An expression is a combination of variables, constants, function
references and operators which produces a single numerical value
as a result. For example, A+2. This expression contains variable
A, constant 2 and the operator +. The result of this expression
is a single numerical value.

5.4.1 Operators.

Operators determine how the variables and constants are related in
an expression. There are logical and numerical operators.
Logical operators are:-

AND (A AND 2)
OR (A OR 2)
NOT (NOT A) (EOR is not available)

NOTE: Logical operations are carried out in 16 Bit binary.

__27__

700 Reference Guide Structure of BASIC

5.4.2 Numerical operators.

Numerical operators are:

+ addition (A + 2)
- subtraction (A - 2)
* multiplication (A * 2)
/ division (A / 2)
‘ exponentiation (A ‘ 2) (Do not use ** as an

alternative)
digit sign + (+3)
digit sign - (-3)

Warning:

-2 ‘ 2 gives the value -4, and not 4.

The higher valued operator (‘) is always executed first and then
the lower (-). A different result therefore can be obtained by
using brackets:-

(-2) ‘ 2 is 4.

NOTE: All arithmetic operations are carried out in floating point
format.

5.4.3 Text Operator.

A single operator may be used with text (string) variables. The
plus sign + is used to join (concatenate) variables. In this
operation text variables are connected so as to form a new text
variable. For example:—

A$="Text l"+"Text 2"

gives: "Text lText 2" as the result in a$.

The length of the resulting string is the sum of the lengths of
the individual strings. One must therefore take care that the
total length does not exceed 255 characters.

__28._

700 Reference Guide Structure Of BASIC

5.4.4 Logical operators.

If we turn these operators to numbers, then first we should
observe the binary presentation. Let us take 35 and 36 as the
examples:-

Binary Decimal
GGGGGGGGGGIGGGII 35
GGGGGGGGBGIGGIGG 36

The operation AND now forms the logical AND between both numbers
by bit:-

Gflflflflflflflflfllflflflll 35
AND flflflflflflflflflfllflfilflfl 36
= Gflflflflflflflflfllflflflflfl 32

The OR operation works like this:-

OGGOGGGGGGIGGEII 35
OR GGGGGGHGGGIGGIGG 36
= flflflflflflfiflfifllfifllll 39

In order to understand an IF expression, one must know how the
logical values TRUE and FALSE are presented. The logical value
TRUE in binary form has 1 in any bit position. The logical value
FALSE has G in all bit positions.

FALSE = GUOGGUGGGGGGUDUG = 0

Data expressions are only FALSE if they have a 0 in every
position. All other expressions are TRUE.

Therefore, instead of ‘IF A<>0 GOTO 21' one could write ‘IF A GOTO
21'U

__29__

700 Reference Guide Structure of BASIC

5.4.6 Hierarchy of the Operators.

Individual terms are not necessarily processed in the sequence in
which they were entered. Exponentials are evaluated first, then
multiplications or divisions and lastly additions or subtractions.
Let us examine the simple expression 2+8/2. If this expression
were processed in the order in which it is written, 5 would be the
result (mathematically incorrect). However, in this example, the
division must take place first and then the addition. The correct
answer is now 6. Care must therefore be taken when programming
formulae. If the formula is to be worked out from left to right,
then it should be written (2+8)/2. Brackets (parenthesis) override
the normal hierarchy, forcing the expressions in brackets to be
evaluated first.

The operators are always carried out in the following sequence:-

Al. Exponentiation or "Raising to a power"
2. * and / Multiplication and division
3. +, -, Negation Addition, subtraction and negation
4. <,> etc. Relational Operators
5. NOT Logical Operator
6 . AND " "
7 . II II

Operations at the same level in this hierarchy are evaluated'from
left to right. So, all arithmetic operations are evaluated first,
then the comparisons and finally the logic. To alter this
sequence in a formula, brackets must be used. An expression in
brackets is always evaluated first. The result of this expression
is used in the remaining formula, as in the example above.
Bracket expressions can also be nested within each other. In this
case, the expression in the innermost brackets is evaluated first.
In the expression (A-(B+C))/D, B+C is formed first, the result
subtracted from A and then divided by D.

__3o__

7G0 Reference Guide Structure of BASIC

5.4.7 Input/Output Statements in BASIC.

There are a large number of Input / Output (or I/O) statements
for:—

- Screen.
- Keyboard.
- Printer.
— Disk drive.
- Serial interface.
- Peripherals on the IEEE bus.

There are two types of I/O statement:-

- Statements for control.
- Statements for data transfer.

BASIC statements used for Data Input/Output.

Control Statements Transfer Statements

CLOSE BLOAD
DCLOSE BSAVE
DOPEN CMD
OPEN GET
PUDEF GET#

INPUT
INPUT#
PRINT
PRINT#
PRINT USING
PRINT# USING

BLOAD and BSAVE are dealt with in detail in a later chapter. The
I/O statement represent a bridge between the program and the
outside world. Without these commands the program can still alter
data but it is unable to present results. If you need to read
data stored in external memory, the computer must first be told
the storage location (on which device) and then the name of the
storage file. Likewise, for storing the system must know under
which name to store the data, and on which device.

5.5.1 Preparation of data Input/Output.

The control statements are used to prepare the system for data
transfer and to open or close channels to the corresponding
peripherals.

The commands OPEN and CLOSE are used to:

- Allocate a file or peripheral with a channel number.
- Open a file.
- Close the file after data transfer.
- Activate a device such as a printer.

__3]__

790 Reference Guide Structure of BASIC

Preparation for Data transfer statements.

OPEN channelnumber, peripheralnumber, (command), (openingtext).

Open a data channel for a peripheral device and allocate a logical
channel number. Several commands can be given to the device, and
an opening text may also be sent, depending on the device and file
type.

CLOSE channelnumber

This closes all I/O operations for the channel which was given
this channel number.

NOTE: Before giving any commands to transfer data from a file to
the computer memory, the peripheral must first have a channel
number assigned to it. This channel number will be used in all
data transfer statements to tell the system where the data should
go or where it can be obtained. Some devices recognise certain
special commands. For example, one can tell a printer to move the
paper to the top of the next page. Once a file has been opened,
program control enables you to read from it or write to it. If a
device or file is no longer needed, the channel should be closed.
If the CLOSE command is not given, data may be subsequently lost
or corrupted.

5.5.2 Data Transfer.

After establishing the channel, data transfer can be executed
using BASIC statements. Some transfer commands serve to obtain
information for the program from the user. Others tell the user
what the program is doing. For example, the INPUT command is used
to gain information from the keyboard and the INPUT# command to
get information from a file. The PRINT command gives the user
results, the PRINT# command sends data to a file.

__32__

760 Reference Guide Structure of BASIC

Input/Output Statements.

BLOAD filename ON Bbank, P offset

Reads binary information from a file and stores it in the memory
segment bank starting at location offset. BLOAD reads a file as
binary data and not as program text.

BSAVE filename ON Bbank, P start TOP end

Copies the memory contents from the segment bank in the area
between start and end to the file specified in filename.

CMD Channelnumber (,text)

Output, usually to the screen, is switched to the channel number
by this command. A text can be sent and appears as the first line
output. The device is left ‘listening’.

GET Variable

Reads a single character from the keyboard. GET does not wait for
input. If the keyboard buffer has no more text characters, the
program will run on and the variable will be assigned 0 or null as
appropriate.

GET# Channelnumber, variable

Reads a single character from the channel and allocates it to the
variable. This command does not wait if there is no character to
read.

INPUT (promptstring), variablelist

Prints the promptstring on the screen and waits for input from the
keyboard. This data is then transferred to the variable(s) in the
list. If each variable has not been given a value, a double
question mark in.printed and the input for the next variable
requested. The program waits until all variables have an
acceptable value.

INPUT# Channelnumber, variablelist

Reads data from the channel and allocates them to variables in the
variable list until all variables have a value. The program is
interrupted for as long as this takes.

__33__

70% Reference Guide Structure of BASIC

PRINT (variablelist)

Prints all variables, expressions and functions from the
variablelist to the current output device, usually the screen.
PRINT uses standard BASIC formatting.

PRINT# Channelnumber, Variablelist

Writes the variablelist to the channel.

PRINT USING Formatlist, Variablelist

Gives formatted data output on the current output device. The
print format is defined by the formatlist.

PRINT# Cbannelnumber USING formatlist, variablelist

Formatted output to a channel.

PUDEF Controltext

Defines full characters, separation characters, decimal point
symbols and currency characters by the characters which have been
given to the controltext. These characters are used in the format
output by PRINT USING.

READ Variablelist

Reads data from lines in the program.

__34__

700 Reference Guide Structure of BASIC

5.4.4 Relations.

These are operators which compare two values with one another.
These are:-

smaller than
smaller than or equal to
larger than
larger than or equal to
equal
UnequalA

I
I
V

V
/
\
/
\

V
II

An expression which uses comparative operators can only have a
TRUE or FALSE result. For example: A>B tests if the value of A is
larger than that of B. These operators are mainly used in
connection with the IF statement. A typical example:-

IF (A>B) OR (C<D) GOTO IGBG

In this case the expressions A>B and C<D are connected by the
logical operator OR. There are two conditions of which at least
one must be TRUE. There is then a jump to line 1006.

__35__

700 Reference Guide Structure of BASIC

Logical expressions in BASIC.

If logical operators appear in an equation, the numerical values
of the variables in question are converted to the 16 Bit binary
format. The individual logical operations are then executed by
bit. The value 35, for example is presented as Gflflflaflflfiflfllflflflll
in the binary format. Logical operations are AND, OR, and NOT.
The first two operate on two numbers and NOT operates on a single
number. The AND operator only produces a 1 if both variable values
connected by it were logically 1 also:-

I AND 1 is l
G AND 1 is 0
lANDOis$
6 AND fl is Z

The OR operator produces a 1 if either of the values was a logical
1:-

1 OR 1 is l
0 OR 1 is 1
1 OR 0 is l
0 OR 0 is 0

70% Reference Guide Sound and Music

CHAPTER 6

SOUND AND MUSIC

Introduction

Tone production with your computer has three main uses: playing of
musical pieces, producing sound effects, and the sounding of
‘warning noises’.

6.1 Structuring a Music Program

The sound of a tone is determined by four characteristics:

Pitch, volume, waveform and envelope. The last two of these
enable us to differentiate between various instruments by ear and
these characteristics will also need to be influenced in your
program.

Your 7G9 has for this reason'a special integrated circuit: The
Sound Interface Device (SID). The SID has a range of memory
locations reserved for parameters which control the synthesis of a
desired sound. You already know that your 700 can simultaneously
produce three voices. Let us consider the first of these. The
base address of the SID is 55808 in memory bank 15, (the system
bank). (E.g: SI = 55808 assigns the base address to the variable
SI).

The pitch is physically determined by the frequency. The
frequency is stored by a parameter in the SID, and this can assume
values between almost 6 and GSDGG. As it is impossible to store
such large numbers in a single memory location, we must break down
the frequency parameter in to one high and one low byte. These
bytes occupy the first two registers of the SID:-

FL = SI (frequency, Lo-byte) :REGISTER 0 is the 1st register.

FH SI+l (frequency, Hi-byte) :REGISTER l is the 2nd register.

16 settings are allowed in the SID for the volume - from 0
(switched off) to 15 (full volume). The corresponding parameter
is stored in Register 24:-

L = SI+24 (volume) :REGISTER 24 is the 25th register.

37

700 Reference Guide Sound and Music

Now comes the waveform. The SID offers four fundamental forms:
triangle, sawtooth, square and noise. Each one is controlled by a
bit in Register 4:-

W = SI + 4 (waveform)

In order to select one of the waveforms, you write into this
register one of the parameters 17, 33, 65 and 129. If you choose
65 (square wave) you must also determine a futher parameter
between 0 and 4095 for the pulse width. The two bytes of this
parameter are in registers 2 and 3:-

TL SI+2 (pulse width, Lo-byte)

TH SI+3 (pulse width, Hi-byte)

Finally, we have the ‘envelope’. Your 706 allows every tone to
rise to the volume set in register 24 - then to decay somewhat -

the volume now stays fixed as long as you keep the tone switched
on.

Then the volume subsides. Four parameters take part in this
envelope which the SID processes in 2 further registers:-

A SI+5 (attack and decay)

H SI+6 (sustain and release)

Each one of these registers is split into two: the parameter in
the 4 higher bits from A determines the rise time of the tone and
the parameter in the 4 lower bits determines the decay. Small
values mean quick/hard; large values mean slow/soft. This also
applies to the lower 4 bits of H which control the fade of the
tone after switching off. The 4 higher bits of H determine the
volume at which the tone is held (sustain level)- the highest
value gives the volume previously set in register 24, lower values
cut this volume proportionately.

6.2 Sample Program

You must first decide which voices (or tone generators) you want
to use. For each of these voices, the settings (volume, waveform,
etc.) must be determined. You can use up to three voices
simultaneously - this example uses only voice one:-

__33__

700 Reference Guide Sound and Music

13 SI+55808:FL=SI:FH=SI+1:W=SI+4:A=SI+5:H=SI+6:L=SI+24:REM DEFINE

26 BANK 15 :REM SID is in bank 15

30 POKE L,l5 :REM Full volume

40 POKE A,16+9:POKE H,4*l6+4 :REM ADSR

S6 POKE FH,l4:POKE FL,lG6 :REM Hi and Lo byte of the frequency

60 POKE W,l7 :REM Waveform. (Should always be set
last since the lowest bit in this
register switches the tone
generator on or off.)

76 FORT=lTO5G0:NEXT :REM Loop to set duration of tone

80 POKE W,0:POKE A,U:POKE H,G :REM Switch Off.

Type RUN to hear the sound generated by this program (The REMS may
be omitted).

6.3 Melodies

You don't have to be a musician to produce melodies with your 706.

Here is a sample program which shows how it is done. We are using
only one of the three available voices. Erase or save the
previous program and try the following:-

__39__

7E0 Reference Guide Sound and Music

10 SI=558G8:FL=SI:FH=SI+1:W=SI+4:A=5I+S:H=SI+6:L=SI+2U:REM
Definiton of register addresses

20 BANK 15 :REM SID is in bank 15.

36 POKE L,15 :REM Full volume.

40 POKE A,9 :REM Attack/Decay.

5a READ X:READ Y :REM Hi-byte lo-byte of the frequency
from the data lines in 13% and 140.

60 IFY=-ITHENPOKE W,0:END :REM (When the program finds the -l at
the end, it will switch off.)

7% POKE FH,X:POKE FL,Y :REM Set frequency.

80 POKE W,l7 :REM Set waveform and switch on.

96 FORT=lTOl0G:NEXT :REM Tone duration (delay loop).

1G0 POKE W,G :REM switch off.

110 FORT=1TO1G:NEXT :REM Short pause to fade.

129 GOT0 4% :REM Next sound.

130 DATA8,l46,9,159,l0,2G5,ll,ll3,l2,2l6,l4,1G6,l6,46,l7,37

14¢ DATA-1,-l :REM These data (useless as frequency)
end the program in line 66.

The numbers in the data statements in line 130 are pairs, each
representing the hi-byte and lo-byte of the C-sharp scale.

If we want to produce tones which are similar to those from
cymbals, we must alter line 86 in the following way:-

POKE W,33

By using this POKE command, we are selecting a sawtooth waveform;
this means that we obtain "sharper" sounds than in the triangular
waveform used previously.

But selecting the waveform is only one of the ways to determine
the sound character. We can turn the cymbals into a banjo by
altering the choice of the attack/decay value. This can be done
by using the following command in line 40:-

POKE A,3

In this way, you can imitate the sound of various instruments.

__4o__

70% Reference Guide Sound and Music

6.4 other Sound Settings

6.4.1. VOLUME

Selection of volume is made for all three tone generators
simultaneously. The register for this has the address 55832.
Maximum volume is attained by poking 15 into this register:

POKE L,l5 or POKE 55832,l5

To turn off the tone generators, put a 0 in the register:-

POKE L,a or POKE 55832,G

The volume is generally set at the beginning of a music program;
but interesting effects may be achieved by programmed alteration
of the volume.

6.4.2. WAVEFORM

As seen in our example, the waveform largely determines the
character of a sound. You can set the waveform separately for
each voice - you have a choice between triangle, sawtooth, square
and noise.

The following table gives a summary:

Summary of waveform setting

Voice Location Waveform Value

Square 65

l 4 Sawtooth 33

2 ll Triangle 17

3 18 Noise 129

Thus POKE 5S808+l1,l7 sets voice 2 to use the Triangle waveform.
(Remember 55808 is the base address of the SID).

__4]__

10
20
30
40
50

76
80
96
10
11
12
13

709 Reference Guide Sound and Music

6.4.3 ENVELOPE

The values for attack and decay (which can be selected separately
for each voice) are used together as a single value. The attack
parameter gives the time it takes for the tone to reach its
(predetermined) volume, the decay parameter is a measure of how
quickly the volume decays to the sustain level. If 0 was selected
as the sustain level, then the decay parameter gives the release
time (to volume 0) and thus determines the length of tone. The
address for the individual voices and the values corresponding to
the various settings can be seen in the following table. (The
values selected for attack and decay are added and the sum POKEd
into the corresponding register.)

Attack/Decay setting

Voice Location

1 5 Attack value ranges from G to 240 in

2 l2 multiples of 16. .

3 19 Decay values range from 0 to 15.

Thus POKE 55808+l2,(16*2)+l3 sets voice 2 to a fairly‘hard attack
and a fairly soft decay.

The following program is a further example of these commands in
use:

REM 6.4.3
SI=5S8$8:FL=SI:FH=SI+l:TL=SI+2:TH=SI+3:W=SI+4:A=SI+S:H=SI+6:L=SI+24
PRINT"PRESS A KEY" :REM Screen message.
GETZ$:IFZ$=""THEN4fl :REM Wait for Key.
BANKl5:POKE L,l5
POKE A,l*l6+S
POKE H,o*16+a
POKE TH,8:POKE TL,o

:REM
:REM
:REM
:REM

Volume.
Attack and decay.
Sustain and release.
Pulse width.

POKE FH,7:POKE FL,53 :REM Frequency.
0 POKE W,l7 :REM Waveform, generator on.
0 FORT=lTO2G0:NEXT :REM Duration.
0 POKE‘W,0 :REM Off.
0 GOTO4G :REM Repeat.

__42__

700 Reference Guide Sound and Music

Voice 1 produces a tone with short rise time and short decay phase
when the maximum volume has been reached, (line 60). What can be
heard should sound like a ball which is bouncing about inside a
lead drum. To produce another sound, we must alter this line.

Stop the program with RUN/STOP. List the program and alter line
60 as follows:

60 POKE A,ll*l6+l4

The tone produced with this new setting sounds something like an
oboe or some other woodwind instrument.

Experiment yourself, change the waveform and envelope to get the
feeling of how the various values of these parameters can change
the character of the tone.

Similar to the previous register, the sustain and release of the
sound are determined by a numerical value which can be calculated
by adding the values which appear in the following table:

Sustain/Release setting

Voice Location

1 6 Sustain value ranges from G to 240 in
2 l3 multiples of 16.
3 26 Release values range from G to 15

Thus POKE 558G8+l3,(16*2)+l3 sets voice 2 to a fairly quiet
sustain level and a fairly slow release.

Change the 0's in line 76 to any value up to a maximum of 15 and
listen to what emerges!

6.4.4 THE CHOICE OF VOICE AND NOTES

As already stated, to produce a tone, you must use two values for
the frequency. Because the voices are controlled by different
registers you can independently program the three SID voices and,
for example, produce a three-voiced piece of music.

POKE values for the middle octave

Location Value

Voice 1 2 3 Note C C# D D# E F F# G G# A A# B C

Hi-byte l 8 15 17 l8 19 20 21 22 24 25 27 28 30 32 34

Lo-byte E 7 14 37 41 62 90 153 226 62 175 54 213 139 92 73

__43__

705 Reference Guide Sound and Music

To generate 'C' with voice 1, you must use the following commands:

BANK 15: POKE S58G9,l7: POKE 558$8,37

or POKE SI+l,17:POKE SI,37

The same tone with voice 2 can be obtained by:

BANK l5:POKE 558l6,l7:POKE 558l5,37

or POKE SI+8,l7:POKE SI+7,37

Sound Effects

Unlike music, sound effects should accentuate events on the screen
(explosion of a space ship, etc.) or they should inform or warn
the user of a program. (For example, that he is in the middle of
erasing his data disk.)

Here are a few suggestion for experimentation:-

1. Alter the volume during the tone to produce an echo effect.

2. Jump quickly from one sound level to another, to achieve
tremolo.

3. Try out the different waveforms.

4. Study the envelope. (Ask a synthesizer player about ADSR.)

5. Surprising effects can be obtained by varying the programming
of the three voices (eg: hold the tone in one voice for longer
than in another).

6. Use the square wave and change the pulse width.

7. Experiment with the noise generator to produce explosion
noises, arms fire, footsteps, etc.

8. Alter the frequency quickly over several octaves.

9. Use a frequency setting that alters.

__44.__

706 Reference Guide BASIC Commands

CHAPTER 7

BASIC COMMANDS

INTRODUCTION

The following chapter describes in detail all commands for the
BASIC 4.6+ interpreter. The special commands for disk use, such
as HEADER, SCRATCH, COPY, etc. are each described in the user's
manual for the floppy disk.

BASIC commands are used to change, run, start or erase a program.
When the command is executed depends on whether it is entered in
direct mode (without line number) or in program mode (with line
number as part of a BASIC program).

Commands in direct mode are executed as soon as the RETURN key has
been pressed. Qommands in the program mode are executed just as
BASIC statements, when it is their "turn" in the program. The
CONT command cannot-be used in a BASIC program. This section
deals with the following commands:-

CONT DLOAD NEW
DELETE DSAVE RUN
DIRECTORY LIST

7.1 CONT

Format: CONT

Abbreviation: co

The CONT command is used to start a program again arter an
interruption. The reason for the interruption may be:-

- The STOP key was pressed

- The program executed a STOP statement

- The program executed an END statement

when CONT has been entered, the program runs on from the point it
was interrupted. If the program is interrupted, the actual value
of the variables can be examined, variable value altered or a list
made on the screen. This command is very useful, therefore, for
debugging.

__45__

768 Reference Guide BASIC Commands

CONT does not function if:-

- The program itself was altered.

- The program has stopped because of an error.

- An error has occurred during the interruption by use of
commands or statements in the direct mode.

If the CONT command cannot restart the program, the error message:

?CANNOT CONTINUE

appears.

7.2 DELETE

Format: DELETE [from] [-] [to]

Arguments: from gives the line number of the first BASIC
statement which is to be erased to is the number of
the last BASIC line to be erased.

Default: (if nothing is given)

from = first line of BASIC program
to = last line of BASIC program

Abbreviation: dE

The DELETE command is used to erase one or more program lines from
the program memory. It erases all lines between from and to
inclusive. If only one argument is given (from) , then only one
single line is erased. If both are left out but the dash given,
then the whole program in the memory is erased. Examples:-

DELETE ZG-SG erases lines 20 to 50
DELETE -75 erases all lines from program start to line 75
DELETE 300- erases all lines from 30% to end of program
DELETE - erases the whole program.
DELETE B erases the whole program
DELETE by itself generates a syntax error.

7.3 DIRECTORY

Format: DIRECTORY [Dnumber] [, filename] [, Uaddress]

Arguments: Dnumber is the drive number, whose contents are to
be presented.
filename is the name of a data file, always in
inverted commas or as a string variable in brackets.
(The name may also contain the special characters
"*" or “?" to pattern match the name, or "=p/u/r/s“
to pattern match the file type.)
address is the device address of the memory unit on

.__46._._

76¢ Reference Guide BASIC Commands

the IEEE bus (usually 8).

Default: If the parameter is not given, the contents of the
disks in both drives are shown on the screen.
If no filename is given, all disk files are fetched.
Without address device 8 is assumed.

Abbreviation: diR

The DIRECTORY command fetches a list of all data files which have
been put on to disk.

If a star (*) is used as last character of a filename, only those
filenames will appear on the screen which correspond with the
letters in the filename up to the star. If a question mark is
used within the filename, then all filenames will appear
corresponding to the rest of the filename. Example:-

DIRECTORY "test??data"

A list will be fetched with all filenames which have the letters
"test" and "data" at the given points, eg:-

"testflldata"

“testxydata"

"test..data", etc.

ie. "?" means that there must be a character in the filename. but
it may be any character.

The star is used to ignore the rest of the filename.

Example:-

DIRECTORY "test*"

A list will be fetched with all the filenames which start with the
letters "test", eg:-

"testfla data"

"testdata"

"test program"

"testscorecard"

"test", etc.

The use of star or question mark can present parts of the disk
contents in one easy-to-survey manner. other examp1es:-

__47__

7G0 Reference Guide

DIRECTORY

DIRECTORY

DIRECTORY

DIRECTORY

DIRECTORY

DIRECTORY

7H4

Format:

Arguments:

Default:

Abbreviation:

II *7!

d@,"DATA*"

ll

"*=S",d1,U9

(A$)

DLOAD

DLOAD

loaded.
can be
given,
variabl

number
addres

dL

BASIC Commands

The filenames of all files on both disk
drives are fetched.

Names of all files which start with "pgm#"
are fetched.

The names of all files which begin with the
"DATA" in drive 0 are fetched.

The names of all files which have any two
characters in position 1 and 2, followed by
letters "xyz" are fetched.

Fetches all sequential files of any name from
drive 1 of unit 9.
Note: diRu9,dl,"*=S" would serve the same
purpose.

Fetches files whose names or types correspond
to whatever A$ is assigned.

filename [,Dnumber] [,Uaddress]

filename is the name of the file which is to be
The name can either be directly given, or

a text variable. If the name is directly
it must be within inverted commas. If a text
e is given, it must be within brackets.

= G : drive
s = 8 : unit

The DLOAD command is used to load BASIC programs stored on a disk
into the program memory.
files.)

special preliminary procedure or
auxiliary program.

(BLOAD command must be used for other
DLOAD can be used to load BASIC programs from older

Commodore computers.
onto an older Commodore computer is, however, only possible with a

D

To store a program with DSAVE and load it

(see Technote 506/766-014) an

LOAD can also be used during a program. when
the DLOAD has been executed, the new program is started
immediately. The var iables of the old program are retained (or
may be erased with the CLR command).

Example:

Store the program called "ONE" with DSAVE“0NE" on your disk in
drive G, then enter the program called "TWO" and start with RUN:

.48

700 Reference Guide BASIC Commands

PROGRAM TWO:

10% REM TWO
110 REM
120 REM CALL UP PROGRAM
130 REM
140 REM HERE THE VALUES
15$ REM OF THE VARIABLES ARE DEFINED
160 REM
170 A=1G0
180 A$="FRED BLOGGS"
19$ DLOAD"ONE"
230 REM THIS LINE IS NEVER REACHED
210 PRINT "IF YOU SEE THIS, THERE HAS BEEN ERROR"
220 END

PROGRAM ONE:

100 REM ONE
110 REM
12$ REM THIS PROGRAM READS THE VARIABLES
130 REM OF THE CALLING PROGRAM
140 REM
156 PRINT A$“ IS"A" YEARS OLD"
16$ END

7.5 DSAVE

Format: DSAVE filename [,Dnumber] [,Uaddress]

Arguments: filename is the name of the file which is to be
stored by DSAVE. The name can be given directly or
can be in a text variable. If it is given directly,
it must be enclosed within inverted commas; if a

text variable is given, it must be in brackets.

Default number = 0
address = 8

Abbreviation: dS

The command DSXVE is used to store programs on a disk. DSAVE can
also be used within a program. It is often necessary to update
the program copy on the disk. If the new program version is to be
stored on disk under the same name, the old disk file must first
be erased. To do this, the special sign "@" can be written at the
start of the data file name.

Example: DSAVE "@june"

By this command, the program is written from the memory to the
file “june". The old contents of data file “june" will therefore
be replaced. This is known as "save-with-replace".

__49__

706 Reference Guide BASIC Commands

7.6 LIST

Format: LIST [from] [-J [to]

Arguments: from gives the line number of the first BASIC
statement to be listed.
to is the number of the last BASIC line to be
listed.
the '-' must be included if more than one line is to
be listed and from or to are specified.

Default: from = first line in BASIC program
to = last line of the BASIC program

Abbreviation: 11

The LIST command is used to display one or more program lines on
the screen. The command displays all lines between from and to
inclusive. If only one argument (from) is used, then only one
line is listed on the screen. If both are omitted, the whole
program will be listed on the screen.

Examples:

LIST 200 displays line 2G0 only.

LIST 2G—5G displays‘lines 2% to 56

LIST — 75 displays all lines from start of program to line 75

LIST 360 displays all lines from 36% to program end.

LIST displays the whole program

If the program is longer than 25 lines, the screen automatically
"scrolls" upwards. (Use C= to stop and CTRL to slow the scroll.)

Program alterations are easily executed with the LIST command.
The program line to he altered is first displayed on the screen by
LIST. Then the cursor is used to reach the point which is to be
altered. The BASIC program text can now be altered. Afterwards,
by pressing the RETURN key, the computer makes this alteration in
its program memory.

The program is only changed in the memory and not on any copies
which may be on disk. If the alteration is also to be carried out
on disk or cassette, the program must be stored again with DSAVE.

__5o__

700 Reference Guide BASIC Commands

7.7 NEW

Format: NEW

Abbreviation: None

The NEW command is used to erase a BASIC program and all its data
from the memory of the computer.

It will not affect the disk. The NEW command can also be used
within a program to erase the program after processing.

7.8 RUN

Format: RUN [linenumber]

Arguments: Linenumber is the number of the line where the
program is to start.

Default: linenumber = first line of the BASIC program

Abbreviation: rU

The RUN command starts a BASIC program which is in the program
memory.

All variables are first cleared and then program control moves to
the program line whose number is given in the linenumber argument.
If this argument is not given, the run starts with the first line
of the program.

When a linenumber has been given, but the line does not exist in
the BASIC program, the error message:

?UNDEFINED STATEMENT

appears on the screen.

The RUN command can also be used within the program itself. It
must, however, be noted that all variables will be cleared before
the new start.

__5]__

700 Reference Guide BASIC Statements

CHAPTER 8

BASIC STATEMENTS

BASIC statements alter data, variables, memory and the program
flow.

BASIC statements may be divided as follows:-

- Declarations/allocations
- Input/Output
- Program control
- Loop control
- Conditional branching
- Unconditional branching

Below is a summary of all BASIC statements which will be
individually described in this chapter. Special statements for
the floppy disk such as HEADER, SCRATCH etc, are not dealt with
here and are explained in the floppy disk manual.

_.52__

700 Reference Guide

BASIC Statements

Statement Type:-Dec1aration/ Input/ Program
Allocation output control

CLOSE
CLR
CMD
DATA
DEF FN
DIM
DISPOSE
END
FOR..TO..STEP
GET
GET#
GOSUB
GO TO, GOTO
IF...THEN...ELSE
IF...GOTO
INPUT
INPUT#
LET**
NEXT
ON...GOSUB
ON...GOTO
OPEN
POKE***
PRINT
PRINT#
PRINT USING
PRINT# USING
PUDEF
READ
REM
RESTORE
RESUME
RETURN
STOP
SYS
TRAP
WAIT

>
<

>
<

>
<

X

X

X
>

<
>

<
>

¢>
<

>
<

>
<

__53__

X
X

X
>

<
>

<
>

<
>

<
>

<
>

<
>

<
>

<
>

<
>

<
)<

?
<

>
<

>
<

>
<

BASIC Statements

Branches Loop
Cond. Uncond. control

X
X

X
X

X
X

X
X

X

X
X

X

7Z0 Reference Guide BASIC Statements

**LET is the key word for a value allocation. The word LET,
however, need not be used.

***POKE is a special form of allocation which is described in
detail in a later chapter.

Most of the BASIC statements can be used in direct mode in a
similar manner to BASIC commands. If a BASIC statement without a
line number is given, it will be executed as soon as the RETURN
key is pressed.

Direct mode execution is useful, for example, to establish the
present value of a variable:-

?A%,X

Direct mode can also be used to operate the computer as a pocket
calculator:-

?(45.6*l9.88)/(SQR(5$G)*G.85)

However, some BASIC statements such as GET, cannot be used in
direct mode. If an attempt to do so is made, the error message
?ILLEGAL DIRECT will appear.

Every BASIC statement to be used in the program mode must be in a
line which starts with a line number. If several statements are
placed on the same line, they are separated by colons (:). In
this case, the linenumber is only at the beginning of the line.

The format data in this chapter contain a line number parameter
which must always be given if the statements are to be used in the
program mode. Line numbers are integers in the range B-63999.

8.1 BANK

Format: Line number BANK expression

Arguments: expression is a numerical expression or a variable
with a value between G and 15.

Default: None: BANK by itself generates a syntax error.

Abbreviation: baN

__54__

760 Reference Guide BASIC Statements

The BANK command defines the memory bank with which some BASIC
statements and functions (such as PEEK, POKE, BSAVE) work. The
memory is divided into 16 banks each containing 64K. The BANK
command will define the bank which will be used by the CPU as data
area during a special indirect indexed memory call.

If a program is started with RUN, this is set at 15.

Example:

1% REM store the value 26 in address lG24 of bank 2
20 BANK 2
36 POKE l624,2$

8.2 BLOAD

Format: linenumber BLOAD filename
[, ON Bbanknumber] [,Poffset]

Arguments: filename is the name of the data file which is to
be loaded and can either be a text (in inverted
commas), or a text variable (in brackets).
Banknumber shows which memory bank the file is to
be loaded into.
Offset gives the start address for the load
within the bank.

Defaults: banknumber = 15 or the number of the last memory
bank selected by a BANK statement.
offset = address from which it was saved.

Abbreviation: bL

The BLOAD statement loads a binary file at any point in memory.
Each BLOAD statement can only load into a single memory BANK.
Several BLOAD statements must be combined to load information
which exceeds a bank boundary in memory (or the Machine Code
Monitor may be used). If the Banknumber argument is not given,
the information is loaded either into bank 15 or into the bank
selected by the last BANK statement. It must be remembered that
the addresses 0 and l of each bank are reserved for system
purposes. Thus, no data should be loaded in these locations.
(The offset parameter should therefore always be larger than 1.)

Example:

100 BLOAD "SUB1",DG,ON B2,P1a24

The data file SUBl is loaded from drive 0 into BANK 2 from l$24.
Afterwards, unlike the DLOAD command, the program continues with
the next BASIC command.

__55__

7G0 Reference Guide BASIC Statements

8.3 BSAVE

Format: linenumber BSAVE file name

[,ONBbanknumber] [,Pstartaddress] [TOPendaddress]

Arguments: filename is the name of the file which is to be
stored and can either be a text (in inverted
commas), or a text variable (in brackets).
banknumber shows from which memory bank the program
is to be stored.
startaddress: start address.
endaddress: end address.

Defaults: banknumber = 15 or the number of the last storage
bank selected by a BANK statement.
startaddress = 65535
endaddress = start address

Abbreviation: bs

The BSAVE statement stores binary files on to a disk from anywhere
in memory.

Each BSAVE statement can only store from one single memory BANK,
so several BSAVE statements must be combined in order to store
information which exceeds a bank boundary. If the bank number
parameter is not given, the information will be stored from the
bank selected by the last bank statement.

Example:

106 BSAVE"SUB1",DG,ON B2,PlB24TOP2G48

The memory location lG24-2048 in Bank 2 is stored on drive 0 in
the datafile "subl“.

8.4 CLOSE

Format: linenumber CLOSE channelnumber

Arguments: channelnumber = number of the Input/Output channel
which is to be closed.

Defaults: None.

Abbreviation: clo.

The CLOSE statement closes a channel previously opened by OPEN.

All data for this channel still in the memory is first transferred
to the peripheral. Thus, the channel is freed for further use by
an OPEN statement.

_55__

700 Reference Guide BASIC Statements

lflfl OPEN 6,4: REM 6 IS THE CHANNEL NUMBER
...BASIC statements...
21% PRINT# 6,A$,B%
...BASIC statements...
556 CLOSE 6

8.5 CLR

Format: linenumber CLR

Abbreviation: CL

The CLR statement erases all variable values from the memory. The
individual actions are:-

- All numerical variables are returned to U

- All text variables are erased
- All arrays are erased (any DIM statements are 'cleared')
- Memory pointers are reset.
- System STACK is cleared.

Therefore, care must be taken in a BASIC program to avoid any
errors by the misuse of the CLR statement. If, for example, the
CLR statement is used with a subprogram, the ensuing RETURN
command is no longer able to jump back from the sub to the main
program as the stack no longer contains a return address.

The CLR statement is useful to start a new program. (The
instructions RUN and NEW execute a CLR as part of their own
execution.)

Format: linenumber CMD channelnumber [,text]

Arguments: channelnumber is the number of a channel previously
opened for a peripheral by OPEN or DOPEN.
text is text (in inverted commas), a text variable
or numerical expression which is written to the
channel by the CMD statement.

Abbreviation: cM

By using this statement, the information which normally goes to
the screen is diverted to a predetermined channel. It can
therefore be used to list a program to the printer. Before the
CMD can be used, OPEN or DOPEN must first open a corresponding
channel. To end the CMD and restore standard output, the PRINT#
statement, followed by a CLOSE statement for the relevant channel
is used.

CMD statement sequence is as follows:~

__57__

7G6 Reference Guide BASIC Statements

1% OPEN 6,4 :REM SET UP CHANNEL
20 CMD 6 :REM DIVERT DEFAULT OUTPUT FROM SCREEN TO CHANNEL 6
30 PRINT A;B;C;A$:PRINT BS :REM SEND DATA
40 PRINT#6 :REM 'UNLISTEN' CHANNEL 6
5G CLOSE 6 :REM CLOSE CHANNEL

By giving these statements in direct mode the values of A,B,C,A$
and Bs are printed instead of being displayed on the screen. By
using the CMD statement in a program, (as above) the total output
which normally would have appeared on the screen by the PRINT
statement can be diverted. (To the printer for example.)

8.7 DATA

Format: linenumber DATA constant [,constant,...,constant]

Arguments: constant is either a text or number which is to be
read by a READ statement.

Abbreviation: dA

A data statement is not executable. It is used together with the
READ statement. There can be as many arguments on a DATA
statement as there is space for them in a single program line. If
more constants are needed than fit into a single DATA statement, a
new DATA line is begun until all are defined. Care must be taken
to place data in the order in which they are to be read.

RESTORE enables single DATA statements to be processed repeatedly
by READ. RESTORE is used to indicate which DATA line should be
used in the next READ statement. If text constants contain the
special characters (for example, comma or semicolon) the whole
text must be enclosed within inverted commas. Example:

19 DATA fred,janet,3,2.4,"a,b,c"
20 READ A$,B$,xl,y,C$
30 READ A%,D$
40 PRINT A$,B$,xl;y
50 PRINT C$,A%,D$
60 DATA 47l1,“this is a text"

Result:

fred janet 3 2.4

a,b,c 4711 this is a text

__58__

760 Reference Guide BASIC Statements

8.8 DEF FN

Format: linenumber DEF FNname(argument) = expression

Arguments: name is a valid variable name which is used here as
function name
argument is a dummy variable which may later be used
to transfer a variable to the function when it is
used.
expression is the equation to calculate the desired
function.

Abbreviation: dB

This statement allows the user to define his own numerical
functions. The expression indicates how the function value is to
be calculated. When function is called, the dummy variable (used
in the definition) is replaced by the argument in the function
call. Example:

150 DEF FNAB(X)=X+Y
16$ Y=100.5
17$ Z=55.8
180 Q=FNAB(Z)
190 PRINT Q

The result of this program is 156.3, the sum of Y and Z. The
parameter Z became the actual argument of this function in line
186, despite the use of X as a dummy when the function was defined
in line 150. Functions can be used in an arithmetic expression
just like the built-in BASIC functions or variables. Integer
functions or text functions are not definable. All calculating
rules for real number evaluation must therefore also be used for
defined functions.

8.9 DIM

Format: linenumber DIM variable (index[,...,index])
[,variable (index[,...,index])]

Arguments: variable is a valid BASIC variable name for any
type of variable.
index is an expression or a variable which is used
as an integer to define the size of the array.

Defaults Nohe: Without DIM, DIM(lfl) is assumed when the
array is first used.

Abbreviation: d1

_59__

700 Reference Guide BASIC Statements

The DIM statement reserves memory space for arrays. The maximum
size of the arrays is determined by size and number of the
indices. All indices start at 0 and end at the maximum value
given in the DIM statement - an index must not exceed 32767,
however. The number of indices depends on how many dimensions the
array should have. (A maximum of 255 indices may be specified,
though this is not really practicable.)

Example:

A(5) is an array with 6 elements (G,l,2,3,4,S)

B(l20,9) - consists of 1210 elements (l2l*l0)

C$(5,5,5) has 216 elements (6*6*6)

Care must be taken when dimensioning arrays not to exceed the
maximum available memory space for variables. During dimensioning
all array elements are set at G or null. The following example
shows the application of the DIM statement:

1e DIM A(5),B%(2,3)
15 DIM c$(1aa)
2% DATA 0.0,1.1,2.2,3.3,
30 DATA a,1,2,3,4,5,6,7,
4a FOR I = 0To5
50 READ A(I)
60 NEXT I
70 FOR J = aTo2
ea FOR K = 0To3
9a READ B%(J,K)
IEO NEXT K:NEXT J
119 FOR L = aTo1aa
12$ c$(L)="AAAA"
136 NEXT L
14¢ PRINT "ARRAY A coNTAINs:"
150 FOR I = 1To5
160 PRINTI,A(I)
176 NEXT I
180 PRINT "ARRAY 3% coNTAINs:"
199 FOR J = GTOZ
200 FOR K = aTo3
21$ PRINTJ,X,B%(J,K)
220 NEXTK:NEXTJ
236 PRINT "ARRAY cs coNTAINs:"
249 FOR I = aTo1ae
250 PRINTI,C$(I)
266 NEXT I
270 END

706 Reference Guide BASIC Statements

8.10 DISPOSE

Format: linenumber DISPOSE [FOR/GOSUB]

Abbreviation: dis fo/dis gos

DISPOSE is used, together with TRAP, for debugging (error
treatment) DISPOSE manipulates the BASIC stack. If the error has
occurred in a subprogram or in a FOR...NEXT loop and if the
program must continue outside the loop or subprogram after dealing
with the error, then information must be removed from the stack
which would have been processed by the NEXT statement or RETURN.
when the system stack has been corrected, the program can
continue. DISPOSE cannot be executed in direct mode. For
example:

A program is executing a FOR...NEXT loop. During this, a division
by 0 occurs, which is trapped by the TRAP statememt:

10 TRAP 1600
...BASIC PROGRAM...
12$ FOR I = ITOIGG
130 A=I/B :REM error since b=0
140 NEXT I
150 PRINTA :END
1006 REM error treatment
...error analysis...
llflfl DISPOSE FOR:REM removes the loop from the STACK
1110 RESUME 150

8.11 END

Format: linenumber END

Abbreviation: eN

The END statement ends the current program. The content of all
variables is unaltered. READY appears on the screen. The program
may be restarted by CONT. END need not be given as the last
program statement. It can be omitted or taken at any point within
the program. END is not illegal in direct mode, but is rather
pointless.

6]

700 Reference Guide BASIC Statements

8.12 FOR

Format: linenumber FOR variable = expressionl to expressionz
[STEP expression3]

Arguments: variable is a real variable which is changed with
every loop run.

expressionl is a variable or an arithmetic
expression to preset the initial value of a
variable.

expressionz is a variable or an arithmetic
expression which ends the loop processing if the
variable exceeds this value.

expression3 is a variable or an arithmetic
expression which is added to the value of the
variable during every loop run.

Defaults: expression3=l

Abbreviation: f0

The FOR and associated NEXT statements define a program loop. The
loop variable initially assumes the value of expression 1: all
statements belonging to this loop are processed as far as the NEXT
statement. When this is reached, the value of expression3 is
added, or (if no STEP parameter is given) 1, to the loop variable.
If expression3 is positive, the loop is ended as soon as the loop
variable value exceeds that of expression2. If expression3 is
negative, the loop is ended as soon as the loop variable value is
smaller than that of expression2. In all other cases, the
statements between FOR and NEXT are repeated with the new loop
variable. In any case all statements between FOR and NEXT are
executed at least once, because the test occurs at the end of the
loop. If expression3 is chosen, care must be taken not to produce
an endless program loop. If, for example, an 0 is given as value
for the step width after STEP, then this loop has no logical end.

For example:

1% FOR L = ITOIG
20 PRINT L,SQR(L)
30 NEXT

This example prints the square roots between 1 and 10. If the
loop is to run in reverse sequence (from higher values for the
loop parameter to lower values) then a negative number must be
given for the step width. For example:

10 FOR I = l00TOl0 STEP -1
20 PRINT I,3.l4*I
3G NEXT

7E0 Reference Guide BASIC Statements

FOR/NEXT loops may also be nested. The statements within a loop
may themselves define other loops. So, the loop variable of the
innermost variable runs first and the outermost 1oop's variable
runs last.

For example:

10 FOR I GTO9
26 FOR J BT09
30 PRINT l0*I+J
40 NEXT J.I

This small program example prints all numbers from G to 99 in
increasing order of magnitude.

8.13 GET

Format: linenumberGETvariable

Arguments: variable is a numerical or text variable

Abbreviation: gE

The GET statement gets the next available character from the
keyboard buffer and gives it to the variable. only a single
character is read. If there are several characters in the buffer,
the next character can be read only by a new GET statement. If
the keyboard buffer is empty, a numerical variable of G or a null
text ("") is assigned to the variable. If a numerical variable is
used, the status variable ST must also be called to find out if a

0 has been put in via the keyboard or if the keyboard buffer was
empty, for in both cases the variable had a value 0. The GET
statement must not be used in direct mode or the error message
?ILLEGAL DIRECT will appear. GET does not wait for a key to be
pressed but always transfers a value to the relevant variable.
INPUT may also be used to read data from the keyboard. GET can be
differentiated from INPUT in the following ways:—

- With GET, only a single text character is read from the
keyboard.

INPUT reads as many as are necessary to allocate values to all
variables in the INPUT statement. INPUT must therefore wait
till all variables have a value.

- GET never waits but always transfers a value to a variable
immediately, even if this value is G or null.

GET may also be used in a program loop in order to make the
program wait at that point for a valid value. For example:

175 GET A$:IF A$="“THEN 175:REM waits for any key.

63

700 Reference Guide BASIC Statements

8.14 GET#

Format: linenumber GET#channelnumber, variable

Arguments: channelnumber is the number of a previously 0PENed
data input channel.
variable is a numerical or text variable

Abbreviation: None

The GET# statement reads a single character from a device. If the
device has no data prepared, then, as with GET, a numerical
variable receives a 0 and a text variable receives Null ("“). The
data channel must previously have been opened by OPEN or DOPEN.
If not, the error message ?FILE NOT OPEN will appear. If an 0 is
used as device number in the OPEN statement, the GET# statement
will function as GET with the keyboard. GET# also does not wait
for data; if more than one text character is to be read, it is
better to use INPUT#. INPUT# stops the program until all its
variables have a value. GET# must also not be used in direct
mode; otherwise the error message ?ILLEGAL DIRECT will appear.

When using GET#, the status variable ST should also be called to
recognise the logical end of a data file (END-OF-FILE). If one
tries to read from the end of a data file, GET will always
transfer the character carriage return (CHR$(l3)). The status
variable ST receives the value 64 at the end of the file. For
example:

The following example reads the contents from a floppy file
character by character and prints this on to the screen. The
information is read from the file in segments, each having 50
characters.

106 DOPEN#5, "Datafile"
I10 A$=“ "

115 FOR I=1 TO 50
120 GET#S, B$
136 AS = A$ + B$
140 REM "check end of file"
150 IF B$ = CHR $(13) AND ST=64 THEN GOTO 250
160 NEXT I
170 PRINT A$
180 GOTO 110
250 PRINT A3
266 PRINT "end of file reached"
270 DCLOSE#5
280 END

__64__

700 Reference Guide BASIC Statements

-8.15 GOSUB

Format: linenumberGOSUBlinenumber2

Argument: linenumberz is the first line of a subprogram which
should be called in by GOSUB

Abbreviation: gos

GOSUB jumps to a subprogram which begins at linenumberz. If the
subprogram executes the statement RETURN, the program jumps back
to the next statement after GOSUB.

A subprogram consists of a series of BASIC statements which are
terminated by RETURN. Such a subprogram can be called in from
various points in the BASIC program. By using GOSUB, the computer
"notes" where to return on the execution of RETURN. Such a
structure is useful if the same group of statements must be
executed at various points of the program. They are collected at
one point of the program and executed as a subprogram by using
GOSUB.

S A = 3
10 GOSUB 16$
23 PRINT A
3G A = 10
40 GOSUB 100
59 PRINT A
60 END
100 A = A * 10
11$ RETURN

Not only is memory space saved in this way, but also error
tracking is also made easier - this is because program parts which
appear at various points in the program would also have to be
corrected at those points. Subprograms represent an element of
structural programming.

Subprograms may be nested. If a subprogram is called in, the
return jump address in noted in an internal memory area — the
stack. If a subprogram is called but not left by the RETURN, the
return jump address remains stored in the stack. In this case,
the stack runs over and the error message ?OUT OF STACK appears.
It is theoretically possible to nest a total of 23 subprograms
together.

__65__

70% Reference Guide BASIC Statements

8.16 GOTO or GO TO

Format: linenumber GOTO linenumber2
or
linenumber GO To linenumber2

Argument: linenumber2 is the linenumber of a BASIC statement
in your program.

Abbreviation: go

The GOTO statement jumps to a BASIC statement at linenumber2. It
is thus possible to execute statements out of sequence. Either
GOTO or GO TO may be used. If the statement in line linenumber2 is
an executable statement, the program will continue with this
statement. If it is not, the program will continue with the first
of the executable statements after line linenumber2.

The line number must be in the GOTO statement. It is not possible
to use a variable or evaluate an expression in order to determine
linenumber2. For example:

This example shows how to jump to statements instead of executing
them in sequence. Note that the GOTO statements jump to statement
5% after the information is printed.

1G INPUT "ENTER A NUMBER";A:PRINT "THE NUMBER";
2% IF A < G THEN GOTO 10$
3% IF A = 0 THEN GOTO 200
45 PRINT A;"IS LARGER THAN";
50 PRINT "ZERO":INPUT "AGAIN? (Y/N)“;Y$
6% IF Y$ = "Y" THEN l0:ELSE END
160 PRINT A;"IS SMALLER THAN“;
110 GOTO 59
200 PRINT "IS EQUAL TO";
210 GOTO SE

8.17 IF...GOTO

Format: linenumber IF expression GOTO linenumber2

Arguments: expression is any expression (arithmetic, string or
logic)
linenumber2 is the line number of a statement in
your program.

Abbreviation: None

The IF...GOTO statement decides, according to the condition in
expression, whether the program jumps to the statement in
linenumber2. Another form of this, the IF...THEN...ELSE statement
is described in Section 8.18. The total IF...GOTO statement must
occupy one program line, as all BASIC statements.

__66__

700 Reference Guide BASIC Statements

Expression can contain variables, text constants, numbers and
logical operators. More detailed information on the general
format of BASIC expressions can be found in Chapter 5. Here are
some examples of IF...GOTO statements:

IF A = B GOTO 500
IF (A < 50) AND.(X*Y > .765) GOTO 95%
IF A$ = ""GOTOl5$
IF LEN(S$) > 60 GOTO 1234
IF LEN(Z$) > 5% AND RIGHT$(Z$,l) = "R" GOTO 6540

If the conditions in expression do not comply, the statement
following the IF...GOT0 statement will be executed. For example:

(In this example it is decided with IF...GOT0 if the SQR (square
root) statement will be executed or not.)

190 IF X < 0 GOTO 20%
110 Y = SQR(X)
126 ...further BASIC statements
29% PRINT X;"MUST NOT BE SMALLER THAN ZERO"
216 ...further BASIC statements

8.18 IF...THEN...ELSE

Format: linenumber IF expression THEN thenclause :ELSE
elseclause

Arguments: expression is an arithmetic expression thenclause
(elseclause) is a statement, a group of statements
or a line number

Abbreviation: None

The IF...THEN...ELSE statement checks the condition in expression.
Depending on the result, either the statement in the thenclause is
executed (if expression is "true") or (if expression is "false")
the statement in the elseclause is executed.

The checking in the IF...THEN...ELSE statement occurs in the
following way:

1. expression is recognised as true or false. If the conditions
in expression comply, then true is set and if they do not,
then false is set.

2. If expression is true, the thenclause is executed (the program
processing continues with this statement) and the elseclause
is ignored.

3. If expression is untrue, the thenclause is jumped and the
elseclause executed.

_67__

700 Reference Guide BASIC Statements

The line is processed from left to right in an IF...THEN...ELSE
execution. All statements following THEN and finishing either
with ELSE or at the end of the_line, are regarded as the
thenclause. All statements which follow ELSE and finish with the
end of a line are regarded as the elseclause. Without ELSE, the
program processing will continue in the next line if expression is
untrue. ELSE and the elseclause must be in the same line as the
relevant IF...THEN statement. ELSE and elseclause cannot be used
without the IF..THEN statement. The thenclause or the elseclause
could look like this:

- Single BASIC statements:-

A = B

NAMES (I) = INNAME$

X = SQR(Y*Z) + ATN(NEW VALUE)

INPUT"ENTER THE CORRECT VALUE";VALUE

— or a group of BASIC statements:-

A = B: X = R*3

N% = N% + l:NAME$ (I) = INNAMES

R = .5: A*B*C: GOTO 5G0

- or the line number of a BASIC statement in your program.

If an IF...THEN...ELSE statement is used, a colon must be placed
in front of ELSE. For example:

10% IF A = 150 THEN B = A:ELSE B = 3

It is also possible to omit ELSE if it is not required. For
example:

10$ IF A = B THEN A = .5*B

Further, THEN can be made ineffectual by placing only a colon
after THEN. If expression is true, no thenclause will be executed
and processing will continue in the next program line. If
expression is untrue, the elseclause will be executed. For
example:

160 IF A = B THEN: ELSE A = (B/.5)

The IF...THEN...ELSE statements may be nested within other
IF...THEN...ELSE statements in an elseclause. The
IF...THEN...ELSE without the ELSE can also be a thenclause.
Examples of nested IF...THEN...ELSE statements are:

__53._

700 Reference Guide BASIC Statements

IF A=B THEN X=0:IF A<B THEN X=-1:ELSE X=S0

IF LEN(N$)=0 THEN 500:ELSE IF LEN(A$)>30 THEN N$=A$

IF X=Y THEN X=Y/2:ELSE IF R<.99 THEN X=R:ELSE Y=R/S

The entire IF...THEN...ELSE statement, including the nested one,
must fit into the one program line, like all BASIC statements. A
line number may be in the thenclause or the elseclause. If this
is the case, the program jumps to the line with this line number
and continues processing at this point. For example:

IF X<0THEN 30: ELSE 500

IF NAME$ = ""THEN 650: ELSE NAME$ = NAME$ + ADD$

IF I%<95 THEN NAME$(J) = AS: ELSE 780

The IF...THEN...ELSE statement may also be used in direct mode.
Care must be taken that a given line number is available as jump
address. A line with this line number must previously be given,
together with a BASIC statement. If such lines are absent,

?UNDEFINED STATEMENT will appear.

If an IF statement is given in direct mode and causes a jump to a
program line, the processing continues in program mode from this
line on.

If a test on equality is executed in expression and the variables
are stored in real form, care must be taken because the computer
may not store an exact value. A small variation margin should
therefore be left. For example:

If one needs to check whether a real variable A is equal to 0.1, a
variation margin of 0.000001 is left so that the statement reads:

IF ABS(A-0.l)<=1.0E-6 THEN...:ELSE...

This test on equality of real variables ensures that the real
equality is tested with a defined deviation. The same sort of
test can cause problems if a STEP variable of non-INTEGER type is
being processed in a FOR statement. For example:

__69__

780 Reference Guide BASIC Statements

1) In this example it is shown how the square root of a positive
number is printed:

100 N$ = "THE VALUE MUST BE POSITIVE: REENTER"
110 P$ = "THE ROOT IS"
120 INPUT"ENTER A NUMBER“;N
130 IF N<G THEN PRINT NS: GOTO 12%: ELSE PRINT P$:SQR(N)
140 INPUT "ANOTHER NUMBER(Y/N)";Y$
150 IF Y$ = "Y" THEN l20:ELSE END

2) Here it is seen how a value is tested to determine whether it
is in the correct range:

193 IF(I<50)OR(I>l0G) THEN 50$: ELSE R=I:X=I/2
11$ REM VALUE IN CORRECT RANGE

O I O C

500 REM VALUE OUTSIDE THE RANGE
51%

8.19 INPUT

Format: linenumber INPUT prompttext; variablelist

Arguments: prompttext is a text which is enclosed in inverted
commas(") uEEEE£E¥£ao:é:b&a-
variablelist is a list separated by commas of one or
more variables.

Defaults: prompttext="", ie. Null.

Abbreviation: None

The INPUT statement first writes prompttext with a question mark
at the end and then reads the values from the screen into the
variablelist. The program waits till enough values for the entire
variablelist have been given. INPUT statements enable information
from the user to be given via the screen to the program. INPUT
takes the first symbol as the start of a value. Values end with
carriage return or a comma. The INPUT statement functions in the
following manner:

1. Prompttext is written with question mark on the screen. If
there is no prompttext, only the question mark is printed.

2. The values are given to the screen and read into the
variablelist.

3. If more data are needed, 2 question marks appear on the screen
and the program waits until more data is entered.

4. The values are given in the order in which they appear in the
variable list.

5. If the RETURN key is pressed without input, the variable keeps
the value it had previously.

760 Reference Guide BASIC Statements

The variable names in the variable list can be any BASIC names,
including integer, real, text and array variables. The given type
of value must correspond with the type of variable in the variable
list. If the attempt is made to use INPUT in direct mode, the
error message ?ILLEGAL DIRECT appears. Commas are used in the
INPUT statement to separate values from each other if the
variablelist has more than one variable. When text variables are
given, inverted commas should only be used if the text to be input
contains commas, colons_or semicolons. As many as 158 symbols
(corresponding to one logical line less space for the prompt) may
be entered. If more than one logical line is to be entered,
carriage return must be operated to indicate the end of the first
part of data. Then the computer "knows" that more is to follow
and 2 question marks immediately appear on the screen. Data input
can continue straight away. The 2 question marks stay on the
screen until all variables in the variablelist have received a
value. Care must be taken that integer variables do not have'a
figure after the decimal point. If a number with a figure after
the decimal point is entered, it is simply ignored. Using INPUT:

INPUT "ENTER I,J";I%,J%

and entering the values:

l.23,45.6789

the variables will assume the following values:

I%=l, J%=45

The INPUT statement only transfers the entered value to the
corresponding variable if the two types correspond. The following
errors can occur:

- If values of the wrong type are entered (i.e. text characters
for numerical variables) the error message ?REDO FROM START
will appear.

- If too many values are entered (i.e. more than on the
variablelist) the excess values are ignored and the message
?EXTRA IGNORED appears.

Here it can be seen how an INPUT statement can be used without
prompttext:

la INPUT I%,J%
20 PRINT I%,J%
RUN
? 123,456
123 456
READY

..7]__

76% Reference Guide BASIC Statements

A further example of INPUT:

10 FOR I = 1 T0 19
20 INPUT "ENTER NAME AND HOURS"; NA$(I),H(I)
30 T = T + H(I)
40 NEXT I
56 PRINT "NAME","HOURS"
60 FOR I = 1 To 10
7a PRINT NA$(I),H(I)
80 NEXT I
90 PRINT "TOTAL HOURS = ";T:END

8.20 INPUT#

Format: linenumber INPUT# channelnumber, variablelist

Arguments: channelnumber is the logical number of the file
which is to be read. Channelnumber can be any
number between 1 and 255
variablelist is a list of variables, as in the
preceding section (8.19).

Abbreviation: iN

The INPUT# statement reads values from the logical file
channelnumber and uses them as the variables in variablelist. The
INPUT# functions just like INPUT with the difference that the
values are read from a file and not from the screen. The file
must be opened with OPEN (see 8.25) before using INPUT#. The
values to be read from the file must be in the same sequence as
the variables in the variablelist and are allocated to the
variables correspondingly. It must be ensured that the correct
variable type for the relevant variable is received. Leading
spaces are ignored by INPUT# if data are read from the file.
Numbers and texts must end with carriage return, line feed or a

comma. The INPUT# statement only allocates the entered value to
the variable when they are of the same type. If, for example, a
numerical variable receives a text value, the error message ?FILE
DATA ERROR appears. For example:

Here it can be seen how a file is opened to a disk drive and how
data are read in with INPUT#:

5 A=1:B=2:C=3
10 OPEN 1,3,2, "MY DISK FILE"
29 PRINT "THE DISK FILE IS OPEN"
36 INPUT# l,A,B,C
40 CLOSE1 : PRINT A,B,C
50 END

__72__

700 Reference Guide BASIC Statements

8.21 LET

Format: [linenumber] [LET] variable = expression

Arguments: variable is any BASIC variable name
expression is a BASIC statement of the same type

Abbreviation: [1E]

The LET statement allocates the value of expression to the
variable. LET is an allocation statement or value allocator. LET
is not obligatory and is normally omitted. LET A=B is the same as
A=B.

LET can be used with any numerical, text or array variable, or
internal or self-defining function. For example:

LET B=1 Sets B equal to l

LET X=SQR(Y*Z/2) Is the same as X=SQR(Y*z/2)

8.22 NEXT

Format: linenumber NEXT [variable [,...,variable]]

Arguments: variable is the variable which was determined in
the relevant FOR statement

Abbreviation: nE

The NEXT statement is at the end of a FOR loop. (More details on
FOR loops can be found in 8.12.)

Example of a FOR loop:

10% FOR I = 1 TO 3

...BASIC statements
2G0 NEXTI

The NEXT statement in line 2G0 closes the FOR loop which began in
line 10%.

If NEXT is used without the variable parameter, NEXT will affect
the FOR loops which immediately preceded it. If FOR loops are
nested then:

100 FOR I = 1 TO 10
110 FOR J = 34 TO 50

...BASIC statements
260 NEXT
210 NEXT

__73__

7E0 Reference Guide BASIC Statements

The NEXT statement in line 206 affects the FOR loop which begins
in line 11% (i.e. the one immediately preceding) and the NEXT
statement in line 210 affects the FOR loop beginning in line lflfl.

If the parameter variable is given in NEXT when using nested FOR
loops and the FOR loop in question is not the one immediately
preceding, then the FOR loops are processed erroneously. The NEXT
statement then works on the FOR loop with the parameter mentioned.
The FOR loop immediately preceding with a different step parameter
is aborted.

Several parameter variables can be determined if it is necessary
to terminate several FOR loops in the same line. The above
example could also appear:

100 FOR I = 1 TO 16
119 FOR J = 34 TO 50

... BASIC statements ...

260 NEXT J,I

This NEXT in line 260 first closes the FOR loop with parameter J
and then with parameter I. Up to 10 FOR loops may be terminated
by a single NEXT statement. If NEXT is used without the relevant
FOR statement, the error message

?NEXT WITHOUT FOR appears.

Care must be taken when nesting FOR loops that the NEXT statement
corresponds to the correct (the one immediately preceding) FOR
loop. If the NEXT statement is omitted, all BASIC statements are
executed to the end of the program. For example:

1) Here, several numbers are printed using FOR loops. There are
two NEXT statements, one for each loop:

100 son I = 1 TO 2

110 FOR J = 2 TO 3

120 PRINT "I" I "J" J
13% NEXT J
14a uexw I ,

RUN

I 1 J 2
I 1 J 3
I 2 J 2
1 2 J 3 ,

READY

2) The same FOR loops are used but one NEXT statement with two
parameters is used to close:

109 FOR I = 1 TO 2
110 FOR J = 2 TO 3
120 PRINT "I" I "J" J
130 NEXT J,I

__74__

760 Reference Guide BASIC Statements

3) It can be seen here which errors are produced by this program
if the NEXT statement refers to the false FOR loop:

1G0 FOR I = 1 T0 2
110 FOR J = 2 TO 3
120 PRINT "I" I "J" J
130 NEXT I
RUN

I 1 J 2

I 2 J 2
READY

8.23 ON...GOSUB

Format: linenumber ON expression GOSUB linelist

Arguments: expression is an arithmetic expression
linelist is a list of line numbers of one or more
subprograms. The line numbers must be separated by
commas.

Abbreviation: None

The ON...GOSUB statement tests the value in expression and calls
in one of the subprograms whose line numbers are in the linelist.
The jump to subprogram with GOSUB is described in Chapter 8.15.

This is how the ON...GOSUB statement functions:-

1. Expression is checked first. If the value is not integer, it
is treated as one by ignoring the figures after the comma.

2. After this, there is a jump to a subprogram from linelist. If
expression is equal to 1 the jump will be to the first line
number in the linelist. If the expression is equal to 2, to
the second line number, etc.

3. If expression is G or longer than the number of line numbers
in the linelist, the statement following the ON...GOSUB
statement will be executed. In this case, no subprogram is
processed.

4. After processing the subprogram, the statement following the
ON...GOSUB will be executed.

Each line number in the linelist must be one in the program which
initiates a subprogram. Otherwise the error message ?UNDEFINED
STATEMENT appears. The value in expression must be larger than or
equal to 0. If expression is a negative value, the error message
?ILLEGAL QUANTITY appears. The ON...GOSUB statement is a very
important aid to the structured construction of many programs.

706 Reference Guide BASIC Statements

8.24 ON...GOTO

Format: line number ON expression GOTO linelist

Arguments: expression is an arithmetic expression.
linelist is a list of line numbers of statements in
the program. The line numbers must be separated by
commas.

Abbreviation: None

The 0N...GOTO statement checks the value in expression and jumps
to one of the line numbers from linelist. More information on
line jumps is to be found in Section 8.16, in connection with the
GOTO statement.

ON...GOT0 functions in the following way:

1. expression is checked first. If the value is not an_integer
it will be treated as one by ignoring the figures after the
comma.

2. After checking the value in expression, a jump is made to a

statement with a line number from linelist. If expression is
equal to 1, the jump will be to the first line number in the
list and if expression is equal to 2, to the second line
number, etc.

3. If expression is equal to 0 or larger than the number of line
numbers in linelist, the statement following ON...GOT0 will be
executed. In this case, no jump occurs.

Every line number in linelist must be a line number found in the
program. Otherwise the error message ?UNDEFINED STATEMENT
appears.

The value in expression must be larger than or equal to 0. If it
is a negative value, the error message ?ILLEGAL QUANTITY appears.

Ensure that an integer variable is allocated to the value in
expression. If another value is given, the figures after the
decimal point are simply ignored. (i.e. If value 2.345 is
entered, the computer stores value 2 and the 2nd line in the
linelist is used.) For example:

__76__

76% Reference Guide BASIC Statements

1% INPUT "ENTER A NUMBER";x
20 IF x<E THEN GOTO sea
3a oN x GOTO 100,260,300
4a PRINT "YOUR NUMBER WAS zERo oR LARGER THAN THREE"
50 INPUT "AGAIN?(Y/N)";Y$
60 IF Y$ = "Y" THEN GOTO l0:ELSE STOP
100 PRINT "YOUR NUMBER WAS EQUAL To ONE"
119 GOTO 59
29a PRINT “YOUR NUMBER wAs EQUAL To TWO"
21a GOTO 59
30a PRINT "YOUR NUMBER wAs EQUAL To THREE"
310 GOTO 50
SEO PRINT "YOUR NUMBER wAs NEGATIVE"
519 GOTO 5a
600 END

8. 25 OPEN

Format: linenumber OPEN channelnumber, devicenumber
Esecondaryaddres§,[filename]

Arguments: channelnumber is the logical number which is
allocated to the file. It can be any number between
1 and 255.
devicenumber is the number of the device. It may be
any number between G and 255, depending on the
devices connected. (Normally only 0 to 15 are
valid.)
secondaryaddress is a number which is sent to the
device.
filename is the name of the file and may include
special characters.

Abbreviation: oP

The OPEN statement, coordinates a I/O channel to an external
device such as a disk drive or printer. The OPEN statement must
be used to achieve a connection between a file and a device and
between a device and channel number before using a GET#, INPUT#,
or PRINT# statement on a device or file.

__77__

760 Reference Guide BASIC Statements

The channelnumber is also called logical file number and must
always be given in the GET#, INPUT# and PRINT# statement’. If,
for example, a file is to be opened to the printer with channel
number 6, then all corresponding PRINT# statements must’be written
as PRINT#6... Devicenumbers are primary addresses of systems to
which special devices are allocated.

The secondaryaddress parameter can be determined according to the
following Table:

OPEN Commands : secondary addresses

Device Secondaryaddress Effect

Disk 1-14 Opens a data channel
15 Opens a command channel

Keyboard l-255 None
Screen 1-255 None
Printer 1-255 See Printer handbooks
RS232 1 or 129 Opens an output channel

2 or 130 Opens an input channel
3 or 131 Opens a bidirectional channel

The filename parameter is sent to the device upon opening. The
value given to this parameter depends on the device in question.
If a disk file is opened with the parameter secondaryaddress = 15,
control information can be transferred with filename. The RS232
interface is described in more detail in another section.

The various forms of OPEN statement must have been understood
before effectively using them with the GET#, INPUT# and PRINT#
statements.

Examples:

OPEN l,$ Opens the keyboard as channel 1
OPEN 6,4,6 Opens a logical channel 6 to the

printer
OPEN 7,4,7 Opens another channel to the printer.
OPEN ll,8,l,"DISKDATA,S,W" Opens logical channel 11 to disk drive

(device 8) to write a sequential file
called "DISKDATA".

__7g__

70$ Reference Guide BASIC Statements

8.26 POKE

Format: (linenumber) POKE address, value

Arguments: address is a memory location. This is an integer
between 0 and 65535 (i.e. 16 bit)
value is an integer between G and 255. (i.e. 8
bit.)

Abbreviation: p0

The POKE statement writes the value into the memory address in the
memory bank last selected by a BANK statement.

POKE does not check if the given address exists in the available
RAM, but puts the value on the bus and sends it to the address.
If the address is smaller than 0 or larger than 65535, the error
message ?ILLEGAL QUANTITY appears.

5.

Addresses and values must be integers. If a real variable is 0
used, the figures after the decimal point are ignored. For
example:

POKE 12345,23.56

The value 23.56 is ammended so that the statement actually
becomes:

POKE l2345,23.

If text variables are entered for address or value, the error
message

?TYPE MISMATCH appears.

As each memory cell is only capable of taking one single memory
word byte, the value of a number must be between G and 255. If
the value is smaller than 6 or larger than 255, the error message

?ILLEGAL QUANTITY is given.

The built-in PEEK function is often used with POKE to store data,
to reach assembler subprograms in the working memory, to give the
assembler information and to obtain results from the assembler
Subprogram. You will find more information on this in later
sections.

__79__

700 Reference Guide BASIC Statements

8. 27 PRINT

Format: (linenumber) PRINT printlist

Arguments: printlist is text, variable names, expressions or
functions.

Defaults: printlist = blank text, a line feed will occur.

Abbreviation: ? (question mark)

The PRINT statement writes the printlist on the screen. The
question mark can be used instead of PRINT when entering BASIC
statements. If the program is then printed, PRINT appears for the
question mark in the list. For example:

PRINT A,B
PRINT "THE ANSWER IS" As
PRINT EXP(Y*Z)+Y
PRINT SUBTTL% "THE VALUE IS ZERO"
PRINT A;B;
PRINT A,B

Strings in the printlist must be enclosed in inverted commas. The
PRINT statement decides where the values are to be printed on the
screen depending on the punctuation. BASIC divides each print
line into segments which can contain 16 characters. Tabulator
stops are used at every tenth position. Punctuation in the
printlist has the following influence on the PRINT statement:

- If two expressions on the printlist are separated by commas,
the 2nd expression is printed at the following tabulator stop,
i.e. in the following segment.

— If 2 expressions are separated by a semicolon, the 2nd
expression is printed directly after the first.

- One or more spaces between two expressions have the same effect
as a semicolon.

— If there is a comma or semicolon after the last expression on
the printlist, the next PRINT statement prints its printlist
after the first. The distances are determined by punctuation
symbols. With no comma or semicolon at the end, the next PRINT
statement starts a new line.

If the print line is longer than a screen line, PRINT will write
the remaining values in the next screen line.

The expressions are printed as follows:

- one position is always jumped after numbers.
- A space is always in front of a positive number and a minus

sign before a negative number.
- Numbers with more than 10 places and numbers between 0 and 0.61

are always printed in exponential notation.

__3o__

700 Reference Guide BASIC Statements

The Series 70% computers have an enlarged PRINT USING statement
with which formatted lines can be printed. Special print formats
are then possible.

The PRINT statement can print many special characters in addition
to the text characters and numbers. The following section shows
how to enter these special characters.

Quotes mode:

After using the quotes key (") the computer is in quotes mode.
Number and letter keys are unchanged, but all other keys, such as
the cursor, write their ASCII character in the printlist instead
of executing the given cursor function directly. Different
control information can be written into the print list in this
way.

To leave the quotes mode, the escape key must be used (ESC), or "

again. All keys then revert to normal use again.

The DEL key is not affected by the quotes mode. The following
control information may be transferred in the quotes mode:

- Cursor movement and other special characters
- Reverse characters.

The INS key can also be used to produce spaces in the printlist.

Cursor control in quotes mode

Every cursor movement key can be used in quotes mode. The control
possibilities are listed individually in the appendices.

Output of inverted characters (reverse)

Inverted characters appear on the screen as dark on light
background instead of light on dark. Inverse characters are
entered in quotes mode after pressing the RVS key. Firstly an
inverted r (for reverse) appears which indicates the start of the
inverted characters. This letter is not printed during execution
of the PRINT statement but serves only as a marker. Any character
may now be entered. They will appear on output as inverted
characters. If the text with inverted characters is finished,
pressing the key OFF will return it to normal. At the end of this
text there will be an inverted R as marker. The return key can
also be used to end the printing of inverted characters. After a
PRINT statement with inverted characters, the computer
automatically returns to normal presentation. If, however, there
is a comma or semicolon at the end of the statement, the inverse
presentation is maintained and the characters of the next PRINT
(which will be printed in the same line) will also appear in
inverse form. For example: '

To obtain HALLO in reverse form, enter:

PRINT "RVS HALLO OFF"

__3]__

700 Reference Guide BASIC Statements

8.28 PRINT#

Format: [linenumber] PRINT# channelnumber, printlist

Arguments: channelnumber is the logical number of the file
which was priviously opened by OPEN or DOPEN.
printlist is a text, variable names, expression,
or function.

Abbreviation: pR (Attention: not ?#)

The PRINT# statement writes the printlist in the file defined by
channelnumber. If the file referred to by channelnumber has not
previously been correctly opened, the error message ?FILE NOT OPEN
appears.

The PRINT# statement functions just like PRINT, with the
difference that in this case a file with the relevant
channelnumber is used. The data are transferred in the same
manner as in the PRINT statement:

- As for PRINT, values separated by commas are divided into
segments which are 19 characters long (padded with spaces).

- Values separated by a semicolon or spaces are printed
consecutively.

- A carriage return is automatically written as the last
character of the file line if no comma or semicolon is on the
printlist as last character.

INPUT statements read from file data which have been written with
PRINT#. Text variables should always be within inverted commas
and numbers separated by commas. For example:

1a OPEN 1,8,1, “MY DISKFILE,S,W"
30 CS = CHR$(44)
40 ...some BASIC statements
200 PRINT# 1,A,C$,B,C$,D
210 PRINT# 1, "NAME"
22% PRINT# 1,l,C$,2,C$,3.
230 END

__32__

700 Reference Guide BASIC Statements

8.29 PRINT USING and PRINT# USING

Format: [linenumber]PRINT[#channelnumber,1 USING formatlist
printlist;

Arguments: channelnumber is the logical number of a file
previously opened by OPEN
formatlist defines the format of the expressions
in printlist.
printlist is a list of expressions to be printed
separately by commas.

Abbreviations:[E:or7pR%§qusI
\. , _,__,._/’v

A formatlist can be defined with PRINT USING which determines the
form of the data in the printlist. PRINT USING uses the screen
and PRINT# USING uses a file, in the same manner as PRINT and
PRINT#. The PRINT(#) USING statement is in principle a PRINT(#)
statement with explicitly defined data formatting. PRINT(#)
however, writes the data in standard format (as described
earlier).

These are the main differences between PRINT(#) and PRINT(#)
USING:-

- TAB and SPC functions cannot be used in the print list of
PRINT(#) USING

- semicolons between expressions in the printlist cannot be used
in PRINT(#) USING

- semicolons may only be used as termination of the printlist as
for PRINT(#)

— The expressions from printlist of the PRINT(#) USING statement
are separated by commas. They have no influence, however, on
the format, as in PRINT(#).

The USING clause consists of USING and the Formatlist. The
Formatlist consists of one or more ‘format arrays‘.

A ‘format array‘ has format characters from the following table.
If characters other than these are used, they will appear in the
print itself; they have no formatting function. The legibility of
the output is thus increased. An expression from the printlist is
described with every format array. If there are more expressions
in the printlist than the formatlist, the formatlist is re—used as
often as necessary.

__33__

700 Reference Guide BASIC Statements

Formatting characters

Character

Hash
sign(#)

Plus(+)
and
minus(-)

Decimal
point(.)

Comma(,)

Dollar
sign($)

Four
arrows
(TTTT)

Equals
si9n(=)

Larger
than(>)

Meaning

Each hash sign in a format array reserves space
for one character. Each format array must have
at least one hash sign.

Plus and minus can either be the first or last
position of the format array. The operational
sign of the number is printed at the given point.

The decimal point of a number is determined by
THIS. Only one decimal point per format array.
THIS SIGN can be altered with a PUDEF statement.

With a comma in a number, longer numbers are more
easily read. This character can be altered with a
PUDEF statement.

A $ is printed in front of the first valid digit
of a number. This character may be altered with a
PUDEF.

If a format array ends with or contains four
arrows which are in turn followed by a plus or
minus sign, the number is printed in Exponential
format.

Texts are normally printed on the left. They are
centred by using the equals character.

Using this sign, the texts will appear on the
right.

The characters in the format array belong to number or text
variables as can be seen from the following table. Text format
symbols in format arrays can be taken for number expressions and
vice versa. If format symbols are mixed, however, they will be
interpreted as hash signs(#) and will lose their special
formatting function.

84

76% Reference Guide BASIC Statements

Format character types

Character Number formatting Text formatting

Hash sign (#)
Plus (+)
Minus (-)
Decimal point (.)
Comma (,)
Dollar ($)
Four arrows (TTTT)
Equals sign (=) X
Larger than (>) X

X

>
<

>
<

>
<

>
<

>
<

>
<

>
<

The hash sign is used for text and numerical variables. If also
reserves space for a character in the output array. If the data
expression has more space than prepared by the #, then the
following occurs:

In a number variable: The entire array is filled with
asterisks (*) and no number is printed.

In a text expression: All prepared spaces are occupied, excess
data is ignored.

If an array is to be produced which has a maximum of 7 characters,
the following PRINT USING instruction is entered:

PRINT USING "#######"; NAME$

If NAMES has more than 7 characters, the eighth and all subsequent
characters will be ignored.

To print a number with a maximum of 4 places, we use:-

PRINT USING "####“;A With this formatting statement the program
prints:

A=12.34 12
A=567.89 sea
A=123456 ****

The plus and minus characters can either be printed first or last
in the format array. The plus prints a plus sign and the minus a
minus sign.

If a minus sign is entered and the number is positive, a space is
printed.

If more text variables are available than are defined in the
format array, then the characters appearing on the right which are
superfluous are simply ignored.

__35__

700 Reference Guide

Examples:

Array

+##

#.##+

'0

##.#-

+##+

+##.#-

####

####

#.##

##.

#.#.

##,##

##=<<

#$##

+#,#TT1T

#T1T1+

##1TT

####

###>#

#####

=####

#,$#=+

Expression

1

—l00.5

-1000

-4E—03

10

-19

1000

-340

cbm

cbm

cbm

cbm

cbm

Result

+51

0.01‘

—.10

1.0

ERROR

ERROR

-1a1

iiti

-.aa

1a.

ERROR

-19

1000.0

$1

+l.0E+00

3E+G2-

ERROR

cbmb

bflcbm

cbmgb

Jécbmfi

#41 cbmyg

BASIC Statements

Comment

Blank between operational sign
and number

Leading 0 added

Leading 0 suppressed by minus
sign

Trailing 0 added

Two plus signs

Plus and minus signs

Rounded to a total 4 characters

Overflow, as 5 characters do
not fit into array

Rounded to a total 4 characters

Decimal point added

Two decimal points

Minus has priority over comma

= and < are treated as #, since
they are in number array

Preceding $ character

Expression in exponential format

Trailing sign

only three arrows

Text expression printed on the
left

Text expression printed on the
right in a 5—character array

On the left in a 5-character
array

Centred in a 5-character array

Only the = has a control effect
The other characters are
treated as #

__35__

7flG Reference Guide BASIC Statements

8.30 PUDEF

Format: linenumber PUDEF controlstring

Arguments: controlstring consists of 1-4 characters which are
enclosed in inverted commas, or a text variable
which contains 1-4 characters.

Abbreviation: pU

The PUDEF defines the symbols of a PRINT USING statement so that,
for example, instead of a space, a question mark is printed. Each
of the positions in the controlstring represents a certain symbol
from the PRINT USING statement which can be altered.

The positions correspond to the following symbols: (lfié yfi M
J I

- Position 1 is the fill character. Default is space.
- Position 2 is the comma, with comma default.
- Position 3 is the decimal point, with the decimal point as

default.
- The currency character is at position 4. Default is $.

PUDEF only alters the character if a PRINT USING is used for
output.

PRINT outputs are not influenced by PUDEF.

The format array of PRINT USING is not changed at all. The
symbols in the format array are not changed if the PUDEF statement
is used.

To change the symbols with the PUDEF statement, the required
characters must be used in the corresponding positions of the
controlstring. If the space should be replaced by a question
mark, for instance, then this PUDEF statement should be entered:

PUDEF "?"

Now every space will be replaced by a question mark at printout.
So the expression:

" 12.3"

is printed as "???l2.3"

If fewer than four characters are in the controlstring, the
remaining symbols receive their default values. If more than four
characters have been entered, the superfluous symbols are ignored.
For example:

__37__

7G0 Reference

1) The comma
statement

10
20
RUN

PUDEF
PRINT

-l.234,57
READY

2) Asterisks

Guide BASIC Statements

and decimal point characters of a PRINT USING
are to be exchanged:

II II

UsiNG "###,###,###.##";—l234.567

(*) are to be printed for every space. In tnis
example, two possibilities are offered.

10
20
30
40
56
60
70
80
90
160
11%
120
133

PUDEF

Fl$
F2$
FOR I

PRINT

FOR I

PRINT

DATA 1.50,

NEXT I
RESTORE

NEXT I

II* II

2583.1, 3456789.55, .25
"$##,###,###.##" :REM LEADING SIGN
"#$#,###,###.##" :REM FLOATING SIGN
= 1 TO 4

READ A
USING Fl$; A

= 1 T0 4
READ A

USING F2$ FA

********r*l_5g
$*****2,S83.l0
$*3,456,789.55
$*********g.25
i'i***$1.
*****$2,S83.lG
*$3,456,789.55
*#*i**it*$g_25
READY

8.31 READ

Format:

Arguments:

Abbreviation:

(linenumber) READ Variablelist

Variablelist is a list of variable names,
by commas.

separated

rE

The READ statement refers to one or more DATA statements and these
data are allocated to the variables in the Variablelist.

READ and DATA
in a program.

statements are often used to obtain initial values

Variablelist can contain any numerical, text or array variable
names .

__33__

706 Reference Guide BASIC Statements

A READ statement can receive values from several DATA statements
and different READ statements can use the same DATA statement.
The data are read from the DATA statement in sequence and
allocated to the variables on the variablelist. A READ statement
does not have to read all values from the DATA statement. If it
is not done, the next READ statement continues the processing of
the DATA statement at the point where the first stopped. If more
values are to be read than are in the DATA statements, the error
message ?OUT OF DATA appears. If there are more data in the DATA
statement than are read by the READ statement, the extra data are
ignored. If the value allocated to a variable in this manner does
not correspond to the variable type, the error message ?SYNTAX
ERROR appears (referring to the dataline).

DATA statements as all BASIC statements, have a line number.
Using RESTORE, data from a DATA statement can be reused. For
example:

1) Here it can be seen how values can be read from different DATA
statments by using READ:

1% DATA 1.G,2.5,3.8,4.9,9.9
2% DATA ll.G,l2.5,l4.8
30 REM READ THE INITIAL VALUE
40 FOR I = 1 TO 4

5G READ INIT(I)
60 NEXT I
70 READ PERCENT,IY,X
80 ...Rest of BASIC program

2) Here numerical and text variables are read with READ:

19 DATA 1.1,2.2,3, “TEXT ONE", "TEXT TWO"
2e DATA 4.4," TEXT THREE ",5
3a READ X,Y,Z%,A$
40 PRINT X,Y,Z%,A$
5a READ B$,XYZ
60 PRINT B$,XYZ
7a READ C$.N%
ea PRINT C$,N%
90 END
RUN
1.1 2.2 3 TEXT ONE
TEXT TWO 4.4
TEXT THREE 5
READY

8.32 REM

Format: (linenumber) REM text

Arguments: text is any remark.

Abbreviation: None

__39__

70% Reference Guide BASIC Statements

The REM statement is a non-executable statement in the program.
Any letters or characters can be in text. REM statements are
regarded as the last statement of the line and may also contain
colons which would otherwise mark the boundary of a statement.

REM statements are often used to write explanations into the
program so that the program is easier to understand, or to explain
the meaning of the variables. A possible correction to the
program is made easier also.

REM statements can also be the only statement on a line, for
example:

10% REM THIS PROGRAM WAS WRITTEN ON 7.9.84

when using capitals or graphic characters, the text must be
enclosed within inverted commas.

The line numbers of REM statements can be jump addresses of a GOT0
or GOSUB statement, but this is considered "bad programming".
Examples:

Many examples of the REM statement can be found in this handbook.

some typical ones are:-

10 REM THIS PROGRAM WAS WRITTEN BY F.D.
25 REM THIS DATA STATEMENT CONTAINS INITIAL VALUES
30 REM FOR THE AREA IN QUESTION
13% X = SQR (Z*T): REM CALCULATION OF THE SURFACE

8.33 RESTORE

Format: (linenumber) RESTORE [linenumber2]

Arguments: linenumberz is the line number in the program

Defaults: linenumberz is the line number of the first DATA
statement in the program

Abbreviation: res

By using the RESTORE statement, the following READ statement reads
the value of the DATA statement in linenumberz. In Section 8.7
you will find more information on DATA statements and in 8.31 on
READ statements.

If a linenumberz is given which is not in the program, the error
message ?UNDEFINED STATEMENT appears.

Linenumber2 need not be the line number of a DATA statement in the
program. In this case BASIC seeks the next DATA statement after
linenumberz.

——90—— \\

7G6 Reference Guide BASIC Statements

READ statements normally read the values of DATA statements in
sequence. By using RESTORE, however, it is possible to let data
be read twice because the following READ statement begins with the
DATA statement which is in linenumber2. For example:

1) 10 RESTORE The first DATA statement of the program is read.

2) 160 RESTORE 59 Then the DATA statement in line 5G (or the one
following line 50) is read.

3) In the following example, the DATA statement in line 2G is
re-read:—

10 DATA l,2,3,4
2% DATA 5,6,7,8
30 FOR L = 1 TO 8
40 READ A:PRINT A
50 NEXT L
60 RESTORE 20
7G FOR I = 1 TO 4
80 READ A:PRINT A
90 NEXT I
100 END
RUN

m
(f

i\
lO

1
U

'|
®

\l
O

\U
'|
-l
ib

-)
l\
)|

-‘

EADY

8.34 RESUME

Format: linenumber RESUME [NEXT(linenumber2)]

Arguments: 1inenumber2 is the line number of a BASIC program
statement

Defaults: linenumberz is the line number which caused the
error

Abbreviation: resU

The RESUME statement functions in error trapping by continuing
processing the program after the error has been found and
processed with a subprogram. The TRAP statement described in 8.38
traps the errors.

__91__

70% Reference Guide BASIC Statements

If RESUME is used without NEXT or linenumber2, the program
processing recommences at the statement where the error occurred.
If the error occurs in a line with several statements, only the
statement with the error will be repeated.

If the NEXT parameter is given in the RESUME statement, the
processing will continue with the statement which follows the
error. If there are more statements on one line, the processing
will continue with the next statement in the same line.

If linenumberz is given, the program processing will continue on
that line.

The RESUME statement may not be used in direct mode. If this is
done, then the error message ?ILLEGAL DIRECT will appear. Error
trapping will stop when an error has occurred. RESUME switches
the error trapping on again and uses the error parameters ER
(error number) and EL (error line).

If you try to use a RESUME statement without the preceding TRAP
statement, the error message ?UNABLE TO RESUME appears. For
example:—

It can be seen here how an error is found and how to use RESUME,
depending on the type of error. If there is an OUT OF DATA error
(ER = 23) after line 500, the data in DATA statement 85 should be
RESTOREd. In every other error, the program should be stopped.

10 REM IF THERE IS AN OUT OF DATA ERROR AFTER LINE 50$
20 REM THE DATA MUST BE RESTORED
30 REM WITH A RESTORE 85
46 ... BASIC statements
80 DATA ...

85 DATA ...

9% DATA ...

166 TRAP 900
110 ... BASIC statements
6001 READ A,B,C,D,E: REM HERE IS AN OUT 05' DATA
616 ... BASIC statements
90% REM START OF ERROR TREATMENT
910 REM ONLY THE OUT OF DATA ERROR (ER = 23) AFTER LINE 560
926 REM SHOULD BE TREATED. IN EVERY OTHER ERROR
933 REM THE PROGRAM PROCESSING SHOULD BE STOPPED
940 IF (ER <> 23) OR (EL < 500) THEN STOP
950 REM THERE IS AN OUT OF DATA AFTER LINE 500
955 REM ERROR OCCURRED
960 RESTORE 85
976 RESUME
980 END

__92__

700 Reference Guide BASIC Statements

8.35 RETURN

Format: (linenumber) RETURN

Abbreviation: reT

The RETURN statement is the last statement of a subprogram and
activates the jump to the statement following the GOSUB call.
More detail on the GOSUB is to be found in Section 8.15.

Sub-program statements can be anywhere in the BASIC program. If
the subprogram is placed at the end of a program, the final END
can be put in front of the start of the subprogram so that the
subprogram cannot in any circumstances be executed without the
GOSUB statement. If a program finds a RETURN without a preceding
GOSUB, there is the error message ?RETURN WITHOUT GOSUB. For
example:-

10 PRINT "PROGRAM START"
20 PRINT "CALL UP FIRST SUBPROGRAM"
30 GOSUB 20$
40 PRINT "CALL UP SECOND SUBPROGRAM"
50 GOSUB 30$
6% PRINT "COMPLETED"
70 END
29$ REM THIS IS THE FIRST SUBPROGRAM
210 PRINT "IN THE FIRST SUBPROGRAM"
220 RETURN
3E0 REM THIS IS THE SECOND SUBPROGRAM
310 REM THIS SUBPROGRAM CALLS A THIRD SUBPROGRAM
32$ PRINT "IN THE SECOND SUBPROGRAM; A THIRD IS CALLED"
330 GOSUB 406
349 RETURN
400 REM THIS IS THE THIRD SUBPROGRAM
410 PRINT "IN THE THIRD SUBPROGRAM"
429 RETURN

8.36 STOP

Format: (linenumber) STOP

Abbreviation: sT (not to be confused with the reserved word ST)

The STOP statement ends program processing and returns to direct
mode. The STOP statement does not close files. Processing can
continue with CONT after having been stopped by STOP.

STOP statements can be anywhere in the program. The program is
purposely interrupted and statements can be given in direct mode
in order to change or examine variables, for example. Processing
can resume with CONT. For example:-

__93__

700 Reference Guide BASIC Statements

20 INPUT "ENTER A NUMBER";X
30 Y = SQR(ABS(X))
40 Y = Y*X
50 X = X/160
60 IF (Y < 1.0Ed94$) OR (Y > 1.0E+2fl) THEN STOP
7G PRINT "THE ACTUAL VALUES ARE",X,Y:END

8.37 SYS

Format: (linenumber) SYS address

Arguments: address is the address of a machine code program.
It can be either a variable or the address itself.

Abbreviation: sY

SYS statements permit BASIC to be mixed with machine code in a
single program.

SYS statements can be used in direct and program mode. They are
often used to call up subroutines of the operating system in Bank
15.

Address is the address of the start of the machine code program in
the memory. Address can be:

1) The name of a variable which has this value, for example:

160 MYSUB = 30206

129 éié mus

2) The address of the machine code program itself, for example:

110 SYS 49$57

The machine code must be in the memory if it is to be called up by
SYS or the program may crash without a error message.

__94__

7E0 Reference Guide BASIC Statements

8.38 TRAP

Format: [linenumber TRAP 1inenumber2]

Arguments: linenumberz is the linenumber of the first statement
of the error treatment routine.

Abbreviation: tR

The TRAP statement uses BASIC to suspend the normal error
treatment and activates the program to carry out its own
treatment. Details on the increased possiblities for debugging
are in Section 5.3.2. The statement in linenumberz is executed if
an error occurs. The statements for debugging should begin in
linenumberz. The program for error treatment (debugging) can
decide by using variables ER (error number) and EL (error line)
what should be done for any error which may occur.

when an error occurs, ER contains the number of the error and EL
the line number where it is to be found. Debugging of the ensuing
errors is left to BASIC in the absence of the parameter
1inenumber2.

If TRAP is used in direct mode, error message ?ILLEGAL DIRECT
appears.

other statements used by error treatment are RESUME and DISPOSE.
For example:

10 TRAP
20 REM PROGRAM START
30 ... BASIC statements ...

900 REM SUB PROGRAM FOR ERROR TREATMENT
910 REM ONLY FILE AND DEVICE ERROR
920 REM ARE TREATED, AS THE ER IS BETWEEN 1 AND 9
939 IF (ER < 1) OR (ER > 9) THEN GOTO 1010
940 PRINT "YOU HAVE DIFFICULTY WITH A FILE"
950 ...

1910 REM HERE OTHER ERRORS ARE TREATED
1020 ...

8300 END

TRAP without linenumberz restores normal BASIC error processing
(ie "resets" the trap).

__95__

7flG Reference Guide BASIC Statements

8.39 WAIT

Format: (linenumber) WAIT address, mask}, mask2

Arguments: Address is the address of a memory location
maskl and mask2 are integer values.

Defaults: mask2 = 0

Abbreviation: wA

The WAIT statement continually checks the values in address until
the condition described here is fulfilled. Then the next
statement is executed. The WAIT statement is used to let the
program pause whilst a certain value is being checked in the
memory. WAIT statements are not used often; don't worry therefore
if you don't understand everything immediately. Most programmers
will never use this statement since it is normally used to survey
the condition of an input channel.

Maskl and mask2 are integer numbers and are compared with the
memory byte at the point address. i.e. a mask can be used
containing up to 8 ones or zeroes.

The WAIT statement functions as follows:

1. The values of address and mask2 are compared using the logical
operation "Exclusive OR", if mask2 is given.

2. The result of the comparison is compared with maskl using a
logical "AND". If there is no mask2, the value of address is
compared with maskl using a logical "AND".

3. If the result of steps 1 and 2 is 0 (if all bits are "off")
the WAIT statement is repeated.

4. If the result is not 6 (if one or more bits are "on") the next
BASIC statement is activated.

The two masks are used as follows:

- maskl filters out those bits which do not need to be checked.
A bit which is G in maskl will also produce a 0 in the result.

- mask2 switches bits round so that an "on" and an "off"
condition can both be checked. A bit which needs to be checked
for 0 must have a 1 at the corresponding point in mask2.

For example, if a program is to continue only if the far right
hand bit at point 62255 is "off", then a 100 WAIT 62255,l,l is
used:

In this example, maskl has the value Efiflflflflfll and mask2 flfififlflfifll.
The memory word at point 62255 has the value 145 (i.e. lflfllflflfll in
binary) and indicates the condition of an in/output channel. You
must wait till the bit 0 (outer right) is "off". Then the
following happens by using the WAIT statement:

__96__

700 Reference Guide BASIC Statements

1. The contents of 62255 is compared with an EOR to mask2:

62255 10010001
EOR

mask2 00000001
Resultl 10010000

2. The result is compared with maskl by an AND:

Resultl 10010000
AND

maskl 00000001
Resu1t2 00000000

3. The result is 0, so WAIT is executed again.

4. At some point the outer right hand bit in 62255 will be 0.

The WAIT statement reads the value in 62255. If the outer right
hand bit is "off" the value of 62255 will be 10010000. This value
is compared with mask2 in the first step of the WAIT statement.
This means:

62255 10010000
EOR

mask2 00000001
Resultl 10010001

An AND comparison with maskl is executed again:

Resultl 10010001
AND

maskl 00000001
Result2 00000001

Now the result is non-zero and the next statement after WAIT is
executed.

Mask2 is not needed if it is only required to check that a bit is
"on":

100 WAIT 62255, 1

No EOR is used during the execution of the statement. Mask2 is
given 0, which does not alter a bit. The value of 62255 is
compared to maskl by AND. Assuming the value of 62255 is
(000l0000), the following happens:

62255 00010000
AND

maskl 00000001
Result 00000000

_.97__

700 Reference Guide BASIC Statements

The result is 0 which means that the outer right bit (checked
because of maskl) is 0. WAIT is executed again and reads the
value 62255 once more. If the value is now 145 (l00l0001), the
following procedure takes place:

62255 10010001
AND

maskl 00000001
Result 00000001

The result is non-zero, so that the statement following WAIT is
executed.

It can be seen in the next example how to check if bit 4 is "off"
or if bit 7 is "on". (Remember that mask2 is used to check if a
bit is "off".)

100 WAIT 36548,144,16

The value 65 (0l00000l) is in memory location 36548. Bits 7 and 4
are both "off". only bits 6 and 0 are "on". After carrying out
step 1, bit 4 is switched by:-

36548 01000001
EOR

mask2 00010000
Resultl 01010001

Now the result is compared with maskl by AND:

Result 01010001
AND

maskl 10010000
Result2 00010000

The result is non-zero and the next statement is executed. Bit 4
was "off". Although bit 7 was not "on", WAIT established that bit
4 was "off" and continued the processing of the program.

Take care:- An endless loop can be produced with the WAIT
statement.

WAIT cannot be interrupted using the STOP key!

_.93__

700 Reference Guide BASIC Functions

CHAPTER 9

BASIC FUNCTIONS

ABS POS
Asc RIGHTS
ATN RND
CHR$ SGN
cos SIN
ERR$ SPC
EXP son
FRE ST
INSTR STR$
INT TAB
LEFT$ TAN
LEN TI$
LOG USR
MID$ VAL
PEEK

The 700 series has a range of built-in functions incorporated in BASIC,
and these can be used without further definition. The function
parameter can be a number or a variable, (which can have a new value at
each function call,) and is always enclosed in brackets.

Built-in functions can be used in both direct and program modes.

- Any variable name can be allocated to the function, for example:-

ARCTG = ATN((X*Y*Z)+(R/2))
NUM = VAL(S$)

- Functions of functions can be formed, as can expressions with
more than one function, for example:—

RESULT = SQR(A*A+B*B) + COS(Y/4.777)
ANSW = LOG(ABS(INT(XX)))

— Functions can be used in direct mode, for example:-

?SQR(l25.68)
?FRE(l)

The BASIC functions work with integer, real or text variables, depending
on the function.

If a.real number is given to a function which works with integers, the
number is truncated. The following table contains value types into
which the BASIC functions transfer the results.

__99__

706 Reference Guide BASIC Functions

The BASIC functions

Result Arguments
Function Numerical Text Numeric string
ABS X X
ASC X X
ATN X X
CHR$ X X
COS X X
ERR$ x x
EXP X X
FRE X X or X
INSTR X X and X
INT X X
LEFTS X X and X
LEN X X
LOG X X
MID$ X X and X
PEEK X X
POS X X
RIGH‘I'$ X X and X
RND X X
SGN X X
SIN X X
SPC X X
SQR X X
ST X X
STR$ x x
TAB X X
TAN X X
TI$ X X
USR X X
VAL X X

__1oo__

760 Reference Guide BASIC Functions

9.1 ABS

Format: ABS (expression)

Arguments: expression is a numerical expression

Abbreviation: aB

The ABS function calculates the absolute value of a number. The
absolute value is the positive value of expression. For example:-

PRINT ABS (7*(—35)) ...Prints the value 245
10 PRINT ABS(1234) ...Prints the value 1234
A=2G:B=-1: PRINT ABS(A*B) ...Prints the value 29
D=-l:C=-9: PRINT ABS(C*D) ...Prints the value 9
PRINT ABS(2*(—2.l)) ...Prints the value 4.2

9.2 ASC

Format: ASC (expression)

Arguments: expression is a string expression

Abbreviation: as

ASC returns the ASCII code of the first character in the expression. If
expression is the null string, the error message ?ILLBGAL QUANTITY will
appear. For example:-

10 XS = "TEST"
29 PRINT ASC(X$)
RUN
84
READY

84 is the ASCII code for T. (See table in Appendix.)

9.3 ATN

Format: ATN (expression)

Argument: expression is a numerical expression

Abbreviation: aT

The ATN function calculates the arctangent of expression. The
arctangent is given in radians. The range is from - /2 to + /2. As
expression can be an integer or a real, the calculation is executed in
floating point format. For example:-

10 INPUT X
2G PRINT ATN(X)
RUN
l.249U4577
READY

——I01-—

76% Reference Guide BASIC Functions

9.4 CHR$

Format: CHRS (expression)

Arguments: expression is an integer

The CHR$ function returns the character represented in the ASCII code be
expression. (See Appendix on ASCII code.) Expression must be a number
between 0 and 255.

The CHRS function is the reverse function of the ASC function. For
example:-

PRINT CHRS (66)
B
READY

9.5 COS

Format:- COS (expression)

Argument: expression is a numerical expression

Abbreviation: none

The COS function calculates the cosine of expression. Expression is
assumed to be in radians.

An integer or real number can be used for expression.

The calculation takes place in floating point format. For example:-

PRINT COS(5-1)
-.65364362

9.6 ERRS

Format: ERR$ (expression)

Argument: expression is a numerical expression

Abbreviation: eR

The ERRS function returns the text of the standard error message whose
number is expression. Expression must be a number between G and 42.

If ERR$ is used with a TRAP statement, standard error messages can be
displayed. See Section 8.38 for TRAP.

——I02——

700 Reference Guide BASIC Functions

Example:—

In this example it can be seen how the ERR$ function can be used
together with the TRAP statement. The variable EL indicates the line
number where the error occurred and ER is the error number whose more
exact description is printed by way of the ERR$ function.

1a TRAP 1009
... BASIC statements ...

1906 REM THE ERRORS ARE ANALYSED. IF THERE IS A SYNTAX
lfilfl REM ERROR, THE PROGRAM SHOULD BE STOPPED
1020 IF ER = 21 THEN PRINT EL, ERR$(ER): STOP
1536 REM IT IS NOT A SYNTAX ERROR. THEN THE ERROR IS TESTED
1040 REM AND MESSAGE IS PRINTED
1050 IF ER = 9 THEN PRINT EL, ERR$(ER): RESUME 160
1060 IF ER = 30 THEN RESUME 150

... BASIC statements ...

111$ RESUME 975
ll20 ... BASIC statements ...

9.7 EXP

Format: EXP (expression)

Argument: expression is a numerical expression

Abbreviation: ex

The EXP function calculates e (2.7l8281...) raised to the power
expression. Expression must be in the range -88 to +88 approximately.
If the EXP function causes an overflow, the error message ?OVERFLOW
appears. The result of EXP() is always positive. For example:-

PRINT EXP(4) Prints the value of the exponential of
4 to base e (about 54.6).

Note: EXP(0) is 1.

9.8 FRE

Format: ERE (expression)

Argument: expression is an integer or a string expression

Abbreviation: fR

The ERE function gives the number of free bytes which BASIC can use for
program text, simple variables, arrays and strings in a memory bank.

-—I03—-

700 Reference Guide BASIC Functions

The location which is available for these four areas (program, simple
variables, arrays and strings) depends on the amount of memory the
computer has available.

128K 256K
BASIC program 1 1
Arrays 2 2
Simple variables 2 3
String variables 2 4

The value given by the FRE function depends on expression as follows:-

- If expression is a number, FRE gives the free bytes in the
requested bank.

- If expression is a string expression, FRE gives the free memory
available for string storage.

(FRE returns 0 if non-existent memory locations are called, or if the
system bank is specified.) For example:-

lfl N% = (FRE(2)-100)/5
2% DIM A(N%)

Here the memory available is determined with a FRE function before an
array is defined.

9.9 INSTR

Format: INSTR (expressionl, expressionz, (expression3))

Arguments: expressionl and expressionz are string expressions
expression3 is a numerical expression

Default: expression3 = 1

Abbreviation: ins '

The INSTR function locates a section of a string (i.e. it finds a
substring). Expressionz is found in expressionl. The search begins at
the character specified by expression3 in string expressionl.
Expression3 must be between 1 and 255. If no number is given for
expression 3, l is used. I.e. the whole of expressionl is searched.
- If expressionz is not found, INSTR has value 6
- If expressionz is found, INSTR gives the position of the first

matching character. For example:-

lfi AS = "MR MRS MISS MS"
20 ...read a name and check
69 IF INSTR(A$,B$) > 0 THEN GOSUB ISGG: ELSE GOSUB 2006

... BASIC statements ...

1500 REM HERE THE CORRECT DATA SHOULD BE PROCESSED
... BASIC statements ...

2060 REM ERRORS IN NAME SHOULD BE PROCESSED HERE
... BASIC statements ...

——l04-—

700 Reference Guide BASIC Functions

9.10 INT

Format: INT (expression)

Argument: bxpression is a numerical expression

Abbreviation: None

The INT function calculated the largest INTEGER value which is smaller
than or equal to the value in expression.

Examp1es:-

PRINT INT (1234.56) Prints the value 1234
PRINT INT (-1234.56) Prints the value -1235

9.11 LEFT$

Format: LEFTS (expressionl, expressionz)

Arguments: expressionl is a string expression
expressionz is a numerical expression

Abbreviation: leF

Returns a substring from the left end of a string. Expression2 must be
a number between G and 255.

If expressionz is larger than the length of expressionl, the function
returns the whole of expressionl. (Use the LEN function to check.)

If expressionz is G, the LEFTS function returns a null string.

The LEFTS, MID$, and RIGHTS functions can be used with the INSTR
function for text processing. For example:-

lfi A$ = "COMMODORE COMPUTER"
23 B$ = LEFT$(A$,9)
30 PRINT
RUN
COMMODORE
READY.

——1o5—_

700 Reference Guide BASIC Functions

9.12 LEN

Format: LEN (expression)

Argument: expression is a string expression

Abbreviation: None

The LEN function returns the number of characters in expression (i.e.
the lengths). The LEN function counts all characters in expression even
those which are not printable or which are spaces. For example:—

10 XS = "COMMODORE COMPUTER" + CHR$ (27): REM 27 IS NON PRINTING
20 PRINT LEN (X$)
RUN
19
READY

Note:

1a PRINTLEN("COMMODoRE CoMPUTER@y+CHR$(27)) would be equally
acceptable.

9.13 LOG

Format: LOG (expression)

Argument: expression is a numerical expression

Abbreviation: None

The LOG function returns the natural logarithm (base e) of the
expression. Expression must always be positive. For example:-

PRINT LOG (45/7) Prints the value l.86G75234

9.14 MID$

Format: MIDS (expressionl, expressionz, [expression3])

Arguments: expressionl is a string expression
expressionz and expression3 are integers

Default: expression3 is the number of all characters
from character expressionz to end of string.

Abbreviation: ml

The MID$ function returns a substring containing expression3 characters
from expressionl starting at the character at position expressionz
onwards. Expressionz and expression3 must be between G and 255.

If there is no value given for expression3, or if there are fewer
characters in expressionl than in expression3, then the function returns
all characters from position expressionz to the end of the text.

——l06——

700 Reference Guide BASIC Functions

If there is a number given for expressionz which is longer than
expressionl, then MIDS returns a null string. For example:-

PRINT "GOOD " MIDS("MORNINGAFTERNOON",8,9)
Prints: GOOD AFTERNOON.

9.15 PEEK

Format: PEEK (address)

Argument: address is an integer

Abbreviation: pE

The PEEK function returns the decimal value of address. The value of
address must be between G and 65535. The PEEK function returns a value
between 0 and 255.

The PEEK function, together with the BANK statement, can reach any
address in the memory. Details on BANK statement can be found in
Section 8.1.

Example:-

10 PRINT PEEK (36879)

Prints the contents of the location 36879.

9.16 POS

Format: POS (dummy)

Argument: dummy is any number

Abbreviation: None

The POS function gives the point where the next character is to be
printed. I.e. the position of the cursor. Any value can be given to
dummy.

The cursor positions:-

- Far left is position 0
— Far right is position 79

Example:-

Here, a carriage return character is printed if the cursor is beyond
location 26.

IF POS (X) > 20 THEN PRINT CHR$ (13) + A$: ELSE PRINT A$

—-107-

700 Reference Guide BASIC Functions

9.17 RIGHT$

Format: RIGHT$ (expressionl, expressionz)

Arguments: expressionl is a string expression
expressionz is a numerical expression

Abbreviation: rI

The RIGHT$ function returns a substring of expressionl containing the
number of characters specified by expressionz. Expressionz must be a
number between 0 and 255. If expression2 is longer than expressionl,
the RIGHT$ function will return the whole of expressionl. If
expressionz is equal to 0, RIGHT$ returns a null string. For example:-

10 AS "OFFICE MACHINE"
29 B$ RIGHT$ (A$,ll)
30 PRINT B$
RUN
ICE MACHINE
READY

9.18 RND

Format: RND (expression)

Argument: expression is a numerical expression

Abbreviation: rN

The RND function provides a random number between G and 1. The number
does not actually occur randomly, but is calculated by the computer by
an intricate algorithm (pseudo random number). To do this, there are
two possibilities:-

— expression < 0
The algorithm uses the expression number to calculate the random
number ("seed").

- expression >= 0
The algorithm uses the last previously formed random number to
calculate the new random number ("series").

For example:-

Five random numbers are printed. (They are in the range G to law).

10 FOR I = 1 TO 5
20 PRINT INT(RND(G)*l0G);
30 NEXT
RUN
24 30 31 51 5
READY

RUN again and 5 new random numbers are printed.

—108-—

700 Reference Guide BASIC Functions

If you now add the program 1ine:-

5 X = RND(-1)

Every program run will give the same sequence of "random" numbers, since
line 5 now "seeds" the random number series.

9.19 SGN

Format: SGN (expression)

Argument: expression is a numerical expression

Abbreviation: sG

The SGN function returns the sign of expression. The values returned
are as fo11ows:- if X < 0 then SGN(X) = -1, if X = 0 then SGN(X) = 0, if
X > 0 then SGN(x) = +1.
For example:-

ON SGN(X)+2 GOTO 100,200,300

This jumps to line 100 for X < 0, 200 for X = 0 or 300 for X > 0.

9.20 SIN

Format: SIN (expression)

Argument: expression is a numerical expression.

Abbreviation: sI

The SIN function calculates the sine of expression. Expression is
assumed to be in Radians. An integer or a real number can be used for
expression. The calculation takes place in the floating point format.

9.21 SPC

Format: SPC (expression)

Argument: expression is an integer expression.

Abbreviation: sP

The SPC function prints expression spaces. The value of expression must
be between 0 and 255.

The SPC function can only be used as part of a PRINT statement. For
example:-

PRINT"IN SECTION"SPC(20)POS(X)
IN SECTION 3%

READY.

——109——

7G0 Reference Guide BASIC Functions

9.22 SQR

Format: SQR (expression)

Argument: expression is a numerical expression

Abbreviation: sQ

The SQR function calculates the square root of expression. Expression
must be larger than or equal to 0. For example:-

PRINT 10, SQR(1fl)
1a 3.16227766

READY.

9.23 ST

Format: ST

The STATUS function returns the value of the reserved variable ST for
the preceding input/ouput operation.

The value of the STATUS function depends on the operation and the
device.

Function Values of STATUS function

STATUS STATUS Meaning
bit numerical
Position Value

6 l Timeout output.
1 2 Timeout input.
6 64 End of file.
7 -128 Device not present.

For example:-

10 OPEN 2,8,2, "MASTER FILE,S"
20 GET#2, AS
39 IF STATUS AND 64 THEN 60
4a PRINT AS
50 GOTO20
6a PRINT A$:CLOSE 2

Here STATUS is used to check for the end of a file before closing it.

(Note: when using the RS232 interface, the ST has a different meaning.)

-—1l0——

709 Reference Guide BASIC Functions

9.24 STRS

Format: STRS (expression)

Argument: expression is a numerical expression

Abbreviation: stR

The STRS function returns the ASCII text equivalent to expression. This
is very useful if text is to be compiled from discrete characters or
groups of characters, especially if the characters are numeric.

The VAL function (see 9.29) operates in the opposite way to STR$.

The length of the text returned depends on the value in expression. The
length can be determined by using the LEN function. For example:-

PRINT "$" + STR$(2.77) $ 2.77 is printed
PRINT STR$(l50)+".fl0" 150.09 is printed

9.25 TAB

Format: TAB (expression)

Argument: expression is an integer expression

Abbreviation: tA

The TAB function moves the cursor to the position indicated by
expression. If the cursor is already beyond this point, TAB places the
cursor in the next column.

Expression must be between G and 255, and columns are numbered starting
at 0 at the left hand edge. For example:-

PRINT TAB(39) “l23456"

Note: This command is always used as part of a PRINT command.

9.26 TAN

Format: TAN (expression)

Argument: expression is a numerical expression

Abbreviation: None

The TAN function calculates the tangent of expression. §xpression is
assumed to be Radians. Although expression can be an integer or real
number, the calculation is always performed in floating point format.
If the expression value causes an overflow, the error message ?OVERFLOW
appears.

——I1l——

706 Reference Guide BASIC Functions

9.27 TI$

Format: TI$

The TI$ function returns the time from the internal clock. The string
TI$ has 7 characters which are hours, minutes, seconds and tenths of
seconds (HHMMSST). For example:-

10 TI$ = "GOGGGGG"
... BASIC statements ...

sea TA$ = TI$
510 TS = LEFTS(TA$,2)+“:"+MID$(TA$,3,2)+“:"
520 PRINT T$ + MID$(TA$,5,2)+"."+RIGHT$(TA$,1)

Here the time is set to G and then, after the program run, the time
elapsed is printed using TI$.

9.28 USR

Format: USR (expression)

Argument: expression is a numerical expression

Abbreviation: uS

The USR function calls up the assembler subprogram written by the user,
the jump address of which is held in locations 3 and 4 of memory Bank
15. Expression is stored in the accumulator before the subprogram is
called.

The function value is obtained from the accumulator location 71 Hex in
Bank 15 as soon as the assembler subprogram has been executed and the
BASIC program is running again. The address of the assembler subprogram
must be poked into locations 3 and 4 in bank 15 before the USR function
can be used. For example:-

lfl REM REMEMBER THAT THE ADDRESS OF THE
20 REM ASSEMBLER SUBPROGRAM MUST BE ENTERED
30 REM BEFORE THE PROGRAM CAN BE CALLED UP
40 REM WITH A USR FUNCTION
50 BANK l5:POKE 3,0:POKE 4,4
160 B 12.345
120 C USR(B/2)

Here, a value is stored in the accumulator and then an assembler program
is called up.

——112——

700 Reference Guide BASIC Functions

9.29 VAL

Format: VAL (expression)

Argument: expression is a string expression

The VAL function returns the numerical value of the string.

If the first character in expression is not +, -, $ or a number, then
the VAL function will return the value 0.

The VAL function works in the opposite way to the STRS function. For
example:-

19 REM CHECK IF A STRING IS NUMERIC
15 REM IF NOT, THERE IS AN ERROR MESSAGE
20 IF VAL(A$) = 5 THEN 40
35 GOTO Sfifl
4% PRINT "NO NUMERICAL VALUE. THE VALUE IS";A$

Here, the VAL function is used to decide whether a string contains
numbers or not before using it in an expression.

——l13——

700 Reference Guide Machine Language Monitor

CHAPTER 10

THE MACHINE LANGUAGE MONITOR

For the user who needs to directly control memory or to work with
machine language programs, the operating system has a monitor through
which one can obtain important information on the internal state of the
computer at any time. “

In general this means the contents of registers and memory locations.
All addresses and contents are displayed in a hexadecimal (hex)
presentation. Hex numbers are identified here as normal by the
preceding $ sign. For example:-

Hex Decimal
$rJA = 1a
$05‘ = 15
$10 = 16
$E'F = 255

Thus, all register contents are two-digit, all addresses are four digit
hex numbers.

In some commands, the memory segment's address must precede the address
so that six-digit "long addresses" are the result. The monitor always
uses the address in the current segment (bank) when using a four-digit
address.

The monitor is activated by the command "bank l5:SYS6095$"
:5)’: 9

First of all, the register contents of the CPU and the actual interrupt
pointer are displayed. The display might look like this:-

PC IRQ SR AC XR YR SP
; G030 FBE9 00 GE 00 0% F9

The meaning of this display is explained thus:-

PC: Program counter, address of the next command to be
carried out

IRQ: Interrupt pointer ($336/3G1)
SR: Status register
AC: Accumulator
XR: x-register
YR: y-register
SP: Stack pointer

The semicolon in the line with the register contents means that all
values in this line may be altered; the changes are made when the RETURN
key is pressed. The full stop at the beginning of the line indicates
that the computer's monitor is running.

——l14——

7E0 Reference Guide Machine Language Monitor

The following commands are valid for this mode:-

R

displays the register contents

M address [address]

displays the contents of the specified memory location (or all
locations up to the second address).

The colon at the start of the line means that you can change the
contents.

G [address]

Jumps to the main code program at the given address. If the address is
missing, the microprocessor continues from the next command using the
program counter.

L "NAME",device

Loads the program with the given name from the given device, (2-digit
hex) into the preselected bank. No pointers are changed in the
computer, unlike with the corresponding BASIC command.

S "NAME", device, longaddress, longaddress

Stores the memory contents between the given longaddresses as a file
under the given name.

0 device

sets the default value for the disk device. (For use with @ and other
commands.)

V segment

Selects the given bank for any following monitor commands. The selected
segment (bank) can be determined at any time by m 6001.

Z

Switches to any built-in co-processor (will "crash" the machine if there
is no co-processor to accept control).

@ [command]

If this command is immediately followed by a RETURN, the computer
displays the disk error message. The device address is normally 8 and
the command channel 15. (See command U to change the device number.)
If a command follows the @, then this command is transferred to the disk
drive using the command channel. For example:-

@I0

initialises drive 6.

-—I]5~—

700 Reference Guide Machine Language Monitor

X

Warm starts BASIC once more. (I.e. exits the Machine Code Monitor and
gives control back to BASIC.)

If a given command is not recognised an attempt is made to load a file
of the same name from disk.
If this occurs successfully, the monitor jumps to the load start
address.

** This process is only applicable to Bank 15. **

Note:- should the file not exist a kernal error message:-

I/O error#4 (file not found)

will be displayed, or if no disk drive is connected then:-

I/O error#5 (device not present)

will be displayed.

Further information about the Kernal is in the Kernal section of this
manual.

—llb—

706 Reference Guide BASIC processing of the Memory

APPENDIX A

The BASIC 4.0+ interpreter allows access to the memory of the computer.
The size of the available memory depends on the computer model.

The following BASIC keywords are used with the memory:~

- BANK
- BLOAD
- BSAVE
- PEEK (a function)
- POKE

The BANK statement is the central element for accessing the multiple
memory banks in the 700. The statement determines which bank will be
dealt with by the BLOAD, BSAVE, POKE statements, and the PEEK function,
normally dealt with by Bank 15.

when a BANK statement is used, all following BLOAD, BSAVE, POKE and PEEK
operations refer to the newly defined bank.

The BLOAD statement is also used to load assembler subprograms from
BASIC programs for special purposes.

——1I7——

700 Reference Guide BASIC processing of the Memory

Memory organisation

The whole memory is divided into segments or banks. Each of these banks
is an area of 64K bytes. A maximum of 16 of these banks can be
resident. The banks are numbered from G to 15, ($00 to SGF).

some banks have a fixed use which is partly dependent on the available
memory.

In 128K models, it is distributed as follows:-

Bank 1: contains the BASIC text, i.e. the programs you use.
Bank 2: is used for variable storage.

In models with 256K capacity, Bank 1 is used in exactly the same way as
for that in 128K versions, then ...

Arrays are stored in Bank 2.

Simple variables (non-indexed variables) are stored in Bank 3. (This
bank also has space reserved for the disk operating system.)

Bank 4 contains the strings.

The application of Bank 15 is identical in all cases: The BASIC
interpreter, the editor, the operating system, the input/output section
and the system information (zeropage etc.) are to be found here.

The addresses from SZGGG (8192) to $7fff (32767) are kept open; this is
for any individual expansion. To this end, the address lines are
available on the cartridge connector. If necessary, ROM modules, RAM
memory or any input/output sections (all mixed) may be located here.

——ll8——

700 Reference Guide BASIC processing of the Memory

Memory Distribution in Segment (Bank) 15

Address (hexadecimal)

SFFFF
Kernal ROM (operating system)

Ssoaa
Input/output section (see below)

$C000
BASIC ROM HI

SA000
BASIC ROM LO

$8000
Cartridge (Bank 3)

$6000
Cartridge (Bank 2)

$4000
Cartridge (Bank 1)

$2000
4K disk ROM

$1000
2K external buffer RAM

$0800 pa£,KA”l
2x m »«—\{:z':::: %?;f3Wz /n WW; /W"

$0001 Indirect Register
$0000 Execute Register

I/0 Section

SE000
TPI 6525 (keyboard)

SDF00
TPI 6525 (IEEE, User)

$DE00
ACIA 6551 (RS232)

$0000
CIA 6526 (User, Inter-proc.)

$DC00
Free (co-proc.) Zafi§> Xcéfif

$DB00
SID 6581 (sound)

SDA00
Free (disk-input/output)

SD900
CRTC 6545 (screen)

$D800
Screen memory /3

$0000 0
Unused <r‘wIvz/v€c/ /01 /9 in M‘

$C000

-—ll9——

70% Reference Guide The RS232 Interface and the ACIA

APPENDIX B

700 machines are equipped with an RS232 port as standard. The port is
driven by an ACIA 6551 integrated circuit which is located between $DD00
and SDEGG in the system bank(1S).

The MOS Technology Asynchronous Communication Interface Adapter 6551
allows for the following:—

- On-chip baud rate generating rates between 50 and 19,290 baud.
- Echo mode.
- False start bit detection.
- Bidirectional data.
— External non-standard clock input for baud rates up to

125,606 baud.
- Programmable word length.
- Programmable number of stop bits.
— Parity generation and detection. (Odd, even, none, mark and

space are all useable.)
- Full or Half duplex.
- 5,6,7 or 8 bit transmission.

The Port it drives has the following pin connections:-

Pin 1 Shield
2 TXD - Transmit data output
3 RXD - Receive data input
4 RTS - Ready to send‘ output
5 CTS — Clear to send input
6 DSR — Data set ready input
7 Ground
8 DCD - Data carry detect input

11 +5v.
18 -12v.
20 DTR - Data terminal ready output
24 XMIT CLK - Transmit clock output/input

All other pins are not connected. See note 1 on Signals and note 8 on
plug types.

Interrupts from the DCD and DSR lines are processed by the 6551 internal
interrupt logic circuits. The 6551 can also generate an interrupt
itself which is processed by the 6509 CPU in the 760. DTR and RTS lines
are signalled by the 6551 command register logic.

The 6551 has five main registers:-

— TRANSMIT DATA register (TDR)
- STATUS register (SR)
- CONTROL register (CR)
- RECEIVE DATA register (RDR)
- COMMAND register (CMR)

—12o_

700 Reference Guide The RS232 Interface and the ACIA

Register Addresses

TDR/RDR SDDM *

SR $DD01
CR $DDa2
CMR $DDG3

* TDR if written to or RDR if read from.

TDR and RDR are used for temporary data storage. The SR is used to
indicate the status of the various functions of the 6551 and may be
interpreted as follows:-

Bit E :Parity error if set. Self clearing.
Bit 1 :Framing error if set. Self clearing.
Bit 2 :0verrun error if set. Self clearing.
Bit 3 :Receive data register full if set.
Bit 4 :Transmit data register empty if set.
Bit 5 :DCD line in high logic state if set.
Bit 6 :DSR in high logic state if set.
Bit 7 :(IRQ) interrupt if set.

It can be seen from the above that a status register containing 6
indicates that all is well. See also note 5.

CR and CMR are set from the BASIC statement OPEN.

The OPEN statement has the following format:-

OPEN channelnumber,2,secondaryaddress,bytestring

— The channelnumber may be any number between 0 and 255. If a
channelnumber greater than 127 is chosen then CR and LP are sent
with each PRINT#, otherwise CR alone is sent (see note 3).

- 2 is the primary address of the RS232 port.
- The secondaryaddress of the RS232 port may be one of the

following six numbers according to your requirements:-

1 for Transmit characters only.
2 for Receive characters only.
3 for Transmit and Receive characters.

129 for Transmit and convert characters.
130 for Receive and convert characters.
131 for Transmit, Receive and convert characters.

(Conversion is from CBM to ASCII and vice versa.)

- The bytestring contains four bytes/characters and is composed as
follows:-

The First byte is the Control Register byte. The Second byte is the
Command Register byte. The Third and Fourth bytes are not used in a

700, but dummy characters must be sent to the 6551 or errors will occur.
For example:- send "++".

The CR byte controls the speed of transmission, the number of stop bits
and the word length:-

——l2l-—

70fl Reference Guide

The bits 3 and 3 are used as follows:-

Bit 3 2
I-

‘I
-‘
I-

‘O
-‘
I-

‘D
-'
1
-4

|-
'Q

Q
Q

Q
Q

Q
Q

Q

I-
'9

-‘
D

-‘
D

-‘
Q

Q
S

Q
I-

‘I
-‘
F

-‘
I-

‘Q
Q

Q
Q

1

I-
‘P

-‘
Q

9
!-

‘D
-‘
Q

8
!-

‘I
-‘
S

Q
!-

‘D
-‘
S

Q

G

P
-‘
Q

!-
‘Q

!-
‘Q

!-
‘Q

!-
‘Q

!-
‘S

i-
‘Q

!-
‘Q

Baud

Exter
50
75

109
134
150
366
6G6

1200
1800
2409
3600
4806
72G0
9600

19290

* Receive only.

Bit 4 should be 1 unless the external clock is being used.
value 16.)

Rate

nal rate x 16

.92

.58

Bits 5 and 6 are used as follows:-

Bit 6 5

l"
"
S

|-
‘Q

The CMR byte controls the handshake, duplex and parity options.
note 4):

Bit 0 controls the handshake line (DTR).

Word lengt

U
lO

\\
l®

2 stop bits
1 stop bit for 8 bit transmission (i.e. 8 bits and parity)
1.5 stop bits for 5 bit words without priority.

h

The RS232 Interface and the ACIA

Decimal value

*

l.
O

(D
\|
O

\U
‘l
c
b

U
J
l\
)l
-‘
Q

(Decimal

Decimal value

controls the number of stop bits and should be G for 1 stop bit,
for all other purposes:-

(See

If this bit is set (i.e. 1)
then DTR is low logic and all interrupts are enabled along with the
receiver.
and DTR is high logic.
"3-line" if it is off.

Bits 1,2 and 3 should be set to 0 for all purposes.

If not set then the receiver and all interrupts are disabled
All this implies "X-line" if this bit is on and

their purpose in the 6551).
(See note 4 for

Bit 4 sets "normal receiver"/Full duplex mode for the receiver when it
is off (0).
for the receiver.

When on (decimal value 16), it sets "echo"/half duplex mode

-122-

730 Reference Guide The RS232 Interface and the ACIA

Bits 5,6 and 7 control parity:—

Bit 7 6 5 Value Parity mode Comment

0 0 0 6 disabled No bit generated/received
Z G 1 32 odd Transmitter and Receiver
G 1 G 64 disabled —

0 1 1 96 even Transmitter and Receiver
1 G G 128 disabled -

1 0 1 16% mark Mark parity bit
transmitted

1 192 disabled -

l 1 l 224 space Space parity bit
transmitted

Mark and Space modes disable the parity check.

Note 1) Interface signals:-

la) The TxD output line is used to transfer serial data to the RS232
peripheral. The LSB (least significant bit) of the TDR (transmit data
register) is the first data bit transmitted at the selected baud rate.

lb) The RXD input line is used to transfer serial data into the ACIA
from the RS232 peripheral, LSB first. Baud rate is as selected or
according to an externally generated receiver clock - see CR.

1c) The RxC (receive clock) line is used to indicate the Baud rate
(x16), or clock rates, being used by the ACIA to clock the input-data.
when the interanl Baud rate generator is used this line supplies the
clock being used (Baud rate x 16). when an external clock is being
used, Baud rate option = GGGG, this line is used to input the external
clock (Baud rate x 16).

1d) The RTS output line is used to conrol the RS232 peripheral. The
logic state of this line is determined by CMR.

le) The CTS input line is used to control the transmitter. The
transmitter is enabled if CTS is low logic, or if the CTS line is high,
the transmitter is automatically disabled.

lf) The DTR output line is used to indicate the status of the ACIA to
the RS232 peripheral. A high logic state means that the ACIA is
disabled. A low logic state means that the ACIA is enabled. The 700
CPU (6509) controls this line through the CMR.

lg) The DSR input line is used to indicate the status of the RS232
peripheral to the ACIA, low logic means "ready" and high logic means
“not ready", but the DSR must be connected. Even if the DSR is unused
it must be driven high or low, (but not switched). If interrupts are
enabled (see CMR bit 0) and a change in the logic state of DSR occurs,
an interrupt will be signalled to the 6509 and bit 6 of SR (status
register) will reflect the logic level or DSR. The state of DSR does
not affect the transmitter or receiver operation directly, only signals
from the 65G9 (sent as a result of the interrupt generated by the ACIA)
affect the operation.

——l23——

760 Reference Guide The RS232 Interface and the ACIA

1h) The DCD input line is used to signal the presence (or absence) of a
carrier signal at the RS232 peripheral (normally used with modems).
High logic means that a carrier signal is present and low logic means
that it is not. Like DSR this line must be driven (see DSR).
similarly, if interrupts are enabled, IRQ is sent to the 6509 and bit 5
of SR reflects the logic level of DCD. DCD must be ow for the receiver
to operate. Transmitter is only indirectly affected, if at all.

li) DTR and CTS are not used (i.e. ignored) in "3-line" mode.

Note 2) Reset of the ACIA - see also note 5.

2a) Hardware reset (power on for example) sets all bits in CR and CMD
to zero, sets bits G,l,2,3 and 7 of SR to zero, and sets bit 4 of SR
(TDR empty) to 1.

2b) Software reset (CLOSE command for example) sets bits 0,l,2,3, and 4

of CMR to zero, and sets bit 2 of SR (no overrun error) to zero.

All other bits of CR, CMR and SR are unaffected, except by direct
intervention from the 6559.

Note 3) Channelnumber parameter in OPEN

If bit 7 of the channel number (logical file number) is low (i.e.
channelnumber is less than 128) then PRINT# statements only send a CR
(carriage return) character (chr$(l3)). If bit 7 is high then CRLE
(carriage return line feed) characters (chr$(l3) + chr$(l0)) are sent.

Note 4) CMR byte bits 1,2 and 3

These bits control Receiver interrupts and transmitter control
interrupts. The 700 BASIC OPEN statement should not pass these bits and
therefore they should be set to 0. However, their meaning in the ACIA
is as follows:-

Bit 1 disables receiver interrupts if set (2), or enables receiver
interrupts from bit 3 of SR (RDR full) if not set (0). N

9_

Bits 2 and 3 (transmitter controls):-

Bit 3 2 Value Transmitter IRQ RTS logic Transmitter

G G 0 Disabled High Off
6 1 4 Enabled Low On
1 0 8 Disabled Low On
1 l 12 Disabled Low Transmit BRK

Note 5) SR

Self clearing bits are cleared when error free data is next received.
Bits 5 and 6 reflect the logic state of DCD and DSR and are not
resettable.

° ——124——

790 Reference Guide The RS232 Interface and the ACIA

Note 6) RS232 buffer.

The BASIC OPEN statement allocates a 256 byte buffer for the RS232. The
statement does not perform a CLR however. (Unlike on the 64, for
example.)

The BASIC CLOSE statement de-allocates the buffer. The buffer will be
de-allocated regardless of its content, so you should read/send all the
characters before CLOsEing the RS232 file.

It is often advisable to OPEN an RS232 file at the beginning of a
program and leave it open until the program ends or has no further use
for the RS232 peripheral.

Note 7) Technical.

7a) If you use an RS232 Modem, the 706 is normally configured to act as
a "data terminal".

7b) The RS232 interface operates in an asynchronous manner. This means
that the TxD line is kept high until characters are to be transmitted.
(As opposed to synchronous operation where a fill character is passed
when no characters are being transmitted.)

7c) The RS232 interface operates serially. This means that hits are
sent on one data line one after another. (As opposed tp parallel
operation where eight bits are passed simultaneously on eight separate
data lines.)

when a byte is to be sent serially the following occurs on the data
line-

1) A start bit is sent (low logic) - The receiver uses this bit to
synchronise itself with the transmitter.

2) The bits of information (LSB first) are sent.
3) The parity bit, if required is sent.
4) one or two stop bits are sent. (High logic.)
5) The line remains high logic and passive until the next byte is to be

sent. The receiver waits.

Note 8) Plugs for peripheral connection

Cannon CCITT V24 EIA DIN 66 ID

1 1 AA 161 GND/E
2 2 BA lfl3 TXD
3 3 BB 104 RXD
4 4 CA 105 RTS
S 5 CB 106 CTS/RFS
6 6 CC 107 DSR
7 7 AB 162 SIG.GND
8 8 CF 169 DCD

26 20 CD 108/2 DTR
24 24 - — RxC

‘Bx’ _125_

700 Reference Guide The RS232 Interface and the ACIA

Example of an RS232 OPEN command.

OPEN l,2,3,CHR$(6+l6+96+l28)+CHR$(1+16)+"++"

channelnumber is 1, so PRINT# will use this channel.
primary address is 2, the RS232 port.
secondaryaddress is 3, enabling transmit/receive without conversion.
CHR$(246) is the CR byte composed thus:-

6 for 366 baud
16 for Internal clock
96 for 5 bit word

128 for 1.5 stop bits

- CHR$(l7) is the CMR byte composed thus:-

I for X-line handshake
16 for full duplex
(No parity for 5 bit, 1.5 stop bit)

Another example.

OPEN 6,2,129,CHR$(24)+CHR$(l12)+"++"

— channelnumber is 6, hence PRINT#6.
- secondaryaddress 129 converts and transmits.
- CR Byte enables 123$ baud, 8 bit word + 1 stop bit.
— CMR Byte allows for 3 line, half duplex, even parity.

Summary of the CR and CMR bytes.

CR byte = CHR$(A+B+C+D) where:-

A is a number between 0 and 15 for baud rate.
B is normally 16, but may be 0 for an external clock.
C is 3, 32,64 or 96 for word length.
D is G or 128 for stop bits.

CMR byte = CHR$(E+P+G+H) where:-

E is G or 1 for handshake.
F is 0 almost always. (See note 4 above.)
G is G or 16 for duplex.
H is G, 32, 64, 96, 128, 160, 192 or 224 for parity.

Last words on RS232

Read the User Guide or Manual that comes with the RS232 peripheral you
intend to connect to the 7G0. It is important that you fully understand
the way the RS232 is configured for your peripheral.

This section on the RS232 and the ACIA requires careful reading to
ensure good results.

—-126-

790 R

A.pro

1G
2G

30
40
56
66
70
80

96
1G0

KEY:-

<RVS>
(OFF)
<DOWN
<CLR>

eference Guide The RS232 Interface and the ACIA

gram example is as follows:-

trap8B:print"<CLR>RS232 input appears in normal video.<DOWN>"
print"Keyboard output appears in <RVS>reverse<0FF>
video.<DOWN>"
open1,2,3,chr$(246)+chr$(l7)+“++"
get#1,a$:ifa$=""then6$:elseifx=1thenprint:x=0
printa$;:goto40
getb$:ifb$=""then40:e1seifx=Gthenprint:x=1
print"<RVS>"b$"<oFF>";:print#1,b$:goto40
ife1=30thenprint"<DoWN>ERROR in Open statement on
line 3%:-<DOWN>":1ist3$
ife1=0orer=14thenclose1:print:print"Stopped.":end
print"<DOWN>"err$(er)" in 1ine"e1:".. ST="st:end

means reverse video
means reverse video

> means cursor down.
means clear screen.

on.
off.

——127——

706 Reference Guide SID Sound Control

APPENDIX C

This section gives the key numbers which you use in your sound program,
based on the three voices.

To set sound control with BASIC, you need commands of the form:-

POKE (register),(content)

You must add all the required values in the split registers, for
example:—

For average rise, average decay in Voice 2:-

BANK 15
POKE 55808 + l2,5*16+7 (or POKE 5582G,87)

base address + register, attack + decay

Take care that you set the volume before producing a tone. POKE 55832
followed by a number between 0 and 15 sets the volume for all three
voices.

Control Register for Tone Production

The Base address of SID in Bank 15 is 55868 = DA00
Dec Hex

Register Content

Voice 1 2 3

0 7 14 Frequency, lo-byte ($...255)
1 8 15 Frequency, hi-byte (0...255)
2 9 16 Pulse ratio, lo-byte (0...255) only for square
3 10 17 Pulse ratio, hi-byte (0...15) Only for square
4 ll 18 Wave form: Noise Square Sawtooth Triangle

129 65 33 17
5 12 19 Attack Decay

0*l6(hard)..l5*16(soft) 0(quick)..l5(slow)
6 13 20 Sustain Release

$*16(silent)..l5*16(1oud) G(quick)..l5(s1ow)
24 24 24 Volume 0(silent)..l5(full volume)

——l28——

700 Reference Guide SID Sound Control

For example:-

Continuous tone (Note C5) on Voice 2, (triangle waveform)

SI=558B8
BANK 15
POKE SI+24,l5:POKE SI+7,37:POKE SI+8,17:POKE SI+l3,24G
(Volume):(Frequency, Lo):(Prequency, Hi):(Sustain level, 15*16)
Switch tone on: POKE SI+ll,17
Switch off: POKE SI+ll,0

——I29——

760 Refer

Other SID

Register

21
22
23

24

Note: Thi
without b

The SID a

Register

27
28

The momen
voice 3 c

These are
the other
effects.

Using the

Instrumen

Piano
Flute
Cymbals
Xylophone
Organ
Accordeon
Trumpet

Note: The
waveforms

ence Guide SID Sound Control

Registers

Content

Filter frequency, Lo-byte (0...7)
Filter frequency, Hi-byte (G...255)
Resonance & Filter source
G(none)...l5*16(strong) External Voice3 Voice2 Voicel None

8 4 2 1 6
Filter mode & Volume
(See note) High Band Low

pass pass pass
128 64 32 16 ,$(silent)...15(loud)

s isolates voice 3 so that it may be used to generate effects
eing output itself.

lso has two further registers:-

Content

Oscillator 3

Envelope 3

tary value of the oscillator and the envelope generator of
an be read in registers 27 and 28.

used for example, to produce random generators or to influence
voices with these values, in order to achieve special sound

se settings, you can imitate various musical instruments

t Waveform Attack Sustain

Pulse 65 9 0
Triangle 17 96 0
Sweep 33 9 0
Triangle 17 9 0
Triangle 17 0 240
Triangle 17 102 G

Sweep 33 96 G

settings for the envelope should always be POKEd before the
are POKEd.

——I30——

766 Reference Guide Values for Music Notes

APPENDIX D

Below you will find a complete list of the notes, frequencies, frequency
parameters, and the values which must be POKEd into the sound chip
registers FREQ HI and FREQ L0 in order to produce the required tone.

You are not bound by the values in this table! If you are using several
voices, you can even consciously "mistune" the second and third voices,
i.e. slight1y(!) change the Lo-Byte in the table. This will result in a
fuller sound.

—13]—

700 Reference Guide Values for Music Notes

No Note-octave Frequency(Hz) Parameter Hi-byte Lo-byte

0 C-0 16.4 137 0 137
1 C#~0 17.3 145 0 145
2 D-0 18.4 154 0 154
3 D#-0 19.4 163 0 163
4 E—0 20.6 173 0 173
5 F-0 21.8 183 0 183
6 F#—0 23.1 194 0 194
7 G-0 24.5 205 0 205
8 G#-0 26.0 218 0 218
9 A-0 27.5 231 0 231

10 A#—0 29.1 244 0 244
11 Bb-0 30.9 259 1 3
12 C-1 32.7 274 1 18
13 C#—1 34.6 291 1 35
14 D-1 36.7 308 1 52
15 D#~1 38.9 326 1 70
16 E-1 41.2 346 1 90
17 F-1 43.7 366 1 110
18 F#-1 46.2 388 1 132
19 G-1 49.0 411 1 155
20 G#-1 51.9 435 1 179
21 A-1 55.0 461 1 205
22 A#-1 58.3 489 1 233
23 Bb-1 61.7 518 2 6
24 C-2 65.4 549 2 37
25 C#-2 69.3 581 2 69
26 D-2 73.4 616 2 104
27 D#—2 77.8 652 2 140
28 E-2 82.4 691 2 179
29 F-2 87.3 732 2 220
30 F#-2 92.5 776 3 8
31 G-2 98.0 822 3 54
32 G#-2 103.8 871 3 103
33 A-2 110.0 923 3 155
34 A#-2 116.5 977 3 209
35 Bb-2 123.5 1036 4 12
36 C-3 130.8 1097 4 73
37 C#—3 138.6 1162 4 138
38 D—3 146.8 1231 4 207
39 D#-3 155.6 1305 5 25
40 E-3 164.8 1382 5 102
41 F-3 174.6 1464 5 184
42 F#~3 185.0 1552 6 16
43 G-3 196.0 1644 6 108
44 G#-3 207.7 1742 6 206
45 A-3 220.0 1845 7 53
46 A#-3 233.1 1955 7 163
47 Bb—3 246.9 2071 8 23
48 C-4 261.6 2194 8 146
49 C#-4 277.2 2325 9 21
50 D-4 293.7 2463 9 159
51 D#—4 311.1 2609 10 49
52 E-4 329.6 2765 10 205
53 F—4 349.2 2929 11 113
54 F#—4 370.0 3103 12 31

——132-—

700 Reference Guide Values for Music Notes

55 G-4 392.0 3288 12 216 '

56 G#-4 415.3 3483 13 155
57 A-4 440.0 3690 14 106
58 A#-4 466.2 3910 15 70
59 Bb-4 493.9 4142 16 46
60 C-5 523.3 4389 17 37
61 C#—5 554.4 4649 18 41
62 D-5 587.3 4926 19 62
63 D#-5 622.3 5219 20 99
64 E-5 659.3 5529 21 153
65 F-5 698.5 5858 22 226
66 F#-5 740.0 6206 24 62
67 G-5 784.0 6575 25 175
68 G#-5 830.6 6966 27 54
69 A-5 880.0 7381 28 213
70 A#-5 932.3 7819 30 139
71 Bb-5 987.8 8284 32 92
72 C-6 1046.5 8777 34 73
73 C#-6 1108.7 9299 36 83
74 D-6 1174.7 9852 38 124
75 D#-6 1244.5 10438 40 198
76 E-6 1318.5 11058 43 50
77 F-6 1396.9 11716 45 196
78 F#-6 1480.0 12413 48 125
79 G-6 1568.0 13151 51 95
80 G#-6 1661.2 13933 54 109
81 A-6 1760.0 14761 57 169
82 A#-6 1864.7 15639 61 23
83 Bb-6 1975.5 16569 64 185
84 C-7 2093.0 17554 68 146
85 C#-7 2217.5 18598 72 166
86 D-7 2349.3 l9704 76 248
87 D#-7 2489.0 20876 81 140
88 E-7 2637.0 22117 86 101
89 F-7 2793.8 23432 91 136
90 F#-7 2960.0 24825 96 249
91 G-7 3136.0 26301 102 189
92 G#-7 3322.4 27865 108 217
93 A-7 3520.0 29522 115 82
94 A#-7 3729.3 31278 122 46
95 Bb-7 3951.1 33138 129 114
96 C-8 4186.0 35108 137 36
97 C#-8 4434.9 37196 145 76
98 D-8 4698.6 39408 153 240
99 D#-8 4978.0 41751 163 23

100 E-8 5274.0 44234 172 202
101 F—8 5587.7 46864 183 16
102 F#-8 5919.9 49651 193 243
103 G—8 6271.9 52603 205 123
104 G#-8 6644.9 55731 217 179
105 A-8 7040.0 59045 230 165
106 A#-8 7458.6 62556 244 92

——133——

700 Reference Guide

APPENDIX E

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0002
0002
0090
0090
0090
0090
0090
0093
0094
0095

* =$0000

segment 14 -

segment 7 -

segment
segment
segment
segment
segment
segment
segment

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

u
.

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

s
o

Q
}-

"l
\.
)U

)o
b
L
J
'I
O

\

=+3
sal *=*+l
sah *=*+l
sas *=*+1

current memory map:
segment 15- Sffff-$e000

$dfff-$df00
$deff-$de00
$ddff-$dd0@
$dcff-$dc00
$dbff-$db00
$daff—$da00
$d9ff-$d900
$d8ff-$d800
$d7ff-$d400
$d3ff-$d000
$cfff-$c000
$bfff-$8000
$7fff-$4000
$3fff-$2000
$lfff-$1000
$Gfff-$0800
$07ff-$0002

Memory storage distribution

(iV‘10"‘i5)

6509 used“to extend memory on bc2 & p2 systems
location - used to direct
$0000 - execution register (4 bits)
$0001 - indirect register (4 bits)

these registers provide 4 extra high-order address \

control lines. On 6509 reset all lines are high.(Qg,5deD[/)
L24/\/K /5

rom (kernal)
i/o 6525 tpi2
i/o 6525 tpil
i/o 6551 acia
i/o 6526 cia
i/o unused (z80,8088,68008)
i/o 6581 sid
i/o unused (disks)
i/o 6566 vic/ 6845 80-col
colour nybles/80-col screen
video matrix/80-col screen
character dot rom (p2 only)
roms external (language)
roms external (extensions)
rom external
rom internal
unused
ram (kernal/basic system)

segment 8 open (future expansion)
$ffff-$0002
$ffff-$0002
$ffff—$0002
Sffff-$0002
$ffff-$0002
$ffff-$0002
$ffff-$0002
$ffff-$0002

ram expansion (external)
ram expansion (external)
ram expansion (external)
ram b2 expansion (p2 external)
ram expansion‘
ram b2 standard (p2 optional)
ram b2 p2 standard
ram p2 standard (b2 optional)

the6509 registers appear in locations $0000 and
$0001 in all segments of memory.

---.--——-———-_—————--—————q.—————o—o————--————o¢————¢——————————-—

;6509 execution register
;6509 indirection register
;indirect=rom or execution=rom

kernal indirect address variables

;address of file name string
;current load/store address

——I34——

7G0 Reference Guide

flG96
G697
$$98
$699
flG9a
$09b
D09c
069C
$09c
009C
009d
G09e
G09f
Gflafl
Gael
0Ga2
0033
0fla3
flGa3
0033
00a6
GGa6
00a6
GGa6
00a9
GGa9
00a9
G0a9
Gflaa
Gflaa
Gflab
Gflab
Gflac
Gflac
Bflac
Gflac
Gflac
flflad
flflae
Gflae
Gflaf
Gflbfl
aabl
0flb2
0$b3
G$b4
00b5
00b6
0Gb7
Gab?
0$b8
fl0b9
Gflba
Gflbb
Gflbc
flflbd
Gabe

eal
eah
eas
stal
stah
stas
0
I

=+1
=+1
=+1
=+1
=+1
=+1

Memory storage distribution

($9/o*be)
;end of load/save

;start of load/save

;frequently used kernal variables
I

status
fnlen
la
fa
sa
dfltn
dflto
I

tape buffer pointer

a
s
o

s
o

‘a
~

u

d W @ 0 H

,rs232 buffer pointers
I

ribuf
I

;variables for kernel
I

stkey
ctemp
c3po
snswl
bsour

V
0

V
0

‘O

ipoint
syno
dpsw
; next
ptrl
ptr2
pcntr
firt
cntdn
shcnl
rer
rez
rdflg
flagtl
shcnh
cmpfl
diff
PIP
ochar
PItY
fsblk
mych

=+1
i=*+1
=+1
=+1
i=*+l
=+1
=+1

=+3

=+3

=+1

=+l

=+1

=+1
it :: 1?-f]_

;i/o operation status
;file name length
;current logical index
;current first address
;current second address
;defau1t input device
;defau1t output device

;address of tape buffer

;input buffer

speed

;stop
;used
;ieee
;used
;ieee

;next

key flag
to reduce cassette read times
buffer flag
to reduce cassette read times
character buffer

cassette temps — overlays ipc buffer

2 bytes used for transx code

18 bytes also used for monitor
;index to passl errors
;index to pass2 errors

=+1
=+1
=+1
=+1
=+1
=+1
=+1
t=*+1
=+1

*;= *-+
*;= *.+.1
=+1
=+1
*:= i.+.1
*_= *.+.1
=+1
*1: * +.1

;temp during bit read time

._13s_—

700 Reference Guide

Gflbf
flflcfl
Gflcfl
fiflcfl
Gflcfl
Gflcfl
Gflca
$0c2
EGC4
00c6
00c8
Gflca
Gflca
Gflca
flflca
Gflcb
00cc
Gflcd
flflce
Gflcf
flfldo
flfldl
Gfldz
Gfld3
G664
0$d5
0Gd6
a0d7
00d8
0Gd9
BBd9
Dada
Gfldb
Gfldb
flfldb
Gadb
Gfldc
Gfldd
Gflde
Bfldf
Dflefl

Gael
0Ge2
G$e2
00e2
Gflez
Gaffl
G106
G101
Glff
$260
020$
636%
0360
0300
0300

Memory storage distribution
($FbP— 300)

cdata *=*+l ;how to turn cassette timers on
;screen editor page zero variables
I

;editor indirect address variables
I

*=$cG ;leave some space
pkybuf *=*+2 ;start adr of pgm key
keypnt *=*+2 ;current pgm key buf
sedsal *=*+2 ;scro11 ptr
sedeal *=*+2 ;scro11 ptr
pnt *=*+2 ;current character pointer
I

;editor variables for speed and size
I

tblx *=*+l ;cursor line
pntr *=*+l ;cursor column
grmode *=*+l ;graphic/text mode flag
lstx *=*+l ;1ast character index
lstp *=*+1 ;screen edit start position
lsxp *=*+l
crsw *=*+l ;
ndx *=*+l ;index to keyd queue
qtsw *=*+l ;quote mode flag
insrt *=*+l ;insert mode flag
config *=*+l ;cursor type / char before blink (petii)
indx *=*+l ;1ast byte position on line (##234-$2
kyndx *=*+l ;count of program key string ##244-G2)
rptcnt *=*+l ;de1ay tween chars
delay *=*+l ;delay to next repeat
I

sedtl *=*+l ;frequently used temp variables
sedt2 *=*+l
I

;frequently used editor variables
I

data *=*+l ;current print data
sctop *=*+l ;top screen G-25
scbot *=*+l ;bottom G-25
sclf *=*+l ;left margin
scrt *=*+l ;right margin
modkey *=*+l ;keyscanner shift/control flags

($ff-nokey)
norkey *=*+l ;keyscanner normal key number (Sff-nokey)

see screen editor listings for usage in this area

V
0

‘O
‘
I

*=$f0 ;free zero page space, 16 bytes
*=$100 ;system rack area

bad *=*+l ;cassette bad address table
*=$1ff

stackp *=*+l ;system stack pointer tranx code
*=$2$0

buf *=*+256 ;basic's rom page work area

I

;system ram vectors
0

I

cinv *=*+2 ;irq vector

_]36__.

709 Reference Guide

0302
0304
0306
0308
030a
030C
G30e
0310
G312
$314
0316
0318
031a
G3lc
G3le
G320
G322
G324
@326
0328
B32a
032c
032e
6330
G332
G334
G334
G334
G334
033e
G348
G352
G352
0352
0355
0358
03Sb
fl3Se
03Sf
B360
B361
0362
0363
0363
0363
G363
G364
0365
$366
G367
$368
0369
fl36a
036a
036a
636a
036a

Memory storagejdistribution
(~#3o2..,:-> D360)

cbinv *=*+2 ;brk vector
nminv *=*+2 ;nmi vector
iopen *=*+2 ;open file vector
iclose *=*+2 ;close file vector
ichkin *=*+2 ;open chn in vector
ickout *=*+2 ;open chn out vector
iclrch *=*+2 ;close channel vector
ibasin *=*+2 ;input from chn vector
ibsout *=*+2 ;output to chn vector
istop *=*+2 ;check stop key vector
igetin *=*+2 ;get from queue vector
iclall *=*+2 ;close all files vector
iload *=*+2 ;load from file vector
isave *=*+2 ;save to file vector
usrcmd *=*+2 ;monitor extension vector
escvec *=*+2 ;user esc key vector
ctlvec *=*+2 ;unused control key vector
isecnd *=*+2 ;ieee listen secondary address
itksa *=*+2 ;ieee talk secondary address
iacptr *=*+2 ;ieee character in routine
iciout *=*+2 ;ieee character out routine
iuntlk *=*+2 ;ieee bus untalk
iunlsn *=*+2 ;ieee bus unlisten
ilistn *=*+2 ;ieee listen device primary address
italk *=*+2 ;ieee talk device primary address
I

;kernal absolute variables
I

lat *=*+l0 ;logical file numbers
fat *=*+1G ;device numbers
sat *=*+l0 ;secondary addresses
F

I

lowadr *=*+3 ;start of system memory
hiadr *=*+3 ;top of system memory
memstr *=*+3 ;start of user memory
memsiz *=*+3 ;top of user memory
timout *=*+l ;ieee timeout enable
verck *=*+l ;load/verify flag
ldtnd *=*+l ;device table index
msgflg *=*+l ;message flag
bufpt *=*+l ;cassette buffer index
I

;kernal temporary (local) variable
I

tl *=*+l
t2 *=*+l
xsav *=*+l
savx *=*+l
svxt *=*+l
temp *=*+l
alarm *=*+l ;irq variable holds 6526 irq's
I

;kerna1 cassette variables
I

itape
cassvo

=+2
=+l

;indirect for cassette code
;cassette read variable

——137——

700 Reference Guide

G366

036e
fl36f
G370
@371
$372

G375
G376
0376
0376
$376
0377
0378
037a
037b
G37c
037d
037e
G37e
G37e
037e
G386
$382
$383
$383
0383
$383
G3cfl
03cB
G3cB
G3c0
$3f8
03fd
03fd
$3fd
fl4$G
046$
0406
0460
0800
B860
0800
GBGG
$806
0800
@860
08GB
0800
$866
0800
881$
091a
G990
$990
099%

Memory storage distribution
(<fio3(pd — oqqa

aservo *=*+l ;f1agtl***indicates tl timeout cassette
read

caston *=*+1 ;how to turn on timers
relsal *=*+l ;moveab1e start load addr
relsah *=*+l
relsas *=*+l
oldinv *=*+3 ;restore user irq and i6509 after

cassettes
casl *=*+l ;cassette switch flag
I

;re232 information storage

mslctr *=*+1 ;655l control image
mslcdr *=*+1 ;655l command image

=+2
rsstat *=*+1 ;perm. rs232 status
dcdsr *=*+1 ;last dcd/dsr value
ridbs *=*+l ;input start index
ridbe *=*+1 ;input end index

screen editor absolute

*=$380 ;block some area for editor
pkyend *=*+2 ;program key buffer end address
pagsav *=*+1 ;temp ram page
I

; see screen editor listings for other variables
7

*=$3c0 ;free absolute space start

system warm start variables and vectors

‘Q
‘o

N
o

*=$3f8
evect *=*+5
warm =$a5 ;warm start flag
winit =$5a ;initia1ization complete flag

*=$4aa
ramloc
3

; kernal inter-process communication variables
*=$$80$

ipbsiz = 16 ;ipc buffer size

ipc buffer offsets

N
o

‘Q
in

ipccmd = 6 ;ipc command
ipcjmp = 1 ;ipc jump address
ipcin = 3 ;ipc #input bytes
ipcout = 4 ;ipc #output bytes
ipcdat = 5 ;ipc data buffer (8 bytes max)

ipb *=*+ipbsiz ;ipc buffer
ipjtab *=*+256 ;ipc jump table
ipptab *=*+l28 ;ipc param spec table

' .end
.1ib scrn-declare

——138——

703 Reference Guide Memory storage distribution

099$ *=$0

——l3‘I——

706 Reference Guide

@000
0600
GGGQ
$000
GGGG
G006
G000
Gflflfl
0600
0000
G000
G000
Gflfifl
$006
$006
BGGG
0000
BGGG
G003
0000
0060
@000
GGGG
$000
0600
0600
$000
0600
GG80
0000
0000
600%
0090
$090
$006
0000
GGGG
$000
GG00
GGGG
0000
0000
$600
GGGI
B002
0302
0090
009$
009$
0096
0090
$093
0094
0695
$096
0097
6098

Memory storage distribution

6509 used to extend memory on bc2 and p2 systems
bits 0-5 used to direct:

execution register (4 bits)
indirect register (4 bits)

these bits can be expanded to sixteen (16) segment
control lines. on 65G9 reset all lines are high.

7

3

7

7

7

7

P

3

3

; current memory map:
; segment 15- $ffff—$e0GG ram (kernal)
; $dfff—$df0$ i/o 6525 tpi2
F $deff-$de00 i/o 6525 tpil
; $ddff-$dd0G i/o 6551 acia
; Sdcff-Sdcflfl i/o 6526 cia
; $dbff-$db0G i/o unused (z80,8088,68$9)
; $daff-Sdaflfl i/o 6581 sid
; $d9ff-$d9G0 i/o unused (disks)
; $d8ff-$d800 i/o 6566 vic/ 6845 80-col
; $d7ff-$d4$U colour nybles/80-col screen
; $d3ff-sdflafl video matrix/80-col screen
; $cfff—$cZ00 character dot rom (p2 only)
; Sbfff-$8060 roms external (language)
; $7fff—$4Bflfl roms external (extensions)
; $3fff-$2006 rom external
; $lfff—$l000 rom internal
; $0fff-$0400 unused
; $@3ff-SGGGZ ram (kernal/basic system)
; segment 14- segment 8 open (future expansion)
; segment 7 — Sffff-$0GG2 ram expansion (external)
, segment 6 - $ffff-$0002 ram expansion (external)
; segment 5 - Sffff-$0002 ram expansion (external)
; segment 4 - $ffff-$0602 ram expansion (external)
; segment 3
; segment 2
; segment 1
; segment 0

7

7

7

3

3

- Sffff-$0$02 ram expansion
- $ffff-$0062 ram expansion
- Sffff-$0002 ram expansion
- $ffff—$0@02 ram user/basic system

the 6509 registers appear in locations SGEGG and
$0GGl in all segments of memory.

;6509 execution register
;6509 indirection register
;indirect=rom or execution=rom

*=$9G
;kernal page zero variables

kernal indirect address variables

\
l

‘O
‘O

fnadr *=*+3 ;address of file name string
sal *=*+l ;current load/store address
sah *=*+1
sas *=*+l
eal *=*+1 ;end of load/save
eah *=*+l
eas *=*+1

——140-—

706 Reference Guide

0$99
0693
QG9b
609C
G09c
G09c
009C
G09d
009e
G$9f
Gflafl
Gflal
00a2
G$a3
0Ga3
G0a3
G0a3
00a6
GGa6
00a6
$0a6
GGa6
00a6
$0a6
0fla6
Gacfl
fl0c2
fl0c4
O0c6
Z0c8
Gflca
Gflca
flfica
Gflca
Gflcb
Gflcc
Bflcd
Gflce
aflcf
Gfldfl
Gfldl
00d2
00d3
00d4
ands
fl0d6
0Gd7
00d8
fl0d9
G0d9
Gada
Gfldb
Gfldb
Gfldb
Gadb
flfldc
Gfldd

Memory storage distribution

stal *=*+l ;start of load/save
stah *=*+l
stas *=*+l
0
I

;frequently used kernal variables
I

staus *=*+l ;i/o operation status
fnlen *=*+l ;file name length
la *=*+l ;current logical index
fa *=*+l ;current first address
sa *=*+l ;current second address
dfltn *=*+l ;default input device
dflto *=*+l ;default output device

;tape buffer pointer
I

=+31'
!’

I'l
l

'0 (D I-
‘ ;address of tape buffer

see kernal listing for allocation information

screen editor page zero variables

editor indirect address variables

V
0

in
V

a
V

u
\
n

h
e

h
e

*=$cG ;leave some space
pkybuf *=*+2 ;start adr of pgm key
keypnt *=*+2 ;current pgm key buf
sedsal *=*+2 ;scro1l ptr
sedeal *=*+2 ;scro11 ptr
pnt *=*+2 ;current character pointer
I

;editor variables for speed and size
I

tblx *=*+l ;cursor line
pntr *=*+l ;cursor column
grmode *=*+l ;graphic/text mode flag
lstx *=*+l ;1ast character index
lstp *=*+l ;screen edit start position
lsxp *=*+l
crsw *=*+l ;
ndx *=*+l ;index to keyd queue
qtsw *=*+l Fquote mode flag
insrt *=*+l ;border colour
config *=*+l ;cursor type
indx *=*+l ;last byte position of line
kyndx *=*+l ;count program key string
rptcnt *=*+l ;delay tween chars
delay *=*+l ;delay to next repeat
I

sedtl *=*+l ;frequently used temp variables
sedt2 *=*+l
I

;frequently used editor variables
I

data *=*+l ;current print data
sctop *=*+l ;top screen G-25
scbot *=*+l ;bottom G-25

—-141-

7G9 Reference Guide

Gflde
Gadf
Bflefl

flflel

$fle2
0fle6
0Ge6
0$e6
Glfifl
G103
G206
G360
0360
0390
0300
0300
0300
0366
6309
0360
0300
0300
G300
@380
0382
@383
0397
$398
0399
039a
G39b
fl39c
039C
039d
039e
$39f
03a$
03a3
03a3
03ad
$3ad
03b7
03b9

G3ba
fl3ba
G3ba
03ba
03ba
03f8
03fd
03fd
03fd
G4G0
@406

sclf
scrt
modkey

norkey

bitabl
zpend
I

=+l
=+l
=+l

=+l

=+4

*=$l0G
; stack space

buf

this
see

‘C
‘O

\0
‘
I

ctlvec
escvec
hiadr
bsout

*=$20U
=+256

Memory storage distribution

;left margin
;right margin
;keyscanner mode byte ($ff - no key down
last scan)

;keyscanner normal byte ($ff — no key down
last scan)

;wrap bitmap

;basic's line input

area reserved for kernal absolutes
kernal listing for other locations

=$a322
=$a32o
=$a355
=$ffd2 ;kernal vector

I

;screen editor absolute
3

pkyend
keyseg
keysiz
rvs
lintmp
lstchr
insflg
scrdis
fktmp
bitmsk
keyidx
logscr
bellmd
pagsav
I

tab
7

keyd
funvec
sedt3

absend

s
o

V
0

V
0

evect
warm
winit

ramloc

*=$380
=+2
=+l
*=k+2g
=+l
=+l
=+l
=+l
=+l

*=#+1
#=*+1
*=t+1
=+l
=+1

=+1g

=+l“
=+2
=+1

*=$3f8
*=t+5
=$a5
=$5a
*=$4fl0

.end

;b1ock some area for editor
;program key buffer end address
;segment number for function key ram page
;function key sizes ...don't clear...
;reverse field flag
;line # tween in and out
;last char printed
;auto insert flag
;scroll disable flag
;also used for function key temporary
;temporary bitmask
;index to programmables
;1ogica1/physical scroll flag
;flag to turn on end of line bell
;temp ram page

;tabstop flags (8% max)

;key character queue
;indirect jump vector for function keys
;another temp used during function key
listing

system warm start variables and vectors

;warm start flag
;initialization complete flag

——l42——

7$G Reference Guide

G406
640$
046$
0006
0000
Gflfll
0062
0002
0905
@006
G907
G008
0909
0009
Gflac
Gflflc
Gflflc
Gflfid
flflfle
Gflflf
0019
9610
0010
gala
0611
0011
Gall
G012
G613
G013
$013
0614
0014
@014
G014
0015
0615
aals
G015
0015
B015
aals
6616
0016
003a
GG3f
003f
0041
0041
G041
0041

0042
@644
$046
0046
0646

o

I

I

e6509
i6509
I

usrpok
tmhour
tmmin
tmsec
tmten
I

form
I

integr
charac
endchr
count
xcnt

ubflg

..a
.

n
o

~
n

s
a

V
a
-
-

D U W W K
O

0
I

dsdesc
channl
poker
linnum
7

i
7

temppt

lastpt
tempst
;
index
indexl

Memory storage distribution

.lib basic-define
page zero storage definitions

*=g

=+l
:+1

=+3
=+l
=+1
*=t+l
=+l

=+ptrsiz

=+l
=+l
=+l
:+]_
flags

;execution bank
;indirection bank

;set up origin by init
;for ti$ calculations

;format pointer

;one-byte integer from qint
;a delimiting char
;other delimiting char
;general.counter
;dos loop counter

dimflg, valtyp and intflg must be
consecutive

=+l
locations.
;getting a pointer to a variable

it is important to remember whether
it is being

=+l
=+l

=+l

done for dim or not.
;the type indicator G=numeric, l=string
;tells if integer

;whether to do garbage collection
;whether can or can't crunch res'd word.

turned on when data being scanned by
crunch so unquoted strs won't be crunched.

=+l ;flag whether sub'd variable allowed.
for and user-defined function pointer
fetching turn this on before calling
ptrget so arrays won't be detected.
stkini and ptrget clear it.
also disallows integers there.

=+l

=+ptrsiz
=+l

=+2
pointers to

;flags are doing input or read.

;disk status string
;holds channel number

;location to store line #
temporary string descriptors.

temp descriptors are located in the string bank
hence, bank

=+l

=+2
=+2

=+ptrsiz

of strbnk is assumed for temppt,lastpt
;temppst relative offset to 1st free temp
descr '

;pointer to last-used str temporary
;pointer to storage for 3 temporary

descriptors.

;direct cells for 1st indexing usage

——143——

706 Reference Guide

6049
004C
004C
0fl4c
004d
004e
flG4e
004f
6059
G651
G651
G651
GGSI
@051
$651
0051
0651
G051
G051
B051
0051
0051
0051
0051
0651
0051
@051
SW51
G651
G051
G051
0$5l
Gflsl
Gflsl
0051
0651
0051
0651
G851
B051
0051
G653
G053
0053
G653
G655
6055
0057
GGS7
$359
0059
aasb
Zflsb
0fl5d
005d
005f
Gfisf

index2
0
I

I

resho
resmoh
addend
resmo
reslo

ff-
V

0
\Q

‘a
s
o

V
0

V
0

in
s
o

‘
I

N
o

N
o

V
:

N
:

V
:

in
N

o
V

0
‘O

s
o

s
o

in
i
t

s
o

n
o

is
\
o

‘
I

h
o

s
o

is
V

:

xttab

<
5

0
f
f
‘:

N
o

s
o

0! N ('1
'

S
D 0
'

Memory storage distribution

=+ptrsiz ;direct cells for 2nd indexing usage

=+1 ;result of multiplier and divider
*=t+1

;temp used by umult
=+1
t=*+1
=+1 ;overf1ow previous cells
pointers into dynamic data structures
all are 2-byte offsets into fixed banks
the following always mark the beginning of an area:

txttab, vartab
arytab, memtop

these will have unchangeable values in versions
where the areas they mark are equal to the "bottom"
(or "top" for memtop) of a bank.
additional variables:

txtend, varend, aryend
are used to mark the end of an area, when the start
of the "next" area is in a different bank (i.e.,
the end isn't bordered by another area.)

highst is used to store the offset value from a basic
startup call to get the top of memory.

the limit of growth in an area must also be kept.
in the different versions, the following are used:

64k: memtop (all)
128k buffpt (text)

memtop (data)
192k buffpt (text)

highst (arrays)
memtop (vars,strs)

256k buffpt (text)
highst (vars)
highst (arrays)
memtop (strs)

=+2 ;pointer to beginning of text and
doesn't change after being setup
by init

=+2 ;pointer to end of text (except 64k)

=+2 ;pointer to start off simple variable
space.

=+2 ;pointer to end of simple vars (256k only)

=+2 ;pointer to start of array table

=+2 ;pointer end of arrays (l92k, 256k only)

=+2 ;end of storage in use.

=+2 ;top of st: free space

—144—

7G0 Reference Guide Memory storage distribution

G661 frespc *=*+2 ;pointer to new str
0063 memtop *=*+ptrsiz ;highest location in memory
6066 line numbers and textual pointers
0066 curlin *=*+2 ;current line number
0068 oldlin *=*+2 ;old line number (setup by stop or
006a ; end in a program)
006a oldtxt *=*+ptrsiz ;old text pointer
0fl6d ;
006d datlin *=*+2 ;data line number
$06f datptr *=*+2 ;pointer to data. initialized to point
0071 ' at the zero infront of (txttab) byI

0971 ; clr command.
G071 ; updated by execution of a read.
0671 inpptr *=*+2 ;remember where input is coming from.
0073 ; stuff used in evaluations
0073 ;
6373 varnam *=*+2 ;variable's name
@375 ;
0G75 fdecpt ;pointer into power of tens table.
0075 varpnt *=*+ptrsiz ;pointer to variable in memory
U078 ;
0678 forpnt ;a variable's pointer for for loops
$078 ; and let statements (3 bytes).
0078 lstpnt *=*+ptrsiz ;pointer to list string (3 bytes).
0G7b ;
007b vartxt ;save current txtptr on read.
G07b opptr *=*+ptrsiz ;pointer to current op's entry in optab.
0G7e ;
G07e opmask *=*+l ;mask created by current operation.
flG7f ; temporary floating result registers (5 bytes each):
GG7f ; tempfl,tempf2,tempf3
aa7£ ,

007f tempf3 ;temp float reg
007f grbpnt ;pointer used in garbage collection.
067f defpnt *=*+ptrsiz ;pointer used in function definition.
0082 ;
0082 dscpnt *=*+ptrsiz ;pointer to a string descriptor.
@685 ;
G085 jmper *=*+2 ;three bytes long
G087 oldov *=*+l ;the old overflow.
G088 ;
G088 tempfl ;temp float reg
B088 ptargl=tempfl ;multiply def'd for use by instr$
0988 ptarg2=tempf1+3
0088 strl=tempfl+6
0088 str2=tempfl+l$
0688 tmppos=tempfl+l4
0G88 positn=tempfl+l5
0688 match=tempfl+l6
0688 arypnt ;pointer used in array building.
mass highds *=*+ptrsiz ;destination of highest element in bit.
0G8b hightr *=*+ptrsiz ;source of highest element to move.
008e ; ,

G08e tempfz ;temp float reg (5 bytes)
608e lowds *=*+l ;location of last byte transferred (3

bytes).
flflsf decent *=*+l ;number of places before decimal point.

-—145——

70% Reference Guide

0090
0091
0091

G091
G692
0693
$094
0094
0695
0095
0095
$996
HG97
G698
UG98
0099
009a
0fl9b
0G9b
309C
0096
0$9d
009d
009d
609d
009d
Gfl9d
6G9e
G09f
Gflafl
Gflal
GBa2
G0a3
G0a3
0$a4
0Ga5
G0a6
00a6
GGa6
G0a6
G0a9
Gflac
Gflaf
flflaf
Gflaf
Gflbfl
Gflba
Gflbl
Gflbl
0Gb3
00b4
G0b4'
00b4
00b4
00b4
G0b4

tenexp

grbtop

lowtr
dptflg
expsgn

dsctmp

fac
facexp
facho
facmoh
indice
facmo
faclo
facsgn
degree
sgnflg
bits
7

tl=*
t2=t1+1
t3=tl+2
t4=tl+3
I

argexp
argho
argmoh
argmo
arglo
argsgn
strngl
arisgn
facov

strngz
polypt
curtol
fbufpt
txtptr
buffpt
I

noze
parsts
point
parstx
I

seedpt
errnum

N
:
‘
I

V
a

V
u

\
u

s
o

=+1

=+l
=-Q-1
=+l

Memory storage distribution

;base ten exponent

;pointer used in garbage collection. (3
bytes)

;last thing to move in bit (3 bytes)
;has a dpt been input
;sign of exponent

the floating accumulator
=+l

=+1
t=t+1
=+1

=+1
=+1
=+l

t=*+1
*=i+l

;temporary descriptors are built here.
;dsctmp overlaps up to facmoh.

;most significant byte of mantissa.

;used by qint.

;count used by polynomials.

;cell for shiftr to use.
the floating argument (unpacked)

=+1
=+1
=+1
=+1
=+1
=+l

=+1
=+1
=+l

=+ptrsiz
=+ptrsiz
=+ptrsiz

=+1

=+1

=+2
=+l
string area available for copy.

;temporaries --uses fp buffer

;a sign reflecting the result
;overflow byte of the fac

;- > to str or desc
;- > to polynomial coefficients
;absolute linear index is formed here
;— > into fbuffr used by fout
;pointer to current term
;input buffer

;using's leading zero counter
;dos std parser word
;using's pointer to decimal point
;dos aux parser word

this area is used
by fout as a buffer and must have dosspc contiguous
bytes.

in addition this area is used to stored temporaries
used by the dos interface routines, note, declaration

——l46——

700 Reference Guide

$Gb4
00b4
00b4
$200
020%
G200
G210
G211
@212
0214
0215
0215
G216
0217
0219
021a
021a
G21b
Z21d
B21f
021f
0220
0221
$222
0223
0223
B225
@226
0226
0227
$627
$255
0255
G255
$255
0256
$257
0257
0258
6259
0259
$259
$25a
025a
G25b
02Sb
625d
G2Se
025e
025e
G25e
025f
0260
0261
0262
0263
0264

‘
I

‘C

fbuffr
vspbuf

dosfll
dosdsl
dosfla
dosflb
I

dosf21
dosds2
dosf2a
dosf2b

dosbnk
dosofl
dosofh
I

dosla
dosfa
dossa
dosrcl

dosdid
didchk
I

dosstr

Memory storage distribution

order of locations dosofl-dossa must be preserved.

*=s2aa

=+16
=+1
t=t+1
=+2
=+1

=+1
=+1
=+2

=+1
=+2
=+2

=+1
=+l
=+1
=+1

=+2
i=*+1

=+l
dosspc=*-fbuffr

I
3

trmpos
andmask
eormsk
I

dfbank
dolu

domask
tansgn

idaabs
tttemp
ldaadr

=+46

=+1
=+l

=+1
=+1

'k='k+l

=+1

=+2
=+1

;buffer used to interface with vsp
;reserve 16 bytes for filename 1

;dos
;dos
;dos
;dos

;dos
;dos
;dos
;dos

;dos
;dos
;dos

;dos
;dos
;dos
;dos

;dos
;dos

;dos

file name 1 length
disk drive 1
file name 1 address
file name 1 bank

file name 2 length
disk drive 2
file name 2 address
file name 2 bank

bank number
low offset (bsave,b1oad)
high offset (bsave)

logical address
physical address
secondary address
record length

disk identifier(2 chars)
did flag

output string buffer
;space used by dos routines

;cursor column on crt
;mask used by wait
;mask used by wait

;defau1t bank number
;defau1t output lu (0=> not std output.)

keeps ds + dir ok

;used in determining sign of tan

;1da abs routine (see initat)
;temporary store
;modifiab1e address
;return opcode

7

;dec1arations for print using

=+l
=+1
=+1
*=i+1
=+1
=+1
=+1

;counter
;pointer to begin no
;pointer to end no
;do11ar flag
;comma flag
;counter
;sign exponent

——147_—

700 Reference Guide

@265
0266
G267
G268
6269
026a
02Gb
026C
026d
026e
026f
$270
$271
0272
0273
0273
0274
0275
G276
G277
0280
6280
0280
0282
$284
$286
0288
028a
028C
028e
0292
0292
0294
$296
9296
0296
$298
029a
029C

029d

029e
029f
Gzafl
G2a6
$2a6
02a8
02a8
02a8
G2a9
02a9
02a9
G2a9
02a9
02a9
9239

uexp
vn
chsn
vf
nf
POSP
fesp
etof
cform
sno
blfd
begfd
lfor'
endfd
puchrs
pufill
pucoma
pudot
pumony

7

7

ierror
imain
icrnch
iqplop
igone
ieval
ifrmev
ichrgo
ichrge
adrayl
adray2
I

I

trapno
errlin
errtxt
oldstk

tmptrp

dsptmp
oldtok
tmpdes

bighst

msiism

=+l
=+1
=+1
=+1
=§1
t=*+1
=+1
=+1
=+1
=+1
=+1
*=t+1
=+1
=+1

=+l
=+1
=+1
=+1
*=s28a

Memory storage distribution

;pointer to exponent
;# digits before decimal point
;justify flag
;# pos before dec point (field)
;# pos after dec point (field)
;+/- flag (field)
;exponent flag (field)
;switch
;char counter (field)
;sign no
;blank/star flag
;pointer to begin of field
;length of for at
;pointer to end of field

;print using fill symbol
;print using comma symbol
;print using decimal point symbol
;print using monetary symbol

basic indirects

=+2
=+2
=+2
=+2
:+2
:+2
=+2
=+2
=+2
=+2
=+2

;error routine, output err in .x
;interpreter main loop
;tokenization routine
;token output expander routine
;dispatcher
;eval routine
;frmevl routine
;chrgot routine
;chrget routine
;convert float -> integer
;convert integer -> float

error trapping declarations

i=*+2
*=i+2
=+2
=+1

=+1

=+1
=+1

,—_+2

=+1
newsys=$ff6c

.end

.lib kernal-equate
;tape block types
0
I

eot = 5

;error trap vector
;holds line # of last error
;text pointer at time of error
;stack pointer before execution of last
instruction

;used to save hi byte of trap line >trap
& resume

;temporary for dispose
I

;temporary for instr$

;max offset for any user bank

0
‘
;

s
o

,used to save length of string to be added
in garb collect

a
I

;end of tape

——I48——

700 Reference Guide

fl2a9
fl2a9
02a9
G2a9
02a9
02a9
fl2a9
02a9
fl2a9
fl2a9
02a9
02a9
02a9
fl2a9
D2a9
G2a9
fl2a9
$2a9
02a9
02a9
02a9
02a9
02a9
0239
02a9
02a9
02a9
02a9
02a9
02a9
02a9
G2a9
$2a9
fl2a9
02a9
G2a9
02a9
02a9
U2a9
fl2a9
0239
0239
G2a9
B2a9
G2a9
02a9
G2a9
02a9
G2a9
02a9
G239
fl2a9
0239
0239
fl2a9
Z2a9
G2a9

Memory storage distribution

;basic load file
;basic data file
;basic data file header
;buffer size
;carriage return
;start of rom (language)
;start of rom (kernal)
controller for bc2

;address register
;data register

sound interface device

osc3

random number, and env3 out

blf = 1
bdf = 2
bdfh = 4
bufsiz = 192
cr = $d
basic = $8090
kernal = $e0GG
; 6845 video display
I

vdc = $d8G0
adreg = $0
dareg = $1
; 6581 sid
, register list
sid = Sdafifl
I

; base addresses oscl, osc2,
oscl = $09
osc2 = $97
osc3 = Sfle
I

; osc registers
freqlo = SGG
freqhi = $01
pulsef = $62
pulsec = $03
oscctl = $94
atkdcy = $Z5
susrel = $06
I

; filter ocntrol
fclow = $15
fchi = $16
resnce = $17
volume = $18
I

; pots,
potx = $19
poty = $1a
random = $lb
env3 = SIC

6526 cia complex interface adapter
game / ieee data / user

7

7

; timer a: ieee local / cass local / music / game
; timer b: ieee deadm / cass deadm / music / game

; praa : ieee datal / user / paddle game 1
; pral : ieee data2 / user / paddle game 2
; pra2 : ieee data3 / user
; pra3 : ieee data4 / user
; pra4 : ieee data5 / user
; pra5 : ieee data6 / user
; pra6 : ieee data7 / user / game trigger 14
; pra7 : ieee data8 / user / game trigger 24
7

; prba : user / game 10

——I49——

700 Reference Guide

02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9

Q
in

V
0

W
e

n
o

‘o
s
o

h
e

s
o

s
o

s
o

‘u
s
o

s
o

H
a

pra
prb
ddra
ddrb
talo
tahi
tblo
tbhi
todl
tods

prbl
prb2
prb3
prb4
prb5
prb6
prb?

flag
pc
ct
sp

0
ec

todmin
todh
sdr
icr
cra
crb

pa
‘O

in
V

:
in

\
o

V
0

V
0

in
w

e
\
n

s
o

in
\
o

dove

I

pra
prb0
prbl
pra2
prb3
prb4
prbs
prb6
prb7

rr

o
n

o
n

o
n

n
o

I
I

n
o

o
n

I
I

I
I

I
I

0
0 user

user
user
user
user
user
user

‘\
\C

\‘
\\

C
\‘
\\

~

USE!
USGI
USEI
USGI

$dc00
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$a
$b
$c
$d
Se
$f

Memory storage distribution

game
game
game
game
game
game
game

cassette read

;data reg a
;data reg b
{direction reg a
;direction reg b
;timer a low byte
;timer a high byte
;timer b low byte
;timer b high byte
;10ths of seconds
;seconds
;minutes
;hours
;serial data register
;interrupt control register
;control register a
;control register b

6526 cia for inter-process communication

data port
busyl
busy2

(1=>6509 off dbus)
(1=>8088/280 off dbus)

semaphore 8088/280
semaphore 6509
unused
unused
irq to 8088/z80 (lo)
unused

$db00

$04
$08

;prb bit2
;prb bit3

rs232c and network interface

$dd00
$00
$01
$02
$03
$40
$20
$08

;transmit/receive data register
;status register
;command register
;control register
;data set ready error
;data carrier detect error
;receiver outer buffer overrun

——l50——

766 Reference Guide Memory storage distribution

G2a9 ; 6525 tpil triport interface device #1
G2a9 ; ieee control / cassette / network / vic / irq
02a9 ;
02a9 ; pafl : ieee dc control (ti parts)
02a9 ; pal : ieee te control (ti parts) (t/r)
02a9 ; pa2 : ieee ren
02a9 ; pa3 : ieee atn
02a9 ; pa4 : ieee day
0239 ; pas : ieee eoi
02a9 ; pa6 : ieee ndac
02a9 ; pa? : ieee nrfd
02a9 ;
$2a9 ; pbfl : ieee ifc
G2a9 ; pbl : ieee srq
02a9 ; pb2 : network transmitter enable
a2a9 ; pb3 : network receiver enable
$2a9 ; pb4 : arbitration logic switch
G2a9 ; pb5 : cassette write
02a9 ; pb6 : cassette motor
G2a9 ; pb7 : cassette switch
$2a9 ;
02a9 ; irqfl : 50/60 hz irq
02a9 ; irql : ieee srq
$2a9 ; irq2 : 6526 irq
02a9 ; irq3 : (opt) 6526 inter-processor
02a9 ; irq4 : 6551
02a9 ; *irq : 6566 (vic) / user devices
G2a9 ; cb : vic dot select
02a9 ; ca : vic matrix select
02a9 ;
G2a9 tpil = $deGG
G2a9 pa = $0 ;port register a
G2a9 pb = $1 ;port register b
$2a9 pc = $2 ;port register c
02a9 lir = $2 ;interrupt latch register mc=l
$2a9 ddpa = $3 ;data direction register a
G2a9 ddpb = $4 ;data direction register b
G2a9 ddpc = $5 ;data direction register c
G2a9 mir = $5 ;interrupt mask register mc=l
02a9 creg = $6 ;control register
02a9 air = $7 ;active interrupt register
02a9 ;
G2a9 freq = $01 ;irq line 56/60 hz found on ...

G2a9 ; 6525 tpi2 tirport interface device #2
02a9 ; keyboard / vic 16k control
G2a9 ;
G2a9 ; pafl : kybd out 8
02a9 ; pal : kybd out 9
G2a9 ; pa2 : kybd out 10
02a9 ; pa3 : kybd out 11
Z2a9 ; pa4 : kybd out 12
02a9 ; pa5 : kybd out 13
02a9 ; pa6 : kybd out 14
$2a9 ; pa? : kybd out 15
G2a9 ;
G239 ; pb0 : kybd out 6
G2a9 ; pfil : kybd out 1

—151__

700 Reference Guide Memory storage distribution

02a9 ; pb2 : kybd out 2
02a9 ; pb3 : kybd out 3
02a9 ; pb4 : kybd out 4
02a9 ; pb5 : kybd out 5
02a9 ; pb6 : kybd out 6
02a9 ; pb7 : kybd out 7
02a9 ;
02a9 ; pc0 : kybd in 0
02a9 ; pcl : kybd in 1
02a9 ; pc2 : kybd in 2
02a9 ; pc3 : kybd in 3
02a9 ; pc4 : kybd in 4
02a9 ; pcS : kybd in 5
02a9 ; pc6 : vic 16k bank select low
02a9 ; pc7 : vic 16k bank select hi
02a9 ;
02a9 tpi2 = $df00
02a9 ; ieee line equates
02a9 ;
02a9 dc = $01 ;75l60/75161 control line
02a9 te = $02 ;75l60/75161 control line
02a9 ren = $04 ;remote enable
02a9 atn = $08 ;attention
02a9 dav = $10 ;data available
02a9 eoi = $20 ;end or identify
02a9 ndac = $40 ;not data accepted
02a9 nrfd = $80 ;not ready for data
02a9 ifc = $01 ;interface clear
02a9 srq = $02 ;service request
02a9 ;
02a9 rddb nrfd+ndac+te+dc+ren ;directions for receiver
02a9 tddb eoi+dav+atn+te+dc+ren ;directions for transmit
02a9 I

02a9 eoist = $40 ;eoi status test
02a9 tlkr = $40 ;device is talker
02a9 listnr = $20 ;device is listener
02a9 utlkr = $5f ;device untalk
02a9 ulstn = $3f ;device unlisten
02a9 ;
02a9 toout = $01 ;timeout status on output
02a9 toin = $02 ;timeout status on input
02a9 eoist = $40 ;eoi on input
02a9 nodev = $80 ;no device on bus
02a9 sperr = $10 ;verify error
02a9 ;
02a9 ; equates for c3p0 flag bits 6 and 7
02a9 ;
02a9 slock = $40 ;screen editor lock-out
02a9 dibf = $80 ;data in output buffer
02a9 .end
02a9 .1ib scrn-equate
02a9 ;tape block types
02a9 ;
02a9 eot = 5 ;end of tape
02a9 blf = 1 ;basic load file
02a9 bdf = 2 ;basic data file
02a9 bdfh = 4 ;basic data file header

——l52——

700 Reference Guide Memory storage distribution

;buffer size
;carriage return
;start of rom (language)
;start of rom (kernal)

6845 video display controller for bc2

;address register
;data register

osc2, osc3

random number, and env3 out

6526 cia complex interface adapter

: ieee local / cass local / music / game
/ cass deadm / music / game

user
user
user
user
user
user
user / game trigger 14
user / game trigger 24\

\
\
\
\
\
\
\

10
11
12
13

02a9 bufsiz = 192
02a9 cr = $d
02a9 basic = $8000
02a9 kernal = $e000
02a9 ;
02a9 ;
02a9 vdc = $d800
02a9 adreg = $0
02a9 dareg = $1
02a9 ; 6581 sid sound interface device
02a9 ; register list
02a9 sid = $da00
02a9 ;
02a9 ; base addresses oscl,
02a9 oscl = $00
02a9 osc2 = $07
02a9 osc3 = $0e
02a9 ;
02a9 ; osc registers
02a9 freqlo = $00
02a9 freqhi = $01
02a9 pulsef = $02
02a9 pulsec = $03
02a9 oscctl = $04
02a9 atkdcy = $05
02a9 susrel = $06
02a9 ;
02a9 ; filter control
02a9 fclow = $15
02a9 fchi = $16
02a9 resnce = $17
02a9 volume = $18
02a9 ;
02a9 ; pots,
02a9 potx = $19
02a9 poty = Sla
02a9 random = $lb
02a9 env3 = $lc
02a9 ;
02a9 ; game / ieee data / user
02a9 ;
02a9 ; timer a
02a9 ; timer b: ieee deadm
02a9 ;
02a9 ; pra0 : ieee datal
02a9 ; pral : ieee data2
02a9 ; pra2 : ieee data3
02a9 ; pra3 : ieee data4
02a9 ; pra4 : ieee data5
02a9 ; pra5 : ieee data6
02a9 ; pra6 : ieee data7
02a9 ; pra7 : ieee data8
02a9 ;
02a9 ; prb0 : user / game
02a9 ; prbl : user / game
02a9 ; prb2 : user / game
02a9 ; prb3 : user / game

——153——

700 Reference Guide

02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
0239
02a9
02a9
02a9
02a9

Memory storage distribution

; prb4 : user / game 20
; prb5 : user / game 21
; prb6 : user / game 22
; prb7 : user / game 23
I

; flag : user
; pc : user
; ct : user
; sp : user

I

cia = $dc00
pra = $0 ;data reg a
prb = $1 ;data reg b
ddra = $2 ;direction reg a
ddrb = $3 ;direction reg b
talo = $4 ;timer a low byte
tahi = $5 ;timer a high byte
tblo = $6 ;timer b low byte
tbhi = $7 ;timer b high byte
tod10 = $8 ;l0ths of seconds
todsec = $9 ;seconds
todmin = $a ;minutes
todhr = $b ;hours
sdr = $c ;serial data register
icr = $d ;interrupt control register
cra = Se ;control register a
crb = $f ;control register b
; 6551 acia rs232c and network interface
I

acia = $dd00
drsn = $00 ;transmit/receive data register
srsn = $01 ;status register
cdr = $02 ;command register
ctr = $03 ;control register
dsrerr = $40 ;data set ready error
dcderr = $20 ;data carrier detect error
doverr = $08 ;receiver outer buffer overrun
; 6525 tpil triport interface device #1
; ieee control / cassette / network / vic / irq
I

; pa0 : ieee dc control (ti parts)
; pal : ieee tc control (ti partsr (t/r)
; pa2 : ieee ren
; pa3 : ieee atn
; pa4 : ieee dav
; pas : ieee eoi
; pa6 : ieee ndac
; pa7 : ieee nrfd
I

; pb0 : ieee ifc
; pbl : ieee srq
; pb2 : network transmitter enable
; pb3 : network receiver enable
; pb4 : arbitration logic switch
; pb5 : cassette write
; pb6 : cassette: motor
; pb7 : cassette switch

——l54——

700 Reference Guide

02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
0239
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
02a9
0239
02a9
02a9
02a9
02a9
02a9
02a9

'U
"O

ff
§

u
‘o

\I
\o

V
o

\¢
\c

\n
\o

\o
O

"0
J'

O 5.
4. l-
‘

pc
lir
ddpa
ddpb
ddpc
mir
creg
air
7

freq
id55

f
f
‘:

N
a

s
o

s
o

\
o

s
o

s
o

\
o

5
0

w
e

s
o

‘
I

N
:

N
:

N
:

N
a

in
V

:
in

is
N

o

pi2

irq0
irql
irq2
irq3
irq4
*irq
cb
ca

hz

pa0
pal
pa2
pa3
pa4
pas
pa6
pa?

pb0
pbl
pb2
pb3
pb4
pb5
pb6
pb0

to
n

o
n

o
to

0
0

I
I

n
o

o
n

6525 tpi2
keyboard

Memory storage distribution

50/60 hz irq
ieee
6526

srq
irq

cassette read
6551
6566 (vic) / user devices
vic dot select
vic matrix select

$de00
$0
$1
$2
$2
$3
$4
$5
$5
$6
$7

$01
27

;port register a
;port register b
;port register c
;interrupt latch register mc=l
;data direction register a
;data direction register b
;data direction register c

;interrupt mask register mc=l
;control register
;active interrupt register

;irq line 50/60 hz found on...
;S5 hz value required by ioinit

tirport interface device #2
/ vic 16k control

kybd
kybd
kybd
kybd
kybd

.kybd

; ieee line
I

dc
te
ren
atn
dav
eoi
ndac
ndfd
ifc

kybd
kybd

kybd
kybd
kybd
kybd
kybd
kybd

out
out
out
out
out
out
out
out

out
out
out
out
out
out U

'|
u
B

(.
a
J
|\
)I

-‘
Q

select for
select for

$df00
equates

$01
$02
$04
$08
$10
$20
$40
$80
$01

monitor(hish=ntsc,low=pal) _

head(high=bui1t-in)low=monitor)

;75l60/75161 control line
;75l60/75161 control line
;remote enable
;attention
;data available
;end or identify
;not data accepted
;not ready for data
;interface clear

——I55——

706 Reference Guide

02a9
G2a9
02a9
G2a9
0239
0239
G2a9
02a9
02a9
02a9
02a9
$2a9
G2a9
G2a9
B2a9
02a9
fl2a9
@239
G239
G2a9
$2a9
G2a9
02a9

srq
F

rddb
tddb
7

eoist
tlkrt
lstnr
utlkr
ulstn
I

toout
toin
eoist
nodev
sperr

in
h
a

‘
I

slock
dibf

= $02 ;service

= nrfd+ndac+te+dc
= eoi+dav+atn+te+dc

= $40
= $4fl ;device
= $20 ;device
= $5f ;device
= $3f ;device

= $61
= $02
= $40 ;eoi on
= 8
= $1G ;verify

equates for

$49
$89

.end

.end

Memory storage distribution

request

;directions for receiver
;directions for transmit

;eoi status test
is talker
is listener
untalk
unlisten

;timeout status on output
;timeout status on input

input
;no device on bus

EIIOI

c3pG flag bits 6 and 7

;screen editor lock—out
;data in output buffer

——|DO—

70% Reference Guide CONNECTOR PINOUTS

IEEE Connector

Pin ID IC Use Address

1 D1 CIA 6526 PRA 0 dean 55329.
2 D2 CIA 6526 PRA 1 dcaa 56323
3 D3 CIA 6526 PRA 2 dcaa 56320
4 D4 CIA 6526 PRA 3 dcfia 56329
5 E01 TPI 6525 PRA 5 dean 56832
6 DAV TPI 6525 PRA 4 defifi 56832
7 NRFD TPI 6525 PRA 7 dean 56832
8 NDAC TPI 6525 PRA 6 deaa 56832
9 IFC TPI 6525 PRB 6 deal 56833

10 SRQ TPI 6525 PRB 1 deal 56833
11 ATN TPI 6525 PRA 3 defla 56832
12 SHIELD

A D5 CIA 6526 PRA 4 dcafl 5632a
B D6 CIA 6526 PRA 5 dcee 56320
C D7 CIA 6526 PRA 6 dcaa 56320
D D8 CIA 6526 PRA 7 dcfla 56320
E REN TPI 6525 PRA 2 deflfl 56832
F GND
H GND
J GND
K GND
L GND
M GND
N GND

-—l57——

76$ Reference Guide

RS232 Connector

Pin

I-
‘I
-‘
I-

‘
k
it
-‘
Q

\D
®

\l
O

’\
L

Il
n

>
h

J
l\
)I

-‘

ID

SHIELD
TXD
RxD
RTS
CTS
DSR
GND
DCD
N.C.
N.C.
+ 5 V DC
- 12 V DC
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
DTR
N.C.
N.C.
N.C.
RxC
N.C.

—-158-

CONNECTOR PINOUTS

7aa Reference Guide CONNECTOR PINOUTS

USER Connector (internal)

Pin ID IC Use address
1 GND
2 PB2 TPI 6525 PRB 2 deal 56833
3 GND
4 PB3 TPI 6525 PRB 3 deal 56833
5 NOT PC CIA 6526 -PC

(Handshake PRB I/0, Output)
6 NOT FL. Cass-Read -FLAG

(Interrupt, Input)
7 2D7 CIA 6526 PRB 7 dcal 56321
8 2D6 CIA 6526 PRB 6 dcal 56321
9 2D5 CIA 6526 PRB 5 dcal 56321

la 2D4 CIA 6526 PRB 4 dcal 56321
11 2D3 CIA 6526 PRB 3 dcal 56321
12 2D2 CIA 6526 PRB 2 dcal 56321
13 2D1 CIA 6526 PRB 1 dcal 56321
14 2Da CIA 6526 PRB a dcal 56321
15 1D7 CIA 6526 PRA 7 dcaa 5632a
16 1D6 CIA 6526 PRA 6 dcaa 5632a
17' 1D5 CIA 6526 PRA 5 dcaa 5632a
18 1D4 CIA 6526 PRA 4 dcaa 5632a
19 lD3 CIA 6526 PRA 3 dcaa 5632a
2a 102 CIA 6526 PRA 2 dcaa 5632a
21 1D1 CIA 6526 PRA 1 dcaa 5632a
22 1Da CIA 6526 PRA a dcaa 5632a
23 NOT CNT CIA 6526 -CNT dca4/5 56324/S
24 + 5 V DC
25 NOT IRQ TPI 6525 PRC 5 dea2 56834
26 SP CIA 6526 SP

(Serial Port I/O)

—159——

706 Reference Guide CONNECTOR PINOUTS

Keyboard Connector (internal or external)

Pin ID IC Use address

1 PAO TPI 6525 PRA 0 dfflfl 57088
2 PA2 TPI 6525 PRA 2 dfflfl 57688
3 PA4 TPI 6525 PRA 4 dfafl 57988
4 PA6 TPI 6525 PRA 6 dfafi 57988
5 P80 TPI 6525 PRB G dfal 57889
6 P31 TPI 6525 PRB 1 dfal 57089
7 PB2 TPI 6525 PRB 2 dfel 57089
8 PB3 TPI 6525 PRB 3 dfal 57689
9 PB4 TPI 6525 PRB 4 dfal 57089

10 PBS TPI 6525 PRB 5 dffll 57089
11 PB6 TPI 6525 PRB 6 dffll 57689
12 PB? TPI 6525 PRB 7 dffll 57689
13 PCS TPI 6525 PRC 5 dfaz 57090
14 PA1 TPI 6525 PRA 1 dfaa 57988
15 PA3 TPI 6525 PRA 3 dfaa 57088
16 PA5 TPI 6525 PRA 5 dffla 57088
17 PA7 TPI 6525 PRA 7 dfaa 57888
18 PCO TPI 6525 PRC 0 df02 57098
19 PC1 TPI 6525 PRC 1 df02 57090
20 PC2 TPI 6525 PRC 2 df$2 57090
21 PC3 TPI 6525 PRC 3 dfflz 57096
22 GND
23 GND
24 GND
25 PC4 TPI 6525 PRC 4 dfaa 57090

——160——

700 Reference Guide

Cartridge Connector

Pin

m
w

m
z
z
rx

u
m

m
m

o
n
m

w
o

m
u

m
m

o
w

w
w

ID

An
Al
A2
A3
A4
A5 Addr<s's
A6
A7
A8
A9
A19
A11
A12
+ S V DC
+ 5 v DC
BDO
BD1
BD2
BD3
3D4 E)0C+0«
BD5
1306
1307
GND
GND
s R/W

S02 1 .#1poo HoooNOT CSBANK ‘

NOT CSBANK 2 if H000 ‘G000 } B4,‘/K/S‘
NOT CSBANK 3 1 f-°°° ‘%'°°°

—l6I—

CONNECTOR PINOUTS

7G0 Reference Guide CONNECTOR PINOUTS

Co-Processor Connector (internal)

Pin ID

1 EXTMA3
2 DRAMGG
3 EXTMA2
4 DRAMD1
5 EXTMA7
6 DRAMUZ
7 EXTMA6
8 DRAM03
9 EXTMA5

10 DRAM04
11 EXTMA4
12 DRAMGS
13 EXTMA1
14 DRAM06
15 EXTMAG
16 DRAM07
17 GND
18 GND
19 GND
20 GND
21 GND
22 NOT BUSY 1
23 GND
24 NOT PZREFREQ
25 GND
26 NOT PZREFGRNT
27 GND
28 BPO
29 GND
30 BP1
31 GND
32 BP2
33 N.C.
34 BP3
35 NOT PROCRES
36 NOT BUSY 2
37 EXTBUF R/W
38 NOT ERAS
39 DRAM R/W
40 NOT ECAS

——l62-—

700 Reference Guide

Expansion Connector

Pin

\D
G

)\
lO

\U
In

h
(n

)I
\>

l-
‘

GND
NOT
IRQ3
- 12
NOT
+ 12
NOT
nor
LPEN

BRAS

V DC
EXTRES

V DC
S0
RES

S R/W
NOT
TODC
NOT DISKROMCS
BDOT
No Connection
S02
NOT
Sfll
NOT
BD3
NOT
BD4
BD2
BD5
BD1
BD7
BDG
BAl3
BD7
BA14
BAl5
BAl
BA0
BA2
BAl1
BA3
BAIG
BAIZ
BA4
BA9
BA5
BA8
BA6

EXTBUFCS
LK

CLK

BCAS

CS1

EXTPRTCS

(internal)

Use/address

DRAM: Row Access
PRC3 deG2 56834

Reset

SG
System Reset
Light Pen
System Read/Write
Address: $$8G0—$Bfff
56 Hz
Address: $1090-$1fff
(18 MHz)

phi 2
DRAM: Column Access
phi 1
Address: $d90G-$d9ff
Data
Address: $dbG0-$dbff
Data
Data
Data
Data
Data
Data
Address
Data
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address

-—I63——

CONNECTOR PINOUTS

709 Reference Guide

53
54
55
56
57
58
59
60

BPO
BA7
BP1
BP2
NOT NMI
BP3
RDY
NOT IRQ

Bank
Address
Bank
Bank
Non-maskable Interrupt
Bank
Ready
Interrupt Request

——l64——

CONNECTOR PINOUTS

706 Reference Guide

Audio Connector

Pin Use

1 Loudspeaker (8 ohm)
2 Not connected
3 Loudspeaker (8 ohm)

——l65——

CONNECTOR PINOUTS

700 Reference Guide

Power Connector

Pin

O
\U

ln
B

L
A

J
lU

D
-‘

Use

50 Hz
- 12 V DC
+ 12 V DC
GND
GND
+ 5 V DC

——l66——

CONNECTOR PINOUTS

700 Reference Guide

Video Connector

Pin

\l
U

\U
In

h
L
a
-I

R
)!

-‘

Use

VIDEO
GND
VERTICAL SYNC
GND
HORIZONTAL SYNC
KEY
GND

-—l67——

CONNECTOR PINOUTS

700 Reference Guide
APPENDIX G (For ASC and CHR$ Codes)

ASCII Code

l-
‘I
-
‘I
-
‘I
-
‘I
-
‘

a
&

L
~

|h
)|

'-
‘Q

\D
®

\l
O

\U
'la

#
L
A

-D
ix

)!
-‘
Q

Character/function
None
CTRL-a
CTRL-b
CTRL-c
CTRL-d
CTRL—e
CTRL-f
CTRL-g
CTRL—h
CTRL—i
CTRL-j
CTRL-k
CTRL-1
CTRL-m
CTRL-n
CTRL-o
CTRL-p
CTRL-q
CTRL—r
CTRL-s
CTRL-t
CTRL-u
CTRL-v
CTRL—w
CTRL-x
CTRL-y
CTRL-z

(1)
(2)

or Commodore Key (2)

or

or

O!

or
or
or

O!
or
OI
0!

OZ

(2)
CE

(2)
(2)

Bell
(2)

TAB
(2)
(2)
(2)

(2)

(2)

(2)

ASCII CODES

CTRL-RETURN or ENTER or CTRL-SHIFT-SPACE (2)
NORM
Set Top

(2)
Cursor Down
RVS
Home
Delete

(2)
(2)
(2)
(2)

Cursor Up
(2)

ESC or SHIFT ESC
RVS-pound
RVS-]
RVS-T
RVS-back arrow
space

~
4

m
c
n

c
>

w
e

u
k
-a

\\
o

Is
+

w
~

u
~

-m
c
m

o
z
w

a
n

(2)
(2)

(2)
(2)
(2)
(2)

(2)

or Cursor Right or SHIFT-Cursor Right

——lb8——

760 Reference Guide ASCII CODES

56 8
S7 9
58 :
59 ;
60 <
61 =

62 >
63 ?
64 @

65 a or A
66 b or B
67 c or C
68 d or D
69 e or E
70 f or F
71 g or G
72 h or H

73 i or I
74 j or J
75 k or K
76 1 or L
77 m or M

78 n or N
79 0 or 0
80 p or P

81 q or Q

82 r or R
83 s or S

84 t or T
85 u or U
86 v or V
87 w or W

88 x or X
89 y or Y
90 z or Z

91 I
92 pound
93]
94 T

95 back arrow
96 SHIFT-space
97 1

98 "

99 #
100 $
161 %

162 &

163 '

164 (

105)

106 *

107 +
188 ,

189 -

118 .

111 /
112 8

-—I69—-

709 Reference Guide

113
114
115
116
117
118
119
126
121
122
123
124
125
126
127
128
129
136
131
132
133
134
135
136
137
138
139
146
141
142
143
144
145
146
147
148
149
15%
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

\)
V

II
A

‘!
“\

O
®

\l
O

\U
'I
:l
-‘
-L

A
J
IU

D
-"

RVS-graphic
RVS-graphic
RVS-graphic
SHIFT-RUN
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS-graphic
RVS-graphic

(2)
or RVS—A
or RVS-B
(3)
or RVS-D
or RVS—E
or RVS—F
or RVS-G
or RVS-H
or RVS-I
or RVS-J
or RVS-K
or RVS-L

or

O!

or

(2)
SHIFT-Commodore

SHIFT-CE
(2)
(2)
(2)
(2)
SHIFT-TAB
(2)

SHIFT—Return or SHIFT-Enter
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
SHIFT—DEL
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
Rvsigraphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-pi
RVS-graphic
SHIFT-space

or RVS-N
or RVS-Q
or RVS-P
or RVS-Q
or RVS-R
or RVS-S
(5)
or RVS-U
or RVS-V
or RVS-W
or RVS—X
or RVS-Y
or RVS—z
(2)
(6)

or
or

or
or
O!

GRAPH
Set Bottom
(2)
Cursor Up
SHIFT-RVS
SHIFT-CLR

(2)
(2)
(2)
(2)
(2)
(2)

or Cursor Left

(6)

CTRL—l or graphic
CTRL-2 or graphic
CTRL-3 or graphic
CTRL-4 or graphic
CTRL-5 or graphic
CTRL-pi or graphic
CTRL-6 or graphic
CTRL-' or graphic
CTRL-= or graphic

(6)

(6)
(6)
(7)
(8)

__17o——

(2)

(2)

(2)

(4)
(2)
(2)

(2)
(2)
(2)

(2)

ASCII CODES

700 Reference Guide

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
206
201
202
203
264
285
296
207
208
209
216
211
212
213
214
215
216
217
218
219
229
221
222
223
224
225
226

CTRL--
CTRL-+
CTRL-0
CTRL-fl
CTRL-2
CTRL-/
CTRL-1
CTRL—4
CTRL-5
CTRL—6
CTRL—7
CTRL-8
CTRL-9
CTRL-?
CTRL-CE or graphic
CTRL-*
CTRL-]
CTRL-8
CTRL--

0

CTRL-7
CTRL-9
graphic

N
I<

>
<

E
<

G
'-
iU

l5
U

lO
’U

O
Z

Z
L
"?

§
"-

IH
3
2
Q

"*
1
l‘.

1
U

O
D

>
‘

013

013

or
01:
OK
Or
015

or
or
or
O!
or
or
Or

Or
0!.’
0].’
or
OI
OI
or

graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic

graphic
graphic
graphic
graphic
graphic-
graphic
graphic

(6)
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or-graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic
or graphic

CTRL-3 or graphic or CTRL-SHIFT-Ga
CTRL-; or graphic
graphic
pi or SHIFT-pi
CTRL-back arrow or CTRL—pound or graphic(6)
SHIFT-space
graphic
graphic

(6)(9)
(6)(9)

(9)
(9)
(9)

(9) or CTRL-SHIFT-Z (9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)

(9)
(3)

(9)

(3)

(6)

——l7l——

(9)(6)

ASCII CODES

70¢ Reference Guide ASCII CODES

227 graphic
228 graphic
229 graphic
230 graphic (6)
231 graphic (6)
232 graphic
233 graphic (6)
234 graphic (6)
235 graphic
236 graphic
237 graphic
238 graphic
239 graphic
240 graphic
241 graphic
242 graphic
243 graphic
244 graphic
245 graphic
246 graphic (6)
247 graphic
248 graphic
249 graphic
25% graphic (6)
251 graphic
252 graphic
253 graphic
254 graphic
255 RVS-pi

Notes:-

1) No key gives null not 0.
CTRL, SHIFT, Undefined F-keys and STOP are not detectable in the
same way as other keys.

2) only visible in quotes mode.

3) When next in direct mode this will force:

DLOAD "*" and RUN

into the keyboard buffer.

4) Shift Carriage Return in any mode.

5) Insert in any mode

6) It is possible to generate two graphic characters here.

7) It is possible to generate three graphic characters here

8) It is possible to generate four graphic characters here.

9) The numeric keypad key, not the main keyboard key.

——l72——

700 Reference Guide

APPENDIX H (Mainly for use with screen display)
POKE/PEEK Code

\O
®

\l
O

1
U

In
h

U
)I

~
J
f-

‘Q

—
s-

-r
a
.-

.u
'~

<
xs

:<
::
rr

m
r1

.n
'u

o
:I
5
o
-7

ru
..
»
.:
rx

n
r-

n
m

a
a
n
K

7
9
9
0

back arrow
space

\l
O

\(
J
1
n
h
U

)l
‘~

J
l'
-‘
Q

\°
|‘

'4
'

‘W
A

-I
l’
ld

9
{h

=
fi

3
0

-

Character/function

Or
0!
O!
or
O!
or
0!
Or
01'
or
or
O]!
O]!
Or
02
OZ
O!
O!
0!
Or
O!
O!
0!
O!
or
O!

ound

A

N
D

<
>

<
3<

C
:v

-3
0‘

)W
lO

'U
O

Z
3L

"7
€<

4H
Z

I1
C

)"
'J

l:*
JU

O
IIJ

——I73——

POKE/PEEK CODES

70% Reference Guide

56
57
58
59
6%
61
62
63
64
65
66
67

116
111
112

\Q
°
\)

V
l|
/\

"
“
\O

®

01'
Or
01'
or
or
or
or
or
or
or
O!
or
OI
or
0!.’
Or
01'
or
O!
0!?
GI
0].’
Or
or
O!
orN

I<
>

<
2

I<
C

'-
S

U
J
F

U
C

J
W

J
O

Z
K

P
H

‘-
IH

IQ
H

J
N

U
O

W
3

’
raphic

graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic

graphic
graphic
graphic
pi
graphic
SHIFT-space
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic

(1)

(1)

——I74——

POKE/PEEK CODES

70$ Reference Guide

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
17%

graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
RVS-@
RVS-A/a
RVS-B/b
RVS-C/c
RVS-D/d
RVS-E/e
RVS—F/f
RVS-G/g
RVS-H/h
RVS—I/i
RVS-J/j
RVS—K/k
RVS-L/1
RVS-N/n
RVS—O/o
RVS—P/p
RVS-Q/q
RVS-R/r
RVS-S/s
RVS—T/t
RVS-U/u
RVS-V/v
RVS-W/w
RVS-X/x
RVS-Y/y
RVS-Z/z
RVS-[
RVS—pound
RVS-]
Rvs-T
RVS-back arrow
RVS—SHIFT space
RVS—!
RVS-"
Rvs—#
RVS-$
RVS-%
RVS-&
RVS-'
RVS-(
RVS-)
RVS-*

(1)

——I75——

POKE/PEEK CODES

760 Reference Guide

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

RVS-+
RVS-,
RVS--
RVS-.
RVS-/
RVS-0
avs-1
RVS-2
RVS-3
RVS—4
RVS-5
RVS-6
RVS—7
RVS-8
RVS-9

RVS->
RVS-?
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS—gtaphic
RVS-graphic
RVS-graphic
RVs—graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS-pi
RVS-graphic
RVS-SHIFT space
RVS-graphic
RVS-graphic
RVS-graphic

(1)

——I76--

POKE/PEEK CODES

7G0 Reference Guide

228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Note:-

(1)

RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS—graphic
RVS-graphic
RVS-graphic
RVS-graphic

RVS-graphic
RVS—graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS—graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
RVS-graphic
Rvsggraphic
RVS-graphic

(1)

(1)

(1)

POKE/PEEK CODES

Two or more graphic characters are possible with this code.

——I77—-

700 Reference Guide BIBLIOGRAPHY

BIBLIOGRAPHY

l) "Compute's first book of PET/CBM". Published by Compute. General
introduction to CBM business computers.

2) "BASIC Basic-English dictionary". By Larry Noonan. Published by
Dilithium Press (USA).

3) "MOS Programming Manual". MOS Technology. Faulk Baker Associates.

4) "Library of PET subroutines". By N. Hampshire. Published by
Hayden Books. Many of the routines would need adapting for the 700,
but the ideas are sound.

5) "PET graphics". By N. Hampshire. Published by Hayden Books. Many
of the routines would need adapting for the 700, but the ideas are
sound.

6) "CBM Personal Computer Guide". By C. Donahue. Published by
Osborne/McGraw Hill. Good grounding in Commodore BASIC 4.0. Does not
cover the 700 extensions.

7) "CBM Professional Computer Guide“. By A. Osborne, J. Strasma and E.
Strasma. Published by Osborne/McGraw Hill (USA). Similar to 6) above,
but more business orientated.

8) "PET and IEEE 488 bus (GPIB)". By E. Fisher and C. Jensen.
Published by Reston (USA). The IEEE interface as used by CBM machines.
Examples would need adapting to run on a 700. '

9) "PET and the IEEE“. By A. Osborne and C. Donahue. Published by
Osborne/McGraw Hill (USA). Comment as for 8) above.

10) “Programming the 6502". By R. Zaks. Published by Sybex (USA).
Good introduction to the 6502 which is very similar to the 6509 in the
700. Use in conjunction with the 700 Kernal Manual.

11) "Programming the PET/CBM“. By R. West. Published by Level Limited
(UK). Excellent book, but need some adaption for the 700 - especially
the machine code section. Does not cover the extensions to BASIC 4.0 in
the 700 BASIC 4.0+.

12) “Commodore 64 Programmer's Reference Guide". Commodore. Included
here for the users of 500 machines, and for the SID chip information.

——I78-—

766 Reference Guide BIBLIOGRAPHY

13) "Applications Catalogue". Commodore (UK). A list of business
packages for all CBM machines including the 70$.

14) "Microprocessor Interfacing Techniques". — Third Edition. By R.
zaks and A. Lesea. Published by Sybex (USA). Interfacing techniques in
general with examples.

15) "6502 Assembly Language Programming“. By L. Leventhal. Published
by McGraw Hill (USA). See comments 10) above.

16) "The Art of Computer Programming, Volume 1". By D. Knuth.
Published by Addison—wesley (USA). This volume is about Fundamental
Algorithms. (Second editiion.)

17) "The Art of Computer Programming, Volume 3". By D. Knuth.
Published by Addison-Wesley (USA). This volume is about Sorting and
Searching.

Note: This is simply a list of books. The reader must decide whether
they are useful or not. Commodore (UK) does not endorse or subsidise
any of the titles in this list, neither does the author of this manual
recommend any of the titles.

——179-—

NOTICE

The Information contained in this document provides a
specification for the Kernal in GSQ9 based machines. No
responsibility is assumed by Commodore for ommissions or errors.
The information contained in this guide is subject to change
without notice.

(c) 1984 by Commodore Business Machines (UK) Ltd.

——l80——

TABLE OF CONTENTS

Introductionoc0000000000000outIooooonoolucotoooooluoz

Power-up activities of the Kernal...................3
User callable Kernal routines.......................4

functi°nSOlOOOOOIIOIOIIOOOOOCCIOOOOOOOIOOOO47

Example program using Kernal functions.............52
Decimal four-function math routines................56
Kernal error messages and codes....................68
System RAM vectors.................................7G

——I81——

INTRODUCTION

The following list of Kernal routines is intended to facilitate
the movement of assembly language programs between CBM machines.
Programs written in Commodore BASIC have generally been upward
compatible. It is our desire to present a list of assembly
language I/O routines that the programmer can use for utilities,
interpreters, assemblers and compilers. By using only routines in
this list, resulting programs can be I/O independent, and
hopefully independent of hardware of future machines. To create
new software versions at that time, only a new assembly, with
perhaps a different origin, would be required.

Please note that no routines are supported for data structures or
mathematics. Both these features are subject to great changes. The
user program should handle its own data and communicate with the
I/O routines through the standard channels.

—1a2—

CBM Kernal POWER-UP ACTIVITIES

1. POWER-UP ACTIVITIES

Upon reset the Kernal initialises the stack pointer to SFF, clears
the decimal mode flag, and checks locations $0F03FA and $0FG3FB
for warm start information. if location $0FG3FA=$xx and location
$BF03FB=$xx then the initialisation phase is skipped and a JMP
($GF03F8) occurs. If these locations differ, the screen editor is
initialised followed by a check for USER ROMS. BASIC is expected
in most machines starting at location $flF8$0$ (the BASIC sequence
at $0F8006 is $C3,$C2,$CD,$38).

WC; [@\T£_) 8'
The standard Kernal sequence is to initialise I/O, clear system
RAM, test USER RAM, initialise Kernal variables, inititalise
Screen Editor, then set the WARM reset variables.

The I/0 initialisation will reset all the standard system devices
to a non—active state, set the keyboard lines to a stop-key check
state, set the TOD for the proper line frequency and send IFC
(reset) to devices connected to the IEEE bus.

The system RAM SGFOGGZ-$GFG1G1 and SGFGZGG-$GF03F7 is set to zero.
The USER RAM is tested starting at segment/bank 0 on the 560 and
segment/bank 1 on the 7GG. An $55 and $AA pattern is tried in each
location and then the original data is restored. If a RAM failure
occurs with in a segment, the Top-of-memory pointer will be set to
the segment preceding the failure. The test will continue until a
non—RAM segment is found, thus all 13 or 14 possible RAM segments
can be tested. The RS232 input buffer is also flagged as
unassigned by this routine, this being allocated by the OPEN file
system.

Locations $0FG09G-SGFBGFE are used by the Kernal for its variables
and page zero indirects. In addition, absolute locations from
SGFGXXX to SGFDXXX are used for other variable storage.

——l83——

CBM Kernal KERNAL ROUTINES

2. USER CALLABLE KERNAL ROUTINES

Name Adr Function Section

ACPTR SFFAS Input byte from IEEE bus 1
CHKIN $FFC6 Open channel for input 2
CHKOUT SFFC9 Open channel for output 3
CHRIN SFFCF Input character from channel 4
CHROUT SFFGZ Output character to channel 5
CIOUT SFFA8 output byte to IEEE bus 6
CLALL $FFE7 Close all files 7
CLOSE SFFC3 Close logical file 8
CLRCHN $FFCC Close input and output channel 9
GETIN $FFE8 Get character from keyboard queue 10
IOBASE $FFF3 Return base address of I/O 11
LISTEN $FFBl Command IEEE device to listen 12
LKUPLA $FF8D Lookup device data on LA 13
LKUPSA $FF8A Lookup device data on SA 14
LOAD $FFD5 Load RAM from device 15
MEMBOT $FF9C READ/SET bottom of memory 16
MEMTOP $FF99 READ/SET top of memory 17
OPEN SFFCG Open logical file 18
PLOT SFFFG READ/SET X,Y cursor position 19
RDTIM SFFDE Read real time clock 2%
READST SFFB7 Read I/O status word 21
RESTOR SFF87 Restore old I/0 vectors 22
SAVE SFFD8 Save RAM to device 23
SCNKEY $FF9F Scan keyboard 24
SCREEN SFFED Return X,Y organisation of screen 25
SECOND $FF93 Transmit secondary command after listen 26
SETLFS $FFBA Set logical, first, second addresses 27
SETMSG $FF9G Control Kernal messages 28
SETNAM SFFBD Set file name information 29
SETTIM SFFDB Set real time clock 30
SETTMO SFFA2 Set timeout on IEEE 31
STOP $FFE1 Check stop key 32
TALK SFFB4 Command IEEE device to talk 33
TKSA $FF96 Send secondary after talk 34
UOTIM SFFEA Increment real time clock 35
UNLSN $FFAE Command IEEE bus to unlisten 36
UNTLK SFFAB Command IEEE bus to untalk 37
VECTOR $FF84 Read/set vectored I/O 38

——l84——

CBM Kernal KERNAL ROUTINES

Format of Function Descriptions

The following conventions are used in describing the Kernal entry
points:-

Function name: This is a symbol assigned to the memory location
for reference only. It is used to develop a standard naming
convention but user is free to use own mnemonic.

Call address: This is the subroutine call address of the Kernal
routine. It is given in hexadecimal, If the address is followed by
an (I) that means the address is indirected.(\/Ecfaes J‘ P490 3)

Communication registers: Registers listed here are used to pass
parameters to and from kernal routines.

Affected registers on return: Registers listed here are no longer
valid, or changed by actions within the routines. Many calls may
return no valid registers if an error occurs (carry-set return).

Preparatory routines: Sometimes data must be set up before a
Kernal routine can function. Routines to set up this\ data are
listed here.

Error returns: Where applicable, a return from the Kernal with
carry set means that the accumulator contains the number of an
error encountered in processing.

Stack requirements: This is the actual number of stack bytes used
to hold the return address or any other bytes used on the stack by
the Kernal subroutine.

Description: A short tutorial on each Kernal routine function is
given here.

——l85——

CBM Kernal KERNAL ROUTINES

2.1

Function name: ACPTR

Call address: $FFA5

Communication registers: .A

Affected registers on return: .A

Preparatory routines: TALK, TKSA

Error returns: See READST

Stack requirements: 4

Description:

This routine handshakes a byte off the IEEE bus. The data is
returned in the accumulator. it is assumed that the device has
been told to TALK and it is possible that a secondary command has
been sent by TKSA.

Example: JSR ACPTR
STA DATA

—~l86——

CBM Kernal KERNAL ROUTINES

2C2

Function name CHKIN

Call address: $FFC6 (I)

Communication registers: .X

Affected registers on return: all

Preparatory routine: OPEN

Error returns: 0,3,5,6

Stack requirements: 6

Description:

Opening a channel for input.

Assuming that a file has been opened by subroutine OPEN, it can
be opened as an input channel. of course the characteristics of
the device will be determine if it is valid to do so. This
subroutine must be executed before subroutines CHRIN or GETIN are
executed for a device other than the keyboard. If input form the
keyboard is desired, and there is no association to the logical
file number by a previous open file, then the call to this
subroutine may be dispensed with.

On the IEEE this subroutine results in sending a talk address
followed by a secondary address if one was specified in the open
subroutine.

Example: ;OPEN LOGICAL FILE 2 FOR INPUT
LDX #2
JSR CHKIN

——l87——

CBM Kernal KERNAL ROUTINES

2.3

Function name: CHKOUT

Call address: SFFC9 (1)

Communication registers: .X

Affected registers on return: all

Preparatory routines: OPEN

Error returns: 0,3,5,7

Stack requirements: 10

Description:

Open channel for output.

Assuming that a file has been opened by subroutine OPEN, it can be
opened as an output channel. Of course, the characteristics of
the device will determine if it is valid to do so. This
subroutine must be executed before subroutine CHROUT is executed
for a device other than the CBM CRT. If output to the CRT is
desired, and there is no association to an open file by logical
file number, then the call to this subroutine may be dispensed
with.

On the IEEE this subroutine results in sending a listen address
followed by a secondary address if one was specified in the OPEN
subroutine.

Example: ;0PEN LOGICAL FILE 3 AS OUTPUT CHANNEL
LDX #3
JSR CHKOUT

——l88——

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.4

Function name: CHRIN

Call address: $FFCF (1)

Communication registers: .A

Affected registers on return: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: dependant on external media

Description:

Input character from channel.

A call of this routine will return a character of data from the
channel set up by a call to subroutine CHKIN or the default input
channel if no other has been set up. Data is returned in the
accumulator. The channel remains open after the call. In the
case of the keyboard device, the cursor is turned on and continues
to blink until carriage return is typed and then characters on the
line are returned one by one by calls to this routine. Finally
carriage return is sent and the process begins again.

Example: JSR CHRIN
STA DATA

——l89-—

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.5

Function name: CHROUT

Call address: $FFD2 (I)

Communication registers: .A

Affected registers on return: .A

Preparatory routines: None

Error returns: 0 and see READST

Stack requirements: dependant on external media

Description:

Output character to channel.

The data to be output is loaded into the accumulator. A call to
CHKOUT sets up the output channel or if this call is omitted, data
is sent to the default device which is number 3, CRT. The
character can be transmitted to multiple devices on the IEEE if a
clear channel is not performed after the corresponding open
channel for output.

Example: ;CMD 4,"A";
LDX #4 ;LOGICAL FILE #4
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A
JSR CHROUT ;SEND CHARACTER

——l90——

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.6

Function name: CIOUT

Call address: SFFA8

Communication registers: .A

Affected registers on return: none

Preparatory routines: LISTEN, [SECOND]

Error returns: See READST

Stack requirements: 7

Description:

Handshake byte out.

The accumulator is loaded with a byte to handshake as data on the
IEEE bus. A device must be listening or status reflects a
timeout. one character is always buffered by this routine. when
an UNLSN subroutine call is made, the buffered character is sent
with EOI asserted, and then the UNLSN is sent.

——I9l——

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.7

Function name: CLALL

Call address: SFFE7 (I)

Communication registers: .A .SP

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: depends on external media

Description:

Carry bit clear: Close all files and reset I/O channe1s.A The
pointers into the open file table are reset. Additionally, CLRCHN
is called to reset the 1/0 channels.

Example: ;USED AS START OF EXECUTION
JSR CLRCHN ;CLOSE FILES
JMP RUN ;BEGIN EXECUTION

Carry bit set : Close all files that EA (device #) is sent in .A.
This will search the table and perform the CLOSE call for each
file associated with the device #, but will abort on the first
error return (checks the carry bit not the STATUS).

——192——

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.8

Function name: CLOSE

Call address: SFFC3 (I)

Communication registers: .A

Affected registers on return: all

Preparatory routines: None

Error returns: .A and READST

Stack requirements: depends on external media

Description:

Close a logical file.

when all I/O has completed to a file, call this subroutine with
the accumulator loaded with the logical file number used in the
OPEN subroutine.

Example: ;close logical file 15
LDA #15
JSR CLOSE

——I93—-

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.9

Function name: CLRCHN

Call address: $FFCC (1)

Communication registers: None

Affected registers on return: .A,.X

Preparatory routines: None

Error returns: None

Stack requirements: 9

Description:

Clear channel.

After opening a channel and performing I/0, this routine closes
all open channels and restores the default channels. Input is
device 6 and output is 3. This routine may be called optionally
by the programmer. An untalk is sent to clear the input channel
if the device is on the IEEE. An unlisten is sent to clear. the
output channel. By not calling this routine and leaving a
listener addressed on the IEEE, multiple devices can receive data
on the bus. An example would be to address the printer to listen
and the disk to talk.

Example: JSR CLRCHN

-—Iv4——

CBM Kernal KERNAL ROUTINES

CBM Kernal - KERNAL ROUTINES

2.1%

Function name: GETIN

Call address: SFFE4 (I)

Communication registers: .A

Affected registers on return: .A

Preparatory routines: None

E13150! returns: 0 and see READST

Stack requirements: depends on circumstances when called.

Description:

Get buffered character from keyboard.

This subroutine removes one character from the keyboard queue and
returns an ASCII value in the accumulator. If the queue is empty,
the value returned will be zero. Characters are put into the
queue by an interrupt driven scan which calls SCNKEY.

Example: ;WAIT FOR CHARACTER
WAIT JSR GETIN

CMP #3
BEQ WAIT

——Iva——

CBM Kernal KERNAL ROUTINES

2.11

Function name: IOBASE

Call address: SFFF3

Communication registers: .X,.Y

Affected registers on return: .X,.Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description: Returns address of page containing I/O in X,Y. This
can be used with an offset to access memory mapped I/O devices in
the 76% and 500. In the 6509 Kernals all 1/0 is in segment SGF.
This function and subsequent register accesses are machine
dependent.

Example: JSR IOBASE
STX POINT
STY POINT + 1
LDA #G
LDY #2
STA (POINT)Y

—l96——

CBM Kernal KERNAL ROUTINES

2.12

Function name: LISTEN

Call address: $FFBl

Communication registers: .A

Affected registers on return: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: 10

Description:

Listen with attention.

The accumulator is loaded with a device number between G and 30.
This subroutine 0Rs in bits to convert this device number to
listen address and then transmits this data as a command on the
IEEE bus.

Example: ;COMMAND DEVICE #8 TO LISTEN
LDA #8
JSR LISTEN

——197——

CBM Kernal

2.13

Function name: LKUPLA

Call address: $FF8D

Communication registers:

Affected registers on return:

Preparatory routines: None

Error returns: carry-set is no

Stack requirements: 4

Description:

Match file parameters keyed on
with the LA in .A. It returns
carry set) or the FA in .X and
STATUS variable.

Example: ;FIND DEVICE FOR LA=2
LDA #2
JSR LKUPLA

.A,.X,.Y

.A;.x,.Y

LA found

logical address.
with either an error (no
the SA

——l98——

in ‘Y0

KERNAL ROUTINES

Routine is called

Also
match

clears the

CBM Kernal KERNAL ROUTINES

2.14

Function name: LKUPSA

Call address: $FF8A

Communication registers: .A,.X,.Y

Affected registers on return: .A,.X,.Y

Preparatory routines: None

Error returns: carry-set is no SA found

Stack requirements: 4

Description:

Match file parameters keyed on secondary address. Routine is
called with SA in .Y. Returns either with error (no match = carry
set) or LA in .A and FA in .X.

Example: ;FIND DEVICE FOR SA=2
LDY #2
JSR LKUPSA

——199——

CBM Kernal KERNAL ROUTINES

2.15

Function name: LOAD

Call address: SFFD5 (I)

Communication registers: .A,.X,.Y

Affected registers on return: all

Preparatory routines: SETLFS, SETNAM

Error returns: $,4,5,8,9, see READST

Stack requirements: depends on external media

Description:

Load from device into RAM. On call, .A(bit 7)=G for load, .A(bit
7)=l for verify, .A(bits G123)=start segment. Registers .X=start
address low and .Y=start address high, are used to determine the
load address. If .X and .Y are equal to $FF, then the load begins
where the header has specified. On return (.A,.X,.Y) is highest
RAM address loaded.

Example: LDX DEVICE
LDA FILENO
LDY CMD
JSR SETLFS
LDA #$GF ;this code is in segment F
STA ZNAME+2 ;zname is an z-page 3 byte pointer
LDA #>NAME
STA ZNAME+1
LDA #<NAME
STA ZNAME
LDA #NAMEl-NAME
LDX #ZNAME ;z-page location of 3 byte pointer
JSR SETNAM
LDA #%0060GG00 xflag load, start in seg G, for a 500

;for a 70% use %G0@flGGGl for Basic bank
LDX #$FF ;defau1t load, to header address
LDY #$FF
JSR LOAD
STX VARTAB ;end of load
STY VARTAB+1
JMP START

NAME .BYT ‘FILE NAME‘
NAME 1 ;

——200——

CBM Kernal KERNAL ROUTINES

2.16

Function name: MEMBOT

Call address: $FF9C

Communication registers: .A,.X,.Y,.SP

Affected registers on return: none on write, all on read

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description: A call of this subroutine with carry bit set causes
a read of the pointer to the lowest byte of RAM and this address
is returned in .A, .X and .Y. The initial value is determined by
system configuration.

Calling this routine with carry clear causes a transfer of the
bytes in .X and .Y to the low and high bytes of this pointer, with
.A containing the segment number.

Example: ;MOVE BOTTOM OF MEMORY UP 1 PAGE
SEC
JSR MEMBOT; Get
INY
CLC
JSR MEMBOT; Put

.—2o1 —

CBM Kernal KERNAL ROUTINES

2.17

Function name: MEMTOP

Call address: $FF99

Communication registers: .A,.X,.Y,.SP

Affected registers on return: none on write, all on read

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description: When this routine is called with carry set, the
pointer to the top of RAM is read into .A, .X and .Y.

A call with carry clear will copy the contents of .A, .X and .Y
into this pointer. The space between the MEMTOP pointer and the
absolute top of avaliable RAM is the space where KERNAL buffers
are allocated. If one wishes to protect user software by this
pointer allowances for buffer demands should be made.

——202——

CBM Kernal KERNAL ROUTINES

2.18

Function name: OPEN

Call address: $FFCO (I)

Communication registers: .SP

Affected registers on return: all

Preparatory routines: SETLFS, SETNAM

Error returns: @,1,2,4,S,6

Stack requirements: depends on external media

Description:

Open logical file. Arguments are set up by the external routine
calls SETLFS and SETNAM which should be called before this
routine.

A carry-set call opens a temporary channel on the IEEE system,
with no file table manipulation, which is used to send disk
commands via the filename area to our IEEE disk units.

The carry-clear entry will perform normal open operations and
leave table information for other I/O calls (CHKIN, CHKOUT, CHRIN,
CHROUT, CLOSE).

See overleaf for example.

——203~—

CBM Kernal KERNAL ROUTINES

Example: This is an implementation of the BASIC statement:

OPEN l5,8,15,"I/O"

LDA
STA
LDA
STA
LDA
STA
LDA
LDX
JSR
LDA
LDX
LDY
JSR
CLC
JSR

#$$F ;set pointer to name in zero page
ZNAME+2 ;the name is in the ROM segment
#>NAME
ZNAME+1
#<NAME
ZNAME
#NAME2-NAME; ;LENGTH
#ZNAME
SETNAM
#15
#8
#15
SETLFS

OPEN
NAME.BYT ‘I/0'
NAME2

——204——

CBM Kernal KERNAL ROUTINES

2.19

Function name: PLOT

Call address: SFFFG

Communication registers: .X,.Y,.P

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description: A call with carry set reads the current X,Y position
of the cursor on the screen into .X, .Y.

A call with carry clear moves the cursor to X,Y as determined by
.X, QYO

Example: ; MOVE TO 5,5
LDX #5
LDY #5
CLC
JSR PLOT

——205——

CBM Kernal KERNAL ROUTINES

2.20

Function name: RDTIM

Call address: SFFDE

Communication registers: .A,.X,.Y

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

Read time. The system clock can be read at any time. The system
clock in the 5G0 and 700 is based upon line frequency. The values
returned by this call are as follows:

Registers: .A bit 7 = AM/PM indicator
bit 6 = bit 3 bcd tenths of a second
bit 5 = bit 2 bcd tenths of a second
bit 4 to bit 0 = bcd hours

.X bit 7 = bit 1 bcd tenths of a second
bit 6 to bit 0 = bcd minutes

.Y bit 7 = bit 0 bcd tenths of a second
bit 6 to bit 0 = bcd seconds

——206——

CBM Kernal KERNAL ROUTINES

2.21

Function name: READST

Call address: SFFB7

Communication registers: .A

Affected registers on return: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

Returns current I/O status. Usually checked after initiating any
_new communication to a channel. Each of the bits in the byte
returned contain data. See the table overleaf.

Example: ;CHECK FOR DEVICE NOT PRESENT ON IEEE
JSR READST
AND #128 ;check DNP bit 7
BNE DNP ;branch if device not present

——207——

CBM Kernal KERNAL ROUTINES

ST ST Tape
Bit Numeric Cassette* IEEE/RW Verify*

Position Value Read + Load

0 1 Time out
write

1 2 Time out
read

2 4 Short block Short block

3 8 Long block Long block

4 16 Unrecoverable Any
read error mismatch

5 32 Checksum Checksum
error error

6 64 End of file EOI line

7 -128 End of tape Device not End of
present tape

* sue only. THE 700 HAS NO CASSETTE I/O.

——208~—

CBM Kernal KERNAL ROUTINES

2.22

Function name: RESTOR

Call address: SFF87

Communication registers: None

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

Restore default vector values for system subroutines and
interrupts. See VECTOR for reading and altering contents.

Example: JSR RESTOR

——209——

CBM Kernal KERNAL ROUTINES

2.23

Function name: SAVE

Call address: SFFD8

Communication registers: .X,.Y

Affected registers on return: all

Preparatory routines: SETLFS, SETNAM

Error returns: G,S,8,9 and see READST

Stack requirements: dependant on external media

Description: Saves memory form zero page pointer set by .X to zero
page pointer set by .Y. A file name is not required for device 1
(500 cassette machines) but an error condition exists for any
other device save without a file name. Device G (keyboard),
device 2 (RS232), and device 3 (screen) are not defined for SAVE.

Example:
LDA #1 ;DEVICE=l:CASSETTE on a 506:

;I11egal on a 760!
JSR SETLFS n

LDA #9 ;NO FILE NAME
JSR SETNAM
LDX #STARTV ;START VECTOR (3 BYTES (LOW)(HIGH)(SEG#))
LDY #ENDV ;END VECTOR (3 BYTES)
JSR SAVE

——2]0-—

CBM Kernal KERNAL ROUTINES

2.24

Function name: SCNKEY

Call address: $FF9F

Communication registers: None

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 5

Description: Scan the keyboard. This is the same subroutine as is
called by the interrupt handler. If a key is down, its value, if
any is placed in the keyboard queue.

Example: GET JSR SCNKEY ;SCAN KEYBOARD
JSR GETIN ;GET CHARACTER
CMP #5 ;IS IT NULL?
BEQ GET ;YES...SCAN AGAIN
JSR CHROUT ;PRINT IT

——2Il——

CBM Kernal KERNAL ROUTINES

2.25

Function name: SCREEN

Call address: $FFED

Communication registers: .X,.Y

Affected registers on return: .x,.Y

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description: Returns constant organization of screen e.g. 40
columns in .x and 25 lines in .Y, or 80 in .X and 25 in .Y.

Example: JSR SCREEN
STX MAXCOL
STY MAXROW

——2l2——

CBM Kernal KERNAL ROUTINES

2.26

Function name: SECOND

Call address: SFF93

Communication registers: .A

Affected registers on return: .A

Preparatory routines: LISTEN

Error returns: See READST

Stack requirements: 8

Description:

Secondary address after LISTEN. This routine cannot be used to
send a secondary address after a TALK.

Example: ;DEVICE #8 WITH COMMAND #15
LDA #8
JSR LISTEN
LDA #15
JSR SECOND

——2l3——

CBM Kernal KERNAL ROUTINES

2.27

Function name: SETLFS

Call address: $FFBA

Communication registers: .A,.X,.Y

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

Setting logical file number, device address, and command.

The logical file number is used as a key by the system to access
data stored in a table by the open file subroutine. The device
address ranges from G to 3G and corresponds to the devices on the
table overleaf.

Load the accumulator with the logical file number, X index with
the device number, and Y index with the command. The command is
sent as a secondary address on the IEEE following the device
number during an attenttion sequence. If the programmer desires
no secondary address to be sent, load Y index with a 255.

Example: For logical file 32, device #4, and no command:
LDA #32
LDX #4
LDY #255
JSR SETLFS

—-2l4——

CBM Kernal KERNAL ROUTINES

G Keyboard
1 Cassette #1 (560 only - illegal on a 706)
2 RS232
3 CRT display
4 IEEE printer
5 IEEE Modem or second printer
6 IEEE plotter
8 CBM IEEE disk—drive
9 CBM IEEE Second or Hard disk drive.

10 and above are user devices

Device numbers 4 or greater correspond to devices on the IEEE bus.

——2l5——

CBM Kernal KERNAL ROUTINES

2.28

Function name: SETMSG

Call address: $FF90

Communication registers: .A

Affected registers on return: None

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

This routine controls the printing of error and diagnostic
messages by the kernal. It is called by placing a value in the
accumulator. Bits 6 and 7 of this value control the message
printing. Bit 7 controls the printing of error messages from the
kernal. If it is set then messages like "I/O ERROR #4" will
appear. Bit 6 controls the printing of control messages.

Example: LDA #$4¢
JSR SETMSG ;turn on diagnostics

£65 #a
JSR SETMSG ;turn off all kernal messages

——2l6——

CBM Kernal KERNAL ROUTINES

2.29

Function name: SETNAM

Call address: SFFBD

Communication registers: .A,.X

Affected registers on return: .A

Preparatory routines: None

Stack requirements: None

Description:

If a file will be opened without a file name, the file name length
must be set to zero. Load the accumulator with the length, X
index with a zero page pointer value ((low)(high)(seg #)), which
points to the filename in memory. The file name address can be
any valid memory address where the string of characters
corresponding to the file name are stored.

Example: LDA #NAME2-NAME ;load length of file name
LDX #<NAME ;load address of disk file name
LDY #>NAME
JSR SETNAM

-217-

CBM Kernal

2.30

Function name: SETTIM

Call address: SFFDB

Communication registers: .A,.x,.Y

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 4

Description:

Set time-of—day.

Registers: .A bit 7 = AM/PM indicator
bit 6 = bit 3 bcd tenths of a
bit 5 = bit 2 bcd tenths of a
bit 4 to bit 6 = bcd hours

.X bit 7 = bit 1 bcd tenths of a
bit 6 to bit 6 = bcd minutes

.Y bit 7 = bit G bcd tenths of a
bit 6 to bit 0 = bcd seconds

——2I8——

second
second

second

second

KERNAL ROUTINES

CBM Kernal KERNAL ROUTINES

2.31

Function name: SETTMO

Call address: $FFA2

Communication registers: .A

Affected registers on return: None

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

Set timeout flag.

when the accumulator contains a 0 in bit 7, timeouts are enabled
by this routine. A 1 in hit 7 disables timeouts. Timeouts are a

way that the CBM can poll an IEEE device for data without hanging
in a handshake sequence. The device must respond to DAV within 64
milliseconds. The CBM disks use the timeout feature to
communicate a file not found status in OPEN.

Example: ;DISABLE TIMEOUT
LDA #0
JSR SYS2l

219

CBM Kernal KERNAL ROUTINES

2.32

Function name: STOP

Call address: $FFEl (1)

Communication registers: None

Affected registers on return: .A,.X

Preparatory routines: UDTIM

Error returns: None

Stack requirements: 2

Description:

Check for stop key. If stop key is down, clear all channels to
default.

This routine clears all I/O channels to default values (CLRCHN
call) and returns with the Z flag set, if the STOP key on the
keyboard was pressed when the UDTIM routine was called. All other
flags are maintained. If the stop key is not pressed then the
accumulator contains a byte corresponding to the last row of the
keyboard scan. The user can check for certain other keys in this
manner.

Example: JSR STOP
BNE *+5 ;NOT DOWN
JMP READY ;= ...STOP

——220——

CBM Kernal

2.33

Function name: TALK

Call address: SFFB4

Communication registers: .A

Affected registers on return:

Preparatory routines: None

Error returns: See READST

Stack requirements: 7

Description:

Talk with attention.

.A

KERNAL ROUTINES

The accumulator is loaded with a device number between G and 36.
This subroutine ORs in bits to convert this number to a
talk address and then transmits this data as a command on the IEEE
bus.

Example: ;COMMAND DEVICE #4 TO TALK
LDA #4
JSR TALK

——221——

CBM Kernal KERNAL ROUTINES

2.34

Function name: TKSA

Call address: $FF96

Communication registers: .A

Affected registers on return: .A

Preparatory routines: TALK

Error returns: see READST

Stack requirements: 6

Description:

Secondary address for talk.

By loading the accumulator with a value, the user sends a
secondary address command over the IEEE with this subroutine.
This routine can only be called after TALK. It will not work
after LISTEN.

Typical values sent for secondary address:

LOAD -.$61 Opens a channel #1 to access a file on the disk.
OPEN - $6x X ranges from 6-15 for disk access.

Others values can be sent, but the range is 0-31 for standard
IEEE.

Example: ;DEVICE #4 TO TALK AND COMMAND #5
LDA #4
JSR TALK
LDA #5
JSR TALKSA

——222-—

CBM Kernal KERNAL ROUTINES

2.35

Function name: UDTIM

Call address: SFFEA

Communication registers: None

Affected registers on return: .A,.X

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description: This subroutine is normally called by the keyboard
interrupt routine and is used to maintain the keyboard value for
the STOP key routine.

Example: JSR UDTIM ;check latest keyboard state
JSR STOP ;check stop key state
BNE *+5 ;not down
JMP EXITS ;stop key exit

——223——

CBM Kernal KERNAL ROUTINES

2.36

Function name: UNLSN

Call address: SFFAE

Communication registers: None

Affected registers on return: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: 6

Description: Unlisten IEEE device. Use of this subroutine results
in an unlisten command being transmitted on the IEEE bus.

Example: JSR UNLSN

—ZZ4—

CBM Kernal KERNAL ROUTINES

2.37

Function name: UNTLK

Call address: SFFAB

Communicatin registers: None

Affected registers on return: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: 6

Description: Untalk an IEEE device. Use of this subroutine
results in an untalk command being transmitted on the IEEE bus.

Example: JSR UNTALK

_225——

CBM Kernal

2.38

Function name: VEGTOR

Call address: SFF84

Communication registers: .A,.X,.Y,.SP

Affected registers on return: all

Preparatory routines: None

Error returns: None

Stack requirements: 2

Description:

KERNAL ROUTINES

A call of this routine with the carry bit set will read the
current contents of the RAM vectors and put them in a list pointed
at by (.A,.X,.Y).

when this routine is called with carry
pointed at by (,A,.x,.Y) is transferred to
This process requires caution in its use.
first read the entire vector contents into
the desired vectors, and then copy
system.

Example: ;CHANGE THE INPUT ROUTINES TO NEW
LDA #USERSG
LDX #<USER
LDY #>USER
SEC
JSR VECTOR
LDA #<MYINP ;change input
STA USER+l0
LDA #>MYINP
STA USER+1l
LDA #USERSG
LDX #<USER
LDY #>USER
CLC
JSR VECTOR

USER *=*+26

;a1ter system

—226-—

;read old vectors

clear, the user list
the system RAM vectors.
The best practice is to
the user area, alter
contents back to the

SYSTEM

CBM Kernal MONITOR FUNCTIONS

3. KERNAL MONITOR FUNCTIONS

address [BY] [BY] [BY] [BY] [BY] [BY] [B¥] [BY]

PC. IRQ [SR AC XR YR SP]‘O

M address [address]

G [address]

L ["name"[,device]]

S "name", device, 1ong—address, 1ong~address

U [device]

V '9 segment#

@ [disk command]

name

address
long-address
name

device
segment#
disk command
name
PC. and IRQ
BY, SR, AC
XR, YR, SP

hex value range $GOGfl-SFFFF
hex value range SGGGGGG-SGFFFFF
ascii string in quotes less than
16 characters long.
hex value range $60-$1F
hex value range $06-$GF
any valid command for CBM series disk
any valid CBM disk filename
Same as address
hex value range $00-SFF
hex value range $00-SPF

—-227-

CBM Kernal MONITOR FUNCTIONS

: -— Alter memory

This command is automatically printed onto the CRT display
preceding the address and data after execution of the display
memory (M) command. To alter memory in this "mode, the screen
editor is used to change the display to the desired bytes and the
<RETURN> key is pressed. The bytes are then entered into memory
starting at the address specified.

; -- Alter registers

The list of data following this command is what is actually loaded
into the microprocessor hardware registers when a G command is
given. This command is automatically printed on the screen
preceding the current list of data when an R command is executed.
The list can be edited and re—entered in the same manner as the
alter memory command. -See the R command for contents of the list.

R -- Display registers

This command displays the contents of a list which is loaded into
the 6509 hardware registers when execution is transferred from the
monitor. This command also resets the view segment register. A
sample display follows:

R <RETURN>
PC IRQ SR AC XR YR SP

;G4G0 E262 01 GE FF FF FE

The abbreviations correspond to the following definitions:

PC = program counter
IRQ = interrupt vector
SR = status register
AC = accumulator
XR = X-index register
YR = Y-index register
SP = stack pointer

—228—

CBM Kernal MONITOR FUNCTIONS

M —- Display memory within a segment

If one address is specified,|é bytes are readaand displayed on the
screen, starting at that address. For more than one address, a
range of bytes is displayed, but always the next even multiple of
16 bytes from the first. The STOP key functions to stop the list.

M 0450 (RETURN)
: 049$ 03 09 00 AA AA AA AA AA FF FF FF FF 00 G9 G0 00

——229——

CBM Kernal MONITOR FUNCTIONS

G -- G0: Commence execution

with no address specified the monitor dispatches to the location
contained in the PC of the-register display. If an address is
given execution will dispatch to that address. If a BRK (86) has
been inserted in the user code, execution will return to the
monitor and a register display given with the message "BREAK". On
dispatch, the registers are loaded with the contents of the
register display.

L -- Load memory

No file name defaults to load from cassette #1. Device number can
be 1 for cassette and 4 or greater for CBM disks. The view
segment register provides the segment, while the load address is
contained within the load file. Load skips locations SGXGGGG and
SGXGGGI, unless these are the starting address of the load file.
The STOP key will break a program LOAD. L resets the segment
register to the ROM segment 15.

S -- Save memory

A file name must be specified in quotation marks as well as device
number and a starting address and an ending save address. The
long address form is used. If a save is started at locations
SBXBGGG or SGXQGGI, the execution and/or indirect registers will
be written out, but elsewhere in the save routine these two
locatons will be ignored. S resets the segment register to the
ROM segment 15.

Z -- Transfer Control to Co-processor

This will 'crash‘ any machine without a co-processor.

~—23o—

CBM Kernal MONITOR FUNCTIONS

U -- Set default disk drive Number

This is for use by '@' and 'name‘ commands.

V -- View segment

This command sets the segment register. This register is used by
the Memory display and Memory write command to specify the segment
range being viewed. It is also used by the Load command to
specify the start segment of a file load. The Register, Save, and
Load commands reset this register to the ROM segment 15.

@ -- Disk command

The command immediately followed by <RETURN> will query the disk
status buffer and print its contents on the screen.

@ (RETURN)
@0,0K,00,0@

If a string follows the @ then that string is transmitted as a
command.

@ INITIALIZE 0
See the 'U' command also.

name -— Load and execute file

when a command cannot be matched to the list of known commands, an
attempt is made to load from device #8. If the load is
successful, the monitor jumps to the load start address. This
command is only allowed for segment 15.

——231——

APPENDIX A

PROGRAM TO DEMONSTRATE

THE USE OF KERNAL FUNCTIONS

e—232—

Appendix A

****‘k***********'k*i****'k*t'***'k********'k*

-* example program using kernal function*
*

‘
V

0

1'

* this program reads the directory *

* from a commodore disk and prints it *

* on the crt. a parameter list is read*
-* and passed to the disk. the keyboard*
*

*

*

w
e

s
o

n
o
‘
I

is scanned during the list to stop *

and resume the list. *
*'k******'k*********i********************

= $400

s
o

‘s
o

in
‘n

s
o

~

;on entry, last character from keyboard
;is passed in .a.

I

dir ldx #1
ldy #'$;directory command
sty $206 ;built string in buffer
bne dirlS ;branch always

’ o

dirlfl jsr $ffcf ;input a character
dirl5 cmp #$20

beq dirlfl ;span blanks
cmp #$d
beq dir20 ;stop on or
sta 2G,x
inx
bne dirla

I

;open directory as file
I

dir2B jsr $ffd2 ;echo or
txa
ldx #<2@
ldy #>$200
jsr $ffbd ;set file name
ldx #8 ;device#
ldy #6 ;f1oppy load command
lda #1 ;logica1 file number
jsr Sffba ;set la,fa,sa
jsr Sffcfl ;open file

skip over junk, set line #

s
o

s
o

V
0

ldy #3 ;do 3 times for start
I

wg220 ldx #1 ;logical file #
jsr $ffc6 ;open for input

wg225 sty $d1
jsr $ffcf ;input a character
sta $fd ;save it
jsr $ffb7 ;check status
bne wg230 ;bad—-stop

-233-—

s
o

$ffcf
$fe
$ffb7
wg23G

jsr
sta
jsr
bne

w
e

ldy
dey
bne

$d1

wg225

print line number

s
o

w
e

s
o

jsr decout

print space

s
o

s
o

s
o

lda #2
jsr $ffd2

I

;print

Q9250

rest of line

jsr $ffcf
pha
jsr
bne
pla
beq
jsr
jmp

$ffb7
wg230

wg24Z
$ffd2
wg259

I
;finish line

Q9240 lda
jsr
jsr

#$d
$ffd2
Sffcc

;check for stop key
I

$ffel
wg230

jsr
beq

s
o

$ffe4
wg260

jsr
beq

s
o

#$20
wg26G

cmp
bne

69255 $ffe4
wg255

jsr
beq

do next line

n
o

s
o

h
e

wgzse ldy
bne

#2
wgzza

0

I
o

I

;input a character
;save it
;check status
;bad--stop

;more to do?

;yes...

;get a character

;check status
;bad...

;end of line
;print it

;print or
;close channel

and pause

;scan stop key
;stop...

;scan keyboard
;nothing...

;space bar?
;no...

;scan keyboard
;halt till key down

close channel and file

——234-—

wg230

s
o

-

I

I

decout

dec100

dec10a

dec10e

decl0b

dec10c

declfld

declflf

decla

lda #$d
jsr $ffd2
jsr Sffcc
lda #1
jsr $ffba
jsr $ffc3

;c1ose channel

;set la
;c1ose file

jmp $f03e ;go back to monitor

ldx #0
sec
lda $fd
sbc #100
sta #fd
lda $fd+1
sbc #0
sta $fd+1
bcc dec10a
inx
bcs decl00
lda $fd
adc #100
sta $fd
bcc decl0e
inc $fd+1
txa
beq dec10b
ora #$30
jsr $ffd2
sec
ldy #0
lda $fd
sbc #10
sta $fd
bcc dec10d
iny
bcs dec 10c
adc #10
pha
tya
bne dec10f
txa
bec decla
ora #$30
jsr $ffd2
pla
ora #$30
jmp $ffd2
.end

——235——

APPENDIX B

MATHEMATICS ROUTINES

——236——

Appendix B

Decimal four—function math routines

;*t**i*****#**i***********#*#**i*********
;* m m aaa tttttt hh hh *

;* mm mm aa a tt hh hh *

;* mm m mm aa a tt hh hh *

;* mm m mm aaaaa tt hhhhhhhh *

-* mm mm aa a tt hh hh *

;* mm mm aa a tt hh hh *

;* mm mm aa a tt hh hh *
;***************t************************

.ski 5
;*****listing date -- august 1, l980*****

.ski 5
;**
.*
I

;*bcd math package
0*
I

;* the following routines are pro-
;*vided:
;*ddiv,
;*set for fixed 22 digit precision with
;*an exponent range +63 to -64.

(+,-,*,/,:) dadd, dsub, dmult
and dcomp. the routines are

the
;*mantissa is stored in eleven bytes
;*with the lsd in the lowest memory byte*
;*and least significant nybble.
;*exponent byte contains the exponent

the

I
}
i
t
t
i
i
t

$

*

*

;*two's complement and shifted left one *

the least significant bit of the*
;*exponent byte contains the sign of the*
;*bit.

;*mantis
;*

S3.

;*copyright 1979 by john feagans
;*****t****#*i*i***#*********************

——1u/-

*

*

*

.pag ‘declarations’
;resu1t register
I

resexp *=*+1
reslsd *=*+10
resmsd *=*+l

;f1oating accumulator
I

facexp *=*+1
faclsd *=*+1G
facmds *=*+1
I

;argument register
I

argexp *=*+1
arglsd *=*+1$
argmsd *=*+1
I

;local variable for math routines
I

count *=*+1
I

;user supplied routines for error

I

* = $4GG
overr brk ;overf1ow error
dvaerr brk ;divide by zero error

.1ib dadd

.1ib dmult

.1ib ddiv

.1ib dcomp

.end

—Z5U—

\a
s
o

s
o

Q
,-

~
o

s
o

-
0

‘o

.pag ‘decimal add-sub‘
;**decima1 subtract fac=arg-fac*** 1-G2-80
;comp1ement sign of fac mantissa

dsub lda facexp
eor #$01
sta facexp

decima1 add fac=fac-fac+arg

exchange arg and fac

addfl ldx #facmsd—facexp

no exchange if arg 0

lda argmsd
bne dadd2
lda facexp
sta argexp
jmp dadd

I

dadd2 ldy argexp,x
lda facexp,x
sta argexp,x
sty facexp,x
dex
bpl daddz

check if both exponents same

Q
‘:

in
‘o

add lda facmsd
bne dadd5
lda argexp
sta facexp

dadd5 lda facexp
ora #1
pha
sec ;for later subtracts
eor argexp
bpl daddlfl

I

;compute # of times arg to be shifted right, make sure
;facexp>=argexp for case when exp signs -—different--
I

pla
bmi daddfl ;facexp<argexp
sbc argexp
jmp dadd2G

I

;compute # of times arg to be shifted right, make sure
;facexp>=argexp for case when exp signs --same—-

daddlfl pla
sbc argexp
bcc daddfl

L239-

and #$fe
bne dadd20

I

;if facexp=argexp, then make sure that
;abs(fac-mantissa)>=abs(arg—mantissa)
I

pha
ldx #6

;carry set here
sed
ldy #facmsd-faclsd

daddl2 lda fac1sd,x
sbc arg1sd,x
inx
dey
bpl daddl2
cld
pla
bcc daddfl

convert difference of exponents to shift count

add20 lsr a
sta count

I
;shift arg mantissa right number times specified in count.
I

dadd3$ dec count
bmi dadd40
ldy #3

dadd32 ldx #argmsd-arglsd
clc

dadd34 ror arg1sd,x
dex
bpl dadd34
dey
bpl dadd32
bmi dadd3$

5

;if both mantissa have same sign perform add : fac=fac+arg
I

dadd46 lda argexp
eor facexp
ror a

ldx #6
ldy #facmsd-faclsd
sed
bcs dadd50

I

dadd42 lda faclsd,x
adc arglsd,x
sta fac1sd,x
inx
dey
bpl dadd42
bmi dnorm

—~240——

éadd56 lda faclsd,x
sbc arg1sd,x
sta faclsd,x
inx
dey
bpl dadd5G

7

;**decimal normalize fac with no 1sr**

énormz clc

;**decimal normalize fac with potential 1sr**

énorm cld
bcs dnorzfl

bail out if mantissa zero

s
o

N
o

is

lda #0
ldx #facmsd-faclsd

dnorm2 ora faclsd,x
dex
bpl dnormz
tax
beq dzerof

is msd significant yet?

V
0

‘O
‘
I

dnorlfl lda facmsd
and #$f0
bne dnor4G ;yes...done

s
o

‘a

shift fac left one digit

V

ldy #3
dnorl2 ldx #G

clc
- php

dnor14 plp
rol faclsd,x
WP
1nx
cpx #l+facmsd-faclsd
bcc dnor14
plp
dey
bpl dnor12

decrement facexp with underflow protection

s
o

s
o

V
0

lda facexp
lsr a

php
sec
sbc #1

——24l——

dnor15

shift

in
V

I
V

9

dnor20
dnor22

dnor24

make msd

N
o
i
t

s
o

‘0
s
o

~
o

dnor4G
I

doverr

cmp #$3f
bne dnor15
P1P
jmp dzerof
plp
rol a
sta facexp
jmp dnorlfl

;underf1ow

fac right one digit

#3
#facmsd-faclsd

ldy
ldx
clc
ror
dex
bpl
dey
bpl

fac1sd,x

dnor24

dnor22

a 1 from carry

Ida
ora
sta

facmsd
#$1B
facmsd

increment facexp guard overflow

lda facexp
ls: a

php
clc
adc
cmp
beq
P1P
:01 a
sta facexp

#1
#$40
doverr ;case $7f+$$1—>$80

rts

jmp over:

I

;**put decimal zero in fac**

dzerof

dzero2

lda
ldx
sta
dex
bpl
sta
rts
.end

#6
#facmsd-faclsd
fac1sd,x

dzero2
facexp

——242—

.pag ‘decimal divide‘
**decima1 divide fac-arg/fac

12-20-79

Q
u

o
s
.

s
o

~
c

division by zero error if fac zero

div lda facmsd
bne *+5
jmp dvflerr

done if arg is zero

\
t
‘
I

s
o

lda argmsd
bne ddivs
jmp dzerof

;2's complement on divisor
;and save exponents
I

ddiv5 lda facexp
eor #$fe
clc
adc #2
pha
lda argexp
pha

V
t

lda #0
sta argexp
sta facexp
ldx fresmsd-reslsd

ddivlfl sta reslsd,x
dex
bpl ddivlfl
sta resexp

is divisor greater than dividend

\
q

‘o
N

o

ldy tfacmsd-faclsd
ldx #6
sec
sed

ddivzfl lda arg1sd,x
sbc fac1sd,x
sta arg1sd,x
inx
.dey
bpl ddiv20
lda argexp
sbc facexp
sta argexp
cld
php ;decrement flag
bcs ddiv8fl

restore arg

\O
V

0
V

0

—-243-—

ddiv3fi

ddiv40

\
o

w
e

in

ldy
ldx
clc
sed
lda
adc
sta
inx
dey
bpl
lda
adc
sta
cld

lda
and
beq
pip
pla

#facmsd-faclsd
#0

arglsd,x
fac1sd,x
arg1sd,x

ddiv40
argexp
facexp
argexp

is resmsd zero?

resmsd
#$0f
ddiv45

gadjust exponent
I

ddiv41
ddiv43

shift

0
‘
!

‘
I

édiv45
ddiv50

ddiv52

bcs
sec
sbc
pha
lsr
cmp
bne
pla
gla
Jmp
pla
sta
pla
sta
imp

ddiv43

#2

a
#$3f
ddiv41

dzerof

argexp

facexp
dmuldn

arg mantissa left one digit

ldy
ldx
clc
PhD
1919
rol
php
inx
cpx
bcc
plp
rol

#3
#$

arglsd,x

#l+argmsd-arglsd
ddiv52

argexp

244

;shift res mantissa left one digit
I

ldx
clc
php
plp
rol

rzhp
1nx
cpx
bcc
plp
rol
dey
bpl

ddiv62
i
t

in
‘
I

ddiv62 ldy
ldx
sec
sed
lda
sbc
sta
inx
dey
bpl
lda
sbc
sta
cld
bcc

ddiv72

a
s
:

s
o

s
o

inc
bne

div80

.end

#0

res1sd,x

#l+resmsd-reslsd
ddiv62

resexp

ddiv50

is divisor greater than dividend

#facmsd-faclsd
#9

arglsd,x
fac1sd,x
arg1sd,x

ddiv72
argexp
facexp
argexp

ddiv30

increment reslsd

reslsd
ddiv7G

——245——

.pag ‘decimal compare’
;decima1 compare arc:fac
;december 31, 1979

= 1, c=0 if arg .1t. fac
= G, c=1 if arg .eq. fac
=-1, c=1 if arg .gt. fac

comp lda facexp
eor argexp

7

;are mantissa signs same?
7

15: a

bcs dcomla ;no...

are exponent signs same?

w
e

s
o

Q
0

rol a
bmi dcomzfl ;no...

are exponent magnitudes same?

\n
in

V
a

bne dcom30 ;no...

compare mantissa magnitudes

V
0

V
0

h
o

ldx #facmsd—fac1sd-1
sed

dcoms lda arg1sd+1,x
cmp fac1sd+1,x
bcc dcom7
bne dcom7
dex
bne dcomS

dcom7 cld
bne dcom40
txa
beq dcom45

case different mantissa signs

‘a
\
o

h
o

dcomlfl lda facexp
rot a
jmp dcom42

Ecase different exponent signs

dcomzfl lda facexp
rol a
jmp dcom4fl

case different exponent magnitudes

s
o

s
o

‘u

dcom30 sec
lda argexp

-—246——

sbc facexp

handle negative mantissa

com40 rol a
eor argexp
lsr a

common exit code

‘C
‘O

‘
I

dcom42 lda #$ff
bcs dcom45
lda #$Gl

écom45 rts
.end

——247——

APPENDIX C

KEY TO KERNAL ERROR MESSAGES

——248——

Appendix c

ERROR CODES

Stop Key termination

Too many files

File open

File not open

File not found

Device not present

Not input file

Not output file

Missing file name

Illegal device number

249

APPENDIX D

SYSTEM RAM VECTORS

-250-

relative
address

1%

12

14

16

18

1A

name

IRQ

BRK

NMI

OPEN

CLOSE

CHKIN

CHKOUT

CLRCH

CHRIN

CHROUT

STOP

GETIN

CLALL

USRCMD

Appendix D

SYSTEM RAM VECTORS

\.

function

Hardware IRQ handler

Software interrupt handler

Hardware NMI handler

Open file routine

Close file routine

Open channel for input

Open channel for output

Clear channel

Input from channel

Output to channel

Scan STOP key

Get from channel

Close all files

Extend monitor commands

——251——

brought to you by

Steve Gray

http://6502.org/users/sjgray/index.html

http://6502.org/users/sjgray/index.html

