780 Reference Guide Introduction

CHAPTER 1
NOTE: The Commodore 700 refers to the B-128.

INTRODUCTION

The Commodore 700 computers are among the most modern
microcomputers in the world. Commodore has an international
reputation for technological innovation and this can be seen in
the exceptional design and price/performance ratio offered by
these computers.

These computers - the CBM 700s - represent the further development
of existing models, including improvements in hardware and
software which are totally original. These are some of the most
important features of the CBM 700:-

- User memory size 128K

- Enlarged BASIC 4.0+ interpreter

- Screen with 25 lines each with 80 columns (program lines
are not limited to 80 characters)

- Fully programmable three voice sound synthesizer

- Serial interface RS232

If the computer is to be used in the office or in professional
surroundings, you will profit from the advantages of the new and
extended BASIC 4.0+. This extension includes automatic processing
of the greatly increased memory, a highly developed "error
tracker" as well as the implementation of the PRINT USING command
and the IF...THEN...ELSE program structure.

The CBM 700 screen with its 25 lines, each with 80 columns has the
standard format for efficient, professional program packages in
areas such as word processing, accounting, information processing,
data transfer, auditing and finance.

l.1 CBM 700 Enlarged Memory

One of the most important features of the Commodore 70@ computer
is the memory which forms the heart of the 700 range thanks to the
progressive technology of the 6509 microprocessor. The 6509 has
29 address lines, compared to the 16 lines of other, less
efficient, microprocessors. The four extra address lines mean
that the 700 can address sixteen times as much memory.

788 Reference Guide Introduction

Some 700 machines have 128K of memory fitted as standard; others
have 256K memory as standard.

The banks (@ and 15) are reserved for the 6509 and the 700
operating system.

1.2 BASIC 4.0 plus.

The Commodore 700 computers are equipped with a considerably
enlarged BASIC 4.0+ interpreter. BASIC is the most widely used
programming language for microcomputers. There are thus thousands
of BASIC programs for almost every conceivable application.

However, programs designed and written by you are also possible
with this language.

The enlarged and improved BASIC interpreter is built into every
CBM 700 as ROM (Read Only Memory). Your new computer needs only
to be switched on and a BASIC program can be started.

The programmer does not need to consider the memory processing.
The BASIC interpreter will use the memory automatically. The
increase in available memory permits BASIC programs which can cope
with more work at increased speed.

Additional possibilities with the new BASIC 4.0+ interpreter are:-

- VDU commands
- Formatted data output.
- IF...THEN...ELSE program structures

- Editing and directory processing
- Variables and data processing

- RS232 interface

- Memory processing

708 Reference Guide Introduction

1.3 Sound Effects and Music.

The Commodore 700 has one of the most modern digital sound chips:
the 6581 sound interface device (SID). This contains:-

- 3 independent programmable sound generators
- 3 envelope generators
- programmable filter

Each of the three generators has its own programmable oscillator
and wave generator. Each one also has its own envelope generator
with which the amplitude of the signal (volume) can be defined as
a function of time. It is thus possible to simulate simple
characteristic waves for many musical instruments. Completely new
sounds can also be produced. All three envelope generators are
connected to a programmable filter - this can be programmed as
high pass, band pass or low pass. This filter is probably the
most important feature of the synthesizer since very complex
sounds can be produced by simple programming. All tone generators
can be interconnected for synchronisation or ring modulation
effects to make the production of very interesting and unusual
sounds simple.

1.4 Serial Interface.

The 700 has an RS232 interface. This enables the connection of
many of the printers, terminals and modems on the market.

The 6551 asynchronous interface (ACIA) is responsible for the
RS232 interface. The new BASIC 4.0+ interpreter has software to
program this interface easily. A channel is simply opened and
used, as for a file or a printer, with the standard Input/Output
commands in BASIC.

1.5 Installation.

None of the models in the 700 range have any special requirements
as regards temperature. The computers function in every climate
even where you personally may find it only bearable.

The electrical side also presents no problem. The mains supply
has enough capacity to "smooth" larger deviations in the current
or voltage peaks. Disturbances may only happen whilst switching
on if very large electric motors are close by.

Worries about electrical supply to your computer need also not
concern you, since it takes only the same amount of current as two
normal desk lights (about 130 Watts).

To be thorough, however, it must also be noted that very high
radio activity or "hard x-rays" can lead to problems.,

709 Reference Guide Introduction

1.6 Setting Up.

Make sure your computer is switched off before beginning
installation. Also check that the monitor is switched off in low
profile models - pay attention to the operation instructions for
the monitor supplied with the machine. The mains switch is
situated at the back of the computer. Starting a computer in the
low profile range varies from that in the high profile range only
in the first point. Your B-128 System is low profile.

1. Low profile - Connect your computer to the monitor. Use a
video cable. There is a 5-pin socket for this at the rear. High
profile - Connect the keyboard to the socket on the front of the
computer. The Commodore logo on the plug should be uppermost.

2. Next, your peripherals must be connected. For this you need
an IEEE to Edge connector cable. The edge connector of this lead
goes to the IEEE socket on the computer. The writing on this plug
should be uppermost. The other plug is connected to one of the
peripherals. For each further connection of a peripheral a
further IEEE to IEEE cable is required. One of the ends is pushed
onto the plug of a peripheral already connected (pick-a-back) and
the other joined to the new peripheral. (Ensure that the securing
screws are tightened so that the plugs sit squarely upon one
another).

3. Now you can connect the mains electricity lead. Your computer
is ready for operation.

1.7 On/0Off Switch.

The on/off switch on the Commodore 700 computer is on the back of
the machine.

When the computer is switched on, a test routine is run, during
which the computer checks itself for errors. After 4-6 seconds
(depending on memory type) the "ready" message will appear. Your
machine is now ready to go and you can start straight away.
(Should the computer fail to work, try again. 1If it still fails,
consult your dealer).

Before switching off, ensure that you have saved your data (i.e.
transferred it onto disk), if you need it 4t a later date. The
same applies, of course, to programs you have written yourself.

700 Reference Guide The Keyboard

CHAPTER 2.

THE KEYBOARD.

The 700 has a keyboard which is very similar to a typewriter
keyboard. However, on a closer inspection you will discover a
whole range of keys and characters not found on a normal
typewriter.

2.1 RETURN and ENTER.

These keys enter data into the computer and/or start processing of
data. They have the same effect.

2.2 SHIFT

This key corresponds to the SHIFT key on a normal typewriter. 1If
you press the shift key at the same time as a letter key, you will
obtain the corresponding letter in capitals or, with keys having 2
characters, the top character. Having switched your micro to the
graphic mode however, capital letters will appear without pressing
the SHIFT key and if SHIFT is pressed, the graphic characters on
the front of the key will be obtained.

2.3 SHIFT LOCK.
This is a standard Shift Lock key.
2.4 OFF/RVS.

After pressing this key, all subsequent characters are displayed
in inverse (REVERSE) video, therefore what is normally light
becomes dark and vice-versa. When this key is pressed
simultaneously with the shift key, the reverse mode is switched
off again.

2.5 NORM/GRAPH.

This key selects the graphics character set of your computer,
Instead of small and capital letters, capitals and a set of
graphic characters appear. The special characters are shown on
the front of the key and are reached by using SHIFT (letters) or
by CTRL (other keys). The NORM/GRAPH together with SHIFT will
switch the VDU screen back to capital/small letters (normal
display).

2.6 Cursor Control Keys.

These keys move the cursor (which is the position where the next
character will appear) in the direction shown on the key. Keep
the key depressed to move the cursor over longer distances. i.e.
repeat.

709 Reference Guide The Keyboard

2.7 INST/DEL.

When this key is pressed the character immediately before the
cursor is erased and all subsequent characters on that line are
moved to the left to fill the gap.

"Line" here means the logical line - i.e. all the characters which
have been entered into the computer until a RETURN or ENTER key is
pressed. This "logical Line" could fill the entire VDU screen,
but the computer can only interpret lines of up to 168 characters.
The INST/DEL with the SHIFT key produces a free space at the
position marked by the cursor. All characters following will be
pushed one space to the right.

2.8 CLR/HOME.

This key moves the cursor back to its start position top left
(HOME) ., If it is used with the shift key the entire screen is
cleared (CLEAR). By depressing the CLR/HOME key twice, any
predefined window is cleared and control of the whole screen is
re-established.

2.9 CTRL

When pressed during a scroll in direct mode this key slows the
scroll rate. When pressed together with other non-letter keys,
the character on the front of the key is displayed. A range of
special functions is possible with some letter keys.

Functions of the control key:-

Without SHIFT with SHIFT
d Delete Delete
q Enable bell -
i Tab Tab
m Return Return
n Set text mode -
o Set top Set top
q Cursor down Cursor down
r RVS on RVS on
s HOME HOME
t Delete Delete

2.10 RUN/STOP

This key interrupts a program (if the programmer has not entered
this function into the program already). Pressed together with
SHIFT (in direct mode), the first program from disk in drive @ is
loaded and started.

2.11 Commodore Key
When listing programs or data output, the screen display is
automatically "rolled" upwards (SCROLL) when the lowest line is

reached. By pressing this key, the scrolling is stopped, and is
started again by any other key.

—6—

700 Reference Guide The Keyboard

2.12 ESC Key.
This key resets from quotes mode and insert mode.

The computer is in quotes mode after pressing the " key (double
inverted commas). After this, some of the special keys mentioned
above no longer function as described, but the screen shows that
the relevant key has been pressed. This mode is ended by pressing
the " again or by using the ESC key. The purpose of this mode is
to store the control keys in a string for later display. (See
PRINT) .

If SHIFT-INST/DEL are used together, the computer is switched to
insert mode. Here also, the cursor movements are not displayed
directly, but the key-pressing action is stored (the insert could
have occurred in a string in inverted commas).

The insert mode is switched off when all available places are
filled or by using the ESC key. The ESC key has a further special
function. When it is pressed the following letters generate
functions of their own:-

Letter Special

Key Function

a Sets Insert mode on.

b Sets bottom RH corner of the text window at

cursor position.

Resets insert mode off.

Deletes cursor line and closes up from below.
Non-flashing cursor selected.

Resets normal cursor (flashes).

Sets internal bell on (enable).

Resets internal bell off (disable).

Inserts a line on cursor line and moves text down.
Moves cursor to start (LH) of text on line.
Moves cursor to end (RH) of text on line.
Reset wrap mode off (enable scroll).

Set wrap mode on (disable scroll).

Reset screen to normal video.

Clear gquotes and RVS, but not insert mode.
Erase to start-(LH) of cursor line.

Erase to end (RH) of cursor line.

Set screen to reverse video.

Reset solid cursor (from underscore).

Sets top (LH) corner of text window.

Sets underscore cursor.

Scroll vertically up one line.

Scroll down one line.

Reset from ESC sequence

(as if you had never pressed ESC).

Select normal character set chip.

Select alternate character set chip.

X ELCCAMNRAQUOD I HRURITQMMD QALO

N <

Note: y and z only have an apparent effect if the character sets
are not identical.

-7 —

780 Reference Guide The Keyboard

2.13 Numeric Keypad.

Sometimes you will want to use your 700 simply as a calculator.
All keys for this purpose are situated together on the RH side of
the keyboard (some are repeated on the main keyboard and have the
same effect).

On the keypad, with the exception of the ENTER key, all the keys
have the same function with or without SHIFT. Apart from the ten
numbers, you will find a decimal point, a double zero (for
convenience), the four calculation signs +, -, *, / and the CLEAR
ENTRY (CE) key with which you can erase the last number typed. Do
not use commas or colons in numbers.

The Question Mark key may be used as an abbreviation for the word
PRINT.

2.14 Function Keys.

Finally, there are 10 further useful keys - Fl to Fl18 - which are
situated top left on your keyboard. Each one of these keys can
take a command, a text or even a whole program, according to your
requirements. Each key may be used twice, since, when used with
the SHIFT key, each one of these function keys receives a second
meaning (Fll to F20). The functions allocated to each key are
listed on the screen after the command KEY. After switching on,
type KEY and then RETURN and the following list will appear:-

Key 1,"print"

Key 2,"1list"

Key 3,"dload"+chr$(34)
Key 4,"dsave"+chr$ (34)
Key 5,"dopen"

Key 6,"dclose"

Key 7,"copy"

Key 8,"directory"

Key 9,"scratch"

Key 10,"chrs ("

Keys 11-20 (attainable together with SHIFT) are not defined at
power on. You can change the list at any time and also define
keys 11-28, For example, if you want to use Fll so that a BASIC
program from line 300 will be LISTed. You must obtain a free line
on the screen, type KEY 11, "LIST-300" + CHRS (13) Now press
SHIFT F1 (Fll) and the program will list starting at line 300.
(Conclude your entry with RETUR

Function keys remain programmed until the machine is turned off.

7008 Reference Guide BASIC 4.0+

CHAPTER 3

INTRODUCTION TO THE NEW ENLARGED BASIC 4.0+

The 700 series computers are equipped with a considerably enlarged
BASIC 4.0+ interpreter. The new BASIC 4.0+ permits problems to be
solved by using individual programs exactly tailored for the
purpose. Whatever the solution, the new BASIC 4.0+ with a built-in
screen editor will do it quickly, easily and without problems.

The interpreter is built into every 700 computer as ROM(Read Only
Memory). This means that when the machine is switched on BASIC
programs can be loaded and started immediately.

This enormous memory capacity means that BASIC programs can deal
with more work more efficiently. Complicated algorithms for data
exchange between working storage and mass storage are no longer
necessary, as there is enough available work space. Room for
comprehensive error trapping in the user program no longer poses a
problem. It is now possible to use programs which previously were
only associated with very large machines. The most important
features of the new interpreter are:-

- Screen commands

- Formatted data output

- IF..THEN..ELSE structures

- Editing and directory processing
-~ Variable and data processing

- Error trapping

- Memory processing

709 Reference Guide BASIC 4.0+

3.1 Formatted data output

Processing programs need the facility to easily format print-outs
and tables. Commodore has therefore implemented the PRINT USING
statement. The number format on the printer or in a file is
easily defined with this statement. The most important features
are:-

- Positioning of numeric sign

- Positioning of commas and decimal points
-~ Exponent output

- Positioning of text

3.2 IF,.THEN..ELSE Structures

The IF..THEN..ELSE structure is a very useful element in every
programming language. Existing programs which contain these
structures may now be used with the new interpreter. To
accentuate its efficiency, we will take a simple example:-

Variable C should be assigned the value of variables A or B,
depending on the larger of the two. Without the IF..THEN..ELSE
statement, the solution for this simple problem would be:-

A C=RIfF APR Thed C=A
B

IF A>B THEN C
IF B>A THEN C

Using the IF..THEN..ELSE statement, however, the solution is
simplified:-

IF A>B THEN C = A: ELSE C = B

This simplification makes the program quicker, easier to
understand and simplifies the changing or expansion of an existing
program. This in turn saves time and money.

3.3 Editing Function, Directory Processing

The new BASIC has a DELETE command in order to erase BASIC program
lines. For example:-

DELETE 10-100
can be entered to erase all program lines between 10 and 100,

The new DIRECTORY command presents a list of all files in the
disk. For example:-

DIRECTORY "edu*"
(The * is a pattern matching symbol-see the disk drive manual).

This command will only fetch those file names beginning with the
letters “edu".

—10 —

708 Reference Guide BASIC 4.0+

3.4 Variable and Data Processing

The interpreter also offers an enhanced RESTORE statement in
conjunction with DATA and READ statements. Sometimes it is
necessary to re-read certain parts of DATA statements. With the
new RESTORE, the line number of the DATA statement to be read by
the next READ operation can be given. For example:-

RESTORE 5000

Sets the DATA pointer to the first item in the DATA statement in
line 5000. Additionally, the interpreter has the string function
INSTR. Using this, one string can be sought within another
example: -

-10 AS= "FIND THIS STRING"
20 LOC = INSTR (A$,"THIS")

The variable LOC now receives value 6 - the start position of the
word "THIS" in AS.

3.5 Error Trapping.

Sometimes it is sensible to trap errors which are normally
processed by BASIC, for example division by zero. In this
instance BASIC would normally give an error message and stop the
program. If a TRAP statement is used, such an error can be dealt
with by the program itself, allowing you to restart the program
where the error occurred. There are several ways of treating an
error., Variables can be corrected in the statement and
re-executed. The program execution can also be restarted at
another point. Error trapping in BASIC 4.0+ also gives
information on the type of error, on the line number in which it
occurred and, if necessary, the text of the standard BASIC error
message which BASIC would have displayed if the error had not been
trapped.

3.6 RS232 Interface.

The 700 is equipped with an RS232 interface as standard. This
interface allows connection with numerous types of printers,
screens and modems. The transfer procedure is internationally
standardised. Using the interface in BASIC is very simple: after
opening a data channel for the interface with an OPEN statement,
further programming takes place with PRINT or INPUT statements, as
used for a printer or disk.

—11 —

700 Reference Guide BASIC 4.0+

3.7 Memory Processing.

In order to make use of all of the memory, some commands from the
BASIC interpreter have been enlarged and others added. These
commands and statements permit:-

- Direct working with PEEK and POKE statements in specified areas
of the enlarged memory,

- BLOAD or BSAVE commands for specified areas of the enlarged
memory,

- Detection of the free memory space in certain areas of the
enlarged memory.

— 12—

700 Reference Guide Data Types: BASIC
CHAPTER 4

DATA TYPES IN BASIC.

Programs in every processing language process data. The
interpreter in the enlarged BASIC 4.0+ uses three data types:
real, integer and string. Arrays can be defined of each of these
types. An array is a combination of elements of the same type in
a form which can be visualised as a table of data. Generally,
real numbers are used to present fractional numbers - i.e. numbers
which have places after the decimal point as in 100.8899 or -0.66.
Integer expressions have no places after the point, as in 10 or
~-3. Strings are used to present letters or text, for example:-

"Fred Bloggs" or "This is text".

4.1 Variables in BASIC.

Each variable receives its own name. A variable name consists of
up to 159 alpha-numerical characters and must start with a letter.
The last character may be a special character to determine the
type of variable. A variable name may not contain BASIC commands,
for example:~- TOMATO is a syntax error because it contains the
BASIC word TO. Only the first two characters and, if present, the
last special character are stored. Differing variables, therefore
use this last character for identification. The data type is
determined by the variable name. Real numbers are defined by the
first two letters of the name for example:-

a1,BD,TD,I,J,K,Z8.

Integers are defined by the first two letters of the variable name
and a % (percent) sign. for example:-

Al%,272%,F8%,J%, INCREMENTSY.

Strings are defined by the first two characters of the name and by
a dollar sign ($) as last character for example:-

Al$,BS,AXES.

The enlarged interpreter has several internally defined names and
words. These reserved words must not be used as variable names.
The reserved words are:-

- All function names

- Input/Output status (ST)

- Disk status (DS and DSS)

- Error status variables (EL and ER)
- Time variable (TIS)

NOTE: TI is not a reserved word.

— 13—

708 Reference Guide Data Types: BASIC

4,2 Real Numbers.

The interpreter executes arithmetical operations in real format,
even if integer expressions are included. In this way, all
constants are stored in real format. A real number can be either a
whole number or a number with decimal places, and can be positive
or negative. For example:-

2.4442, -0.5555, 6.7893, 21, 778012, 441777.

Numerical data in this format have 5 bytes and are stored in two
parts as mantissa and exponent. The mantissa and the exponent
give the location of the decimal point. The Interpreter permits a
resolution of more than 10 decimal places for the mantissa.

The exponential form is a compact format for very large or very
small numbers. There are limits, however, for the absolute value
of numbers in real form. These are:-

Largest absolute value: approx. 1l.7E+38
Smallest absolute value: approx. 2.9E-39

If the maximum value is exceeded, the error message ? OVERFLOW
appears. If the minimum value is undercut, the value of the
variable becomes 0. An underflow error message does not appear.
These limits are also applicable for internal intermediate results
in arithmetic expressions. Exceeding the range in the intermediate
results can be the reason for unexpected error messages.

4.3 Integers.

A further way of storing numerical data is to use the integer
format. Integer variables are defined by a percent (%) sign as the
last character of the variable name. Only integers may be stored
in this format, with a positive or negative sign. For example:-

1, 4711, 32000, 8032, -5774, -22, 100.

As with real numbers, there are also limits for the absolute
values of integers:-

Largest integer = +32767
Smallest integer = -32768

If this range is exceeded, the error message ? ILLEGAL QUANTITY
will appear. All internal calculations use the real number
format. Integer values are converted into real format before
being used in a calculation. The result also appears in real
format. If such a result is changed into an integer, the places
after the decimal point are simply cut off and not rounded up or
down. So the expression A% = 5,9/2 will round up value 2 for the
integer variable A%, and will not round up the value to 3.

14—

708 Reference Guide Data Types: BASIC

4.4 Character Processing.

The third data format is text format (string). It is defined by a
dollar sign ($) as the last character of the variable name. Text
variables have a string of text characters, one byte per
character. The whole string of characters is referred to as a
single variable. Text constants are put within inverted commas in
order to be used in a BASIC program. For example:-

"Do you wish to continue?"
"123456789"

"BASIC 4.0+"

"Any number or a word"

A text variable may contain:-

Alphabetical characters (A...Z2, @a...2)
Numerical characters (8...9)
Special characters ($/%:+-...)

The characters in a text variable are presented normally. The
control characters are presented in a reverse video if they appear
in a text variable. Text which is entered via the keyboard has a
maximum length of 157 characters for each text variable. 1In
addition, longer text variables can be produced by linking the
contents of more than one text variable by concatenation (+
operator).

For example: "TEXT 1" + "TEXT 2" is "TEXT 1TEXT 2"

But there are limits here too, the maximum length of a text
variable is 255 characters. If this length is exceeded, the error
message ?STRING TOO LONG appears. BASIC 4.0+ has a whole series
of functions to process text variables. There are functions to
establish the length of a text variable, to scan for a certain
text within a variable, to convert a text variable containing
numerical characters into number format, and many others. A text
variable must never be used in a numerical expression, even if it
only contains figures. It must first be converted to a numeric
format.

— 15—

700 Reference Guide Data Types: BASIC

4.5 Arrays.

An array is a collection of elements of the same data type, as in
a table. The whole array is described by a single name. Each
element has a fixed position within the array and the position is
determined by an index. Let us take as an example a class of no
more than 50 students whose names are to be used in a program. It
would be highly impractical to process 50 different variable
names, one for each student. Instead, an array of 50 text
variables is used and the processing becomes very simple. The DIM
statement is used to define such an array in order to reserve the
relevant memory space:-

DIM NAMES (49)

The NAMES$ array is uni-dimensional, and can be described using a
single index. The index lies within the range 0-49. Larger or
smaller values lead to an error message. Now the program may
print the names of some students. This could look like this:-

PRINT NAMES (@) to print the first name
PRINT NAMES (4) to print the fourth name
PRINT NAMES (49) to print the last name.

As you can see, a certain array element can be reached by entering
the index number. 1In the example the indices were numerical
constants but variables can also be used. To express the whole
array a FOR..NEXT loop can be used:-

16 FOR I = @ TO 49
20 PRINT NAMES (I)
30 NEXT I

This example shows the simplest form of a data array -
unidimensional. The BASIC interpreter in the 7800 allows for
multi-dimensional arrays within the following limits:-

Maximum number of dimensions = 255
Maximum number of elements per dimension = 32767

Theoretically, therefore, one array could be dimensioned with 255
different indices of which each can assume the value 0-32767. If
the maximum value defined for the index is exceeded, or if one
tries to define a negative index, the error message ?BAD SUBSCRIPT
appears. If one tries to define an array with more than 32767
elements per dimension, the error message ?ILLEGAL QUANTITY
appears. If the defined array size exceeds the memory space
available in the system, the error message ?0UT OF MEMORY appears.
In BASIC 4.0+ the number range for the index starts with @ and
ends with the maximum value defined in the DIM Statement. So an
array with the definition A (5) has 6, not 5 elements - the
indices can be between @ and 5. Unidimensional arrays with not
more than 11 elements do not need to be previously defined by a
DIM statement. The actual array size is limited by the available
system memory.

— 16—

700 Reference Guide Data Types: BASIC

In the 700, this size is some 64 Kbytes for a uni-dimensional
array. To give an example of multi-dimensional arrays, let us
expand the number of students' names to 10 different classes, each
of which may have up to 50 students. The dimensioning of the array
is now:-

DIM NAMES (9,49)

In this dimensioning statement, the first index is used to address
the class and the second to find one child within that class. One
can imagine this as a table with 10 columns (0-9), one for each
class and 50 lines (0-49), one for each student in the class.

This array can take 500 students (1@ columns * 50 lines). To find
an individual student in this array, one could write:-

PRINT NAMES (9,13) to find the 14th child in the first class
PRINT NAMES (9,1) to find the 2nd child in the 1dth class.

It is sometimes confusing to use the 0 element of an array. 1If no
consideration of the memory limitation is to be taken, one can
simply ignore this element and start the counting with 1, or use
this element for special purposes (to form sums for example).

— 17—

700 Reference Guide Structure of BASIC

CHAPTER 5

STRUCTURE OF BASIC.

This chapter contains a summary of the fundamental elements of the
programming language BASIC and, in particular, describes the
language additions for the 76¢. If you are not already familiar
with BASIC and would like to learn it, you should use one of the
many introductions to BASIC which are readily available in
bookshops (see bibliography). This chapter does not replace an
introduction to the BASIC language. BASIC is an efficient and
easily understood programming language,simplifying the creation of
well-structured solutions to programming problems. Basic language
statements are of several types:-

Commands
Statements/Expressions
Functions

A command, an expression, or a function are given by specific
keywords. The keyword is recognised by the BASIC interpreter
during program processing and the operation associated with that
keyword is executed. For example, in the statement PRINT AS$, the
keyword PRINT is recognised as a statement to print something.

The section of the BASIC interpreter which is responsible for data
print-out now analyses the rest of the statement (A$) in order to
ascertain what should be printed. 1In this instance it is the
contents of the string A$ which will appear on the screen.

The classification of BASIC keywords into commands, statements or
functions depends on the type of action required by the
interpreter. Commands are used in order to do something with the
program. A program can be changed, listed, loaded, erased,
started, etc. by a command. Statements are the words which make
up the program. The computer is told by statements what it is to
do during the program run. Functions perform operations that
evaluate data for the program to process further. For example the
length of a string can be determined by a function. Functions are
always carried out as part of a Statement.

There are two ways to execute commands and statements in BASIC.
Either they are executed as part of a BASIC program (program mode)
or they are executed immediately after entry by entering them
without line number (direct mode). A BASIC Program line always
begins with a line number within the range 9-63999. The entry of
a statement without line number in a direct mode is very useful
when looking for an error, one can see the value of the variables
straight away and change them if necessary.

— 18—

700 Reference Guide Structure of BASIC

BASIC statements can be divided into four types:-

1, Declaration statements to define data and the user's own
functions in the program.

2, Program flow instructions to control the execution order
of a BASIC program and to permit certain parts to be re-run
or bypassed.

3. Expressions containing operations to calculate variables.

4, Input/output statements to regulate the data flow.

5.1 BASIC Commands.

Commands are used to prepare, change or print out a program. To
do this, program texts must be stored or loaded, the contents of
disks listed and the program started or stopped. In most cases
direct mode commands are used. There is a detailed description of
all BASIC commands in a later chapter and the following table
represents a brief summary:-

BASIC Commands Summary

BLOAD Load a file from disk.

BSAVE Save a file to disk.

CONT Restart an interrupted program.

DELETE Erase certain program lines.

DIRECTORY List the contents of a disk.

DLOAD Load a program from disk.

DSAVE Saving a program to disk.

HEADER Format a disk.

LIST List the program.

LOAD Load a program from a disk drive or
another device.

NEW Erase the whole program in memory.

RUN Start the program.

SAVE Save the program to disk drive or
other device.

SCRATCH Erase a file or program on the disk.

VERIFY Compare the program in memory with
a stored copy.

DCLEAR Initialise the disk operating
system,

—19

700 Reference Guide Structure of BASIC

5.2 Declaration Statements.

Statements of this type have no direct influence on the running of
a program, even if they are executed during a program run. They
serve to define certain characteristics which may be used later in
the program. An earlier chapter described in detail how the data
type of a variable is defined by selecting the last character of a
variable name:-

No special character - real number
% character - integer
$ character - text (string)

This definition of the data type represents the simplest form of a
declaration statement for the BASIC interpreter. Further
statements of this type are shown in the following table:-

Further declaration Statements

DATA defines data tables which can be transferred to variables
by using READ statements

DEFFN defines a user function which can be used in later program
statements,.

DIM variable (index l.....index n) defines an array variable
and reserves space for it.

The DATA statement is discussed in more detail in a later chapter.

Sometimes it is necessary to carry out the same calculation at
different points in the program. 1In such cases it is easier to
define this function with a DEF statement at a single point in the
program and use the function thus defined as and when required.
This saves time in program preparation and uses less memory than
if one were to repeat the same calculation over and over again.
The DEF statement is explained in detail in a later chapter.

The DIM statement defines data arrays. It is always used when an

indexed variable needs more than 1l elements. The use of arrays
and DIM statements is discussed in more detail in another chapter,

— 20—

700 Reference Guide Structure of BASIC

5.3 Statements for Program Control.

Statements of this type are used either to alter the sequence in
which certain parts of the program are processed, or to control
some aspect of the computer or program environment. In the
absence of special statements, the program will run in a
pre-determined sequence dictated by the line numbers. This means
program control always goes from one completed program line to the
next program line. However, sometimes not all the program lines
are to be processed in order. BASIC therefore has a group of
statements which allow the continuation of the program from
another point.

Sometimes it is necessary to alter certain parts of the program
environment. For example the CLR statement can be used to erase
all variables. Other statements from this group control the
memory.

The program control statements are:-

GOTO ON...GOSUB
USR ON...GOTO
CLR DISPOSE
RESUME TRAP

END RESTORE
FOR...NEXT RETURN
GOSUB STOP

IF...THEN...ELSE, WAIT, BANK, and SYS are described in a later
chapter.

—2) —

700 Reference Guide Structure of BASIC

5.3.1

Control of the program run.

BASIC has many statements which determine the sequence in which
the individual program parts are to be processed. These
statements can be split into three types:-

l.

2.

Unconditional statements. The jump in the program
is always executed.

Conditional statements. The program jump is
executed under certain conditions, otherwise no jump
occurs and execution carries on undisturbed.

Loop statements. A group of instructions are repeated
until a pre-condition is met. Then the loop is
completed.

Unconditional jump statements.

END The normal end of program - READY appears on
the screen.

GOSUB linenumber The program is continued at the line
whose number is after the GOSUB
statement;~- used with RETURN to execute
a sub-routine before returning to the main
body of the program.

GOTO linenumber The program is continued on the
corresponding line;- used to jump over other
statements.

RETURN The program is continued at the
statement following the last GOSUB
statement;- used with GOSUB to continue
in the main body of the program.

STOP The program is interrupted. BREAK IN

linenumber appears on the screen.
Subsequently the program may be
aborted or continued.

—22—

700 Reference Guide Structure of BASIC

Conditional jump statements.

IF condition THEN linenumber

or: IF condition GOTO linenumber
The program branches only when the
given condition is true.

Example: IF a = b THEN 500

The program continues at line 560 only if a and b are equal.
IF condition THEN statement 1l: ELSE statement 2
If the given condition is true, statement 1 is
executed, otherwise statement 2 is executed.
Example: IF a=b THEN c=d+l: r=sqr(a): ELSE c=d-1: r=sqgr(b)
If a=b then c=d+1 and r=sqr(a), otherwise if a is not equal to b,

c=d-1 and r=sqr (b)

ON variable GOSUB jumplist
The sub-routine whose position corresponds to
the variable in the jump list is called by
the GOSUB statement.

Example: ON I GOSUB 100,200,500

If I is 2 then gosub 200 is executed.

ON variable GOTO jumplist
The same as ON GOSUB, but the call is a GOTO.

—23__

700 Reference Guide Structure of BASIC

Loop Statements.

FOR variable = start TO end STEP stepsize...BASIC

statement(s)...NEXT variable
All instructions between FOR and NEXT are
repeated as a loop. Therefore the variable
before the first loop run is set at start.
When NEXT is executed, the value step size is
added to the loop variable or, if STEP is not
given, value 1 (by default). If the variable
is still smaller or equal to end, then the
whole loop is executed again.

Example: FOR I = 1 TO 10 STEP 2: PRINT A(I): NEXT I

All uneven elements of array a() between 1 and 10 are printed.

WAIT address, mask 1, mask 2

The byte in the address is tested. Firstly
the exclusive OR is formed between the
contents of the address and the value of mask
2. This intermediate result is ANDed with the
value of mask 1. If the result is 0, the WAIT
statement is executed again.

Example: WAIT 62255, 1, 1

The program waits at this point until the lowest bit in location
62255 is @. (If mask 2 is ommitted the default value of 0@ is
assumed) .

Structured programming.

The statements GOSUB, ON...GOSUB and IF...THEN...ELSE form the
basis of structured programming. It is possible, using these
statements, to divide a large program into small and easily
manageable sections.

GOSUB and ON...GOSUB can call a sub-routine from any part in the
main program. By using GOSUB and ON...GOSUB statements, a
programming problem can be split into several smaller problems
which are linked via GOSUB statements. This split clarifies the
overall appearance and facilitates debugging when the program is
being tested.

The IF...THEN...ELSE statement is one of the most elegant methods
of structuring a program. The simplicity and efficiency of this
statement saves time and greatly increases the legibility of a
program.

— 24

700 Reference Guide Structure of BASIC

5.3.2 Interception of Program Errors.

One of the most important features of the new BASIC 4.8 + is its
capacity to treat errors (bugs) arising in the program. The bug
can be trapped, analysed, and the program restarted at the
relevant point when suitable changes have been made. The
statements TRAP, DISPOSE and RESUME work with the pre-determined
variables ER and EL and the function ERRS (ST, DS and DSS may also
be involved in the handling routines).

Tracking the bug.

The statement TRAP diverts the program to the relevant line.
BASICs own treatment of errors (which can still interrupt a
program in more complicated cases) is not involved and errors can
be treated independently.

Analysis.

The bug treatment routine shows which error has occurred by the
variable ER which contains the "error number"™. The variable EL
contains the line number where the error occurred. The text
variable ERRS$ contains the normal BASIC error message which the
computer would otherwise have used in its own error routine. This
message can be printed out if required.

Switching off Error Treatment.

A TRAP command without line number parameter reactivates the
system's own error treatment. This is of interest if errors have
to be trapped only in certain parts of the program, but if the
normal error treatment is required otherwise.

Error Treatment and the Stack.
When instructions like GOSUB, ON...GOSUB or FOR are executed,
values are placed on the Stack. The DISPOSE statement is used for

removing these values. The RESUME statement can continue the
program afterwards.

25—

700 Reference Guide

Statements for Error Treatment.

DISPOSE FOR/GOSUB

Structure of BASIC

The Stack entries of a FOR...NEXT loop
or a GOSUB...RETURN structure are cleared.
Then the program can be continued by using

RESUME.

RESUME NEXT/linenumber

When debugging has been completed, RESUME
then dictates whether the program carries on
at the next statement after the error
statement (NEXT) or at any point in the
program (linenumber).

TRAP linenumber

When an error occurs the program jumps to

the given line number.

If the linenumber

parameter is not given, then standard error
handling is invoked.

Exrror Messages.

These are accessible using ERRS().

STOP KEY DETECTED
TOO MANY FILES

FILE OPEN

FILE NOT OPEN

FILE NOT FOUND
DEVICE NOT PRESENT
NOT INPUT FILE

NOT OUTPUT FILE
MISSING FILE NAME
ILLEGAL DEVICE NUMBER
ARE YOU SURE?

BAD DISK

BREAK

EXTRA IGNORED

REDO FROM START

NEXT WITHOUT FOR
SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

VoOdOTOBEdWINHES

e
AU &S

NN
W+

— 26—

ILLEGAL QUANTITY
OVERFLOW

OUT OF MEMORY
UNDEFINED STATEMENT
BAD SUBSCRIPT
REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH
STRING TOO LONG
FILE DATA

FORMULA TOO COMPLEX
UNDEFINED FUNCTION
?LOAD ERROR

?VERIFY ERROR

OUT OF STACK

UNABLE TO RESUME
UNABLE TO DISPOSE

709 Reference Guide Strxructure of BASIC

5.3.3 Program environment in BASIC.

There are two statements which alter the environment of a
program:-

CLR and RESTORE.
CLR - clears all variables (and resets the Stack)

RESTORE line number - The data pointer to the start of the given
line or, if no line number is given, to the start of the first
DATA statement in the program.

5.4 Arithmetic Expressions.

Arithmetic expressions are used at many points in a BASIC program.
An expression is a combination of variables, constants, function
references and operators which produces a single numerical value
as a result. For example, A+2. This expression contains variable
A, constant 2 and the operator +. The result of this expression
is a single numerical value.

5.4.1 Operators.

Operators determine how the variables and constants are related in
an expression. There are logical and numerical operators.

Logical operators are:-

AND (A AND 2)

OR (A OR 2)

NOT (NOT A) (EOR is not available)

NOTE: Logical operations are carried out in 16 Bit binary.

— 27 —

700 Reference Guide Structure of BASIC

5.4.2 Numerical operators.

Numerical operators are:

+ addition (A + 2)

- subtraction (A - 2)

* multiplication (A * 2)

/ division (a / 2)

“ exponentiation (A ° 2) (Do not use ** as an
alternative)

digit sign + (+3)

digit sign - (-3)

Warning:

-2 ® 2 gives the value -4, and not 4.

The higher valued operator (") is always executed first and then
the lower (-). A different result therefore can be obtained by
using brackets:-

(-2) © 2 is 4.

NOTE: All arithmetic operations are carried out in floating point
format.

5.4.3 Text Operator.

A single operator may be used with text (string) variables. The
plus sign + is used to join (concatenate) variables. 1In this
operation text variables are connected so as to form a new text
variable. For example:-

AS="Text 1"+"Text 2"

gives: "Text lText 2" as the result in aS$.

The length of the resulting string is the sum of the lengths of

the individual strings. One must therefore take care that the
total length does not exceed 255 characters.

— 28 —

700 Reference Guide Structure of BASIC

5.4.4 Logical Operators.

If we turn these operators to numbers, then first we should
observe the binary presentation. Let us take 35 and 36 as the
examples:-

Binary Decimal
0000000006100011 35
0000000000100100 36

The operation AND now forms the logical AND between both numbers
by bit:-

0000000000100011 35
AND 0000000000100100 36
= 0000000000100000 32

The OR operation works like this:-

0000000000100011 35
OR 0000000000100100 36
= 0000000000100111 39

In order to understand an IF expression, one must know how the
logical values TRUE and FALSE are presented. The logical value
TRUE in binary form has 1 in any bit position. The logical value

FALSE has @ in all bit positions.
FALSE = 0000000000000000 = 0

Data expressions are only FALSE if they have a @ in every
position. All other expressions are TRUE.

Therefore, instead of 'IF A<>@ GOTO 21' one could write 'IF A GOTO
21'.

— 29 —

700 Reference Guide Structure of BASIC

5.4.6 Hierarchy of the Operators.

Individual terms are not necessarily processed in the sequence in
which they were entered. Exponentials are evaluated first, then
multiplications or divisions and lastly additions or subtractions.
Let us examine the simple expression 2+8/2. 1If this expression
were processed in the order in which it is written, 5 would be the
result (mathematically incorrect). However, in this example, the
division must take place first and then the addition. The correct
answer is now 6. Care must therefore be taken when programming
formulae. If the formula is to be worked out from left to right,
then it should be written (2+8)/2. Brackets (parenthesis) override
the normal hierarchy, forcing the expressions in brackets to be
evaluated first.

The operators are always carried out in the following sequence:-

1. ° Exponentiation or "Raising to a power"
2, * and / Multiplication and division

3. +, -, Negation Addition, subtraction and negation

4, <,> etc. Relational Operators

5. NOT Logical Operator

6. AND " "

7. OR " "

Operations at the same level in this hierarchy are evaluated ‘from
left to right. So, all arithmetic operations are evaluated first,
then the comparisons and finally the logic. To alter this
sequence in a formula, brackets must be used. An expression in
brackets is always evaluated first. The result of this expression
is used in the remaining formula, as in the example above.

Bracket expressions can also be nested within each other. 1In this
case, the expression in the innermost brackets is evaluated first.
In the expression (A-(B+C))/D, B+C is formed first, the result
subtracted from A and then divided by D.

— 30 —

700 Reference Guide Structure of BASIC

5.4.7 Input/Output Statements in BASIC.

There are a large number of Input / Output (or I/0) statements
for:-

- Screen.

- Keyboard.

- Printer.

- Disk drive.

- Serial interface.

- Peripherals on the IEEE bus.

There are two types of I/0 statement:-
- Statements for control.

- Statements for data transfer.

BASIC statements used for Data Input/Output.

Control Statements Transfer Statements
CLOSE BLOAD
DCLOSE BSAVE
DOPEN CMD
OPEN GET
PUDEF GET#
INPUT
INPUT#
PRINT
PRINT#

PRINT USING
PRINT# USING

BLOAD and BSAVE are dealt with in detail in a later chapter. The
I1/0 statement represent a bridge between the program and the
outside world. Without these commands the program can still alter
data but it is unable to present results. If you need to read
data stored in external memory, the computer must first be told
the storage location (on which device) and then the name of the
storage file. Likewise, for storing the system must know under
which name to store the data, and on which device.

5.5.1 Preparation of data Input/Output.

The control statements are used to prepare the system for data
transfer and to open or close channels to the corresponding
peripherals.

The commands OPEN and CLOSE are used to:

- Allocate a file or peripheral with a channel number.

- Open a file.

- Close the file after data transfer.
- Activate a device such as a printer.

— 31 —

700 Reference Guide Structure of BASIC

Preparation for Data transfer statements.
OPEN channelnumber, peripheralnumber, (command), (openingtext).

Open a data channel for a peripheral device and allocate a logical
channel number. Several commands can be given to the device; and
an opening text may also be sent, depending on the device and file
type.

CLOSE channelnumber

This closes all I/0 operations for the channel which was given
this channel number.

NOTE: Before giving any commands to transfer data from a file to
the computer memory, the peripheral must first have a channel
number assigned to it. This channel number will be used in all
data transfer statements to tell the system where the data should
go or where it can be obtained. Some devices recognise certain
special commands. For example, one can tell a printer to move the
paper to the top of the next page. Once a file has been opened,
program control enables you to read from it or write to it., If a
device or file is no longer needed, the channel should be closed.
If the CLOSE command is not given, data may be subsequently lost
or corrupted.

5.5.2 Data Transfer.

After establishing the channel, data transfer can be executed
using BASIC statements. Some transfer commands serve to obtain
information for the program from the user. Others tell the user
what the program is doing. For example, the INPUT command is used
to gain information from the keyboard and the INPUT# command to
get information from a file. The PRINT command gives the user
results, the PRINT# command sends data to a file.

—32—

780 Reference Guide Structure of BASIC

Input/Output Statements.
BLOAD filename ON Bbank, P offset

Reads binary information from a file and stores it in the memory
segment bank starting at location offset. BLOAD reads a file as
binary data and not as program text.

BSAVE filename ON Bbank, P start TOP end

Copies the memory contents from the segment bank in the area
between start and end to the file specified in filename.

CMD Channelnumber (,text)

Output, usually to the screen, is switched to the channel number
by this command. A text can be sent and appears as the first line
output. The device is left 'listening’'.

GET Variable

Reads a single character from the keyboard. GET does not wait for
input. If the keyboard buffer has no more text characters, the
program will run on and the variable will be assigned @ or null as
appropriate.

GET# Channelnumber, variable

Reads a single character from the channel and allocates it to the
variable. This command does not wait if there is no character to
read.

INPUT (promptstring), variablelist

Prints the promptstring on the screen and waits for input from the
keyboard. This data is then transferred to the variable(s) in the
list. If each variable has not been given a value, a double
question mark in printed and the input for the next variable
requested. The program waits until all variables have an
acceptable value.

INPUT# Channelnumber, variablelist
Reads data from the channel and allocates them to variables in the

variable list until all variables have a value. The program is
interrupted for as long as this takes.

— 33—

709 Reference Guide Structure of BASIC

PRINT (Variablelist)

Prints all variables, expressions and functions from the
variablelist to the current output device, usually the screen.
PRINT uses standard BASIC formatting.

PRINT# Channelnumber, Variablelist

Writes the variablelist to the channel.

PRINT USING Formatlist, Variablelist

Gives formatted data output on the current output device. The
print format is defined by the formatlist.

PRINT# Channelnumber USING formatlist, variablelist

Formatted output to a channel.

PUDEF Controltext

Defines full characters, separation characters, decimal point
symbols and currency characters by the characters which have been
given to the controltext. These characters are used in the format
output by PRINT USING.

READ Variablelist

Reads data from lines in the program.

— 34—

700 Reference Guide Structure of BASIC

5.4.4 Relations.

These are operators which compare two values with one another.
These are:-

smaller than

smaller than or equal to
larger than

larger than or equal to
equal

Unequal

ANl VVANA

v

An expression which uses comparative operators can only have a
TRUE or FALSE result. For example: A>B tests if the value of A is
larger than that of B. These operators are mainly used in
connection with the IF statement. A typical example:-

IF (A>B) OR (C<D) GOTO 1000
In this case the expressions A>B and C<D are connected by the

logical operator OR. There are two conditions of which at least
one must be TRUE. There is then a jump to line 10040.

—35__

700 Reference Guide Structure of BASIC

Logical expressions in BASIC.

If logical operators appear in an equation, the numerical values
of the variables in question are converted to the 16 Bit binary
format. The individual logical operations are then executed by
bit. The value 35, for example is presented as 0000000000100011
in the binary format. Logical operations are AND, OR, and NOT.
The first two operate on two numbers and NOT operates on a single
number. The AND operator only produces a 1 if both variable values
connected by it were logically 1 also:-

1 AND 1 is 1
@ AND 1 is @
1 AND 9 is @
@ AND 0 is @

The OR operator produces a 1 if either of the values was a logical
l:-

1 0R1 is 1
@ OR 1 is 1
1 0RO is 1
@ OR @ is @

708 Reference Guide Sound and Music

CHAPTER 6

SOUND AND MUSIC
Introduction

Tone production with your computer has three main uses: playing of
musical pieces, producing sound effects, and the sounding of
'warning noises'.

6.1 Structuring a Music Program

The sound of a tone is determined by four characteristics:

Pitch, volume, waveform and envelope. The last two of these
enable us to differentiate between various instruments by ear and
these characteristics will also need to be influenced in your
program.

Your 700 has for this reason’'a special integrated circuit: The
Sound Interface Device (SID). The SID has a range of memory
locations reserved for parameters which control the synthesis of a
desired sound. You already know that your 70¢ can simultaneously
produce three voices. Let us consider the first of these. The
base address of the SID is 55808 in memory bank 15, (the system
bank). (E.g: SI = 55808 assigns the base address to the variable
SI).

The pitch is physically determined by the frequency. The
frequency is stored by a parameter in the SID, and this can assume
values between almost @ and 65000. As it is impossible to store
such large numbers in a single memory location, we must break down
the frequency parameter in to one high and one low byte. These
bytes occupy the first two registers of the SID:-

FL = SI (frequency, Lo-byte) :REGISTER @ is the 1lst register,
FH

SI+1l (frequency, Hi-byte) :REGISTER 1 is the 2nd register.

16 settings are allowed in the SID for the volume - from @
(switched off) to 15 (full volume). The corresponding parameter
is stored in Register 24:-

L = SI+24 (volume) tREGISTER 24 is the 25th register.

— 37 —

700 Reference Guide Sound and Music

Now comes the waveform. The SID offers four fundamental forms:
triangle, sawtooth, square and noise. Each one is controlled by a
bit in Register 4:-

W =SI + 4 (waveform)

In order to select one of the waveforms, you write into this
register one of the parameters 17, 33, 65 and 129. If you choose
65 (square wave) you must also determine a futher parameter
between @ and 4095 for the pulse width. The two bytes of this
parameter are in registers 2 and 3:-

TL

SI+2 (pulse width, Lo-byte)

TH SI+3 (pulse width, Hi-byte)

Finally, we have the 'envelope'. Your 700 allows every tone to
rise to the volume set in register 24 - then to decay somewhat -
the volume now stays fixed as long as you keep the tone switched
on.

Then the volume subsides. Four parameters take part in this
envelope which the SID processes in 2 further registers:-

A

SI+5 (attack and decay)

H SI+6 (sustain and release)

Each one of these registers is split into two: the parameter in
the 4 higher bits from A determines the rise time of the tone and
the parameter in the 4 lower bits determines the decay. Small
values mean quick/hard; large values mean slow/soft. This also
applies to the lower 4 bits of H which control the fade of the
tone after switching off. The 4 higher bits of H determine the
volume at which the tone is held (sustain level)- the highest
value gives the volume previously set in register 24, lower values
cut this volume proportionately.

6.2 Sample Program
You must first decide which voices (or tone generators) you want
to use. For each of these voices, the settings (volume, waveform,

etc.) must be determined. You can use up to three voices
simultaneously - this example uses only voice one:-

— 38 —

700 Reference Guide Sound and Music

10 SI+55808:FL=SI:FH=SI+1:W=SI1+4:A=SI+5:H=SI+6:L=SI+24:REM DEFINE
20 BANK 15 tREM SID is in bank 15

30 POKE L,15 ¢tREM Full volume

40 POKE A,16+9:POKE H,4*16+4 :REM ADSR

5@ POKE FH,l14:POKE FL,1d6 ¢tREM Hi and Lo byte of the frequency

60 POKE W,17 ¢tREM Waveform. (Should always be set
last since the lowest bit in this

register switches the tone
generator on or off.)

70 FORT=1TOS5@0 :NEXT tREM Loop to set duration of tone

80 POKE W,0:POKE A,0:POKE H,@d :REM Switch off.

Type RUN to hear the sound generated by this program (The REMs may
be omitted).

6.3 Melodies

You don't have to be a musician to produce melodies with your 7040.
Here is a sample program which shows how it is done. We are using

only one of the three available voices. Erase or save the
previous program and try the following:~

—39__

768 Reference Guide Sound and Music

10 SI=55808:FL=SI:FH=SI+1:W=SI+4:A=SI+5:H=SI1+6:L=SI+24 :REM
Definiton of register addresses

20 BANK 15 tREM SID is in bank 15.

3¢ POKE L,15 ¢tREM Full volume.

40 POKE A,9 :REM Attack/Decay.

50 READ X:READ Y ¢tREM Hi-byte lo-byte of the fregquency

from the data lines in 130 and 1480.

60 IFY=-1THENPOKE W,@:END :REM (When the program finds the -1 at
the end, it will switch off.)

70 POKE FH,X:POKE FL,Y tREM Set frequency.

80 POKE W,17 :REM Set waveform and switch on.
90 FORT=1TOl00 :NEXT tREM Tone duration (delay loop).
100 POKE W,0 ¢tREM Switch off.

116 FORT=1TOl@:NEXT tREM Short pause to fade.

120 GOTO 49 ¢REM Next sound.

1306 DATA8,146,9,159,10,205,11,113,12,216,14,166,16,46,17,37

149 pAaTa-1,-1 tREM These data (useless as frequency)
end the program in line 64.

The numbers in the data statements in line 130 are pairs, each
representing the hi-byte and lo-byte of the C-sharp scale.

If we want to produce tones which are similar to those from
cymbals, we must alter line 80 in the following way:-

POKE W, 33
By using this POKE command, we are selecting a sawtooth waveform;

this means that we obtain "sharper" sounds than in the triangular
waveform used previously.

But selecting the waveform is only one of the ways to determine
the sound character. We can turn the cymbals into a banjo by
altering the choice of the attack/decay value. This can be done
by using the following command in line 40:-

POKE 4,3

In this way, you can imitate the sound of various instruments.

— 40 —

700 Reference Guide Sound and Music

6.4 Other Sound Settings

6.4.1. VOLUME

Selection of volume is made for all three tone generators
simultaneously. The register for this has the address 55832,
Maximum volume is attained by poking 15 into this register:

POKE L,15 or POKE 55832,15

To turn off the tone generators, put a @ in the register:-

POKE L,@ or POKE 55832,0

The volume is generally set at the beginning of a music program;
but interesting effects may be achieved by programmed alteration
of the volume.

6.4.2. WAVEFORM

As seen in our example, the waveform largely determines the
character of a sound. You can set the waveform separately for
each voice - you have a choice between triangle, sawtooth, square

and noise.

The following table gives a summary:

Summary of waveform setting

Voice Location Waveform Value
Square 65
1 4 Sawtooth 33
2 11 Triangle 17
3 18 Noise 129

Thus POKE 55808+11,17 sets voice 2 to use the Triangle waveform.
(Remember 55808 is the base address of the SID).

— 4] —

708 Reference Guide Sound and Music

6.4.3 ENVELOPE

The values for attack and decay (which can be selected separately
for each voice) are used together as a single value. The attack
parameter gives the time it takes for the tone to reach its
(predetermined) volume, the decay parameter is a measure of how
quickly the volume decays to the sustain level. If 0 was selected
as the sustain level, then the decay parameter gives the release
time (to volume @) and thus determines the length of tone. The
address for the individual voices and the values corresponding to
the various settings can be seen in the following table. (The
values selected for attack and decay are added and the sum POKEAd
into the corresponding register.)

Attack/Decay setting

Voice Location
1 5 Attack value ranges from @ to 240 in
2 12 multiples of 16. '
3 19 Decay values range from @ to 15.

Thus POKE 55808+12, (16*2)+13 sets voice 2 to a fairly‘'hard attack
and a fairly soft decay.

The following program is a further example of these commands in
use:

19 REM 6.4.3
20 SI=55808:FL=SI:FH=SI+1:TL=SI+2:TH=SI+3:W=SI+4:A=SI+5:H=SI+6:L=S1+24

30 PRINT"PRESS A KEY" :REM Screen message.

40 GETZS:IFZS$S=""THEN40 :REM Wait for Key.

50 BANK15:POKE L,15 tREM Volume.

60 POKE A,1*16+5 :REM Attack and decay.

79 POKE H,0*16+0 :REM Sustain and release.
830 POKE TH,8:POKE TL,d ¢:REM Pulse width.

9¢ POKE FH,7:POKE FL,53 :REM Frequency.

109 POKE W,1l7 :REM Waveform, generator on.
116 FORT=1TO200@ :NEXT ¢REM Duration.

120 POKE W,0 :REM Off.

139 GOTO40 :REM Repeat.

— 42

700 Reference Guide Sound and Music

Voice 1 produces a tone with short rise time and short decay phase
when the maximum volume has been reached, (line 6@). What can be
heard should sound like a ball which is bouncing about inside a
lead drum. To produce another sound, we must alter this line.

Stop the program with RUN/STOP. List the program and alter line
60 as follows:

60 POKE A,l1*16+14

The tone produced with this new setting sounds something like an
oboe or some other woodwind instrument.

Experiment yourself, change the waveform and envelope to get the
feeling of how the varionus values of these parameters can change
the character of the tone.

Similar to the previous register, the sustain and release of the

sound are determined by a numerical value which can be calculated
by adding the values which appear in the following table:

Sustain/Release setting

Voice Location

1 6 Sustain value ranges from @ to 240 in
2 13 multiples of 16.
3 20 Release values range from 4 to 15

Thus POKE 55808+13, (16*2)+13 sets voice 2 to a fairly quiet
sustain level and a fairly slow release.

Change the @'s in line 70 to any value up to a maximum of 15 and
listen to what emerges!
6.4.4 THE CHOICE OF VOICE AND NOTES
As already stated, to produce a tone, you must use two values for
the frequency. Because the voices are controlled by different
registers you can independently program the three SID voices and,
for example, produce a three-voiced piece of music.
POKE values for the middle octave

Location Value
Voice 1 2 3 Note C C# D D#% E F F# G G# A A# B C
Hi-byte 1 8 15 17 18 19 20 21 22 24 25 27 28 30 32 34
Lo-byte @ 7 14 37 41 62 90 153 226 62 175 54 213 139 92 73

— 43—

700 Reference Guide Sound and Music

To generate 'C' with voice 1, you must use the following commands:
BANK 15: POKE 55809,17: POKE 55808,37

or POKE SI+1,17:POKE SI,37

The same tone with voice 2 can be obtained by:

BANK 15:POKE 55816,17:POKE 55815,37

or POKE SI+8,17:POKE SI+7,37

Sound Effects

Unlike music, sound effects should accentuate events on the screen
(explosion of a space ship, etc.) or they should inform or warn
the user of a program. (For example, that he is in the middle of
erasing his data disk.)

Here are a few suggestion for experimentation:-

1. Alter the volume during the tone to produce an echo effect.

2, Jump quickly from one sound level to another, to achieve
tremolo.

3. Try out the different waveforms.

4, Study the envelope. (Ask a synthesizer player about ADSR.)

5. Surprising effects can be obtained by varying the programming
of the three voices (eg: hold the tone in one voice for longer
than in another).

6. Use the square wave and change the pulse width.

7. Experiment with the noise generator to produce explosion
noises, arms fire, footsteps, etc.

8. Alter the frequency quickly over several octaves.

9. Use a frequency setting that alters.

—— 44—

700 Reference Guide BASIC Commands

CHAPTER 7

BASIC COMMANDS

INTRODUCTION

The following chapter describes in detail all commands for the
BASIC 4.0+ interpreter. The special commands for disk use, such
as HEADER, SCRATCH, COPY, etc. are each described in the user's
manual for the floppy disk.

BASIC commands are used to change, run, start or erase a program,
When the command is executed depends on whether it is entered in
direct mode (without line number) or in program mode (with line
number as part of a BASIC program).

Commands in direct mode are executed as soon as the RETURN key has
been pressed. Commands in the program mode are executed just as
BASIC statements, when it is their "turn" in the program. The
CONT command cannot -be used in a BASIC program. This section
deals with the following commands:-

CONT DLOAD NEW
DELETE DSAVE RUN
DIRECTORY LIST

7.1 CONT

Format: CONT

Abbreviation: cO

The CONT command is used to start a program agaln arter an
interruption. The reason for the interruption may be:-

- The STOP key was pressed

- The program executed a STOP statement

-~ The program executed an END statement

When CONT has been entered, the program runs on from the point it
was interrupted. 1If the program is interrupted, the actual value
of the variables can be examined, variable value altered or a list

made on the screen. This command is very useful, therefore, for
debugging.

45

700 Reference Guide BASIC Commands

CONT does not function if:-
- The program itself was altered.
- The program has stopped because of an error.

- An error has occurred during the interruption by use of
commands or statements in the direct mode.

If the CONT command cannot restart the program, the error message:
?CANNOT CONTINUE

appears.

7.2 DELETE
Format: DELETE [from] [-] ([to]

Arguments: from gives the line number of the first BASIC
statement which is to be erased to is the number of
the last BASIC line to be erased.

Default: (if nothing is given)

from = first line of BASIC program
to = last line of BASIC program

Abbreviation: 4E

The DELETE command is used to erase one or more program lines from
the program memory. It erases all lines between from and to
inclusive. If only one argument is given (from) , then only one
single line is erased. If both are left out but the dash given,
then the whole program in the memory is erased. Examples:-

DELETE 20-50 erases lines 20 to 5@

DELETE =75 erases all lines from program start to line 75
DELETE 300- erases all lines from 300 to end of program
DELETE - erases the whole program.

DELETE @ erases the whole program

DELETE by itself generates a syntax error.

7.3 DIRECTORY
Format: DIRECTORY ([Dnumber] [, filename] [, Uaddress)

Arguments: Dnumber is the drive number, whose contents are to
be presented.
filename is the name of a data file, always in
inverted commas or as a string variable in brackets.
(The name may also contain the special characters
"k" or "?" to pattern match the name, or "=p/u/r/s"
to pattern match the file type.)
address is the device address of the memory unit on

— 46 —

700 Reference Guide BASIC Commands

the IEEE bus (usually B8).

Default: If the parameter is not given, the contents of the
disks in both drives are shown on the screen.
If no filename is given, all disk files are fetched.
Without address device 8 is assumed.

Abbreviation: diR

The DIRECTORY command fetches a list of all data files which have
been put on to disk.

If a star (*) is used as last character of a filename, only those
filenames will appear on the screen which correspond with the
letters in the filename up to the star. If a question mark is
used wi-hin the filename, then all filenames will appear
corresponding to the rest of the filename. Example:-

DIRECTORY "test??data"

A list will be fetched with all filenames which have the letters
"test" and "data" at the given points, eg:-

"test@ldata"
"testxydata"
"test..data", etc.

ie. "?" means that there must be a character in the filename, but
it may be any character.

The star is used to ignore the rest of the filename.
Example: -
DIRECTORY "test*"

A list will be fetched with all the filenames which start with the
letters "test", eg:-

"testla data"
"testdata"
"test program"
"testscorecard"
"test", etc.

The use of star or question mark can present parts of the disk
contents in one easy-to-survey manner. Other examples:-

— 47 —

708 Reference Guide

DIRECTORY
DIRECTORY "pgm#*"
DIRECTORY d@,"DATA*"
DIRECTORY "?2?2xyz"
DIRECTORY "“*=5",d1,U09
DIRECTORY (AS)
7.4 DLOAD
Format: DLOAD
Arguments:
loaded.
can be
given,
variabl

Default:

number

address = 8

Abbreviation: dL

BASIC Commands

The filenames of all files on both disk
drives are fetched.

Names of all files which start with "pgm#"
are fetched.

The names of all files which begin with the
"DATA" in drive @ are fetched.

The names of all files which have any two
characters in position 1 and 2, followed by
letters "xyz" are fetched.

Fetches all sequential files of any name from
drive 1 of unit 9.

Note: diRu9,dl,"*=S" would s=erve the same
purpose,

Fetches files whose names or types correspond
to whatever AS$ is assigned.

filename [,Dnumber] [,Uaddress]

filename is the name of the file which is to be

The name can either be directly given, or
a text variable. If the name is directly
it must be within inverted commas. If a text
e is given, it must be within brackets.

= @ ¢ drive
s unit

The DLOAD command is used to load BASIC programs stored on a disk
into the program memory. (BLOAD command must be used for other
DLOAD can be used to load BASIC programs from older
Commodore computers.
onto an older Commodore computer is, however, only possible with a
special preliminary procedure or (see Technote 508/700-0814) an

files.)

auxiliary program.

To store a program with DSAVE and load it

DLOAD can also be used during a program. When

the DLOAD has been executed, the new program is started
immediately. The var
may be erased with the CLR command).

Example:

iables of the old program are retained (or

Store the program called "ONE" with DSAVE"ONE" on your disk in
drive @, then enter the program called "TWO" and start with RUN:

48 —

700 Reference Guide BASIC Commands

PROGRAM TWO:

106 REM TWO

119 REM
126 REM CALL UP PROGRAM
136 REM

140 REM HERE THE VALUES

154 REM OF THE VARIABLES ARE DEFINED

168 REM

17¢ 2A=100

180 A$="FRED BLOGGS"

196 DLOAD"ONE"

200 REM THIS LINE IS NEVER REACHED

214 PRINT "IF YOU SEE THIS, THERE HAS BEEN ERROR"
220 END

PROGRAM ONE:

190 REM ONE

119 REM

120 REM THIS PROGRAM READS THE VARIABLES
13¢ REM OF THE CALLING PROGRAM

140 REM

150 PRINT AS" IS"A"™ YEARS OLD"

168 END

7.5 DSAVE

Format: DSAVE filename [,Dnumber] [,Uaddress]

Arguments: filename is the name of the file which is to be
stored by DSAVE. The name can be given directly or
can be in a text variable. If it is given directly,
it must be enclosed within inverted commas; if a
text variable is given, it must be in brackets.

Default number = 0

address = 8
Abbreviation: ds

The command DS\VE is used to store programs on a disk. DSAVE can
also be used within a program. It is often necessary to update
the program copy on the disk. If the new program version is to be
stored on disk under the same name, the o0ld disk file must first
be erased. To do this, the special sign "@" can be written at the
start of the data file name.

Example: DSAVE "@june"
By this command, the program is written from the memory to the

file "june". The old contents of data file "june" will therefore
be replaced. This is known as "save-with-replace”.

—_ 49 —

700 Reference Guide BASIC Commands

7.6 LIST

Format: LIST [from] [-] [to]

Arguments: from gives the line number of the first BASIC
statement to be listed.
to is the number of the last BASIC line to be
listed.
the '-' must be included if more than one line is to
be listed and from or to are specified.

Default: from = first line in BASIC program

to = last line of the BASIC program
Abbreviation: 11
The LIST command is used to display one or more program lines on
the screen. The command displays all lines between from and to
inclusive. If only one argument (from) is used, then only one
line is listed on the screen. If both are omitted, the whole
program will be listed on the screen.
Examples:
LIST 200 displays line 200 only.

LIST 20-50 displays ‘'lines 20 to 50

LIST - 75 displays all lines from start of program to line 75
LIST 309 displays all lines from 308 to program end.
LIST displays the whole program

If the program is longer than 25 lines, the screen automatically
"scrolls" upwards. (Use C= to stop and CTRL to slow the scroll.,)

Program alterations are easily executed with the LIST command.

The program line to he altered is first displayed on the screen by
LIST. Then the cursor is used to reach the point which is to be
altered. The BASIC program text can now be altered. Afterwards,
by pressing the RETURN key, the computer makes this alteration in
its program memory.

The program is only changed in the memory and not on any copies

which may be on disk. 1If the alteration is also to be carried out
on disk or cassette, the program must be stored again with DSAVE.

— 50—

700 Reference Guide BASIC Commands

7.7 NEW
Format: NEW
Abbreviation: None

The NEW command is used to erase a BASIC program and all its data
from the memory of the computer.

It will not affect the disk. The NEW command can also be used
within a program to erase the program after processing.

7.8 RUN

Format: RUN flinenumber]

Arguments: Linenumber is the number of the line where the
program is to start.

Default: linenumber = first line of the BASIC program

Abbreviation: rU

The RUN command starts a BASIC program which is in the program
memory.

All variables are first cleared and then program control moves to
the program line whose number is given in the linenumber argument.
If this argument is not given, the run starts with the first line
of the program.

When a linenumber has been given, but the line does not exist in
the BASIC program, the error message:

?UNDEFINED STATEMENT
appears on the screen.
The RUN command can also be used within the program itself. It

must, however, be noted that all variables will be cleared before
the new start.

— 5 —

700 Reference Guide BASIC Statements

CHAPTER 8

BASIC STATEMENTS

BASIC statements alter data, variables, memory and the program
flow.

BASIC statements may be divided as follows:-

- Declarations/allocations
- Input/Output

- Program control

- Loop control

- Conditional branching

- Unconditional branching

Below is a summary of all BASIC statements which will be
individually described in this chapter. Special statements for
the floppy disk such as HEADER, SCRATCH etc, are not dealt with
here and are explained in the floppy disk manual.

52—

760 Reference Guide

BASIC Statements

Statement Type:-Declaration/ Input/ Program

Allocation output control

CLOSE

CLR

CMD

DATA

DEF FN

DIM

DISPOSE

END
FOR..TO..STEP
GET

GET#

GOSUB

GO TO, GOTO
IF...THEN...ELSE
IF...GOTO
INPUT
INPUT#
LET**

NEXT
ON...GOSUB
ON...GOTO
OPEN
POKE***
PRINT
PRINT#
PRINT USING
PRINT# USING
PUDEF

READ

REM

RESTORE
RESUME
RETURN

STOP

SYS

TRAP

WAIT

> >

X

X

R R R o >

— 53—

< X X X > XX

ol o]

2 D4 X DS DS X X

BASIC Statements

Branches Loop
Uncond. control

X
X
X
X
X
X
X
X

700 Reference Guide BASIC Statements

**LET is the key word for a value allocation., The word LET,
however, need not be used.

***pOKE is a special form of allocation which is described in
detail in a later chapter.

Most of the BASIC statements can be used in direct mode in a
similar manner to BASIC commands. If a BASIC statement without a
line number is given, it will be executed as soon as the RETURN
key is pressed.

Direct mode execution is useful, for example, to establish the
present value of a variable:-

?A%,X

Direct mode can also be used to operate the computer as a pocket
calculator:-

?(45.6%19.88)/(SQR(500)*0.85)

However, some BASIC statements such as GET, cannot be used in
direct mode. If an attempt to do so is made, the error message
?ILLEGAL DIRECT will appear.

Every BASIC statement to be used in the program mode must be in a
line which starts with a line number. If several statements are
placed on the same line, they are separated by colons (:). 1In
this case, the linenumber is only at the beginning of the line.

The format data in this chapter contain a line number parameter
which must always be given if the statements are to be used in the
program mode. Line numbers are integers in the range 9-63999.

8.1 BANK

Format: Line number BANK expression

Arguments: expression is a numerical expression or a variable
with a value between @ and 15.

Default: None: BANK by itself generates a syntax error.

Abbreviation: baN

—54__

700 Reference Guide BASIC Statements

The BANK command defines the memory bank with which some BASIC
statements and functions (such as PEEK, POKE, BSAVE) work. The
memory is divided into 16 banks each containing 64K. The BANK
command will define the bank which will be used by the CPU as data
area during a special indirect indexed memory call.

If a program is started with RUN, this is set at 15.
Example:

10 REM store the value 20 in address 1024 of bank 2
20 BANK 2
30 POKE 1024,20

8.2 BLOAD

Format: linenumber BLOAD filename
[, ON Bbanknumber] [,Poffset]

Arguments: filename is the name of the data file which is to
be loaded and can either be a text (in inverted
commas), or a text variable (in brackets).
Banknumber shows which memory bank the file is to
be loaded into.

Offset gives the start address for the load
within the bank.

Defaults: banknumber = 15 or the number of the last memory
bank selected by a BANK statement.
offset = address from which it was saved.

Abbreviation: bL

The BLOAD statement loads a binary file at any point in memory.
Each BLOAD statement can only load into a single memory BANK.
Several BLOAD statements must be combined to load information
which exceeds a bank boundary in memory (or the Machine Code
Monitor may be used). If the Banknumber argument is not given,
the information is loaded either into bank 15 or into the bank
selected by the last BANK statement. It must be remembered that
the addresses @ and 1 of each bank are reserved for system
purposes. Thus, no data should be loaded in these locations.
(The offset parameter should therefore always be larger than 1.)

Example:
100 BLOAD "SUBl",D@d,0N B2,Pl1024
The data file SUBl is loaded from drive @ into BANK 2 from 1024,

Afterwards, unlike the DLOAD command, the program continues with
the next BASIC command.

— 55 _

700 Reference Guide BASIC Statements

8.3 BSAVE

Format: linenumber BSAVE file name
[,ONBbanknumber] [,Pstartaddress] [TOPendaddress]

Arguments: filename is the name of the file which is to be
stored and can either be a text (in inverted
commas), or a text variable (in brackets).
banknumber shows from which memory bank the program
is to be stored.
startaddress: start address.
endaddress: end address.

Defaults: banknumber = 15 or the number of the last storage

bank selected by a BANK statement.
startaddress = 65535
endaddress = start address

Abbreviation: bS

The BSAVE statement stores binary files on to a disk from anywhere
in memory.

Each BSAVE statement can only store from one single memory BANK,
so several BSAVE statements must be combined in order to store
information which exceeds a bank boundary. If the bank number
parameter is not given, the information will be stored from the
bank selected by the last bank statement.

Example:
160 BSAVE"SUBL1l",D@,ON B2,Pl024TOP2048

The memory location 1024-2048 in Bank 2 is stored on drive 0 in
the datafile "subl".

8.4 CLOSE

Format: linenumber CLOSE channelnumber

Arguments: channelnumber = number of the Input/Output channel
which is to be closed,

Defaults: None.

Abbreviation: clo.
The CLOSE statement closes a channel previously opened by OPEN.
All data for this channel still in the memory is first transferred

to the peripheral. Thus, the channel is freed for further use by
an OPEN statement,

— 56 —

700 Reference Guide BASIC Statements

100 OPEN 6,4: REM 6 IS THE CHANNEL NUMBER
«++BASIC statements...

210 PRINT# 6,AS$,B%

e+ +BASIC statements...

550 CLOSE 6

Format: linenumber CLR
Abbreviation: cL

The CLR statement erases all variable values from the memory. The
individual actions are:-

- All numerical variables are returned to 9

- All text variables are erased

- All arrays are erased (any DIM statements are 'cleared')
- Memory pointers are reset.

- System STACK is cleared.

Therefore, care must be taken in a BASIC program to avoid any
errors by the misuse of the CLR statement. 1If, for example, the
CLR statement is used with a subprogram, the ensuing RETURN
command is no longer able to jump back from the sub to the main
orogram as the stack no longer contains a return address.

The CLR statement is useful to start a new program. (The
instructions RUN and NEW execute a CLR as part of their own
execution.)

8.6 CMD
Format: linenumber CMD channelnumber [,text]
Arguments: channelnumber is the number of a channel previously

opened for a peripheral by OPEN or DOPEN.

text is text (in inverted commas), a text variable
or numerical expression which is written to the
channel by the CMD statement.

Abbreviation: cM

By using this statement, the information which normally goes to
the screen is diverted to a predetermined channel. It can
therefore be used to list a program to the printer. Before the
CMD can be used, OPEN or DOPEN must first open a corresponding
channel. To end the CMD and restore standard output, the PRINT#
statement, followed by a CLOSE statement for the relevant channel
is used.

CMD statement sequence is as follows:~

— 57—

780 Reference Guide BASIC Statements

19 OPEN 6,4 :REM SET UP CHANNEL

20 CMD 6 :REM DIVERT DEFAULT OUTPUT FROM SCREEN TO CHANNEL 6
30 PRINT A;B;C;A$:PRINT B$:REM SEND DATA

40 PRINT#6 :REM 'UNLISTEN' CHANNEL 6

50 CLOSE 6 :REM CLOSE CHANNEL

By giving these statements in direct mode the values of A,B,C,AS
and B$ are printed instead of being displayed on the screen. By
using the CMD statement in a program, (as above) the total output
which normally would have appeared on the screen by the PRINT
statement can be diverted. (To the printer for example.)

8.7 DATA
Format: linenumber DATA constant [,constant,...,constant]
Arguments: constant is either a text or number which is to be

read by a READ statement,
Abbreviation: da

A data statement is not executable. It is used together with the
READ statement. There can be as many arguments on a DATA
statement as there is space for them in a single program line. 1If
more constants are needed than fit into a single DATA statement, a
new DATA line is begun until all are defined. Care must be taken
to place data in the order in which they are to be read.

RESTORE enables single DATA statements to be processed repeatedly
by READ. RESTORE is used to indicate which DATA line should be
used in the next READ statement. If text constants contain the
special characters (for example, comma or semicolon) the whole
text must be enclosed within inverted commas. Example:

10 DATA fred,janet,3,2.4,"a,b,c"
20 READ AS$,BS,xl,y,C$

30 READ A%,D$

40 PRINT AS$,BS$,xl;y

50 PRINT C$,A%,D$

60 DATA 4711,"this is a text"

Result:
fred janet 3 2.4
a,b,c 4711 this is a text

—58 —

700 Reference Guide BASIC Statements

8.8 DEF FN
Format: linenumber DEF FNname (argument) = expression

Arguments: name is a valid variable name which is used here as
function name
argument is a dummy variable which may later be used
to transfer a variable to the function when it is
used.
expression is the equation to calculate the desired
function.

Abbreviation: dE

This statement allows the user to define his own numerical
functions. The expression indicates how the function value is to
be calculated. When function is called, the dummy variable (used
in the definition) is replaced by the argument in the function
call. Example:

150 DEF FNAB (X)=X+Y
166 Y=1006.5

176 2=55.8

180 Q=FNAB(2)

196 PRINT Q

The result of this program is 156.3, the sum of Y and Z. The
parameter Z became the actual argument of this function in line
18d, despite the use of X as a dummy when the function was defined
in line 156. Functions can be used in an arithmetic expression
just like the built-in BASIC functions or variables. Integer
functions or text functions are not definable. All calculating
rules for real number evaluation must therefore also be used for
defined functions.

8.9 DIM

Format: linenumber DIM variable (index[,...,index])
[,variable (index[,...,index])]

Arguments: variable is a valid BASIC variable name for any
type of variable.
index is an expression or a variable which is used
as an integer to define the size of the array.

Defaults Nohe: Without DIM, DIM(1@) is assumed when the

array is first used.

Abbreviation: dI

—59

708 Reference Guide BASIC Statements

The DIM statement reserves memory space for arrays. The maximum
size of the arrays is determined by size and number of the
indices. All indices start at @ and end at the maximum value
given in the DIM statement - an index must not exceed 32767,
however. The number of indices depends on how many dimensions the
array should have. (A maximum of 255 indices may be specified,
though this is not really practicable.)

Example:

A(5) is an array with 6 elements (0,1,2,3,4,5)
B(120,9) - consists of 1210 elements (121*10)
Cc$(5,5,5) has 216 elements (6*6*6)

Care must be taken when dimensioning arrays not to exceed the
maximum available memory space for variables. During dimensioning
all array elements are set at @ or null. The following example
shows the application of the DIM statement:

16 DIM A(5),B%(2,3)

15 DIM C$(109)

20 DATA 0.0,1.1,2.2,3.3,4.4,
3“ DATA 0'1'2,3'4'5'6,7’8'9'
46 FOR I = @TOS

50 READ A(I)

60 NEXT I

76 FOR J = #TO2

8¢ FOR K = 6TO3

9¢ READ B%(J,K)

106 NEXT K:NEXT J

113 FOR L = OTOl1l00

120 CS$(L)="aaaa"

130 NEXT L

140 PRINT "ARRAY A CONTAINS:"
15¢ FOR I = 1TOS

168 PRINTI,A(I)

176 NEXT I

180 PRINT "ARRAY B% CONTAINS:"
190 FOR J = @TO2

200 FOR K = 0TO3

210 PRINTJ,K,B%(J,K)

220 NEXTK:NEXTJ

230 PRINT "ARRAY C$ CONTAINS:"
248 FOR I = @TOl00

258 PRINTI,CS ()

260 NEXT I

276 END

5.
10

5
e 11

— 60 —

700 Reference Guide BASIC Statements

8.10 DISPOSE
Format: linenumber DISPOSE [FOR/GOSUB]
Abbreviation: dis f0/diS gosS

DISPOSE is used, together with TRAP, for debugging (error
treatment) DISPOSE manipulates the BASIC stack. If the error has
occurred in a subprogram or in a FOR...NEXT loop and if the
program must continue outside the loop or subprogram after dealing
with the error, then information must be removed from the stack
which would have been processed by the NEXT statement or RETURN.
When the system stack has been corrected, the program can
continue. DISPOSE cannot be executed in direct mode. For
example:

A program is executing a FOR...NEXT loop. During this, a division
by @ occurs, which is trapped by the TRAP statememt:

10 TRAP 1000

e+ BASIC PROGRAM...

120 FOR I = 1TOl0¢@

130 A=I/B :REM error since b=0

140 NEXT I

150 PRINTA :END

1900 REM error treatment

.s.rror analysis...

11204 DISPOSE FOR:REM removes the loop from the STACK
1110 RESUME 150

8.11 END

Format: linenumber END

Abbreviation: eN

The END statement ends the current program. The content of all
variables is unaltered. READY appears on the screen. The program
may be restarted by CONT. END need not be given as the last
program statement. It can be omitted or taken at any point within

the program. END is not illegal in direct mode, but is rather
pointless.

— 61 —

700 Reference Guide BASIC Statements

8.12 FOR

Format: linenumber FOR variable = expressionl to expression2
[STEP expression3]

Arguments: variable is a real variable which is changed with
every loop run.
expressionl is a variable or an arithmetic
expression to preset the initial value of a
variable.
expression2 is a variable or an arithmetic
expression which ends the loop processing if the
variable exceeds this value.
expression3 is a variable or an arithmetic
expression which is added to the value of the
variable during every loop run.

Defaults: expression3=1

Abbreviation: fO

The FOR and associated NEXT statements define a program loop. The
loop variable initially assumes the value of expression 1l: all
statements belonging to this loop are processed as far as the NEXT
statement. When this is reached, the value of expression3 is
added, or (if no STEP parameter is given) 1, to the loop variable.
If expression3 is positive, the loop is ended as soon as the loop
variable value exceeds that of expression2. If expression3 is
negative, the loop is ended as soon as the loop variable value is
smaller than that of expression2. 1In all other cases, the
statements between FOR and NEXT are repeated with the new loop
variable. 1In any case all statements between FOR and NEXT are
executed at least once, because the test occurs at the end of the
loop. If expression3 is chosen, care must be taken not to produce
an endless program loop. If, for example, an 0 is given as value
for the step width after STEP, then this loop has no logical end.

For example:

16 FOR L = 1TO1l9
20 PRINT L,SQR(L)
30 NEXT

This example prints the square roots between 1 and 1@. If the
loop is to run in reverse sequence (from higher values for the
loop parameter to lower values) then a negative number must be
given for the step width. For example:

13 FOR I = 100TOl0 STEP -1

2@ PRINT I,3.14*I
3@ NEXT

62 —

788 Reference Guide BASIC Statements

FOR/NEXT loops may also be nested. The statements within a loop
may themselves define other loops. So, the loop variable of the
innermost variable runs first and the outermost loop's variable
runs last.

For example:

19 FOR I = @TO9
20 FOR J = 0TO9
3@ PRINT 1@*I+J

4¢ NEXT J,1

This small program example prints all numbers from @ to 99 in
increasing order of magnitude.

8.13 GET
Format: linenumberGETvariable
Arguments: variable is a numerical or text variable

Abbreviation: gE

The GET statement gets the next available character from the
keyboard buffer and gives it to the variable. Only a single
character is read. 1If there are several characters in the buffer,
the next character can be read only by a new GET statement. If
the keyboard buffer is empty, a numerical variable of @ or a null
text ("") is assigned to the variable. If a numerical variable is
used, the status variable ST must also be called to find out if a
@ has been put in via the keyboard or if the keyboard buffer was
empty, for in both cases the variable had a value ¢. The GET
statement must not be used in direct mode or the error message
?ILLEGAL DIRECT will appear. GET does not wait for a key to be
pressed but always transfers a value to the relevant variable.
INPUT may also be used to read data from the keyboard. GET can be
differentiated from INPUT in the following ways:-

- With GET, only a single text character is read from the
keyboard.

INPUT reads as many as are necessary to allocate values to all
variables in the INPUT statement. INPUT must therefore wait
till all variables have a value.

- GET never waits but always transfers a value to a variable
immediately, even if this value is @ or null,

GET may also be used in a program loop in order to make the
program wait at that point for a valid value. For example:

175 GET AS:IF AS=""THEN 175:REM waits for any key.

— 63—

790 Reference Guide BASIC Statements

8.14 GET#
Format: linenumber GET#channelnumber, variable
Arguments: channelnumber is the number of a previously OPENed

data input channel.
variable is a numerical or text variable

Abbreviation: None

The GET# statement reads a single character from a device. If the
device has no data prepared, then, as with GET, a numerical
variable receives a # and a text variable receives Null (""). The
data channel must previously have been opened by OPEN or DOPEN.

If not, the error message ?FILE NOT OPEN will appear. If an @ is
used as device number in the OPEN statement, the GET# statement
will function as GET with the keyboard. GET# also does not wait
for data; if more than one text character is to be read, it is
better to use INPUT#. INPUT# stops the program until all its
variables have a value. GET# must also not be used in direct
mode; otherwise the error message ?ILLEGAL DIRECT will appear.

When using GET#, the status variable ST should also be called to
recognise the logical end of a data file (END-OF-FILE). If one
tries to read from the end of a data file, GET will always
transfer the character carriage return (CHRS$(13)). The status
variable ST receives the value 64 at the end of the file. For
example:

The following example reads the contents from a floppy file
character by character and prints this on to the screen. The

information is read from the file in segments, each having 50
characters.

100 DOPEN#5, "Datafile"
1‘10 A$=ll "
115 FOR I=1 TO 5@

120 GET#5, BS

136 AS = AS + BS

140 REM "“check end of file"

150 IF BS = CHR $(13) AND ST=64 THEN GOTO 250
160 NEXT I

170 PRINT AS

184 GOTO 110

250 PRINT AS

263 PRINT "end of file reached"
278 DCLOSE#S

280 END

— 64—

700 Reference Guide BASIC Statements

‘8,15 GOSUB
Format: linenumberGOSUBlinenumber?2

Argument: linenumber2 is the first line of a subprogram which
should be called in by GOSUB

Abbreviation: goS

GOSUB jumps to a subprogram which begins at linenumber2. 1If the
subprogram executes the statement RETURN, the program jumps back
to the next statement after GOSUB.

A subprogram consists of a series of BASIC statements which are
terminated by RETURN. Such a subprogram can be called in from
various points in the BASIC program. By using GOSUB, the computer
"notes" where to return on the execution of RETURN. Such a
structure is useful if the same group of statements must be
executed at various points of the program. They are collected at
one point of the program and executed as a subprogram by using
GOSUB.

5 A =3

10 GOSUB 100
20 PRINT A

30 a =10

40 GOSUB 1400
59 PRINT A

60 END

16 A = A * 10
116 RETURN

Not only is memory space saved in this way, but also error
tracking is also made easier - this is because program parts which
appear at various points in the program would also have to be
corrected at those points. Subprograms represent an element of
structural programming.

Subprograms may be nested. If a subprogram is called in, the
return jump address in noted in an internal memory area - the
stack. If a subprogram is called but not left by the RETURN, the
return jump address remains stored in the stack. In this case,
the stack runs over and the error message ?0UT OF STACK appears.
It is theoretically possible to nest a total of 23 subprograms
together.

— 65—

700 Reference Guide BASIC Statements

8.16 GOTO or GO TO

Format: linenumber GOTO linenumber?2
or
linenumber GO TO linenumber2

Argument: linenumber2 is the linenumber of a BASIC statement
in your program.

Abbreviation: go0

The GOTO statement jumps to a BASIC statement at linenumber2. It
is thus possible to execute statements out of sequence. Either
GOTO or GO TO may be used. If the statement in line linenumber2 is
an executable statement, the program will continue with this
statement. If it is not, the program will continue with the first
of the executable statements after line linenumber2.

The line number must be in the GOTO statement. It is not possible
to use a variable or evaluate an expression in order to determine
linenumber2. For example:

This example shows how to jump to statements instead of executing
them in sequence. Note that the GOTO statements jump to statement
50 after the information is printed.

10 INPUT "ENTER A NUMBER";A:PRINT "THE NUMBER";
20 IF A < @ THEN GOTO 100

30 IF A = @ THEN GOTO 200

40 PRINT A;"IS LARGER THAN";

50 PRINT "ZERO":INPUT "AGAIN? (Y/N)";Y$

60 IF Y$ = "Y" THEN 10:ELSE END

106 PRINT A;"IS SMALLER THAN";

114 GOTO 54

200 PRINT "IS EQUAL TO";

218 GOTO 50

8.17 IF...GOTO

Format: linenumber IF expression GOTO linenumber2
Arguments: expression is any expression (arithmetic, string or
logic)

linenumber2 is the line number of a statement in
your program,

Abbreviation: None

The IF...GOTO statement decides, according to the condition in
expression, whether the program jumps to the statement in
linenumber2. Another form of this, the IF...THEN...ELSE statement
is described in Section 8.18. The total IF...GOTO statement must
occupy one program line, as all BASIC statements.

— 66 —

700 Reference Guide BASIC Statements

Expression can contain variables, text constants, numbers and
logical operators. More detailed information on the general
format of BASIC expressions can be found in Chapter 5. Here are
some examples of IF...GOTO statements:

IF A = B GOTO 500
IF (A < 50) AND .(X*Y > ,.765) GOTO 950

IF A$ = ""GOTO1l5@
IF LEN(S$) > 60 GOTO 1234
IF LEN(Z$) > 50 AND RIGHTS$(2$,1) = "R" GOTO 6540

If the conditions in expression do not comply, the statement
following the IF...GOTO statement will be executed. For example:

(In this example it is decided with IF...GOTO if the SQR (square
root) statement will be executed or not.)

10 1IF X < @ GOTO 2049

119 Y = SQR(X)

120 ...further BASIC statements

200 PRINT X; "MUST NOT BE SMALLER THAN ZERO"
216 ...further BASIC statements

8.18 1IF...THEN...ELSE

Format: linenumber IF expression THEN thenclause :ELSE
elseclause
Arguments: expression is an arithmetic expression thenclause

(elseclause) is a statement, a group of statements
or a line number

Abbreviation: None

The IF...THEN...ELSE statement checks the condition in expression.
Depending on the result, either the statement in the thenclause is
executed (if expression is "true") or (if expression is "false")
the statement in the elseclause is executed.

The checking in the IF...THEN...ELSE statement occurs in the
following way:

1. expression is recognised as true or false. If the conditions
in expression comply, then true is set and if they do not,
then false is set.

2. If expression is true, the thenclause is executed (the program
processing continues with this statement) and the elseclause
is ignored.

3. If expression is untrue, the thenclause is jumped and the
elseclause executed.

700 Reference Guide BASIC Statements

The line is processed from left to right in an IF...THEN...ELSE
execution. All statements following THEN and finishing either
with ELSE or at the end of the line, are regarded as the
thenclause. All statements which follow ELSE and finish with the
end of a line are regarded as the elseclause. Without ELSE, the
program processing will continue in the next line if expression is
untrue. ELSE and the elseclause must be in the same line as the
relevant IF...THEN statement. ELSE and elseclause cannot be used
without the IF..THEN statement. The thenclause or the elseclause
could look like this:

- Single BASIC statements:-

A =8B

NAMES (I) = INNAMES

X = SQR(Y*Z) + ATN(NEW VALUE)

INPUT"ENTER THE CORRECT VALUE";VALUE

- or a group of BASIC statements:-

A = B: X = R*3

N% = N% + 1:NAMES (I) = INNAMES

R = .5: A*B*C: GOTO 500

- or the line number of a BASIC statement in your program,

If an IF...THEN...ELSE statement is used, a colon must be placed
in front of ELSE. For example:

160 IF A = 150 THEN B = A:ELSE B = @

It is also possible to omit ELSE if it is not required. For
example:

160 IF A = B THEN A = .5*B

Further, THEN can be made ineffectual by placing only a colon
after THEN. If expression is true, no thenclause will be executed
and processing will continue in the next program line. If
expression is untrue, the elseclause will be executed. For
example:

100 IF A = B THEN: ELSE A = (B/.5)
The IF...THEN...ELSE statements may be nested within other
IF...THEN...ELSE statements in an elseclause. The

IF...THEN...ELSE without the ELSE can also be a thenclause.
Examples of nested IF...THEN...ELSE statements are:

— 68 —

700 Reference Guide BASIC Statements

IF A=B THEN X=0:IF A<B THEN X=-1:ELSE X=50
IF LEN(NS)=0 THEN 5@@:ELSE IF LEN (A$)>30 THEN N$=AS
IF X=Y THEN X=Y/2:ELSE IF.R<.99 THEN X=R:ELSE Y=R/S

The entire IF...THEN...ELSE statement, including the nested one,
must fit into the one program line, like all BASIC statements. A
line number may be in the thenclause or the elseclause. If this
is the case, the program jumps to the line with this line number
and continues processing at this point. For example:

IF X<@THEN 30: ELSE 500
IF NAMES$ = ""THEN 650: ELSE NAMES$ = NAMES$ + ADDS
IF I1%<95 THEN NAMES$(J) = AS$: ELSE 789

The IF...THEN...ELSE statement may also be used in direct mode.
Care must be taken that a given line number is available as jump
address. A line with this line number must previously be given,
together with a BASIC statement. If such lines are absent,

2UNDEFINED STATEMENT will appear.

If an IF statement is given in direct mode and causes a jump to a
program line, the processing continues in program mode from this
line on.

If a test on equality is executed in expression and the variables
are stored in real form, care must be taken because the computer
may not store an exact value. A small variation margin should
therefore be left. For example:

If one needs to check whether a real variable A is equal to 9.1, a
variation margin of 0.000001 is left so that the statement reads:
IF ABS(A-0.1)<=1.0E-6 THEN...:ELSE...

This test on equality of real variables ensures that the real
equality is tested with a defined deviation. The same sort of

test can cause problems if a STEP variable of non-INTEGER type is
being processed in a FOR statement. For example:

— 69 —

700 Reference Guide BASIC Statements

1) In this example it is shown how the square root of a positive
number is printed:

106 N$ = "THE VALUE MUST BE POSITIVE: REENTER"

114 P$ = "THE ROOT IS"

120 INPUT"ENTER A NUMBER";N

130 IF N<O THEN PRINT N$: GOTO 120: ELSE PRINT P$:SQR(N)
140 INPUT "ANOTHER NUMBER(Y/N)";Y$

156 1IF ¥$ = "Y" THEN 120:ELSE END

2) Here it is seen how a value is tested to determine whether it
is in the correct range:

100 IF(IK5@¢)OR(I>100) THEN 50@: ELSE R=I:X=I/2
119 REM VALUE IN CORRECT RANGE

120 . . Ll .

56@ REM VALUE OUTSIDE THE RANGE

516 L] L] . L]

8.19 INPOUT
Format: linenumber INPUT prompttext; variablelist

Arguments: prompttext is a text which is enclosed in inverted
commas (") or=s=taxtsesisble
variablelist is a list separated by commas of one or
more variables.,

Defaults: prompttext="", ie. Null,.
Abbreviation: None

The INPUT statement first writes prompttext with a question mark
at the end and then reads the values from the screen into the
variablelist. The program waits till enough values for the entire
variablelist have been given. INPUT statements enable information
from the user to be given via the screen to the program. INPUT
takes the first symbol as the start of a value. Values end with
carriage return or a comma. The INPUT statement functions in the
following manner:

1. Prompttext is written with question mark on the screen. 1If
there is no prompttext, only the question mark is printed.

2. The values are given to the screen and read into the
variablelist.

3. If more data are needed, 2 question marks appear on the screen
and the program waits until more data is entered.

4. The values are given in the order in which they appear in the
variable list.

5. If the RETURN key is pressed without input, the variable keeps
the value it had previously.

— 70 —

788 Reference Guide BASIC Statements

The variable names in the variable list can be any BASIC names,
including integer, real, text and array variables. The given type
of value must correspond with the type of variable in the variable
list. If the attempt is made to use INPUT in direct mode, the
error message ?ILLEGAL DIRECT appears. Commas are used in the
INPUT statement to separate values from each other if the
variablelist has more than one variable. When text variables are
given, inverted commas should only be used if the text to be input
contains commas, colons or semicolons. As many as 158 symbols
(corresponding to one logical line less space for the prompt) may
be entered. If more than one logical line is to be entered,
carriage return must be operated to indicate the end of the first
part of data. Then the computer "knows" that more is to follow
and 2 question marks immediately appear on the screen. Data input
can continue straight away. The 2 question marks stay on the
screen until all variables in the variablelist have received a
value. Care must be taken that integer variables do not have a
figure after the decimal point. If a number with a figure after
the decimal point is entered, it is simply ignored. Using INPUT:

INPUT "ENTER I,J";I%,J%

and entering the values:

1.23,45.6789

the variables will assume the following values:
I%=1, J%=45

The INPUT statement only transfers the entered value to the
corresponding variable if the two types correspond. The following
errors can occur:

- If values of the wrong type are entered (i.e. text characters
for numerical variables) the error message ?REDO FROM START
will appear.

- If too many values are entered (i.e. more than on the
variablelist) the excess values are ignored and the message
?EXTRA IGNORED appears.

Here it can be seen how an INPUT statement can be used without
prompttext:

14 INPUT I%,J0%
20 PRINT 1%,J%
RUN

? 123,456

123 456
READY

— 71 —

700 Reference Guide BASIC Statements

A further example of INPUT:

16 FOR I =1 TO 10

2¢ INPUT "ENTER NAME AND HOURS"; NAS(I),H(I)
3 T = T + H(I)

40 NEXT I

5¢ PRINT "NAME","HOURS"

60 FOR I = 1 TO 10

76 PRINT NAS(I),H(I)

80 NEXT I

9 PRINT "TOTAL HOURS = ";T:END

8.20 INPUT#
Format: linenumber INPUT# channelnumber, variablelist

Arguments: channelnumber is the logical number of the file
which is to be read. Channelnumber can be any
number between 1 and 255
variablelist is a list of variables, as in the
preceding section (8.19).

Abbreviation: iN

The INPUT# statement reads values from the logical file
channelnumber and uses them as the variables in variablelist. The
INPUT# functions just like INPUT with the difference that the
values are read from a file and not from the screen. The file
must be opened with OPEN (see 8.25) before using INPUT#. The
values to be read from the file must be in the same sequence as
the variables in the variablelist and are allocated to the
variables correspondingly. It must be ensured that the correct
variable type for the relevant variable is received. Leading
spaces are ignored by INPUT# if data are read from the file.
Numbers and texts must end with carriage return, line feed or a
comma. The INPUT# statement only allocates the entered value to
the variable when they are of the same type. If, for example, a
numerical variable receives a text value, the error message ?FILE
DATA ERROR appears. For example:

Here it can be seen how a file is opened to a disk drive and how
data are read in with INPUT#:

5 A=1:B=2:C=3

10 OPEN 1,8,2, "MY DISK FILE"

2@ PRINT "THE DISK FILE IS OPEN"
3¢ INPUT# 1,A,B,C

40 CLOSEl : PRINT A,B,C

50 END

72—

700 Reference Guide BASIC Statements

8.21 LET
Format: {linenumber] [LET] variable = expression
Arguments: variable is any BASIC variable name

expression is a BASIC statement of the same type
Abbreviation: [1E]
The LET statement allocates the value of expression to the
variable. LET is an allocation statement or value allocator. LET
is not obligatory and is normally omitted. LET A=B is the same as
A=B,

LET can be used with any numerical, text or array variable, or
internal or self-defining function. For example:

LET B=1 Sets B equal to 1

LET X=SQR(Y*2/2) 1Is the same as X=SQR(Y*Z/2)

8.22 NEXT
Format: linenumber NEXT ([variable [,...,variable]]
Arguments: variable is the variable which was determined in

the relevant FOR statement
Abbreviation: nE

The NEXT statement is at the end of a FOR loop. (More details on
FOR loops can be found in 8.12.)

Example of a FOR loop:

166 FOR I =1 TO 3
e+ +BASIC statements
200 NEXTI

The NEXT statement in line 200 closes the FOR loop which began in
line 100.

If NEXT is used without the variable parameter, NEXT will affect
the FOR loops which immediately preceded it. 1If FOR loops are
nested then:

10 FOR I =1 TO 10

119 FOR J = 34 TO 50
«++«BASIC statements

200 NEXT

213 NEXT

—73__

700 Reference Guide BASIC Statements

The NEXT statement in line 200 affects the FOR loop which begins
in line 110 (i.e. the one immediately preceding) and the NEXT
statement in line 210 affects the FOR loop beginning in line 1040.

If the parameter variable is given in NEXT when using nested FOR
loops and the FOR loop in question is not the one immediately
preceding, then the FOR loops are processed erroneously. The NEXT
statement then works on the FOR loop with the parameter mentioned.
The FOR loop immediately preceding with a different step parameter
is aborted.

Several parameter variables can be determined if it is necessary
to terminate several FOR loops in the same line. The above
example could also appear:

16 FOR I =1 TO 10
114 FOR J = 34 TO 50

«eee BASIC statements ...
200 NEXT J,1

This NEXT in line 2006 first closes the FOR loop with parameter J

and then with parameter I. Up to 10 FOR loops may be terminated

by a single NEXT statement. If NEXT is used without the relevant
FOR statement, the error message

?NEXT WITHOUT FOR appears.

Care must be taken when nesting FOR loops that the NEXT statement
corresponds to the correct (the one immediately preceding) FOR
loop. If the NEXT statement is omitted, all BASIC statements are
executed to the end of the program., For example:

1) Here, several numbers are printed using FOR loops. There are
two NEXT statements, one for each loop:

106 FOR I = 1 TO 2

119 FOR J = 2 TO 3

12¢ PRINT "I"™ I "J" J

130 NEXT J

146 NEXT I ‘
RUN

S R B

1 1 J 3

I 2 3 2

I 2 J 3 .
READY

2) The same FOR loops are used but one NEXT statement with two
parameters is used to close:

166 FOR I = 1 TO 2
119 FOR J = 2 TO 3
120 PRINT "I"™ I "J" J
136 NEXT J,I

— 74—

700 Reference Guide BASIC Statements

3) It can be seen here which errors are produced by this program
if the NEXT statement refers to the false FOR loop:

166 FOR I =1 TO 2
114 FOR J = 2 TO 3
120 PRINT "I"™ I "J" J
130 NEXT I

RUN

I 1 J 2
I 2 J 2
READY

8.23 ON...GOSUB
Format: linenumber ON expression GOSUB linelist

Arguments: expression is an arithmetic expression
linelist is a list of line numbers of one or more
subprograms. The line numbers must be separated by
commas.

Abbreviation: None

The ON...GOSUB statement tests the value in expression and calls
in one of the subprograms whose line numbers are in the linelist.
The jump to subprogram with GOSUB is described in Chapter 8.15.

This is how the ON...GOSUB statement functions:-

1. Expression is checked first. If the value is not integer, it
is treated as one by ignoring the figures after the comma.

2, After this, there is a jump to a subprogram from linelist. 1If
expression is equal to 1 the jump will be to the first line
number in the linelist. If the expression is equal to 2, to
the second line number, etc.

3. If expression is @ or longer than the number of line numbers
in the linelist, the statement following the ON...GOSUB
statement will be executed. 1In this case, no subprogram is
processed.

4, After processing the subprogram, the statement following the
ON...GOSUB w}ll be executed.

Each line number in the linelist must be one in the program which
initiates a subprogram. Otherwise the error message ?UNDEFINED
STATEMENT appears. The value in expression must be larger than or
equal to #. 1If expression is a negative value, the error message
?ILLEGAL QUANTITY appears. The ON...GOSUB statement is a very
important aid to the structured construction of many programs.

— 75—

708 Reference Guide BASIC Statements

8.24 ON...GOTO
Format: line number ON expression GOTO linelist

Arguments: expression is an arithmetic expression.
linelist is a list of line numbers of statements in
the program. The line numbers must be separated by
commas.

Abbreviation: None

The ON...GOTO statement checks the value in expression and jumps
to one of the line numbers from linelist., More information on
line jumps is to be found in Section 8.16, in connection with the
GOTO statement.

ON...GOTO functions in the following way:

1. expression is checked first. If the value is not an integer
it will be treated as one by ignoring the figures after the
comma.

2. After checking the value in expression, a jump is made to a
statement with a line number from linelist. If expression is
equal to 1, the jump will be to the first line number in the
list and if expression is equal to 2, to the second line
number, etc.

3. If expression is equal to @ or larger than the number of line
numbers in linelist, the statement following ON...GOTO will be
executed. In this case, no jump occurs.

Every line number in linelist must be a line number found in the
program. Otherwise the error message ?UNDEFINED STATEMENT
appears.

The value in expression must be larger than or equal to @. If it
is a negative value, the error message ?ILLEGAL QUANTITY appears.

Ensure that an integer variable is allocated to the value in
expression. If another value is given, the figures after the
decimal point are simply ignored. (i.e. If value 2.345 is
entered, the computer stores value 2 and the 2nd line in the
linelist is used.) For example:

—76 —

700 Reference Guide BASIC Statements

10 INPUT "ENTER A NUMBER";X

29 IF X<@ THEN GOTO 500

30 ON X GOTO 100,200,300

40 PRINT "YOUR NUMBER WAS ZERO OR LARGER THAN THREE"
5@ INPUT "AGAIN?(Y/N)";¥Y$

60 IF Y$ = "Y" THEN GOTO 1l0:ELSE STOP

10@ PRINT "YOUR NUMBER WAS EQUAL TO ONE"
116 GOTO 54

200 PRINT "YOUR NUMBER WAS EQUAL TO TwO"
214 GOTO 50

300 PRINT "YOUR NUMBER WAS EQUAL TO THREE"
316 GOTO 50

509 PRINT "YOUR NUMBER WAS NEGATIVE"

514 GOTO 50

600 END

8.25 OPEN

Format: linenumber OPEN channelnumber, devicenumber
Esecondaryaddresg,[filenam{]

Arguments: channelnumber is the logical number which is
allocated to the file. It can be any number between
1 and 255.

devicenumber is the number of the device. It may be
any number between @ and 255, depending on the
devices connected. (Normally only @ to 15 are
valid.)

secondaryaddress is a number which is sent to the
device.

filename is the name of the file and may include
special characters.

Abbreviation: oP

The OPEN statement, coordinates a I/0 channel to an external
device such as a disk drive or printer. The OPEN statement must
be used to achieve a connection between a file and a device and
between a device and channel number before using a GET#, INPUT#,
or PRINT# statement on a device or file.

— 77 —

700 Reference Guide BASIC Statements

The channelnumber is also called logical file number and must
always be given in the GET#, INPUT# and PRINT# statements. If,
for example, a file is to be opened to the printer with /channel
number 6, then all corresponding PRINT# statements must be written
as PRINT#6... Devicenumbers are primary addresses of systems to
which special devices are allocated.

The secondaryaddress parameter can be determined according to the
following Table:

OPEN Commands : secondary addresses

Device Secondaryaddress Effect
Disk 1-14 Opens a data channel
15 Opens a command channel
Keyboard 1-255 None
Screen 1-255 None
Printer 1-255 See Printer handbooks
RS232 1l or 129 Opens an output channel
2 or 130 Opens an input channel
3 or 131 Opens a bidirectional channel

The filename parameter is sent to the device upon opening. The
value given to this parameter depends on the device in question.
If a disk file is opened with the parameter secondaryaddress = 15,
control information can be transferred with filename. The RS232
interface is described in more detail in another section.

The various forms of OPEN statement must have been understood
before effectively using them with the GET#, INPUT# and PRINT#
statements.

Examples:

OPEN 1,0 Opens the keyboard as channel 1

OPEN 6,4,0 Opens a logical channel 6 to the
printer

OPEN 7,4,7 Opens another channel to the printer.

OPEN 11,8,1,"DISKDATA,S,W" Opens logical channel 11 to disk drive
(device 8) to write a sequential file
called "DISKDATA".

78 —

700 Reference Guide BASIC Statements

8.26 POKE
Format: (linenumber) POKE address, value
Arguments: address is a memory location. This is an integer

between @ and 65535 (i.e. 16 bit)
value is an integer between ¢ and 255. (i.e. 8
bit.)

Abbreviation: pO

The POKE statement writes the value into the memory address in the
memory bank last selected by a BANK statement.

POKE does not check if the given address exists in the available
RAM, but puts the value on the bus and sends it to the address.
If the address is smaller than @ or larger than 65535, the error
message ?ILLEGAL QUANTITY appears.

s
Addresses and values must be integers. If a real variable is 0
used, the figures after the decimal point are ignored. For
example:

POKE 12345,23.56

The value 23,56 is ammended so that the statement actually
becomes:

POKE 12345, 23.

If text variables are entered for address or value, the error
message

?TYPE MISMATCH appears.

As each memory cell is only capable of taking one single memory
word byte, the value of a number must be between # and 255. If
the value is smaller than @ or larger than 255, the error message

?ILLEGAL QUANTITY is given.

The built-in PEEK function is often used with POKE to store data,
to reach assembler subprograms in the working memory, to give the
assembler information and to obtain results from the assembler
subprogram. You will find more information on this in later
sections.

—79 _

708 Reference Guide BASIC Statements

8.27 PRINT
Format: ({linenumber) PRINT printlist

Arguments: printlist is text, variable names, expressions or
functions.

Defaults: printlist = blank text, a line feed will occur.
Abbreviation: ? (question mark)

The PRINT statement writes the printlist on the screen. The
question mark can be used instead of PRINT when entering BASIC
statements. If the program is then printed, PRINT appears for the
question mark in the list. For example:

PRINT A,B

PRINT "THE ANSWER IS" AS

PRINT EXP(Y*Z)+Y

PRINT SUBTTL% "THE VALUE IS ZERO"
PRINT A;B;

PRINT A,B

Strings in the printlist must be enclosed in inverted commas. The
PRINT statement decides where the values are to be printed on the
screen depending on the punctuation. BASIC divides each print
line into segments which can contain 16 characters. Tabulator
stops are used at every tenth position. Punctuation in the
printlist has the following influence on the PRINT statement:

- 1If two expressions on the printlist are separated by commas,
the 2nd expression is printed at the following tabulator stop,
i.e. in the following segment.

-~ If 2 expressions are separated by a semicolon, the 2nd
expression is printed directly after the first.

- One or more spaces between two expressions have the same effect
as a semicolon,.

- 1If there is a comma or semicolon after the last expression on
the printlist, the next PRINT statement prints its printlist
after the first. The distances are determined by punctuation
symbols., With no comma or semicolon at the end, the next PRINT
statement starts a new line,

If the print line is longer than a screen line, PRINT will write
the remaining values in the next screen line.

The expressions are printed as follows:

- One position is always jumped after numbers,

~ A space is always in front of a positive number and a minus
sign before a negative number.

- Numbers with more than 19 places and numbers between @ and 6.01
are always printed in exponential notation.

7003 Reference Guide BASIC Statements

The Series 700 computers have an enlarged PRINT USING statement
with which formatted lines can be printed. Special print formats
are then possible.

The PRINT statement can print many special characters in addition
to the text characters and numbers. The following section shows
how to enter these special characters.

Quotes mode:

After using the quotes key (") the computer is in quotes mode.
Number and letter keys are unchanged, but all other keys, such as
the cursor, write their ASCII character in the printlist instead
of executing the given cursor function directly. Different
control information can be written into the print list in this
way.

To leave the quotes mode, the escape key must be used (ESC), or "
again. All keys then revert to normal use again.

The DEL key is not affected by the quotes mode. The following
control information may be transferred in the quotes mode:

- Cursor movement and other special characters
- Reverse characters.

The INS key can also be used to produce spaces in the printlist.
Cursor control in quotes mode

Every cursor movement key can be used in quotes mode. The control
possibilities are listed individually in the appendices.

Output of inverted characters (reverse)

Inverted characters appear on the screen as dark on light
background instead of light on dark. 1Inverse characters are
entered in quotes mode after pressing the RVS key. Firstly an
inverted r (for reverse) appears which indicates the start of the
inverted characters. This letter is not printed during execution
of the PRINT statement but serves only as a marker. Any character
may now be entered. They will appear on output as inverted
characters. If the text with inverted characters is finished,
pressing the key OFF will return it to normal. At the end of this
text there will be an inverted R as marker. The return key can
also be used to end the printing of inverted characters. After a
PRINT statement with inverted characters, the computer
automatically returns to normal presentation. If, however, there
is a comma or semicolon at the end of the statement, the inverse
presentation is maintained and the characters of the next PRINT
(which will be printed in the same line) will also appear in
inverse form. For example:)

To obtain HALLO in reverse form, enter:
PRINT "RVS HALLO OFF"

—81 —

700 Reference Guide BASIC Statements

8.28 PRINT#
Format: [linenumber] PRINT# channelnumber, printlist

Arguments: channelnumber is the logical number of the file
which was priviously opened by OPEN or DOPEN.
printlist is a text, variable names, expression,
or function.

Abbreviation: pR (Attention: not ?#)

The PRINT# statement writes the printlist in the file defined by
channelnumber. If the file referred to by channelnumber has not
previously been correctly opened, the error message ?FILE NOT OPEN
appears.

The PRINT# statement functions just like PRINT, with the
difference that in this case a file with the relevant
channelnumber is used. The data are transferred in the same
manner as in the PRINT statement:

-~ As for PRINT, values separated by commas are divided into
segments which are 10 characters long (padded with spaces).

- Values separated by a semicolon or spaces are printed
consecutively.

- A carriage return is automatically written as the last
character of the file line if no comma or semicolon is on the
printlist as last character.

INPUT statements read from file data which have been written with
PRINT#. Text variables should always be within inverted commas
and numbers separated by commas. For example:

10 OPEN 1,8,1, "MY DISKFILE,S,W"
30 C$8 = CHRS (44)

40 «ssSOmMe BASIC statements

200 PRINT# 1,A,CS$,B,CS,D

210 PRINT# 1, "NAME"

229 PRINT# 1,1,CS,2,CS,3.

233 END

82

700 Reference Guide BASIC Statements

8.29 PRINT USING and PRINT# USING

Format: {linenumber] PRINT [#channelnumber,] USING formatlist
printlist;
Arguments: channelnumber is the logical number of a file

previously opened by OPEN

formatlist defines the format of the expressions
in printlist,

printlist is a list of expressions to be printed
separately by commas.

Abbrev1at10ns:{E:or:pR\gﬂgsI

-~
A formatlist can be defined with PRINT USING which determines the
form of the data in the printlist. PRINT USING uses the screen
and PRINT# USING uses a file, in the same manner as PRINT and
PRINT#. The PRINT (#) USING statement is in principle a PRINT (#)
statement with explicitly defined data formatting. PRINT (#)
however, writes the data in standard format (as described
earlier).

These are the main differences between PRINT (#) and PRINT (#)
USING: -

TAB and SPC functions cannot be used in the print list of
PRINT (#) USING

- Semicolons between expressions in the printlist cannot be used
in PRINT (#) USING

- Semicolons may only be used as termination of the printlist as
for PRINT (#)

- The expressions from printlist of the PRINT(#) USING statement
are separated by commas. They have no influence, however, on
the format, as in PRINT(#).

The USING clause consists of USING and the Formatlist. The
Formatlist consists of one or more 'format arrays'.

A 'format array' has format characters from the following table.
If characters other than these are used, they will appear in the
print itself; they have no formatting function. The legibility of
the output is thus increased. An expression from the printlist is
described with every format array. If there are more expressions
in the printlist than the formatlist, the formatlist is re-used as
often as necessary.

— 83—

709 Reference Guide BASIC Statements

Formatting characters

Character

Hash
sign(#)

Plus (+)
and
minus (-)

Decimal
point(.)

Comma (,)

Dollar
sign($)

Four
arrows
(1111)

Equals
sign (=)

Larger
than (>)

Meaning

Each hash sign in a format array reserves space
for one character. Each format array must have
at least one hash sign.

Plus and minus can either be the first or last
position of the format array. The operational
sign of the number is printed at the given point.

The decimal point of a number is determined by
THIS. Only one decimal point per format array.
THIS SIGN can be altered with a PUDEF statement.

With a comma in a number, longer numbers are more
easily read. This character can be altered with a
PUDEF statement.,

A §$ is printed in front of the first valid digit
of a number. This character may be altered with a
PUDEF.

If a format array ends with or contains four
arrows which are in turn followed by a plus or
minus sign, the number is printed in Exponential
format.

Texts are normally printed on the left. They are
centred by using the equals character.

Using this sign, the texts will appear on the
right.

The characters in the format array belong to number or text
variables as can be seen from the following table. Text format
symbols in format arrays can be taken for number expressions and

vice versa.

I1f format symbols are mixed, however, they will be

interpreted as hash signs(#) and will lose their special
formatting function.

— 84 —

700 Reference Guide BASIC Statements

Format character types
Character Number formatting Text formatting

Hash sign (#)

Plus (+)

Minus (=)

Decimal point (.)
Comma (,)

Dollar ($)

Four arrows (T1T11)
Equals sign (=) X
Larger than (>) X

X

R

The hash sign is used for text and numerical variables. 1If also
reserves space for a character in the output array. If the data
expression has more space than prepared by the #, then the
following occurs:

In a number variable: The entire array is filled with
asterisks (*) and no number is printed.

In a text expression: All prepared spaces are occupied, excess
data is ignored.

If an array is to be produced which has a maximum of 7 characters,
the following PRINT USING instruction is entered:

PRINT USING "#######"; NAMES

If NAMES has more than 7 characters, the eighth and all subsequent
characters will be ignored.

To print a number with a maximum of 4 places, we use:-

PRINT USING "####";A With this formatting statement the program
prints:

A=12.34 12
A=567.89 568
A=123456 dekkk

The plus and minus characters can either be printed first or last
in the format array. The plus prints a plus sign and the minus a
minus sign.

If a minus sign is entered and the number is positive, a space is
printed.

If more text variables are available than are defined in the

format array, then the characters appearing on the right which are
superfluous are simply ignored.

— 85—

700 Reference Guide

Examples:
Array

+H#

#oH#+
e ##

#4.4-
+#4+
+hEL#-
LR L
Hh#d

¥.o#4
#é.
#.4.
4,44

##=<<

#S44
+H.41T11T

#1114+
#4111

33

#HE>H

AR 23

=hid4
$,54=+

Expression

1

-.@1

"‘ol

-l000

-4E-03

-340

cbm

cbm

cbm

cbm

cbm

Result

+51

ﬂ.@l—
-.10

1.0
ERROR
ERROR

-101

*kkk

-.00
10.
ERROR
-10

1000.0

Sl
+1.0E+00
3E+02-
ERROR

cbm g

b ¥ cbm

cbmﬂﬁ

,%cbmﬁ
;Bb(cbmﬁ

BASIC Statements

Comment

Blank between operational sign
and number

Leading @ added

Leading @ suppressed by minus
sign

Trailing @ added

Two plus signs

Plus and minus signs

Rounded to a total 4 characters

Overflow, as 5 characters do
not fit into array

Rounded to a total 4 characters
Decimal point added

Two decimal points

Minus has priority over comma

= and < are treated as #, since
they are in number array

Preceding §$ character
Expression in exponential format
Trailing sign

Only three arrows

Text expression printed on the
left

Text expression printed on the
right in a S5-character array

On the left in a 5-character
array

Centred in a 5-character array
Only the = has a control effect
The other characters are
treated as #

— 86 —

708 Reference Guide BASIC Statements

8.30 PUDEF
Format: linenumber PUDEF controlstring

Arguments: controlstring consists of 1-4 characters which are
enclosed in inverted commas, or a text variable
which contains 1-4 characters.

Abbreviation: pU

The PUDEF defines the symbols of a PRINT USING statement so that,
for example, instead of a space, a question mark is printed. Each
of the positions in the controlstring represents a certain symbol
from the PRINT USING statement which can be altered.

The positions correspond to the following symbols: ((té iﬁ\u
) (4

-~ Position 1 is the fill character. Default is space.

- Position 2 is the comma, with comma default.

- Position 3 is the decimal point, with the decimal point as
default.

- The currency character is at position 4. Default is §.

PUDEF only alters the character if a PRINT USING is used for
output.

PRINT outputs are not influenced by PUDEF.

The format array of PRINT USING is not changed at all. The
symbols in the format array are not changed if the PUDEF statement
is used.

To change the symbols with the PUDEF statement, the required
characters must be used in the corresponding positions of the
controlstring. If the space should be replaced by a question
mark, for instance, then this PUDEF statement should be entered:

PUDEF "2"

Now every space will be replaced by a question mark at printout.
So the expression:

" 12.3"

is printed as "??2212.3"

If fewer than four characters are in the controlstring, the
remaining symbols receive their default values. If more than four

characters have been entered, the superfluous symbols are ignored.
For example:

— 87 —

700 Reference Guide BASIC Statements

1) The comma and decimal point characters of a PRINT USING
statement are to be exchanged:

16 PUDEF " .,"
20 PRINT USING "###,##%,###.44#";-1234.567
RUN

-1.234,57
READY

2) Asterisks (*) are to be printed for every space. In tnis
example, two possibilities are offered.

10 PUDEF "*"
20 DATA 1.50, 2583.1, 3456789.55, .25

30 F1$ = "S##, 444,444 . 44" :REM LEADING SIGN
40 F2S = "§S#,#4#4,4#4. 44" :REM FLOATING SIGN
5S¢ FOR I =1 TO 4

64 READ A

70 PRINT USING F1$; A

80 NEXT I

90 RESTORE

106 FOR I =1 TO 4

110 READ A

120 PRINT USING F2$;A
130 NEXT I
kkkkkxkkkx] 5
Ga**k*x3,583.10
$%*3,456,789.55

Skhkkxkrkhg 25
kkkkkkkxk3] 50

*rxkkkG2,583.10
*$3,456,789.55
*********sg.zs
READY
8.31 READ
Format: (linenumber) READ variablelist
Arguments: variablelist is a list of variable names, separated

by commas.
Abbreviation: rE

The READ statement refers to one or more DATA statements and these
data are allocated to the variables in the variablelist.

READ and DATA statements are often used to obtain initial values
in a program.

Variablelist can contain any numerical, text or array variable
names.

88—

700 Reference Guide BASIC Statements

A READ statement can receive values from several DATA statements
and different READ statements can use the same DATA statement.
The data are read from the DATA statement in sequence and
allocated to the variables on the variablelist. A READ statement
does not have to read all values from the DATA statement. 1If it
is not done, the next READ statement continues the processing of
the DATA statement at the point where the first stopped. If more
values are to be read than are in the DATA statements, the error
message ?0UT OF DATA appears. If there are more data in the DATA
statement than are read by the READ statement, the extra data are
ignored. 1If the value allocated to a variable in this manner does
not correspond to the variable type, the error message ?SYNTAX
ERROR appears (referring to the dataline).

DATA statements as all BASIC statements, have a line number.
Using RESTORE, data from a DATA statement can be reused. For
example:

1) Here it can be seen how values can be read from different DATA
statments by using READ:

l¢ bpaTA 1.0,2.5,3.8,4.9,9.9
20 DATA 11.0,12.5,14.8

30 REM READ THE INITIAL VALUE
40 FOR I =1 TO 4

50 READ INIT(I)

60 NEXT I

76 READ PERCENT,IY,X

80 ...Rest of BASIC program

2) Here numerical and text variables are read with READ:

16 DATA 1.1,2.2,3, "TEXT ONE", "TEXT TWO"
20 DATA 4.4," TEXT THREE "5
36 READ X,Y,Z%,AS

48 PRINT X,Y,Z%,AS

56 READ BS,XYZ

60 PRINT BS,XYZ

70 READ C$.N$%

86 PRINT CS$,N%

90 END
RUN
1.1 2.2 3 TEXT ONE
TEXT TWO 4.4
TEXT THREE 5
READY
8.32 REM
Format: (linenumber) REM text
Arguments: text is any remark.

Abbreviation: None

— 89—

708 Reference Guide BASIC Statements

The REM statement is a non-executable statement in the program.
Any letters or characters can be in text. REM statements are
regarded as the last statement of the line and may also contain
colons which would otherwise mark the boundary of a statement.

REM statements are often used to write explanations into the
program so that the program is easier to understand, or to explain
the meaning of the variables. A possible correction to the
program is made easier also.

REM statements can also be the only statement on a line, for
example:

160 REM THIS PROGRAM WAS WRITTEN ON 7.9.84

When using capitals or graphic characters, the text must be
enclosed within inverted commas.

The line numbers of REM statements can be jump addresses of a GOTO
or GOSUB statement, but this is considered "bad programming".
Examples:

Many examples of the REM statement can be found in this handbook.
Some typical ones are:-

190 REM THIS PROGRAM WAS WRITTEN BY F.D.

25 REM THIS DATA STATEMENT CONTAINS INITIAL VALUES

30 REM FOR THE AREA IN QUESTION
190 X = SQR (2*T): REM CALCULATION OF THE SURFACE

8.33 RESTORE

Format: (linenumber) RESTORE [linenumber2]
Arguments: linenumber2 is the line number in the program
Defaults: linenumber2 is the line number of the first DATA

statement in the program
Abbreviation: reS

By using the RESTORE statement, the following READ statement reads
the value of the DATA statement in linenumber2. 1In Section 8.7
you will find more information on DATA statements and in 8.31 on
READ statements.

If a linenumber2 is given which is not in the program, the error
message ?UNDEFINED STATEMENT appears.

Linenumber2 need not be the line number of a DATA statement in the
program. In this case BASIC seeks the next DATA statement after
linenumber2.

—90—

700 Reference Guide BASIC Statements

READ statements normally read the values of DATA statements in
sequence. By using RESTORE, however, it is possible to let data
be read twice because the following READ statement begins with the
DATA statement which is in linenumber2., For example:

1) 10 RESTORE The first DATA statement of the program is read.

2) 100 RESTORE 50 Then the DATA statement in line 50 (or the one
following line 50) is read.

3) In the following example, the DATA statement in line 20 is
re-read:-

10 DATA 1,2,3,4
20 DATA 5,6,7,8
30 FORL =1 TO 8
40 READ A:PRINT A

50 NEXT L

60 RESTORE 20

70 FOR I =1 TO 4
840 READ A:PRINT A
90 NEXT I

160 END

RUN

1

2
3
4
5
6
7
8
5
6
7
8
R

EADY

8.34 RESUME

Format: linenumber RESUME [NEXT (linenumber2)]

Arguments: linenumber2 is the line number of a BASIC program
statement

Defaults: linenumber2 is the line number which caused the
error

Abbreviation: resU

The RESUME statement functions in error trapping by continuing
processing the program after the error has been found and
processed with a subprogram. The TRAP statement described in 8.38
traps the errors.

—91 —

70¢ Reference Guide BASIC Statements

If RESUME is used without NEXT or linenumber2, the program
processing recommences at the statement where the error occurred.
If the error occurs in a line with several statements, only the
statement with the error will be repeated.

If the NEXT parameter is given in the RESUME statement, the
processing will continue with the statement which follows the
error. If there are more statements on one line, the processing
will continue with the next statement in the same line.

If linenumber2 is given, the program processing will continue on
that line.

The RESUME statement may not be used in direct mode. If this is
done, then the error message ?ILLEGAL DIRECT will appear. Error
trapping will stop when an error has occurred. RESUME switches
the error trapping on again and uses the error parameters ER
(error number) and EL (error line).

If you try to use a RESUME statement without the preceding TRAP
statement, the error message ?UNABLE TO RESUME appears. For
example:-

It can be seen here how an error is found and how to use RESUME,
depending on the type of error. 1If there is an OUT OF DATA error
(ER = 23) after line 500, the data in DATA statement 85 should be
RESTOREdA. 1In every other error, the program should be stopped.

19 REM IF THERE IS AN OUT OF DATA ERROR AFTER LINE 5040
29 REM THE DATA MUST BE RESTORED

39 REM WITH A RESTORE 85

40 ese BASIC statements

80 DATA ...

85 DATA ...

90 DATA ...

160 TRAP 900

119 ... BASIC statements

600 READ A,B,C,D,E: REM HERE IS AN OUT OF DATA
61l ... BASIC statements

903 REM START OF ERROR TREATMENT

914 REM ONLY THE OUT OF DATA ERROR (ER = 23) AFTER LINE 500
9230 REM SHOULD BE TREATED. IN EVERY OTHER ERROR
939 REM THE PROGRAM PROCESSING SHOULD BE STOPPED
9440 IF (ER <> 23) OR (EL < 500) THEN STOP

950 REM THERE IS AN OUT OF DATA AFTER LINE 500
955 REM ERROR OCCURRED

960 RESTORE 85

973 RESUME

980 END

92 __

708 Reference Guide BASIC Statements

8.35 RETURN
Format: (linenumber) RETURN
Abbreviation: reT

The RETURN statement is the last statement of a subprogram and
activates the jump to the statement following the GOSUB call.
More detail on the GOSUB is to be found in Section 8.15.

Sub-program statements can be anywhere in the BASIC program. If
the subprogram is placed at the end of a program, the final END
can be put in front of the start of the subprogram so that the
subprogram cannot in any circumstances be executed without the
GOSUB statement. If a program finds a RETURN without a preceding
GOSUB, there is the error message ?RETURN WITHOUT GOSUB. For
example:-

10 PRINT "PROGRAM START"

20 PRINT "CALL UP FIRST SUBPROGRAM"

30 GOSUB 2090

49 PRINT "CALL UP SECOND SUBPROGRAM"

5@ GOSUB 3049

60 PRINT "COMPLETED"

70 END

200 REM THIS IS THE FIRST SUBPROGRAM

219 PRINT "IN THE FIRST SUBPROGRAM"

220 RETURN

300 REM THIS IS THE SECOND SUBPROGRAM

316 REM THIS SUBPROGRAM CALLS A THIRD SUBPROGRAM
320 PRINT "IN THE SECOND SUBPROGRAM; A THIRD IS CALLED"
330 GOSUB 400

34 RETURN

400 REM THIS IS THE THIRD SUBPROGRAM

410 PRINT "IN THE THIRD SUBPROGRAM"

420 RETURN

8.36 STOP

Format: (linenumber) STOP

Abbreviation: sT (not to be confused with the reserved word ST)
The STOP statement ends program processing and returns to direct
mode. The STOP statement does not close files. Processing can
continue with CONT after having been stopped by STOP.

STOP statements can be anywhere in the program. The program is
purposely interrupted and statements can be given in direct mode

in order to change or examine variables, for example. Processing
can resume with CONT. For example:-

—93_

700 Reference Guide BASIC Statements

20 INPUT "ENTER A NUMBER";X

30 Y = SQR(ABS (X))

490 Y = Y*X

5@ X = X/100

60 IF (Y < 1.0E<040) OR (Y > 1.0E+20) THEN STOP
70 PRINT "THE ACTUAL VALUES ARE",X,Y:END

8.37 SYS
Format: (linenumber) SYS address
Arguments: address is the address of a machine code program.

It can be either a variable or the address itself.
Abbreviation: sY

SYS statements permit BASIC to be mixed with machine code in a
single program.

SYS statements can be used in direct and program mode. They are
often used to call up subroutines of the operating system in Bank
15.

Address is the address of the start of the machine code program in
the memory. Address can be:

1) The name of a variable which has this value, for example:
100 MYSUB = 30200
120 SYS MYSUB

2) The address of the machine code program itself, for example:

110 SYS 49057

The machine code must be in the memory if it is to be called up by
SYS or the program may crash without a error message.

— 94—

780 Reference Guide BASIC Statements

8.38 TRAP
Format: [linenumber TRAP linenumber2]
Arguments: linenumber2 is the linenumber of the first statement

of the error treatment routine.
Abbreviation: tR

The TRAP statement uses BASIC to suspend the normal error
treatment and activates the program to carry out its own
treatment. Details on the increased possiblities for debugging
are in Section 5.3.2. The statement in linenumber2 is executed if
an error occurs. The statements for debugging should begin in
linenumber2. The program for error treatment (debugging) can
decide by using variables ER (error number) and EL (error line)
what should be done for any error which may occur.

When an error occurs, ER contains the number of the error and EL
the line number where it is to be found. Debugging of the ensuing
errors is left to BASIC in the absence of the parameter
linenumber2.

If TRAP is used in direct mode, error message ?ILLEGAL DIRECT
appears.

Other statements used by error treatment are RESUME and DISPOSE.
For example:

10 TRAP
20 REM PROGRAM START
30 «eee BASIC statements ...

900 REM SUB PROGRAM FOR ERROR TREATMENT

910 REM ONLY FILE AND DEVICE ERROR

920 REM ARE TREATED, AS THE ER IS BETWEEN 1 AND 9
930 IF (ER < 1) OR (ER > 9) THEN GOTO 1010

940 PRINT "YOU HAVE DIFFICULTY WITH A FILE"

950 cee
1916 REM HERE OTHER ERRORS ARE TREATED
1620 ...
800@¢ END

TRAP without linenumber2 restores normal BASIC error processing
(ie "resets" the trap).

— 95—

780 Reference Guide BASIC Statements

8.39 WAIT

Format: (linenumber) WAIT address, mask}], mask2

Arguments: Address is the address of a memory location
maskl and mask2 are integer values.

Defaults: mask2 = 0

Abbreviation: wA

The WAIT statement continually checks the values in address until
the condition described here is fulfilled. Then the next
statement is executed. The WAIT statement is used to let the
program pause whilst a certain value is being checked in the
memory. WAIT statements are not used often; don't worry therefore
if you don't understand everything immediately. Most programmers
will never use this statement since it is normally used .to survey
the condition of an input channel.

Maskl and mask2 are integer numbers and are compared with the
memory byte at the point address. 1i.e. a mask can be used
containing up to 8 ones or zeroes.

The WAIT statement functions as follows:

1. The values of address and mask2 are compared using the logical
operation "Exclusive OR", if mask2 is given.

2., The result of the comparison is compared with maskl using a
logical "AND". 1If there is no mask2, the value of address is
compared with maskl using a logical "AND".

3. If the result of steps 1 and 2 is @ (if all bits are "off")
the WAIT statement is repeated.

4, If the result is not @ (if one or more bits are "on") the next
BASIC statement is activated.

The two masks are used as follows:

- maskl filters out those bits which do not need to be checked.
A bit which is 9 in maskl will also produce a @ in the result.
- mask2 switches bits round so that an "on" and an "off"
condition can both be checked. A bit which needs to be checked
for @ must have a 1 at the corresponding point in mask2.

For example, if a program is to continue only if the far right
hand bit at point 62255 is "off", then a 104 WAIT 62255,1,1 is
used:

In this example, maskl has the value 00000001 and mask2 ¢0000d01.
The memory word at point 62255 has the value 145 (i.e. 100610001 in
binary) and indicates the condition of an in/output channel. You
must wait till the bit @ (outer right) is "off". Then the
following happens by using the WAIT statement:

—96 —

70@ Reference Guide BASIC Statements

1. The contents of 62255 is compared with an EOR to mask2:

62255 10010001
EOR

mask?2 00000001

Resultl 10010000

2., The result is compared with maskl by an AND:

Resultl 10010000
AND

maskl 0000001

Result2 00000000

3. The result is @, so WAIT is executed again.
4, At some point the outer right hand bit in 62255 will be 4@.

The WAIT statement reads the value in 62255. If the outer right
hand bit is "off"™ the value of 62255 will be 1001000¢. This value
is compared with mask2 in the first step of the WAIT statement.
This means:

62255 100106000
EOR

mask?2 30000001

Resultl 10010001

An AND comparison with maskl is executed again:

Resultl 10010001
AND

maskl d0000001

Result?2 00000001

Now the result is non-zero and the next statement after WAIT is
executed.

Mask2 is not needed if it is only required to check that a bit is
"on":

160 WAIT 62255, 1

No EOR is used during the execution of the statement. Mask2 is
given @, which does not alter a bit. The value of 62255 is
compared to maskl by AND. Assuming the value of 62255 is
(00010000), the following happens:

62255 00010000
AND

maskl go000001L

Result 00000000

—97 _

780 Reference Guide BASIC Statements

The result is @ which means that the outer right bit (checked
because of maskl) is #. WAIT is executed again and reads the
value 62255 once more. If the value is now 145 (l10010001), the
following procedure takes place:

62255 19010001
AND

maskl 00000001

Result Pog00gal

The result is non-zero, so that the statement following WAIT is
executed.

It can be seen in the next example how to check if bit 4 is "off"
or if bit 7 is "on". (Remember that mask2 is used to check if a
bit is "off".)

190 WAIT 36548,144,16
The value 65 (91000001) is in memory location 36548, Bits 7 and 4

are both "off". Only bits 6 and @ are "on". After carrying out
step 1, bit 4 is switched by:-

36548 01900001
EOR

mask?2 00010000

Resultl 31010001

Now the result is compared with maskl by AND:

Result 910100401
AND

maskl 10010000

Result?2 00010000

The result is non-zero and the next statement is executed. Bit 4
was "off". Although bit 7 was not "on", WAIT established that bit
4 was "off" and continued the processing of the program.

Take care:- An endless loop can be produced with the WAIT
statement.

WAIT cannot be interrupted using the STOP key!

— 98 —

700 Reference Guide BASIC Functions

CHAPTER 9

BASIC FUNCTIONS

ABS POS
ASC RIGHTS
ATN RND
CHRS SGN
Ccos SIN
ERRS SPC
EXP SQR
FRE ST
INSTR STRS
INT TAB
LEFTS$ TAN
LEN TIS
LOG USR
MIDS VAL
PEEK

The 700 series has a range of built-in functions incorporated in BASIC,
and these can be used without further definition. The function
parameter can be a number or a variable, (which can have a new value at
each function call,) and is always enclosed in brackets.

Built-in functions can be used in both direct and program modes.
- Any variable name can be allocated to the function, for example:-

ARCTG = ATN((X*Y*Z)+(R/2))
NUM = VAL (SS$)

- Functions of functions can be formed, as can expressions with
more than one function, for example:-

RESULT = SQR(A*A+B*B) + COS(Y/4.777)
ANSW = LOG (ABS (INT (XX)))

- Functions can be used in direct mode, for example:-

?SQR(125.68)
?FRE (1)

The BASIC functions work with integer, real or text variables, depending
on the function.

If a.real number is given to a function which works with integers, the

number is truncated. The following table contains value types into
which the BASIC functions transfer the results.

—99

7898 Reference Guide BASIC Functions

The BASIC functions

Result Arguments
Function Numerical Text Numeric String
ABS X
ASC X
ATN
CHRS$
Cos
ERRS
EXP
FRE
INSTR
INT
LEFTS X
LEN
LOG
MIDS X
PEEK
POS
RIGHTS
RND
SGN
SIN
SPC X
SQR
ST
STRS X
TAB X
TAN X
TIS X X
USR X
VAL X X

or X
and X

e XX Lo I

R R R R R R

and X

>

and X

and X

o] x>

> >
PO DI D DC D X X D X6 DS X X X

>

— 100 —

7800 Reference Guide BASIC Functions

9.1 ABS
Format: ABS (expression)
Arguments: expression is a numerical expression

Abbreviation: aB

The ABS function calculates the absolute value of a number. The
absolute value is the positive value of expression. For example:-

PRINT ABS (7*(-35)) ...Prints the value 245
16 PRINT ABS(1234) ...Prints the value 1234
A=2@:B=~1: PRINT ABS (A*B) .s.Prints the value 20
D=-=1:C==9: PRINT ABS (C*D) .«.Prints the value 9
PRINT ABS(2*(~2.1)) ... Prints the value 4.2
9.2 ASC

Format: ASC (expression)

Arguments: expression is a string expression

Abbreviation: as

ASC returns the ASCII code of the first character in the expression. 1If
expression is the null string, the error message ?ILLEGAL QUANTITY will
appear. For example:-

16 X$ = "TEST"
20 PRINT ASC(XS$)
RUN

84

READY

84 is the ASCII code for T. (See table in Appendix.)

9.3 ATN
Format: ATN (expression)
Argument: expression is a numerical expression

Abbreviation: aT

The ATN function calculates the arctangent of expression. The
arctangent is given in radians. The range is from - /2 to + /2. As
expression can be an integer or a real, the calculation is executed in
floating point format. For example:-

18 INPUT X

20 PRINT ATN(X)
RUN

1.24904577

READY

— 101 —

769 Reference Guide BASIC Functions

9.4 CHRS
Format: CHRS (expression)
Arguments: expression is an integer

The CHRS$ function returns the character represented in the ASCII code be
expression. (See Appendix on ASCII code.) Expression must be a number
between 8 and 255.

The CHRS$ function is the reverse function of the ASC function. For
example: -

PRINT CHR$ (66)

B

READY

9.5 COS

Format:- COS (expression)

Argument: expression is a numerical expression

Abbreviation: none

The COS function calculates the cosine of expression. Expression is
assumed to be in radians,

An integer or real number can be used for expression.
The calculation takes place in floating point format. For example:-

PRINT COS (5-1)

-.65364362

9.6 ERRS

Format: ERRS (expression)

Argument: expression is a numerical expression

Abbreviation: eR

The ERRS function returns the text of the standard error message whose
number is expression. Expression must be a number between 0 and 42.

If ERRS is used with a TRAP statement, standard error messages can be
displayed. See Section 8.38 for TRAP.

— 102 —

700 Reference Guide

Example:-

In this example it can be seen how the
together with the TRAP statement. The
number where the error occurred and ER
exact description is printed by way of

10 TRAP 1000

... BASIC statements ...
1000 REM THE ERRORS ARE ANALYSED. IF
1010 REM ERROR, THE PROGRAM SHOULD BE
1020 IF ER = 21 THEN PRINT EL, ERRS(ER):
1030 REM IT IS NOT A SYNTAX ERROR.
1040 REM AND MESSAGE IS PRINTED
1850 IF ER = 9 THEN PRINT EL, ERRS(ER):
1069 IF ER = 30 THEN RESUME 150

.o BASIC statements ...
1118 RESUME 975
1126 ... BASIC statements ...
9.7 EXP
Format: EXP (expression)

Argument:

Abbreviation: eX

BASIC Functions

ERRS function can be used
variable EL indicates the line
is the error number whose more
the ERRS function.

THERE IS A SYNTAX
STOPPED
STOP

THEN THE ERROR IS TESTED

RESUME 100

expression is a numerical expression

The EXP function calculates e (2.718281...) raised to the power

expression. Expression must be in the

I1f the EXP function causes an overflow,

appears. The result of EXP()

PRINT EXP (4)

is always positive.

range -88 to +88 approximately.
the error message ?OVERFLOW
For example:-

Prints the value of the exponential of

4 to base e (about 54.6).

Note: EXP(@) is 1.

9.8 FRE

Format: FRE (expression)

Argument:

Abbreviation: £R

expression is an integer or a string expression

The FRE function gives the number of free bytes which BASIC can use for
program text, simple variables, arrays and strings in a memory bank.

— 103 —

700 Reference Guide BASIC Functions

The location which is available for these four areas (program, simple
variables, arrays and strings) depends on the amount of memory the
computer has available.

128K 256K
BASIC program 1 1
Arrays 2 2
Simple variables 2 3
String variables 2 4

The value given by the FRE function depends on expression as follows:-

~ If expression is a number, FRE gives the free bytes in the
requested bank.

- If expression is a string expression, FRE gives the free memory
available for string storage.

(FRE returns # if non-existent memory locations are called, or if the
system bank is specified.) For example:-

16 N% = (FRE(2)-100)/5
20 DIM A(N%)

Here the memory available is determined with a FRE function before an
array is defined.

9.9 INSTR

Format: INSTR (expressionl, expression2, (expression3))

Arguments: expressionl and expression2 are string expressions
expression3 is a numerical expression

Default: expression3 = 1

Abbreviation: inS

The INSTR function locates a section of a string (i.e. it finds a

substring). Expression2 is found in expressionl. The search begins at

the character specified by expression3 in string expressionl.

Expression3 must be between 1 and 255. 1If no number is given for

expression 3, 1 is used. 1I.e. the whole of expressionl is searched.

- 1If expression2 is not found, INSTR has value 0

- If expression2 is found, INSTR gives the position of the first
matching character. For example:-

10 AS = "MR MRS MISS MsS"
20 ...read a name and check
60 IF INSTR(AS$,BS) > 0 THEN GOSUB 15@0: ELSE GOSUB 2000

«ees BASIC statements ...

1500 REM HERE THE CORRECT DATA SHOULD BE PROCESSED
ees BASIC statements ...

2000 REM ERRORS IN NAME SHOULD BE PROCESSED HERE
ees BASIC statements ...

— 104 —

700 Reference Guide BASIC Functions

9.10 INT
Format: INT (expression)
Argument: expression is a numerical expression

Abbreviation: None

The INT function calculated the largest INTEGER value which is smaller
than or equal to the value in expression.

Examples:-

PRINT INT (1234.56) Prints the value 1234
PRINT INT (-1234.56) Prints the value -1235

9.11 LEFTS
Format: LEFTS (expressionl, expression2)

Arguments: expressionl is a string expression
expression2 is a numerical expression

Abbreviation: leF

Returns a substring from the left end of a string. Expression2 must be
a number between @ and 255.

I1f expression2 is larger than the length of expressionl, the function
returns the whole of expressionl. (Use the LEN function to check.)

If expression2 is @, the LEFTS function returns a null string.

The LEFTS, MIDS, and RIGHTS functions can be used with the INSTR
function for text processing. For example:-

1 AS =
20 BS =
3@ PRINT
RUN
COMMODORE
READY.

"COMMODORE COMPUTER"
LEFTS (A§,9)

— 105 —

780 Reference Guide BASIC Functions

9.12 LEN
Format: LEN (expression)
Argument: expression is a string expression

Abbreviation: None

The LEN function returns the number of characters in expression (i.e.
the lengths). The LEN function counts all characters in expression even
those which are not printable or which are spaces. For example:-

10 X$ = "COMMODORE COMPUTER" + CHR$ (27): REM 27 IS NON PRINTING
20 PRINT LEN (XS$)

RUN

19

READY

Note:

13 PRINTLEN ("COMMODORE COMPUTERQ}+CHR$(27)) would be equally
acceptable,

9.13 LOG
Format: LOG (expression)
Argument: expression is a numerical expression

Abbreviation: None

The LOG function returns the natural logarithm (base e) of the
expression. Expression must always be positive. For example:-

PRINT LOG (45/7) Prints the value 1.86075234

9.14 MIDS

Format: MIDS$ (expressionl, expression2, [expression3])
Arguments: expressionl is a string expression

expression2 and expression3 are integers

Default: expression3 is the number of all characters
from character expression2 to end of string.

Abbreviation: mI

The MIDS function returns a substring containing expression3 characters
from expressionl starting at the character at position expression2
onwards. Expression2 and expression3 must be between @ and 255.

If there is no value given for expression3, or if there are fewer

characters in expressionl than in expression3, then the function returns
all characters from position expression2 to the end of the text.

— 106 —

700 Reference Guide BASIC Functions
If there is a number given for expression2 which is longer than
expressionl, then MIDS returns a null string., For example:-

PRINT "GOOD " MIDS$ ("MORNINGAFTERNOON",8,9)
Prints: GOOD AFTERNOON.

9.15 PEEK
Format: PEEK (address)
Argument: address is an integer

Abbreviation: pE

The PEEK function returns the decimal value of address. The value of
address must be between 8 and 65535, The PEEK function returns a value
between @ and 255.

The PEEK function, together with the BANK statement, can reach any
address in the memory. Details on BANK statement can be found in
Section 8.1.

Example: -

19 PRINT PEEK (36879)

Prints the contents of the location 36879.

9.16 POS
Format: POS (dummy)
Argument: dummy is any number

Abbreviation: None

The POS function gives the point where the next character is to be
printed. 1I.e. the position of the cursor. Any value can be given to
dummy.

The cursor positions:-

- Far left is position @
- Far right is position 79

Example: -

Here, a carriage return character is printed if the cursor is beyond
location 24.

IF POS (X) > 20 THEN PRINT CHR$ (13) + A$: ELSE PRINT AS

— 107 —

706 Reference Guide BASIC Functions

9.17 RIGHTS
Format: RIGHTS (expressionl, expression2)

Arguments: expressionl is a string expression
expression2 is a numerical expression

Abbreviation: rI

The RIGHTS$ function returns a substring of expressionl containing the
number of characters specified by expression2., Expression2 must be a
number between @ and 255. If expression2 is longer than expressionl,
the RIGHTS$ function will return the whole of expressionl. 1If
expression2 is equal to @, RIGHTS returns a null string. For example:-

10 AS$ = "OFFICE MACHINE"
20 BS$ = RIGHTS (AS§,11)
30 PRINT BS$

RUN

ICE MACHINE

READY

9.18 RND

Format: RND (expression)

Argument: expression is a numerical expression
Abbreviation: rN

The RND function provides a random number between @ and 1. The number
does not actually occur randomly, but is calculated by the computer by
an intricate algorithm (pseudo random number). To do this, there are

two possibilities:-

- expression < 0
The algorithm uses the expression number to calculate the random
number ("seed").

- expression >= 0
The algorithm uses the last previously formed random number to
calculate the new random number ("series").

For example:-

Five random numbers are printed. (They are in the range @ to 109).

18 FOR I =1 TO S

2@ PRINT INT(RND(0Q)*100);
30 NEXT

RUN

24 30 31 51 5

READY

RUN again and 5 new random numbers are printed.

— 108 —

709 Reference Guide BASIC Functions

If you now add the program line:-
5 X = RND(-1)

Every program run will give the same sequence of "random" numbers, since
line 5 now "seeds" the random number series.,

9.19 SGN
Format: SGN (expression)
Argument: expression is a numerical expression

Abbreviation: sG

The SGN function returns the sign of expression. The values returned
are as follows:- if X < @ then SGN(X) = -1, if X = @ then SGN(X) = 0, if
X > @ then SGN(X) = +1.

For example:-

ON SGN (X)+2 GOTO 100,200,300

This jumps to line 100 for X < @, 200 for X = 0 or 3060 for X > 0.

9.20 SIN
Format: SIN (expression)
Argument: expression is a numerical expression.

Abbreviation: sI

The SIN function calculates the sine of expression. Expression is
assumed to be in Radians. An integer or a real number can be used for
expression. The calculation takes place in the floating point format.

9.21 spPC
Format: SPC (expression)
Argument: expression is an integer expression.,

Abbreviation: sP

The SPC function prints expression spaces. The value of expression must
be between 0 and 255.

The SPC function can only be used as part of a PRINT statement. For
example:-

PRINT"IN SECTION"SPC(2@)POS (X)
IN SECTION 30

READY.

— 109 —

760 Reference Guide BASIC Functions

9.22 SQR
Format: SQR (expression)
Argument: expression is a numerical expression

Abbreviation: sQ

The SQR function calculates the square root of expression. Expression
must be larger than or equal to @. For example:-

PRINT 14, SQR(10)

19 3.16227766
READY.

9.23 ST

Format: ST

The STATUS function returns the value of the reserved variable ST for
the preceding input/ouput operation.

The value of the STATUS function depends on the operation and the
device.

Function Values of STATUS function

STATUS STATUS Meaning

bit numerical

Position Value

"} 1 Timeout output.

1 2 Timeout input.

6 64 End of file.

7 -128 Device not present.

For example:-

19 OPEN 2,8,2, "MASTER FILE,S"
20 GET#2, AS

380 IF STATUS AND 64 THEN 60

49 PRINT AS

50 GOTO20

64 PRINT AS:CLOSE 2

Here STATUS is used to check for the end of a file before closing it.

(Note: When using the RS232 interface, the ST has a different meaning.)

—110—

700 Reference Guide BASIC Functions

9.24 STRS
Format: STRS (expression)
Argument: expression is a numerical expression

Abbreviation: stR

The STR$ function returns the ASCII text equivalent to expression., This
is very useful if text is to be compiled from discrete characters or
groups of characters, especially if the characters are numeric.

The VAL function (see 9.29) operates in the opposite way to STRS.

The length of the text returned depends on the value in expression. The
length can be determined by using the LEN function. For example:-

PRINT "S" + STRS$(2.77) $ 2.77 is printed
PRINT STRS$(15@)+".00" 150.00 is printed
9.25 TAB

Format: TAB (expression)

Argument: expression is an integer expression

Abbreviation: tA

The TAB function moves the cursor to the position indicated by
expression. If the cursor is already beyond this point, TAB places the
cursor in the next column.

Expression must be between 0 and 255, and columns are numbered starting
at @ at the left hand edge. For example:-

PRINT TAB(39) ™123456"

Note: This command is always used as part of a PRINT command.

9.26 TAN
Format: TAN (expression)
Argument: expression is a numerical expression

Abbreviation: None

The TAN function calculates the tangent of expression. Expression is
assumed to be Radians. Although expression can be an integer or real
number, the calculation is always performed in floating point format.
If the expression value causes an overflow, the error message ?OVERFLOW
appears.

— 111 —

709 Reference Guide BASIC Functions

9.27 TIS
Format: TIS

The TIS$ function returns the time from the internal clock. The string
TIS$ has 7 characters which are hours, minutes, seconds and tenths of
seconds (HHMMSST). For example:-

10 TIS = "0000000"
«ee BASIC statements ...
509 TAS$ = TIS
51 TS = LEFTS(TAS,2)+":"+MIDS(TAS,3,2)+":"
520 PRINT TS + MIDS(TAS,5,2)+"."+RIGHTS(TAS,1l)

Here the time is set to @ and then, after the program run, the time
elapsed is printed using TIS.

9.28 USR
Format: USR (expression)
Argument: expression is a numerical expression

Abbreviation: us

The USR function calls up the assembler subprogram written by the user,
the jump address of which is held in locations 3 and 4 of memory Bank
15. Expression is stored in the accumulator before the subprogram is
called.

The function value is obtained from the accumulator location 71 Hex in
Bank 15 as soon as the assembler subprogram has been executed and the
BASIC program is running again. The address of the assembler subprogram
must be poked into locations 3 and 4 in bank 15 before the USR function
can be used. For example:-

16 REM REMEMBER THAT THE ADDRESS OF THE

26 REM ASSEMBLER SUBPROGRAM MUST BE ENTERED
3¢ REM BEFORE THE PROGRAM CAN BE CALLED UP
40 REM WITH A USR FUNCTION

5¢ BANK 15:POKE 3,@:POKE 4,4

106 B = 12,345

120 C = USR(B/2)

Here, a value is stored in the accumulator and then an assembler program
is called up.

— 12—

7600 Reference Guide BASIC Functions

9.29 VAL
Format: VAL (expression)
Argument: expression is a string expression

The VAL function returns the numerical value of the string.

If the first character in expression is not +, -, $ or a number, then
the VAL function will return the value 0.

The VAL function works in the opposite way to the STR$ function. For
example: -

16 REM CHECK IF A STRING IS NUMERIC

15 REM IF NOT, THERE IS AN ERROR MESSAGE

20 1IF VAL(AS$) = 0 THEN 40

35 GOTO 5090

49 PRINT "NO NUMERICAL VALUE. THE VALUE IS";A$

Here, the VAL function is used to decide whether a string contains
numbers or not before using it in an expression.

—N3—

708 Reference Guide Machine Language Monitor

CHAPTER 10

THE MACHINE LANGUAGE MONITOR

For the user who needs to directly -control memory or to work with
machine language programs, the operating system has a monitor through
which one can obtain important information on the internal state of the
computer at any time. "

In general this means the contents of registers and memory locations.
All addresses and contents are displayed in a hexadecimal (hex)
presentation. Hex numbers are identified here as normal by the
preceding $§ sign. For example:-

Hex Decimal
s$da = 10
SOF = 15
S19 = 16
SFF = 255

Thus, all register contents are two-digit, all addresses are four digit
hex numbers.

In some commands, the memory segment's address must precede the address
so that six-digit "long addresses" are the result. The monitor always
uses the address in the current segment (bank) when using a four-digit
address.

The monitor is activated by the command "bank 15:SYS60958"

S G
First of all, the register contents of the CPU and the actual interrupt
pointer are displayed. The display might look like this:-

PC IRQ SR AC XR YR SP
; 0000 FBES 00 00 00 00 F9

Thé meaning of this display is explained thus:-

PC: Program counter, address of the next command to be
carried out

IRQ: Interrupt pointer ($300/301)
SR: Status register

AC: Accumulator

XR: Xx-register

YR: y-register

SP: Stack pointer

The semicolon in the line with the register contents means that all
values in this line may be altered; the changes are made when the RETURN
key is pressed. The full stop at the beginning of the line indicates
that the computer's monitor is running.

— 114 —

760 Reference Guide Machine Language Monitor

The following commands are valid for this mode:-
R

displays the register contents

M address [address]

displays the contents of the specified memory location (or all
locations up to the second address).

The colon at the start of the line means that you can change the
contents.

G [address]

Jumps to the main code program at the given address. If the address is
missing, the microprocessor continues from the next command using the
program counter,

L "NAME",device

Loads the program with the given name from the given device, (2-digit
hex) into the preselected bank. No pointers are changed in the
computer, unlike with the corresponding BASIC command.

S "NAME", device, longaddress, longaddress

Stores the memory contents between the given longaddresses as a file
under the given name.

U device

Sets the default value for the disk device, (For use with @ and other
commands.)

V segment

Selects the given bank for any following monitor commands. The selected
segment (bank) can be determined at any time by m 0001,

z

Switches to any built-in co-processor (will "crash" the machine if there
is no co-processor to accept control).

@ [command]

If this command is immediately followed by a RETURN, the computer
displays the disk error message. The device address is normally 8 and
the command channel 15. (See command U to change the device number.)

If a command follows the @, then this command is transferred to the disk
drive using the command channel. For example:-

Q10

initialises drive @.

— 115 —

700 Reference Guide Machine Language Monitor

X

Warm starts BASIC once more. (I.e. exits the Machine Code Monitor and
gives control back to BASIC.)

If a given command is not recognised an attempt is made to load a file
of the same name from disk.

If this occurs successfully, the monitor jumps to the load start
address.,

** This process is only applicable to Bank 15. **

Note:~- should the file not exist a kernal error message:-
I1/0 error#4 (file not found)

will be displayed, or if no disk drive is connected then:-
I1/0 error#5 (device not present)

will be displayed.

Further information about the Kernal is in the Kernal section of this
manual,

— 16—

700 Reference Guide BASIC processing of the Memory

APPENDIX A

The BASTC 4.0+ interpreter allows access to the memory of the computer.
The size of the available memory depends on the computer model.

The following BASIC keywords are used with the memory:--

- BANK

- BLOAD

- BSAVE

- PEEK (a function)
- POKE

The BANK statement is the central element for accessing the multiple
memory banks in the 70@. The statement determines which bank will be
dealt with by the BLOAD, BSAVE, POKE statements, and the PEEK function,
normally dealt with by Bank 15.

When a BANK statement is used, all following BLOAD, BSAVE, POKE and PEEK
operations refer to the newly defined bank.

The BLOAD statement is also used to load assembler subprograms from
BASIC programs for special purposes.

— 117 —

700 Reference Guide BASIC processing of the Memory

Memory Organisation

The whole memory is divided into segments or banks. Each of these banks
is an area of 64K bytes. A maximum of 16 of these banks can be
resident. The banks are numbered from # to 15, ($00 to SOF).

Some banks have a fixed use which is partly dependent on the available
memory.

In 128K models, it is distributed as follows:-

Bank 1l: contains the BASIC text, i.e. the programs you use,
Bank 2: is used for variable storage.

In models with 256K capacity, Bank 1 is used in exactly the same way as
for that in 128K versions, then ...

Arrays are stored in Bank 2.

Simple variables (non-indexed variables) are stored in Bank 3. (This
bank also has space reserved for the disk operating system.)

Bank 4 contains the strings.

The application of Bank 15 is identical in all cases: The BASIC
interpreter, the editor, the operating system, the input/output section
and the system information (zeropage etc.) are to be found here.

The addresses from $2006¢ (8192) to S$7fff (32767) are kept open; this is
for any individual expansion. To this end, the address lines are
available on the cartridge connector. If necessary, ROM modules, RAM
memory or any input/output sections (all mixed) may be located here.

— 118 —

708 Reference Guide BASIC processing of the Memory

Memory Distribution in Segment (Bank) 15

Address (hexadecimal)

$FFFF
Kernal ROM (operating system)
SE000
Input/output section (see below)
$C000
BASIC ROM HI
$SAQ00
BASIC ROM LO
$8000
Cartridge (Bank 3)
$6009
Cartridge (Bank 2)
$4000
Cartridge (Bank 1)
$2000
4K disk ROM
$1000

2K external buffer RAM

$0800 Lue FAM.
ovFF¥/ML
2% an —— (OISO t fr et oy
S0001 Indirect Register
S@000 Execute Register

I/0 Section

SEGQ0

TPI 6525 (keyboard)
SDF0@

TPI 6525 (IEEE, User)
SDEQO

ACIA 6551 (RS232)
$DD@0

CIA 6526 (User, Inter-proc.)
$DCO0

Free (co-proc.) 7-4C, 505
$DB0@

SID 6581 (sound)
SDAGQ

Free (disk-input/output)
SD9d0

CRTC 6545 (screen)
$D80 g

Screen memory /D
SDOd0

Unused (I‘Wc{ /a CKM /eom (%N /Zj‘)
$Codg

— N9 —

709 Reference Guide The RS232 Interface and the ACIA

APPENDIX B

708 machines are equipped with an RS232 port as standard. The port is
driven by an ACIA 6551 integrated circuit which is located between $DD@@
and $DE@GP in the system bank(1l5).

The MOS Technology Asynchronous Communication Interface Adapter 6551
allows for the following:-

- On-chip baud rate generating rates between 58 and 19,200 baud.

- Echo mode.

- False start bit detection.

- Bidirectional data.

- External non-standard clock input for baud rates up to
125,000 baud.

- Programmable word length.

- Programmable number of stop bits.,

- Parity generation and detection. (0d4d, even, none, mark and
space are all useable.)

- Full or Half duplex.

- 5,6,7 or 8 bit transmission.

The Port it drives has the following pin connections:-

Pin 1 Shield
2 TxD - Transmit data output
3 RxD - Receive data input
4 RTS - Ready to send- output
5 CTS - Clear to send input
6 DSR - Data set ready input
7 Ground
8 DCD - Data carry detect input
11 +5v.
18 -12v.
20 DTR - Data terminal ready output
24 XMIT CLK =~ Transmit clock output/input

All other pins are not connected. See note 1 on Signals and note 8 on
plug types.

Interrupts from the DCD and DSR lines are processed by the 6551 internal
interrupt logic circuits. The 6551 can also generate an interrupt
itself which is processed by the 6589 CPU in the 7¢@0. DTR and RTS lines
are signalled by the 6551 command register logic.

The 6551 has five main registers:-

- TRANSMIT DATA register (TDR)
- STATUS register (SR)
- CONTROL register (CR)
-~ RECEIVE DATA register (RDR)
- COMMAND register (CMR)

— 120 —

709 Reference Guide The RS232 Interface and the

Register Addresses

TDR/RDR $DDOGO *
SR $DDO1
CR $DD@2
CMR $DD@3

* TDR if written to or RDR if read from,

TDR and RDR are used for temporary data storage. The SR is used to
indicate the status of the various functions of the 6551 and may be
interpreted as follows:-

Bit @ :Parity error if set. Self clearing.
Bit 1 :Framing error if set. Self clearing.
Bit 2 :Overrun error if set. Self clearing.
Bit 3 :Receive data register full if set.
Bit 4 :Transmit data register empty if set.
Bit 5 :DCD line in high logic state if set.
Bit 6 :DSR in high logic state if set.

Bit 7 :(IRQ) interrupt if set.

It can be seen from the above that a status register containing @
indicates that all is well. See also note 5.

CR and CMR are set from the BASIC statement OPEN.
The OPEN statement has the following format:-
OPEN channelnumber,2,secondaryaddress,bytestring

- The channelnumber may be any number between @ and 255. If a
channelnumber greater than 127 is chosen then CR and LF are sent
with each PRINT#, otherwise CR alone is sent (see note 3).

- 2 is the primary address of the RS232 port.

- The secondaryaddress of the RS232 port may be one of the
following six numbers according to your requirements:-

1 for Transmit characters only.
2 for Receive characters only.
3 for Transmit and Receive characters.
129 for Transmit and convert characters.
130 for Receive and convert characters.
131 for Transmit, Receive and convert characters.

(Conversion is from CBM to ASCII and vice versa.)

- The bytestring contains four bytes/characters and is composed as
follows:-

The First byte is the Control Register byte. The Second byte is the
Command Register byte. The Third and Fourth bytes are not used in a

ACIA

700, but dummy characters must be sent to the 6551 or errors will occur.

For example:- send "++",

The CR byte controls the speed of transmission, the number of stop b
and the word length:-

— 121 —

its

769 Reference Guide

The bits @ and 3 are used as follows:-

Bit 3 2

HHEHMEHHEMHEFSSSSSQQ®
T R R NN~ -)

1

e X R L kX
HFeSHFSHFSHSHEFIFIFQHS

@

Baud

Exter
50

75
109
134
150
300
600
1200
1800
2400
3600
4800
7200
9600
19200

* Receive only.

Rate

nal rate x 16

.92
.58

The RS232 Interface and the ACIA

Decimal value

*

=
HROVONIAUBWN S

=
wN

=
[N

Bit 4 should be 1 unless the external clock is being used. (Decimal
value 16.)

Bits 5 and 6 are used as follows:-

Bit 6

5
)
1
2
1

HHHO S

Word lengt

Ut o

h

Decimal value

)
32
64
96

Bit 7 controls the number of stop bits and should be @ for 1 stop bit,
and 1 for all other purposes:-

- 2 stop bits
~ 1 stop bit for 8 bit transmission (i.e. 8 bits and parity)
- 1.5 stop bits for 5 bit words without priority.

The CMR byte controls the handshake, duplex and parity options. (See

note 4):

Bit @ controls the handshake line (DTR).

If this bit is set (i.e. 1)

then DTR is low logic and all interrupts are enabled along with the

receiver,
and DTR is high logic.

"3-line"

if

If not set then the receiver and all interrupts are disabled
All this implies "X-line" if this bit is on and

it is off.

Bits 1,2 and 3 should be set to @ for all purposes. (See note 4 for
their purpose in the 6551).

Bit 4 sets "normal receiver"/Full duplex mode for the receiver when it
is off (9).
for the receiver.

When on (decimal value 16),

— 122 —

it sets "echo"/half duplex mode

768 Reference Guide The RS232 Interface and the ACIA

Bits 5,6 and 7 control parity:-

Bit 7 6 5 Value Parity mode Comment

g 00 "} disabled No bit generated/received

g 01 32 odd Transmitter and Receiver

g1@0 64 disabled -

g 11 96 even Transmitter and Receiver

100 128 disabled -

101 160 mark Mark parity bit
transmitted

1190 192 disabled -

111 224 space Space parity bit
transmitted

Mark and Space modes disable the parity check.
Note 1) 1Interface signals:-

la) The TxD output line is used to transfer serial data to the RS232
peripheral. The LSB (least significant bit) of the TDR (transmit data
register) is the first data bit transmitted at the selected baud rate.

1b) The RxD input line is used to transfer serial data into the ACIA
from the RS232 peripheral, LSB first. Baud rate is as selected or
according to an externally generated receiver clock - see CR.

lc) The RxC (receive clock) line is used to indicate the Baud rate
(x16), or clock rates, being used by the ACIA to clock the input -data.
When the interanl Baud rate generator is used this line supplies the
clock being used (Baud rate x 16). When an external clock is being
used, Baud rate option = 0000, this line is used to input the external
clock (Baud rate x 16).

1d) The RTS output line is used to conrol the RS232 peripheral. The
logic state of this line is determined by CMR.

le) The CTS input line is used to control the transmitter. The
transmitter is enabled if CTS is low logic, or if the CTS line is high,
the transmitter is automatically disabled.

1f) The DTR output line is used to indicate the status of the ACIA to
the RS232 peripheral. A high logic state means that the ACIA is
disabled. A low logic state means that the ACIA is enabled. The 700
CPU (6509) controls this line through the CMR.

1g) The DSR input line is used to indicate the status of the RS232
peripheral to the ACIA, low logic means "ready" and high logic means
"not ready", but the DSR must be connected. Even if the DSR is unused
it must be driven high or low, (but not switched). 1If interrupts are
enabled (see CMR bit @) and a change in the logic state of DSR occurs,
an interrupt will be signalled to the 6589 and bit 6 of SR (status
register) will reflect the logic level or DSR. The state of DSR does
not affect the transmitter or receiver operation directly, only signals
from the 6509 (sent as a result of the interrupt generated by the ACIA)
affect the operation.

— 123 —

700 Reference Guide The RS232 Interface and the aACIA

lh) The DCD input line is used to signal the presence (or absence) of a
carrier signal at the RS232 peripheral (normally used with modems).

High logic means that a carrier signal is present and low logic means
that it is not. Like DSR this line must be driven (see DSR).

Similarly, if interrupts are enabled, IRQ is sent to the 6509 and bit 5
of SR reflects the logic level of DCD. DCD must be ow for the receiver
to operate. Transmitter is only indirectly affected, if at all.

li) DTR and CTS are not used (i.e. ignored) in "3-line" mode.
Note 2) Reset of the ACIA - see also note 5.

2a) Hardware reset (power on for example) sets all bits in CR and CMD
to zero, sets bits 0,1,2,3 and 7 of SR to zero, and sets bit 4 of SR
(TDR empty) to 1.

2b) Software reset (CLOSE command for example) sets bits 0¢,1,2,3, and 4
of CMR to zero, and sets bit 2 of SR (no overrun error) to zero.

All other bits of CR, CMR and SR are unaffected, except by direct
intervention from the 6509.

Note 3) Channelnumber parameter in OPEN

If bit 7 of the channel number (logical file number) is low (i.e.
channelnumber is less than 128) then PRINT# statements only send a CR
(carriage return) character (chr$(l3)). 1If bit 7 is high then CRLF
(carriage return line feed) characters (chr$(13) + chr$(1l0)) are sent.

Note 4) CMR byte bits 1,2 and 3

These bits control Receiver interrupts and transmitter control
interrupts. The 700 BASIC OPEN statement should not pass these bits and
therefore they should be set to 8. However, their meaning in the ACIA
is as follows:-

Bit 1 disables receiver interrupts if set (2), or enables receiver
interrupts from bit 3 of SR (RDR full) if not set (@). 3
&

Bits 2 and 3 (transmitter controls):-

Bit 3 2 Value Transmitter IRQ RTS logic Transmitter

g 0 "] Disabled High Off
g1 4 Enabled Low On
10 8 Disabled Low On
11 12 Disabled Low Transmit BRK

Note 5) SR
Self clearing bits are cleared when error free data is next received.

Bits 5 and 6 reflect the logic state of DCD and DSR and are not
resettable.

° — 124 —

780 Reference Guide The RS232 Interface and the ACIA

Note 6) RS232 buffer.

The BASIC OPEN statement allocates a 256 byte buffer for the RS232. The
statement does not perform a CLR however. (Unlike on the 64, for
example.)

The BASIC CLOSE statement de-allocates the buffer. The buffer will be
de-allocated regardless of its content, so you should read/send all the
characters before CLOSEing the RS232 file.

It is often advisable to OPEN an RS232 file at the beginning of a
program and leave it open until the program ends or has no further use
for the RS232 peripheral.

Note 7) Technical.

7a) If you use an RS232 Modem, the 708 is normally configured to act as
a "data terminal",

7b) The RS232 interface operates in an asynchronous manner. This means
that the TxD line is kept high until characters are to be transmitted.
(As opposed to synchronous operation where a fill character is passed
when no characters are being transmitted.)

7c) The RS232 interface operates serially. This means that bits are
sent on one data line one after another. (As opposed to parallel
operation where eight bits are passed simultaneously on eight separate
data lines.)

When a byte is to be sent serially the following occurs on the data
line-

1) A start bit is sent (low logic) - The receiver uses this bit to
synchronise itself with the transmitter.

2) The bits of information (LSB first) are sent.

3) The parity bit, if required is sent.

4) One or two stop bits are sent. (High logic.)

5) The line remains high logic and passive until the next byte is to be
sent. The receiver waits.

Note 8) Plugs for peripheral connection

Cannon CCITT V24 EIA DIN 66 ID
1 1 AA 101 GND/E
2 2 BA 103 TxD
3 3 BB 104 RxD
4 4 ca 195 RTS
S 5 CB 196 CTS/RFS
6 6 CC 197 DSR
7 7 AB 192 SIG.GND
8 8 CF 109 DCD
20 20 CD 198/2 DTR
24 24 - - RxC

™ 125 —

700 Reference Guide The RS232 Interface and the ACIA

Example of an RS232 OPEN command.
OPEN 1,2,3,CHRS$ (6+16+96+128)+CHRS (1+16)+"++"

- channelnumber is 1, so PRINT# will use this channel.

- primary address is 2, the RS232 port.

- secondaryaddress is 3, enabling transmit/receive without conversion.
- CHR$(246) is the CR byte composed thus:-

6 for 300 baud

16 for Internal clock
96 for 5 bit word
128 for 1.5 stop bits

~ CHR$(17) is the CMR byte composed thus:-
1 for X-line handshake
16 for full duplex
(No parity for 5 bit, 1.5 stop bit)
Another example.
OPEN 6,2,129,CHRS$ (24)+CHRS (112)+"++"
- channelnumber is 6, hence PRINT#6.
- secondaryaddress 129 converts and transmits.
- CR Byte enables 1200 baud, 8 bit word + 1 stop bit.
- CMR Byte allows for 3 line, half duplex, even parity.
Summary of the CR and CMR bytes.
CR byte = CHRS$ (A+B+C+D) where:-
A 1is a number between @ and 15 for baud rate.
B 1is normally 16, but may be & for an external clock.
C 1is @, 32,64 or 96 for word length.
D 1is @ or 128 for stop bits.
CMR byte = CHRS$ (E+F+G+H) where:-
E is @ or 1 for handshake.
F is @ almost always. (See note 4 above.)
G 1is 0 or 16 for duplex.
H 1is @, 32, 64, 96, 128, 160, 192 or 224 for parity.
Last words on RS232
Read the User Guide or Manual that comes with the RS232 peripheral you
intend to connect to the 70@. It is important that you fully understand
the way the RS232 is configured for your peripheral.

This section on the RS232 and the ACIA requires careful reading to
ensure good results,

— 126 —

700 Reference Guide The RS232 Interface and the ACIA

A program example is as follows:-

10 trap8@:print"<CLR>RS232 input appears in normal video.<DOWN>"

20 print"Keyboard output appears in <RVS>reverse<OFF>
video .,<DOWN>"

30 openl,2,3,chr$(246)+chr$S(17)+"++"

40 get#l,a$:ifa$=""then60l:elseifx=1thenprint:x=0

5@ printa$;:goto4dd

60 getbS:ifbS$S=""then4P:elseifx=0thenprint:x=1

70 print"<RVS>"bS"<OFF>"; :print#l,b$:goto40d

80 ifel=30thenprint"<DOWN>ERROR in Open statement on
line 30:-<DOWN>":1ist30

990 ifel=0orer=1l4thenclosel:print:print”Stopped.":end

100 print"<DOWN>"errS$S(er)" in line"el:".. ST="st:end

KEY: -

<RVS> means reverse video on,
<OFF> means reverse video off.
<DOWN> means cursor down.
<CLR> means clear screen.

— 127 —

708 Reference Guide SID Sound Control

APPENDIX C

This section gives the key numbers which you use in your sound program,
based on the three voices.

To set sound control with BASIC, you need commands of the form:-

POKE (register),(content)

You must add all the required values in the split registers, for
example: -

For average rise, average decay in Voice 2:-

BANK 15
POKE 55808 + 12,5*16+7 (or POKE 55820,87)

base address + register, attack + decay
Take care that you set the volume before producing a tone. POKE 55832
followed by a number between @ and 15 sets the volume for all three

voices.

Control Register for Tone Production

The Base address of SID in Bank 15 is 55808 = DAGQ
Dec Hex
Register Content
Voice 1 2 3
] 7 14 Frequency, lo-byte (6...255)
1 8 15 Frequency, hi-byte (@...255)
2 9 16 Pulse ratio, lo-byte (0...255) Only for square
3 10 17 Pulse ratio, hi-byte (0...15) Only for square
4 11 18 Wave form: Noise Square Sawtooth Triangle
129 65 33 17
5 12 19 Attack Decay
g*16 (hard) ..15*16 (soft) @ (quick) ..15(slow)
6 13 20 Sustain Release
g*16 (silent) ..15*16 (loud) @(quick)..1l5(slow)
24 24 24 Volume @ (silent)..1l5(full volume)

— 128 —

769 Reference Guide SID Sound Control

For example:-
Continuous tone (Note C5) on Voice 2, (triangle waveform)

SI1=55808

BANK 15

POKE SI+24,15:POKE SI+7,37:POKE SI+8,17:POKE SI+13,240
(Volume) : (Frequency, Lo): (Frequency, Hi): (Sustain level, 15*16)
Switch tone on: POKE SI+11,17

Switch off: POKE SI+1l1,0

— 129 —

768 Reference Guide SID Sound Control

Other SID Registers

Register Content
21 Filter frequency, Lo-byte (@...7)
22 Filter frequency, Hi-byte (0...255)
23 Resonance & Filter source
@ (none) ...15*16 (strong) External Voice3 Voice2 Voicel None
8 4 2 1 g
24 Filter mode & Volume

(See note) High Band Low
pass pass pass
128 64 32 16 @ (silent)...15(loud)

Note: This isolates voice 3 so that it may be used to generate effects
without being output itself.

The SID also has two further registers:-

Register Content
27 Oscillator 3
28 Envelope 3

The momentary value of the oscillator and the envelope generator of
voice 3 can be read in registers 27 and 28,

These are used for example, to produce random generators or to influence
the other voices with these values, in order to achieve special sound
effects.

Using these settings, you can imitate various musical instruments

Instrument Waveform Attack Sustain

Piano Pulse 65 9)

Flute Triangle 17 96 g

Cymbals Sweep 33 9 g

Xylophone Triangle 17 9]

Organ Triangle 17) 240

Accordeon Triangle 17 192 2

Trumpet Sweep 33 96 "}

Note: The settings for the envelope should always be POKEd before the

waveforms

are POKEd.

— 130 —

700 Reference Guide Values for Music Notes

APPENDIX D

Below you will find a complete list of the notes, frequencies, frequency
parameters, and the values which must be POKEd into the sound chip
registers FREQ HI and FREQ LO in order to produce the required tone.

You are not bound by the values in this table! If you are using several
voices, you can even consciously "mistune" the second and third voices,

i.e. slightly(!) change the Lo-Byte in the table. This will result in a
fuller sound.

— 131 —

708 Reference Guide Values for Music Notes

No Note-octave Frequency (Hz) Parameter Hi-byte Lo-byte
) c-9 16.4 137 g 137
1 C#-0 17.3 145) 145
2 D-@ 18.4 154 '} 154
3 D#-0 19.4 163 '} 163
4 E-0 20.6 173) 173
5 F-0 21.8 183 2 183
6 F#-0 23.1 194 '} 194
7 G-0 24,5 205 "] 205
8 G#-0 26.9 218) 218
9 A-0Q 27.5 231) 231

10 A#-0 29,1 244 0 244
11 Bb-0 36.9 259 1 3
12 c-1 32.7 274 1 18
13 C#-1 34,6 291 1 35
14 D~-1 36.7 3908 1 52
15 D#~1 38.9 326 1 7@
16 E-1 41.2 346 1 99
17 F-1 43,7 366 1 110
18 F#-1 46,2 388 1 132
19 G-1 49.0 411 1 155
20 G#-1 51.9 435 1 179
21 A-1 55.0 461 1 205
22 A#-1 58.3 489 1 233
23 Bb-1 61.7 518 2 6
24 Cc-2 65.4 549 2 37
25 C#-2 69.3 581 2 69
26 D-2 73.4 616 2 104
27 D#-2 77.8 652 2 140
28 E-2 82,4 691 2 179
29 F-2 87.3 732 2 220
30 F#-2 92.5 776 3 8
31 G-2 98.0 822 3 54
32 G#-2 193.8 871 3 103
33 A-2 110.0 923 3 155
34 A#-2 116.5 977 3 209
35 Bb-2 123.5 1036 4 12
36 c-3 130.8 1097 4 73
37 C#-3 138.6 1162 4 138
38 D-3 146.8 1231 4 207
39 D#-3 155.6 1305 5 25
40 E-3 164.8 1382 5 192
41 F-3 174.6 1464 5 184
42 F§-3 185.0 1552 6 16
43 G-3 196.0 1644 6 108
44 G#-3 207.7 1742 6 206
45 A-3 220.0 1845 7 53
46 A#-3 233.1 1955 7 163
47 Bb-3 246.9 2071 8 23
48 c-4 261.6 2194 8 146
49 C#-4 277.2 2325 9 21
5@ D-4 293.7 2463 9 159
51 D#-4 311.1 2609 10 49
52 E-4 329.6 2765 190 205
53 F-4 349.2 2929 11 113
54 F#-4 370.0 3103 12 31

—132—

700 Reference Guide Values for Music Notes

55 G-4 392.0 3288 12 216 -
56 G#-4 415.3 3483 13 155
57 A-4 440.0 3690 14 106
58 A#-4 466, 2 3910 15 70
59 Bb-4 493.9 4142 16 46
60 C-5 523.3 4389 17 37
61 C#-5 554.4 4649 18 41
62 D=5 587.3 4926 19 62
63 D#-5 622.3 5219 20 99
64 E-5 659.3 5529 21 153
65 F-5 698.5 5858 22 226
66 F#-5 740.0 6206 24 62
67 G-5 784.0 6575 25 175
68 G#-5 830.6 6966 27 54
69 A-5 880.90 7381 28 213
70 A#-5 932.3 7819 30 139
71 Bb-5 987.8 8284 32 92
72 C-6 l046.5 8777 34 73
73 C#-6 1108.7 9299 36 83
74 D-6 1174.7 9852 38 124
75 D#-6 1244.5 10438 40 198
76 E-6 1318.5 11058 43 50
77 F-6 1396.9 11716 45 196
78 F#-6 1480.0 12413 48 125
79 G-6 1568.0 13151 51 95
80 G#-6 1661.2 13933 54 199
81 A-6 1760.0 14761 57 169
82 A#-6 1864.7 15639 61 23
83 Bb-6 1975.5 16569 64 185
84 c-7 2093.0@ 17554 68 146
85 C#-7 2217.5 18598 72 166
86 D-7 2349,3 19704 76 248
87 D#-7 2489.0 20876 81 140
88 E-7 2637.0 22117 86 191
89 F=7 2793.8 23432 91 136
990 F#-7 2960.0 24825 96 249
91 G-7 3136.9 26301 102 189
92 G#-7 3322.4 27865 108 217
93 A-7 3520.0 29522 115 82
94 A#-7 3729.3 31278 122 46
95 Bb-7 3951.1 33138 129 114
96 c-8 4186.0 35108 137 36
97 C#-8 4434.9 37196 145 76
98 D-8 4698.6 39408 153 240
99 D#-8 4978.0 41751 163 23
100 E-8 5274.0 44234 172 202
101 F-8 5587.7 46864 183 16
l@2 F#-8 5919.9 49651 193 243
103 G-8 6271.9 52603 205 123
104 G#-8 6644.9 55731 217 179
105 A-8 7049.0 59045 230 165
106 A#-8 7458.6 62556 244 92

— 133 —

760 Reference Guide Memory storage distribution

(¥10-95)

APPENDIX E

0000 * =50000
0000
0000
090
0000
0000
pooo
0000
0000
0000

650 used to extend memory on bc2 & p2 systems
location - used to direct
$0000 - execution register (4 bits)
$0001 - indirect register (4 bits)

these registers provide 4 extra high-order address .
control lines. On 6509 reset all lines are high.(ﬁe,édeoz/>

H

H

H

H

H

i

H

H

’
0000 ; current memory map: ﬁﬂAh?AS
peca : segment 15- Sffff-$e@0@@ rom (kernal)
0000 ; SAfff-$dfB0 1i/0 6525 tpi2
0000 ; Sdeff-$def@ 1i/o 6525 tpil
goooe ; $Adff-$d4d60 i/o 6551 acia
pod0 : Sdcff-$dc@d i/o 6526 cia
0000 ; $dbff-$db0d@d 1i/o unused (z80,8088,68008)
0e00 ; $daff-$dad@ 1i/o 6581 sid
000 ; $A9ff-$d900 i/o unused (disks)
0009 ; $d8ff-$d4800 1i/o 6566 vic/ 6845 8@-col
0000 H $d7££-$d400 colour nybles/88-col screen
0000 H $d3ff-$d009@¢ video matrix/86-col screen
goag ; Scfff-$c@@@ character dot rom (p2 only)
9000 ; Sbfff-$8000 roms external (language)
goao ; S7£f£f£-$4000 roms external (extensions)
0009 ; $3ff£f-$2000 rom external
00490 ; $1fff-$1060¢ rom internal
0000 ; SOfff-$0800 unused
0009 ; S@7f£-$06002 ram (kernal/basic system)
00900 ; segment 14 - segment 8 open (future expansion)
90009 ; segment 7 - S$ffff-$0002 ram expansion (external)
0060 ; segment 6 - Sffff-$0002 ram expansion (external)
0oo0 ; segment 5 - S$ffff-$0002 ram expansion (external)
0000 ; segment 4 - Sffff-$0002 ram b2 expansion (p2 external)
goca ; segment 3 - Sffff-$0002 ram expansion-
g0ea ; segment 2 - S$ffff-$6002 ram b2 standard (p2 optional)
0000 ; segment 1 - Sffff-$0002 ram b2 p2 standard
0000 ; segment 0 - Sffff-$00602 ram p2 standard (b2 optional)
0000 ;
000 ; the6509 registers appear in locations $0008 and
0000 ; S0001 in all segments of memory.
0000 ;
0000 ettt L L L L B e
0000 e6509 *=kg] ;6509 execution register
gool i6509 *=ky] ;6509 indirection register
0002 irom =$f ;indirect=rom or execution=rom
go02 * =$90
0090 skernal page zero variables
00940 ;
@a99 skernal indirect address variables
0090 ; _
ga90 fnadr *=%43 ;address of file name string
@093 sal *=%4] ;current load/store address
0G94 sah *=k4]
2095 sas k]

— 134 —

708 Reference Guide Memory storage distribution

(i?’?/o*be)

9096 eal *=ky] ;end of load/save

9397 eah k=k4]

@098 eas *=kyg]

9099 stal *=ky] ;start of load/save
gd9%a stah LELE D]

999b stas *=k4]

@@9c H

009c ;frequently used kernal variables

g09c ;

gad9c status *=kq] ;i/0 operation status
@694 fnlen *=ki] ;file name length

gg9e la k=] ;current logical index
go9f fa *=ki] ;current first address
00af sa *=ky] ;current second address
goal dfltn LR LD ;default input device
goa2 dflto *=k4] ;default output device
gga3 HE

I ER ;tape buffer pointer

gada3 ;

gda3l ; tapel *¥=%*4+3 ;address of tape buffer
gdaé6 ;

gga6 ;rs232 buffer pointers

gdasé ;

ggaé6 ribuf *=k43 ;input buffer

goas ;

gda9 ;variables for kernal speed

gga9 ;

gdal stkey *=hi] ;stop key flag

ddaa ctemp ;jused to reduce cassette read times
0daa c3po *=k4] ;ieee buffer flag

@dab snswl ;used to reduce cassette read times
@oab bsour k=ki] ;ieee character buffer
@0ac ;

@dac ; cassette temps - overlays ipc buffer

@dac H

@dac ipoint snext 2 bytes used for transx code
@dac syno *=k4]

Pgad dpsw k=ky]

@dae ; next 18 bytes also used for monitor

ddae ptrl *=ki] ;index to passl errors
ggaf ptr2 *=ki] sindex to pass2 errors
gobo pcntr *=k4]

gobl firt *=ky]

00b2 cntdn *zk4]

@0b3 shenl *=kq]

g0b4 rer *=k4]

@9b5s rez *=k4]

@0b6 rdflg LELEN]

@ab7 flagtl ;temp during bit read time
gdb7 shenh k=ky

g0b8 cmp@d kzky]

geb9 diff kaki]

gdba prp *=ky]

gdbb ochar k=]

@dbc prty *=%4]

20bd fsblk *zky]

@0be mych *=ky]

— 135 —

780 Reference Guide

@obf
00co
00co
00co
30co
00co
00co
g0c2
P0c4
@0cé
00dc8
@ldca
@0ca
@dca
@dca
@dcb
#0cc
gocd
@0ce
00ct
godo
g0dl
ged2
@043
p0d4
@9d5
gade
ageaz
gads
#ado
g0d9
gada
g0db
@adb
@edb
@adb
@g@dc
godd
gade
gadf
00ed

gdel
gde2
90e?2
d0e2
goe2
0ofo
0100
0101
Glff
0200
0200
0300
33069
@300
03049

cdata

Memory storage distribution
(Fbf — 300)

show to turn cassette timers on

;screen editor page zero variables

’
;editor indirect address variables

14

pkybuf
keypnt
sedsal
sedeal
pnt

4
;editor variables for

’

tblx
pntr
grmode
lstx
lstp
lsxp
crsw
ndx
qgtsw
insrt
config
indx
kyndx
rptcent
delay

’
sedtl
sedt2

’

*=$cld
=+2
LS)
=+2
*=¥42
*=%42

LELES
*oky]
*=ky]
*xky]
=+l
*=k4]
*=t4]
*=k4]
LEL L]
*=ky]
=+1
=+1
LELES
LEE
LELES

=+1

; leave some space

;start adr of pgm key
scurrent pgm key buf
;scroll ptr

;scroll ptr

;current character pointer

speed and size

s;cursor line

scursor column
;graphic/text mode flag

;s last character index
;screen edit start position

.

’

;index to keyd queue

squote mode flag

;insert mode flag

;cursor type / char before blink (petii)
;last byte position on line (##234-02
;count of program key string ##244-02)
;delay tween chars

;delay to next repeat

;frequently used temp variables

;frequently used editor variables

’

data
sctop
scbot
sclf
scrt
modkey

norkey

~e weo we

bad
stackp

buf

’

*=ky]
*=%y4]
LEL LS
k]
*=kgy]
k=k4]

=%y]

*=$£0
*=$100
*=Hhp]
*=81ff
*=$200
*=*4256

;system ram vectors

.

’
cinv

=¥y

;current print data

;top screen @-25

;bottom @-25

;left margin

;right margin

skeyscanner shift/control flags
($ff-nokey)

;keyscanner normal key number ($ff-nokey)

see screen editor listings for usage in this area

;free zero page space, 16 bytes
;system rack area

;cassette bad address table
;system stack pointer tranx code

;basic's rom page work area

;irq vector

— 136 —

700 Reference Guide Memory storage distribution

(#3022 - 036)

9362 cbinv *=k42 ;brk vector

9304 nminv *=ky D ;nmi vector

9306 iopen *=%42 ;open file vector

2308 iclose *=ki2 ;close file vector

g30a ichkin *=k42 ;open chn in vector

@g30c ickout *=k42D ;open chn out vector

d3de iclrch *=k42 ;close channel vector

p310 ibasin *=ky2 ;input from chn vector

9312 ibsout *=k42 ;joutput to chn vector

0314 istop *=%42 ;check stop key vector

2316 igetin *=k42 ;get from queue vector

g318 iclall *zky) ;close all files vector
g3la iload *=kyD ;load from file vector

@31c isave k=kyD ;save to file vector

g3le usrcmd *=k42 ;monitor extension vector
9320 escvec *=k4D ;user esc key vector

@322 ctlvec =%y ;unused control key vector
0324 isecnd *=%42 ;ieee listen secondary address
0326 itksa *=k42 ;ieee talk secondary address
328 iacptr LELE V) ;ieee character in routine
@32a iciout *=kyD ; ieee character out routine
g32c iuntlk *=ky 2 ;ieee bus untalk

g32e iunlsn k=42 ;ieee bus unlisten

9330 ilistn *=k42 ;ieee listen device primary address
@332 italk k=42 ;ieee talk device primary address
6334 ;

9334 ;kernal absolute variables

8334 ;

@334 lat *=k4]0 ;logical file numbers

g33e fat *k=k4]10 ;device numbers

@348 sat *=%4+10 ;secondary addresses

@352 ;

@352 ;

#352 lowadr *=%43 ;start of system memory
@355 hiadr *=%43 ;top of system memory

@358 memstr *=%4+3 ;start of user memory

@35b memsiz *=k43 ;top of user memory

@35e timout k=ky] ;ieee timeout enable

@35f verck *=k4] ;load/verify flag

#3360 1dtnd LEXL S ;device table index

0361 msgflg k=ki] ;message flag

2362 bufpt *=%4] ;cassette buffer index

#9363 ;

2363 ;kernal temporary (local) variable

@363 ;

3363 tl *=k4]

0364 t2 k=ky]

@365 xsav LELES

@366 savx *=k4]

2367 svxt *=k4]

2368 temp k=ky4]

6369 alarm k=ky] ;irqg variable holds 6526 irq's
@36a ;

@36a skernal cassette variables

g36a :

P36a itape *=k42 ;indirect for cassette code
@36c cassvo LELE 3] ;cassette read variable

— 137 —

709 Reference Guide

p36d

g36e
g36f
9370
2371
9372

@375
g376
@376
@376
@376
6377
@378
@37a
037b
g37c¢
@374
@37e
g37e
@37e
@37e
@380
@382
@383
@383
@383
3383
@3co
@3co
@3co
@3co
g3f8
g3fd
g3fd
g3fd
0400
2400
0400
0400
0800
0800
0800
7800
0800
0800
08080
7800
0800
2800
@899
g81la
99149
@990
3990
29949

aservo

caston
relsal
relsah
relsas
oldinv

casl

14
;re232

14
m51lctr
m51cdr

rsstat
dcdsr
ridbs
ridbe

14

.
14
3
14

pkyend
pagsav

-

3
14
.
’

we weo wo

evect
warm
winit

ramloc

*=k4]

LEL R
k=k4g]
=+1
*=kq]
*=%43

d=ky]

Memory storage distribution

(NO3Cd -~ 0990

;flagtl***indicates tl timeout cassette
read

;how to turn on timers

;moveable start load addr

;jrestore user irq and i6509 after
cassettes
;cassette switch flag

information storage

system

H
; kernal

ipbsiz

e we we

ipcemd
ipcjmp
ipcin

ipcout
ipcdat

’

ipb
ipjtab
ipptab

’

LELES
LEL S
*=h42
k=ky]
k=ky]
*=ki]
*=ky]

*=$380
*=k42
k=]

*=$3c0

;6551 control image
;6551 command image

;perm, rs232 status
;last dcd/dsr value
;input start index
;input end index

screen editor absolute

;block some area for editor
;program key buffer end address
; temp ram page

see screen editor listings for other variables

;free absolute space start

warm start variables and vectors

*=$3f8
=+5
=8a5
=$5a
*=5400

;warm start flag
sinitialization complete flag

inter-process communication variables

*=$0800
16

ipc buffer offsets

Vb WwHNR

*=*t+ipbsiz
*=%4+256
=%+128

.end

;ipc buffer size

; ipc command

;ipc jump address

;ipc #input bytes

;ipc #output bytes

;ipc data buffer (8 bytes max)

;ipc buffer
;ipc jump table
;ipc param spec table

.lib scrn-declare

— 138 —

700 Reference Guide Memory storage distribution

9990 *=$0

— 139 —

700 Reference Guide Memory storage distribution

0009
0000
0000
0000
gego
0000
0000
oo
0600
0009
goao
0000
0000
0000
0600
poag
0000
0000
0000
poeo
0000
0000
0000
0090
00900
0000
o000
0009
00800
000
0000
o000
pooo
0ago
0000
0000
000
0ooo
0000
0000
0000
0000
0009
pagl
gog2
a2
0090
po9a
0099
g099
2090
0093
p094
pe95
9096
@97
2098

6509 used to extend memory on bc2 and p2 systems
bits 0-5 used to direct:
execution register (4 bits)
indirect register (4 bits)

these bits can be expanded to sixteen (16) segment
control lines. on 6509 reset all lines are high.

H

H

H

H

H

H

’

’

’

; current memory map:

; segment 15- $ffff-$eld@@ ram (kernal)

H SAfff-$4f@@ i/o 6525 tpi2

; Sdeff-$de@?@ 1i/o 6525 tpil

; $ddff-$4de@ 1i/o 6551 acia

: $dcff-$dc@l 1i/o 6526 cia

; $dbff-$db0@ i/o0 unused (z80,8088,6809)
H $daff-$dadd i/o 6581l sid

; $39£ff-$d900 1i/o unused (disks)

; Sd8ff-$d800F 1i/o 6566 vic/ 6845 8@-col
H $d7££f-$d400 colour nybles/80-col screen
H $d3ff~-$d000 video matrix/80-col screen
; Scfff-S$c@B@d character dot rom (p2 only)
H Sbfff-$8000 roms external (language)

; $7f£f£-$4000 roms external (extensions)
; S3fff-$2000 rom external

; S1fff-$1000 rom internal

; SOfff-$0400 unused

; S03ff-$0002 ram (kernal/basic system)
; segment 8 open (future expansion)

; Sffff-$0002 ram expansion (external)

; - Sffff-$0002 ram expansion (external)

; - Sffff-$0002 ram expansion (external)

; SEfff-$0002 ram expansion (external)

; - Sffff-$0062 ram expansion

; - Sffff-$0002 ram expansion

; - Sffff-$6002 ram expansion

; - Sffff-$0602 ram user/basic system

’

H

H

H

;

>
i

segment
segment
segment
segment
segment
segment
segment
segment
segment

QAW
|

the 6509 registers appear in locations $0000 and
$0001 in all segments of memory.

e6509 k=kp] ;6509 execution register

i6509 *=ky] ;6509 indirection register

irom =Sf ;indirect=rom or execution=rom
*=590

;jkernal page zero variables

’
;kernal indirect address variables

’

fnadr *=%43 ;address of file name string
sal *=ky] ;current load/store address
sah k4]

sas *=ky]

eal *=ky] ;end of load/save

eah *=ky]

eas *=ki]

— 140 —

700 Reference Guide

Memory storage distribution

@999 stal *=ky] ;start of load/save

god9%a stah *=t4]

ga%hb stas k=d4]

809c ;

@09c ; frequently used kernal variables

909c ;

g69c staus *=*4] ;1/0 operation status
gg9d fnlen LEL SN ;file name length

gg9e la *k=%4] ;current logical index
gg9f fa *=k4] ;current first address
go0ag sa *=%4] ;current second address
gdal dfltn *=ky] ;default input device
ga2 dflto *=kq] ;default output device
gda3 ;

gga3 ;tape buffer pointer

gda3 ;

gga3 tapel *=%43 ;address of tape buffer
gdaé6 ;

@da6 ; see kernal listing for allocation information
gda6 ;

g9ab6 ;screen editor page zero variables

gdas ;

goa6 ;editor indirect address variables

g0a6 H

gda6 *=Scl ; leave some space

00c9o pkybuf *=%42 ;start adr of pgm key
goc2 keypnt *=%42 scurrent pgm key buf

gdc4 sedsal *=k42 ;scroll ptr

P0c6 sedeal *=%42 ;scroll ptr

g@c8 pnt *=%4) ;current character pointer
@dca ;

@dca ;editor variables for speed and size

@dca H

@0ca tblx *k=k4] scursor line

@dcb pntr *=k4] scursor column

@dcc grmode LELE NN ;graphic/text mode flag
gdcd lstx *=k4] ;last character index
@dce 1stp *=hi] ;screen edit start position
@dct lsxp *=kq]

gade crsw *=k4y] ;

gadl ndx *=ki] ;index to keyd queue

@gad2 gtsw LELE D] squote mode flag

9043 insrt LELES] ;border colour

gad4 config *=k4] jcursor type

g@ds indx *=k4] ;last byte position of line
gade kyndx *=k4] ;count program key string
goqa7 rptent *=h4] ;delay tween chars

gads delay k=x4] ;delay to next repeat
ged9 ;

9049 sedtl *=k4] ;frequently used temp variables
gdda sedt2 LELE D]

gadb ;

@@db ; frequently used editor variables

@ddb :

@adb data LELE ST ;current print data

gedc sctop *=ky] ; top screen @-25

gadaqd scbot *=ky] ;sbottom @-25

— 141 —

700 Reference Guide Memory storage distribution

gadde sclf k=k4] ;left margin

Paqaf scrt k=ky] ;right margin

00e0 modkey k=%4] ;s keyscanner mode byte ($ff - no key down
last scan)

goel norkey *=*4] s keyscanner normal byte ($ff - no key down
last scan)

goe2 bitabl *=%44 ;wrap bitmap

ddeb zpend

@0eb ;

00e6 *=$100

0100 ; stack space

91009 *=$200

0200 buf *=%4+256 ;basic's line input

9300 ;

0300 ; this area reserved for kernal absolutes

0300 ; see kernal listing for other locations

0300 ;

3300 ctlvec =$0322
9300 escvec =$0320
9300 hiadr =$0355

0300 bsout =8$ffd2 ;kernal vector

9300 ; ‘

@300 ;screen editor absolute

9300 H

3300 *=$5380 ;block some area for editor

@380 pkyend *=*42 ;program key huffer end address

7382 keyseg *=k4] ; segment number for function key ram page
@383 keysiz *=%4+20 ; function key sizes ...don't clear...
@397 rvs *=k4p] ;reverse field flag

@398 lintmp *=ky] :line # tween in and out

#9399 lstchr *=kt] ;last char printed

@39%a insflg *=ky] ;auto insert flag

@39b scrdis *=ky] ;scroll disable flag

@39c fktmp ;also used for function key temporary
#39c bitmsk *=k4] ; temporary bitmask

394 keyidx *=*+] ;index to programmables

@39%e logscr *=ky] ;logical/physical scroll flag

g39f bellmd *=%4] ;flag to turn on end of line bell
g3a0 pagsav *=k4] ; temp ram page

@g3a3 ;

@3a3 tab *=%4+10 ;tabstop flags (80 max)

g3ad :

@3ad keyd *=*+10 s key character queue

@3b7 funvec *=%42 ;indirect jump vector for function keys
@3b9 sedt3 *=kq] ;another temp used during function key
A listing

@3ba absend

@3ba ;

@3ba ; system warm start variables and vectors

@3ba ;

@3ba *=83f8

g3f8 evect *=%35

g3fd warm =$as ;warm start flag

@3fd winit =$5a ;initialization complete flag

@3fd *=5400

0400 ramloc

0400 .end

— 142 —

7080 Reference Guide Memory storage distribution

9400
0400
0400
0000
0000
go01
0002
0002
goos5
poge
9907
goos8
0009
g009
godc
gogdc
g0dc
ggaa
go0e
poGf
ga1a
0010
2019
0a10
gol11
goll
goll
9912
ga13
0013
ga13
0014
go14
0014
ggl4
gals
gals
gag1s
ga15
@915
ga1s
gg15
gagle
gagle
ga3e
0o3f
003f
2041
0041
0041
g041

0042
0044
0046
0046
0o46

.
14

’
e6509
i6509
14
usrpok
tmhour
tmmin
tmsec
tmten

’
form

’
integr
charac
endchr
count
xcnt

inpflg

emppt

lastpt
tempst
H
index
indexl

.lib basic-define
page zero storage definitions

*=0

*=k4] ;execution bank

k=k4] ;indirection bank
*=%4+3 ;set up origin by init
*=*4] ;for ti$ calculations
*=ky]

=+1

LELESH

*=*tptrsiz ; format pointer

;jone-byte integer from gint

*=kgq] ;a delimiting char

*=ky] ;other delimiting char

*=kq] ;general .counter

*=kgq] ;dos loop counter
flags

dimflg, valtyp and intflg must be

consecutive locations.
k=ky] ;getting a pointer to a variable

it is important to remember whether

it is being done for dim or not.
LELED] ;the type indicator @=numeric, l=string
k=ky] ;tells if integer

;whether to do garbage collection
*=ki] ;whether can or can't crunch res'd word.
turned on when data being scanned by
crunch so unquoted strs won't be crunched.

k=ky] ;flag whether sub'd variable allowed.
for and user-defined function pointer

fetching turn this on before calling

ptrget so arrays won't be detected.

stkini and ptrget clear it.

also disallows integers there.

*=hy] ;flags are doing input or read.
*=%iptrsiz ;disk status string

*=%4] ;holds channel number

*=k42 ;location to store line #

pointers to temporary string descriptors.
temp descriptors are located in the string bank
hence, bank of strbnk is assumed for temppt,lastpt

*=x4] ;temppst relative offset to lst free temp
descr '
*=%42 ;pointer to last-used str temporary
*=%42 spointer to storage for 3 temporary
descriptors.

*=*iptrsiz ;direct cells for lst indexing usage

— 143 —

709 Reference Guide

@049
go4c
@g04c
@%4c
go4d
@Q4e
dgd4e
go4f
@050
ga51
go51
go51
@951
go51
@051
gas51
ga51
@051
@851
@051
9051
g051
@051
gos51
gos1l
@851
g@51
a9s1
go51
#9951
ges51
@051
gas51
0051
ges51
@051
ga51
G@51
go51
9051
@051
9953
@853
gas3
@a53
@055
@ga5s
gas7
@957
@as9
@959
@@5b
g@5b
gesd
gesd
gosft
gosf

index2

’

’
resho
resmoh
addend
resmo
reslo

(T € N0 N0 Ne N6 N0 NE WE Ve Ve Ve WE W WO N N Ve Ve N e Ve We WO Ne N6 W We Ve W Ve W

xttab

xtend

E-2R TIrs 20 TIR YR 1

artab
arend

rytab

(2]
%
®
3
Q

trend

w~e () vo Q) Ne Q) N & e

fretop

=+ptrsiz

*=k4]
LELES]

*=ty]
h=ky]
k=ky]

Memory storage distribution

;direct cells for 2nd indexing usage

;result of multiplier and divider

;temp used by umult

;overflow previous cells

pointers into dynamic data structures

all are 2-byte offsets into fixed banks

the following always mark the beginning of an area:

txttab, vartab
arytab, memtop

these will have unchangeable values in versions
where the areas they mark are equal to the "bottom"
(or "top" for memtop) of a bank.

additional variables:

txtend, varend, aryend

are used to mark the end of an area, when the start
of the "next™ area is in a different bank (i.e.,
the end isn't bordered by another area.)

highst is used to store the offset value from a basic
startup call to get the top of memory.

the limit of growth in an area must also be kept.
in the different versions, the following are used:

64k:
128k

192k

256k

*=tfy)
by init
*=h4D
*=%42
*=%42D
*=k4pD
k=hyq D
k%4 D

=+2

memtop
buffpt
memtop
buffpt
highst
memtop
buffpt
highst
highst
memtop

(all)
(text)
(data)
(text)
(arrays)
(vars,strs)
(text)
(vars)
(arrays)
(strs)

;pointer to beginning of text and
doesn't change after being setup

;pointer to end of text (except 64k)

;pointer to start off simple variable

space.

;pointer to end of simple vars (256k only)

;pointer to start of array table

;pointer end of arrays (192k, 256k only)

;end of storage in use.

;top of str free space

— 144 —

7800 Reference Guide Memory storage distribution

goe6l frespc *=*+2 ;pointer to new str

9063 memtop *=%*4ptrsiz shighest location in memory

0266 line numbers and textual pointers

0066 curlin *=k42 ;current line number

go68 oldlin *=%4D 70ld line number (setup by stop or
gg6a ; end in a program)

gg6a oldtxt *=*4ptrsiz ;old text pointer

paged ;

pged datlin *=k4D ;data line number

go6f datptr *=%42 ;pointer to data. initialized to point
871 at the zero infront of (txttab) by

0971 clr command.
0071 updated by execution of a read.
ga71 inpptr *=k42 ;remember where input is coming from.

e e we w3

2a73 ; stuff used in evaluations

90873 ;

0873 varnam *=%42 ;variable's name

@075 ;

2075 fdecpt ;pointer into power of tens table.
ga75 varpnt *=*4ptrsiz ;pointer to variable in memory

ga78 ;

ga78 forpnt ;a variable's pointer for for loops
ga78 H and let statements (3 bytes).

0078 lstpnt *=*4+ptrsiz ;pointer to list string (3 bytes).
@97b H

6d7b vartxt ;save current txtptr on read.

@d7b opptr *=*4+ptrsiz ;pointer to current op's entry in optab.
ga7e ;

gave opmask *=hy] ;mask created by current operation.
g07f ; temporary floating result registers (5 bytes each):
go7¢f ; tempfl, tempf2, tempf3

007¢f ;

007f tempf3 ;s temp float reg

ga7¢f grbpnt ;pointer used in garbage collection.
007f defpnt *=*4ptrsiz ;pointer used in function definition.
9082 F

@082 dscpnt *=*+ptrsiz ;pointer to a string descriptor,
0085 ;

20885 jmper *=%*42 ;three bytes long

0987 oldov h=hi] ;the old overflow.

9088 ;

gg8s tempfl ;temp float reg

goss ptargl=tempfl ;multiply def'd for use by instr$
0088 ptarg2=tempfl+3

go8s strl=tempfl+6

po88 str2=tempfl+10

gg8s tmppos=tempfl+14
0088 positn=tempfl+1l5
go88 match=tempfl+16

0088 arypnt ;pointer used in array building.

goss highds *=*4ptrsiz ;destination of highest element in bit.

@d8b hightr *=*4ptrsiz ;source of highest element to move.

god8e ;

go8e tempf2 ;temp float reg (5 bytes)

gase lowds k=g] ;location of last byte transferred (3
bytes) .

gosft deccnt *=ky] ;number of places before decimal point.

— 145 —

708 Reference Guide Memory storage distribution

0090
2991
go91

@091
@092
@393
30994
2094
@995
3d95
@995
7996
0997
7998
@098
ge99
gg9a
g@9b
299b
g99c
gaod
gg9d
ge9d
gg9d
g@g9d
good
ggad
da9%e
@a9f
g0agd
ggal
g2a2
gda3
@gga3
gPad
ggas
doa6
@2a6
gga6
goa6
@da9
@dac
goaf
gdaf
gdaf
Goba
goba
gobl
gabl
gab3
@0b4

g@b4 -

00b4
gab4
08b4
00b4

tenexp

’
grbtop

lowtr
dptflg
expsgn

’
dsctmp

fac
facexp
facho
facmoh
indice
facmo
faclo
facsgn
degree
sgnflg
bits

H

tl=*
t2=tl+l
t3=tl+2
td4=tl+3
’
argexp
argho
argmoh
argmo
arglo
argsgn
strngl
arisgn
facov

strng2
polypt
curtol
fbufpt
txtptr
buffpt
’

noze
parsts
point
parstx

’
seedpt
errnum

Ne Ne Ne We we “wo

*=%4] ;base ten exponent

;pointer used in garbage collection. (3

bytes)
*ahy] ;last thing to move 'in bit (3 bytes)
k=ki] ;has a dpt been input
k=k4] ;sign of exponent
the floating accumulator
k=kt] ;temporary descriptors are built here.
;dsctmp overlaps up to facmoh.
LELES]
*=k4] ;most significant byte of mantissa.
=+1
;used by qgint.
d=kq]
*=%y]
*=k4]
;count used by polynomials,
h=k4i]
*=ky] ;cell for shiftr to use.

the floating argument (unpacked)
; temporaries --uses fp buffer

*=k4]
LELE DS
*=k4]
*=kqy]
k=kq]
k=ky]

*=ki] ;a sign reflecting the result
*=%4] ;overflow byte of the fac
=+1
;- > to str or desc
i- > to polynomial coefficients
;absolute linear index is formed here
*=*4ptrsiz 3- > into fbuffr used by fout
=+ptrsiz ;pointer to current term
=+ptrsiz ;input buffer

;using's leading zero counter

LELE D] ;dos std parser word
;using's pointer to decimal point
*=%4] ;dos aux parser word
*=ky4D
=+l

string area available for copy. this area is used
by fout as a buffer and must have dosspc contiguous
bytes.

in addition this area is used to stored temporaries
used by the dos interface routines, note, declaration

— 146 —

700 Reference Guide Memory storage distribution

@ab4 H order of locations dosofl-dossa must be preserved.
00bd :

00b4d *=$200

0200 fbuffr

0200 vspbuf sbuffer used to interface with vsp
0200 *=%416 ;reserve 16 bytes for filename 1
g210 dosfll *=hq] ;dos file name 1 length

9211 dosdsl *k=ky] ;dos disk drive 1

@212 dosfla *=k42 ;dos file name 1 address

3214 dosflb k=kyq] ;dos file name 1 bank

@215 ;

@215 dosf21l *=ki] ;dos file name 2 length

g216 dosds?2 kzky] ;dos disk drive 2

0217 dosf2a *=kq2 ;dos file name 2 address

g219 dosf2b *=k4] ;dos file name 2 bank

g2la H

g2la dosbnk *=ky] ;dos bank number

g21b dosofl *=%42 sdos low offset (bsave,bload)
9214 dosofh *=h4D ;dos high offset (bsave)

g21f ;

g21f dosla k=k4] ;dos logical address

0220 dosfa *=ki] ;dos physical address

9221 dossa *=k4] ;dos secondary address

9222 dosrcl *=k4] ;dos record length

9223 ;

@223 dosdid *=k42 ;dos disk identifier (2 chars)
9225 didchk *=ki] ;dos did flag

2226 ;

0226 dosstr *=k4] ;dos output string buffer

9227 dosspc=*-fbuffr ;space used by dos routines

0027 *=X4+46

@255 ;

@255 ;

@255 trmpos ;cursor column on crt

@255 andmask *=*+] ;mask used by wait

3256 eormsk *=ki] ;mask used by wait

@257 ;

3257 dfbank *=k4] ;default bank number

#258 dolu *=ki] ;default output lu (#=> not std output.)
@259 ; keeps ds + dir ok
@259 domask

g259 tansgn *=ky] sused in determining sign of tan
g25a ;

@25a ldaabs r=ki] ;1da abs routine (see initat)
#25b tttemp ; temporary store

@25b ldaadr *ak4D ;modifiable address

@254 *=k4+] ;return opcode

@25e ;

g25e ;declarations for print using

g25e ;

g25e hulp k=i] scounter

g25f bnr *=ky] ;pointer to begin no

3260 enr *=k4] ;pointer to end no

@261 dolr *=kq] ;dollar flag

3262 flag *=k4] ;comma flag

9263 swe *=k4] ;counter

2264 usgn *=k4] ;sign exponent

— 147 —

7008 Reference Guide Memory storage distribution

9265 uexp *=kp] ;pointer to exponent

#9266 vn *=k4] ;# digits before decimal point

@267 chsn k=ki] ;justify flag

7268 vE k=hy] ;# pos before dec point (field)

9269 nf k=k4] ;# pos after dec point (field)

g26a posp *=%4] ;+/- flag (field)

#26b fesp *=ki] ;exponent flag (field)

g26c etof *=k4] ;switch

@g26d cform k=%y4] ;char counter (field)

g26e sno *=k4p] ;sign no

g26f blfd *=hy] ;blank/star flag

#2709 begfd *=ky] ;pointer to begin of field

8271 lfor *=%4] ;s length of for at

0272 endfd *=h4] ;spointer to end of field

9273 puchrs

2273 pufill *=h4] ;sprint using fill symbol

9274 pucoma *=k4] ;print using comma symbol

3275 pudot *=k4] ;print using decimal point symbol

@276 pumony *=%4] ;print using monetary symbol

2277 *=5280

0280 ; basic indirects

0280 ;

@280 ierror LERE V] ;error routine, output err in .x

282 imain *=%42 ;interpreter main loop

9284 icrnch *=k4Q ;tokenization routine

9286 igplop *=%*42 ; token output expander routine

0288 igone *=k42 ;dispatcher

g28a ieval k=k42 ;eval routine

@28c¢c ifrmev *=k4D ; frmevl routine

g28e ichrgo *=*42 ;chrgot routine

82949 ichrge k=42 ;chrget routine

@292 adrayl *=%42 ;convert float -> integer

9294 adray?2 *=k4D ;convert integer -> float

3296 ; error trapping declarations

@296 ;

g296 trapno *=k4D ;error trap vector

8298 errlin LELE W ;holds line # of last error

@29a errtxt *=*42 ;text pointer at time of error

@29c oldstk *=%4] ;stack pointer before execution of last
instruction

@29d tmptrp *=%4] ;used to save hi byte of trap line >trap
& resume

g29%e dsptmp *=ky] ; temporary for dispose

029f oldtok k=ky] ;

g2ag tmpdes *=%4i6 ; temporary for instr$

g2a6 ;

g2a6 highst *=k4D ;max offset for any user bank

g2a8 H

g2a8 ;

g2a8 msiism k=ky] sused to save length of string to be added

g2a9 newsys=$ffé6c in garb collect

@2a9 H

g2a9 .end

@2a9 .1lib kernal-equate

p2a9 ;tape block types

d2a9 ;

g2a9 eot =5 ;end of tape

— 148 —

700 Reference Guide Memory storage distribution

g2a9 blf =1 sbasic load file

g2a9 bdf = 2 sbasic data file

2a9 bdfh = 4 ;basic data file header
g2a9 bufsiz = 192 sbuffer size

g2a9 cr = §d ;carriage return

92a9 basic = $8000 ;start of rom (language)
p2a9 kernal = $e000 ;start of rom (kernal)
02a9 ; 6845 video display controller for bc2

g2a9 ;

g2a9 vdc = $d4800

g2a9 adreg = S0 ;address register

g2a9 dareg = §1 ;data register

@2a9 ; 6581 sid sound interface device

g2a9 ; register list

#2a9 sid = $dag@0

g2a9 ;

g2a9 ; base addresses oscl, osc2, osc3

@2a9 oscl = $00

g2a9 osc2 = $07

g2a9 osc3 = Sfe

g2a9 ;

92a9 ; Osc registers

@2a9 freqlo = $00

@2a9 freqghi = $§01

g2a9 pulsef = $02

g2a9 pulsec = $03

g2a9 oscctl = $04

@2a9 atkdcy = $85

g2a9 susrel = $06

g2a9 ;

g2a9 ; filter ocntrol

g2a9 fclow = $15

g2a9 fchi = 816

g2a9 resnce = $817

g2a9 volume = S$18

g2a9 H

g2a9 ;s pots, random number, and env3 out

@2a9 potx = $19

@2a9 poty = Sla

g2a9 random = $§1b

g2a9 env3 = $lc

g2a9 ; 6526 cia complex interface adapter

g2a9 ; game / ieee data / user

g2a9 H

@2a9 ; timer a: ieee local / cass local / music / game
g2a9 ; timer b: ieee deadm / cass deadm / music / game
@2a9 ; ’

g2a9 ; prad : ieee datal / user / paddle game 1
g2a9 ; pral : ieee data2 / user / paddle game 2
g2a9 ; pra2 : ieee data3 / user

g2a9 ; pra3 : ieee datad4 / user

g2a9 ; pra4 : ieee data5 / user

g2a9 ; pra5 : ieee data6é / user

g2a9 ; pra6é : ieee data7 / user / game trigger 14
@2a9 ; pra7 : ieee data8 / user / game trigger 24
g2a9 H

02a9 ; prbd : user / game 10

— 149 —

700 Reference Guide Memory storage distribution

g2a9 ; prbl : user / game 11

@2a9 ; prb2 : user / game 12

@2a9 ; prb3 : user / game 13

g2a9 ; prb4 : user / game 20

g2a9 ; prb5 : user / game 21

g2a9 ; prb6 : user / game 22

g2a9 ; prb7 : user / game 23

g2a9 ;

g2a9 ; flag : user / cassette read

g2a9 ; pc : user

g2a9 ; ct s user

g2a9 ; sp : user

g2a9 ;

g2a9 cia = $dcoo

@2a9 pra = S0 ;data reg a

g2a9 prb = S1 ;data reg b

g2a9 ddra = $2 ;direction reg a

@2a9 ddrb = 83 ;direction reg b

g2a9 talo = $4 ;timer a low byte
g2a9 tahi = $5 ;timer a high byte
g2a9 tblo = $6 ;timer b low byte
f92a9 tbhi = §7 ;timer b high byte
g2a9 todlog = $8 ;10ths of seconds
g2a9 todsec = $9 ; seconds

g2a9 todmin = Sa ;minutes

@2a9 todhr = $b ;hours

g2a9 sdr = Sc ;serial data register
02a9 icr = 84 ;interrupt control register
g2a9 cra = Se ;control register a
g2a9 crb = Sf ;control register b
#2a9 ;

g2a9 ; 6526 cia for inter-process communication
#2a9 ;

g2a9 ; pra = data port ‘

@2a9 ; prbd@ = busyl (1=>6509 off dbus)

g2a9 ; prbl = busy2 (1=>8088/z80 off dbus)
g2a9 ; pra2 = semaphore 8088/z84d

g2a9 ; prb3 = semaphore 6509

@2a9 ; prb4 = unused

g2a9 ; prb5 = unused

g2a9 ; prb6 = irq to 8088/z28@¢ (1lo)

g2a9 ; prb7 = unused

g2a9 ;

g2a9 ipcia = $4b@g

g2a9 H

@#2a9 sem88 = $04 ;prb bit2

d2a9 sem65 = $08 ;prb bit3

g2a9 ; 6551 acia rs232c and network interface
d2a9 ;

g2a9 acia = $4499

g2a9 drsn = S00 ;transmit/receive data register
@2a9 srsn = 801 ;status register

02a9 cdr = $02 ;command register
g2a9 ctr = $03 ;control register
g2a9 dsrerr = $40 ;data set ready error
g2a9 dcderr = $20 ;data carrier detect error
g2a9 doverr = $08 ;receiver outer buffer overrun

— 150 —

7006 Reference Guide Memory storage distribution

#2a9 ; 6525 tpil triport interface device #1

g2a9 ; 1leee control / cassette / network / vic / irq
g2a9 ;

g2a9 ; pald : ieee dc control (ti parts)

g2a9 ; pal : ieee te control (ti parts) (t/r)

g2a9 H pa2 : ieee ren

g2a9 ; pa3 : ieee atn

g92a9 ; pad4 : ieee day

g2a9 ; pa5 : ieee eoi

g2a9 ; pa6 : ieee ndac

p2a9 ; pa7 : ieee nrfd

g2a9 ;

@2a9 ; pb@ : ieee ifc

@2a% ; pbl : ieee srqg

g2a9 ; pb2 : network transmitter enable

g2a9 ; pb3 : network receiver enable

g2a9 ; pb4 : arbitration logic switch

g2a9 ; pb5 : cassette write

g2a9 ; pb6 : cassette motor

g2a9 ; pb7 : cassette switch

g2a9 H

g2a9 ; irg@ : 50/68 hz irq

@2a9 ; irql : ieee srq

g2a9 ; irg2 : 6526 irq

g2a9 ; irg3 : (opt) 6526 inter-processor

@2a9 H irg4 : 6551

g2a9 ; *irq : 6566 (vic) / user devices

g2a9 ; cb : vic dot select

g2a9 ; ca : vic matrix select

@2a9 K

@2a9 tpil = $de00

@2a9 pa = $0 ;port register a

g2a9 pb = §1 ;port register b

@2a9 pc = §2 ;port register c

g2a9 lir = 82 ;sinterrupt latch register mc=1
g2a9 ddpa = 83 ;data direction register a
#2a9 ddpb = $4 ;data direction register b
g2a9 ddpc = §5 ;data direction register c
g2a9 mir = §5 ;interrupt mask register mc=1l
02a9 creg = $6 ;control register

g2a9 air = §7 ;active interrupt register
g2a9 ;

g2a9 freq = $01 ;irg line 50/60 hz found on ...
@2a9 ; 6525 tpi2 tirport interface device #2

g2a9 ; keyboard / vic 16k control

@2a9 ;

@2a9 ; pa@ : kybd out 8

g2a9 ; pal : kybd out 9

g2a9 ; pa2 : kybd out 10

@2a9 ; pa3 : kybd out 11

g2a9 ; pa4 : kybd out 12

g2a9 ; pa5 : kybd out 13

d2a9 ; pa6é : kybd out 14

g2a9 ; pa7 : kybd out 15

g2a9 ;

g2a9 H pb@ : kybd out 0

g2a9 ; pbl : kybd out 1

— 151 —

700 Reference Guide Memory storage distribution

62a9 ; pb2 : kybd out 2

@2a9 ; pb3 : kybd out 3

g2a9 ; pb4 : kybd out 4

g2a9 ; pb5 : Kybd out 5

#2a9 ; pb6 : kybd out 6

@2a9 ; pb7 : kybd out 7

g2a9 ;

g2a9 ; pcd : kybd in @

g2a9 H pcl : kybd in 1

d2a9 : pc2 : kybd in 2

@2a9 ; pc3 : kybd in 3

g2a9 ; pc4 : kybd in 4

#2a9 ; pcS : kybd in 5

g2a9 : pc6é : vic 16k bank select low

g2a9 ; pc7 : vic 16k bank select hi

@2a9 H

#2a9 tpi2 = $4f00

g2a9 ; ieee line equates

g2a9 ;

g2a9 dc = $01 7751608/75161 control line
@2a9 te = $02 ;75160/75161 control line
#2a9 ren = S04 ;remote enable

@2a9 atn = $08 ;attention

g2a9 dav = S10 ;data available

@2a9 eoi = $20 ;end or identify

g2a9 ndac = $40 ;snot data accepted

g2a9 nrfd = $80 ;not ready for data

g2a9 ifc = $01 sinterface clear

g2a9 srqg = $02 ;service request

@2a9 ;

@2a9 rddb = nrfd+ndac+te+dc+ren ;directions for receiver
g2a9 tddb = eoi+dav+atn+te+dc+ren ;directions for transmit
@2a9 ;

g2a9 eoist = $40 ;eoi status test

g2a9 tlkr = $40 ;device is talker

d2a9 listnr = $20 ;device is listener

g2a9 utlkr = $§5f sdevice untalk

#2a9 ulstn = $3f ;device unlisten

@2a9 ;

#2a9 toout = $01 ; timeout status on output
B2a9 toin = $02 ; timeout status on input
@2a9 eoist = $40 ;eoi on input

g2a9 nodev = S$80 ;no device on bus

d2a9 sperr = $19 ;verify error

@2a9 ;

g2a9 ; equates for c3p@d flag bits 6 and 7

g2a9 ;

g2a9 slock = $40 ;screen editor lock-out
02a9 dibf = $840 ;data in output buffer
g2a9 .end

02a9 .lib scrn-equate

fp2a9 ; tape block types

@2a9 ;

g2a9 eot =5 ;end of tape

g2a9 blf =1 sbasic load file

g2a9 bdf = 2 ;basic data file

g2a9 bdfh = 4 ;basic data file header

— 152 —

709 Reference Guide Memory storage distribution

g2a9 bufsiz = 192 ;buffer size

@2a9 cr = $d ;carriage return

g2a9 basic = $8000 ;start of rom (language)
g2a9 kernal = Se000 ;start of rom (kernal)
g2a9 ; 6845 video display controller for bc2

g2a9 :

g2a9 vdc = $d4800

g2a9 adreg = $0 ;address register

g2a9 dareg = 81 ;data register

@2a9 ; 6581 sid sound interface device

g2a9 ; register list

@2a9 sid = $da@g

g2a9 ;

@2a9 ; base addresses oscl, osc2, osc3

g2a9 oscl = $00

g2a9 osc2 = $07

g2a9 osc3 = S$Qe

g2a9 ;

g2a9 ; Osc registers

#2a9 freqlo = $00

g2a9 freqhi = $01

g2a9 pulsef = $02

#2a9 pulsec = $03

g2a9 oscctl = $04

g2a9 atkdcy = $05

@2a9 susrel = $06

@2a9 ;

g2a9 ; filter control

d2a9 fclow = $15

g2a9 fchi = $16

g2a9 resnce = 817

g2a9 volume = $18

@2a9 ;

g2a9 ; pots, random number, and env3 out

g2a9 potx = $19

#2a9 poty = $la

B2a9 random = $1b

f2a9 env3 = Slc

@2a9 ; 6526 cia complex interface adapter

02a9 ; game / ieee data / user

@2a9 ;

g2a9 H timer a: ieee local / cass local / music / game
#2a9 ; timer b: ieee deadm / cass deadm / music / game
@2a9 ;

g2a9 ; prad : ieee datal / user

g2a9 ; pral : ieee data2 / user

g2a9 ; pra2 : ieee data3 / user

g2a9 ; pra3 : ieee data4 / user

@2a9 ; prad4 : ieee data5 / user

g2a9 ; pra5 : ieee data6 / user

@2a9 ; praé : ieee data7 / user / game trigger 14
92a9 ; pra7 : ieee data8 / user / game trigger 24
d2a9 ;

g2a9 ; prb@ : user / game 10

@2a9 ; prbl : user / game 11

g2a9 ; prb2 : user / game 12

g2a9 ; prb3 : user / game 13

— 153 —

780 Reference Guide Memory storage distribution

g2a9 ; prb4 : user / game 20

g2a9 ; prb5 : user / game 21

g2a9 ; prb6é : user / game 22

@2a9 ; prb7 : user / game 23

@2a9 ;

g2a9 ; flag : user

g2a9 ; pc ¢ user

d2a9 ; ct ¢ user

g2a9 ; sp ¢ user

g2a9 ;

g2a9 cia = $dc@o

g2a9 pra = $0 ;data reg a

#2a9 prb = 81 ;data reg b

g2a9 ddra = §2 ;direction reg a

g2a9 ddrb = 83 ;direction reg b

g2a9 talo = $4 ;timer a low byte
g2a9 tahi = §5 ;timer a high byte
@2a9 tblo = $6 stimer b low byte
@2a9 tbhi = §7 ;timer b high byte
g2a9 todlg = $8 ;10ths of seconds
g2a9 todsec = $9 ; seconds

g2a9 todmin = Sa ;minutes

g2a9 todhr = $b shours

g2a9 sdr = $c ;serial data register
g2a9 icr = $d ;interrupt control register
g2a9 cra = Se ;jcontrol register a
@2a9 crb = $f scontrol register b
g2a9 ; 6551 acia rs232c¢c and network interface
g2a9 ;

g2a9 acia = $4400

g@2a9 drsn = $00 ;transmit/receive data register
g2a9 srsn = S01 ;status register

g2a9 cdr = 802 ;command register
g2a9 ctr = $03 ;control register
@2a9 dsrerr = $40 ;data set ready error
g2a9 dcderr = $20 ;data carrier detect error
g2a9 doverr = $08 ;receiver outer buffer overrun
92a9 ; 6525 tpil triport interface device #1
g2a9 ; ieee control / cassette / network / vic / irq
g2a9 H

g2a9 ; pad : ieee dc control (ti parts)

g2a9 ; pal : ieee tc control (ti parts)® (t/r)
@2a9 ; pa2 : ieee ren

g2a9 ; pa3 : ieee atn

g2a9 ; pad4 : ieee dav

g2a9 ; pa5 : ieee eoi

g2a9 ; pa6é : ieee ndac

g2a9 H pa7 : ieee nrfd

@2a9 ;

@2a9 ; pb@ : ieee ifc

g2a9 ; pbl : ieee srq

@2a9 ; pb2 : network transmitter enable

@2a9, ; pb3 : network receiver enable

g2a9 ; pb4 : arbitration logic switch

02a9 ; pb5 : cassette write

g2a9 ; pb6 : cassetter motor

g2a9 ; pb7 : cassette switch

— 154 —

700 Reference Guide

g2a9
@2a9
d2a9
g2a9
02a9
g2a9
@2a9
g2a9
g2a9
g2a9
g2a9
g2a9
d2a9
P2a9
@2a9
g2a9
g2a9
g2a9
d2a9
g2a9
g2a9
g2a9
@2a9
@2a9
d2a9
g2a9
@2a9
g2a9
g2a9
g2a9
g2a9
@2a9
g2a9
g2a9
@2a9
d2a9
g2a9
@2a9
#2a9
g2a9
@2a9
g2a9
g2a9
g2a9
@2a9
g2a9
g2a9
@g2a9
g2a9
g2a9
d2a9
g2a9
g2a9
@2a9
g2a9
#2a9
@2a9

WS NWe NE WO NS NWE NE WP N N

'O 'O ot
[o N o]
[V
[

pc
lir
ddpa
ddpb
ddpc
mir
creg
air
7
freq
idss

(T N0 N6 N0 Ne N W Ne Ve Ve Ne WE Ne Ne We NI WO N0 NE W N W

pi2

o we

’

dc
te
ren
atn
dav
eoi
ndac
ndfd
ifc

irqg
irql
irq2
irqg3
irqg4
*irq
cb

ca

hz

paé@d
pal
pa2
pa3
pa4
pa5
paé
pa?7

pb@
pbl
pb2
pb3
pb4
pbS
pbé
pb@

o0 06 oe oo o0 o0 oo oo

00 e 00 o 00 00 oo oo

6525 tpi2
keyboard

Memory storage distribution

50/6@ hz irq

ieee
6526

srq
irqg

cassette read

6551

6566 (vic) / user devices
vic dot select
vic matrix select

S$dedo

$0
$1
$2
$2
$3
$4
$5
$5
$6
$7

$01
27

;port register a

;port register b

;port register c

sinterrupt latch register mc=1l
;data direction register a
;data direction register b
;data direction register c
;interrupt mask register mc=1
;control register

;active interrupt register

;irqg line 50/68 hz found on...
;55 hz value required by ioinit

tirport interface device #2
/ vic 16k control

kybd
kybd
kybd
kybd
kybd

. kybd

ieee line

kybd
kybd

kybd
kybd
kybd
kybd
kybd
kybd

out
out
out
out
out
out
out
out

out
out
out
out
out
out

U W+

select for
select for

$dfoo
equates

$01
$02
$04
$S08
$le
$20
$40
$8@
$01

monitor (hish=ntsc,low=pal) ,
head (high=built-in low=monitor)

$375168/75161 control line
;75160/75161 control line
;remote enable

sattention

;data available

;end or identify

;not data accepted

;not ready for data
;interface clear

— 155 —

708 Reference Guide

@2a9
g2a9
@2a9
g2a9
@2a9
@2a9
g2a9
02a9
g2a9
g2a9
g2a9
g2a9
g2a9
d2a9
g2a9
g2a9
@2a9
g2a9
@2a9
g2a9
g2a9
g2a9
g2a9

srq
H
rddb
tddb
H
eoist
tlkrt
lstnr
utlkr
ulstn
’
toout
toin
eoist
nodev
sperr
H

H
slock
dibf

= $02 ;service
= nrfd+ndac+te+dc

= eoi+dav+atn+te+dc
= $40

= $40 ;device
= §20 ;device
= $5f ;device
= $3f ;device
= $01

= $02

= $40 ;eoi on
= $80

= $19 jverify

Memory storage distribution

request

;directions for receiver
;directions for transmit

;eoi status test

is talker
is listener
untalk
unlisten

;timeout status on output
;timeout status on input

input

;no device on bus

error

c3p@ flag bits 6 and 7

s screen

editor lock-out

;data in output buffer

— 196 —

700 Reference Guide CONNECTOR PINOUTS

IEEE Connector

Pin ID IC Use Address
1 D1l CIA 6526 PRA @ dcop 55320
2 D2 CIA 6526 PRA 1 dcoo 56320
3 D3 CIA 6526 PRA 2 dcdg 56320
4 D4 CIA 6526 PRA 3 dcoo 56320
5 EOI TPI 6525 PRA 5 ded® 56832
6 DAV TPI 6525 PRA 4 dedo 56832
7 NRFD TPI 6525 PRA 7 dedo 56832
8 NDAC TPI 6525 PRA 6 def0 56832
9 IFC TPI 6525 PRB O dedl 56833
10 SRQ TPI 6525 PRB 1 dell 56833
11 ATN TPI 6525 PRA 3 de@@ 56832
12 SHIELD
A DS CIA 6526 PRA 4 dcoo 56320
B D6 CIA 6526 PRA 5 dcoo 56320
C D7 CIAa 6526 PRA 6 dcoe 56320
D D8 CIA 6526 PRA 7 dcog 56320
E REN TPI 6525 PRA 2 dedo 56832
F GND
H GND
J GND
K GND
L GND
M GND
N GND

— 157 —

708 Reference Guide

RS232 Connector

Pin

iR
NOUNBWNHFQWOW®OIAU & WN -

[
o<}

NN N
WN -0

NN
(S0 -3

ID

SHIELD
TxD
RxD
RTS
CTS
DSR
GND
DCD
N.C.
N.C.

+ 5 VvV DC
- 12 v DC
N.C.
N.c.
N.C.
N'c‘
N.C.
N.C.
N.C.
DTR
N.C.
NOC.
N.C.
RxC
N.C.

— 158 —

CONNECTOR PINOUTS

700 Reference Guide CONNECTOR PINOUTS

USER Connector (internal)

Pin ID IC Use address

1 GND

2 PB2 TPI 6525 PRB 2 dedl 56833

3 GND

4 PB3 TPI 6525 PRB 3 defl 56833

5 NOT PC CIA 6526 -PC

(Handshake PRB 1/0, Output)
6 NOT FL. Cass-Read -FLAG
(Interrupt, Input)

7 2D7 CIA 6526 PRB 7 dcol 56321

8 2D6 CIA 6526 PRB 6 dcol 56321

9 2D5 CIA 6526 PRB 5 dcdl 56321
10 2D4 CIA 6526 PRB 4 dcol 56321
11 2D3 CIA 6526 PRB 3 dcdl 56321
12 2D2 CIA 6526 PRB 2 dcol 56321
13 2D1 CIA 6526 PRB 1 dcol 56321
14 2D0 CIA 6526 PRB @ dcol 56321
15 1D7 CIA 6526 PRA 7 dcdg 56320
16 1D6 CIA 6526 PRA 6 dcggd 56320
17 1D5 CIA 6526 PRA 5 dc@o 56320
18 1D4 CIA 6526 PRA 4 dc99 56320
19 1D3 CIA 6526 PRA 3 dcoe 56320
20 1D2 CIA 6526 PRA 2 dcog 56320
21 1D1 CIA 6526 PRA 1 dc@9 56320
22 1D@ CIA 6526 PRA @ dcog 56320
23 NOT CNT CIA 6526 -CNT dc@4/5 56324/5
24 + 5 Vv DC

25 NOT IRQ TPI 6525 PRC 5 de@?2 56834
26 SP CIA 6526 SP

(Serial Port 1/0)

— 159 —

7903 Reference Guide CONNECTOR PINOUTS

Keyboard Connector (internal or external)

Pin ID IC Use address
1 PAO TPI 6525 PRA @ dfoo 57088
2 PA2 TPI 6525 PRA 2 dfaog 570688
3 PA4 TPI 6525 PRA 4 dafooe 57088
4 PA6 TPI 6525 PRA 6 afee 57088
) PBO TPI 6525 PRB @ dfal 57389
6 PB1 TPI 6525 PRB 1 dafol 57089
7 PB2 TPI 6525 PRB 2 arfol 57089
8 PB3 TPI 6525 PRB 3 dfol 57389
9 PB4 TPI 6525 PRB 4 dfal 57089
19 PBS TPI 6525 PRB 5 dfogl 57689
11 PB6 TPI 6525 PRB 6 dfol 57089
12 PB7 TPI 6525 PRB 7 dfal 57089
13 PC5 TPI 6525 PRC 5 dfg2 57090
14 pPal TPI 6525 PRA 1 dfaog 57088
15 PA3 TPI 6525 PRA 3 dfag 57088
16 PAS TPI 6525 PRA 5 afooe 570688
17 PA7 TPI 6525 PRA 7 afee 57088
18 PC@ TPI 6525 PRC @ dfe2 57090
19 PC1l TPI 6525 PRC 1 dfg2 57090
20 PC2 TPI 6525 PRC 2 4afe2 57090
21 PC3 TPI 6525 PRC 3 dfg2 57090
22 GND
23 GND
24 GND
25 PC4 TPI 6525 PRC 4 dfooe 57090

— 160 —

708 Reference Guide

Cartridge Connector

Pin ID

AQ
Al
A2
A3
A4

A6

a7

A8

10 A9

11 AlQ

12 All

13 Al2

14 + 5V DC
15 + 5 Vv DC
BD@

BD1

BD2

VOO W -

BDS

BD6

BD7

GND

GND

S R/W

so02

NOT CSBANK 1
NOT CSBANK 2
NOT CSBANK 3

MWUZICXRLGTHM@EOO DY

AS Address

ao° Dato

$ 1000-4000

¥ Ho0O 6000 } B/-?NK/S—

4 000 ~-8000O

— 161 —

CONNECTOR PINOUTS

700 Reference Guide CONNECTOR PINOUTS

Co-Processor Connector (internal)

Pin ID
1 EX<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>