
n

COMMODORE

PERSONAL COMPUTER

system guide
Learning to program in BASIC 2.0

■

u

u

u

U

u

u

u

u

LJ

U

U

U

U

u

u

LJ

LJ

U

U

U

u

LJ

LJ

U

u

u

u

n

n

n

n

n

I s

COMMODORE 64C

SYSTEM GUIDE
Learning to Program in BASIC 2.0

p.

USER'S MANUAL STATEMENT

u

u

WARNING: LJ
This equipment has been certified to comply with the limits for a Class B computing device, pursuant

to subpart J of Part 15 of the Federal Communications Commission's rules, which are designed to / -,

provide reasonable protection against radio and television interference in a residential installation. If Ss^J
not installed properly, in strict accordance with the manufacturer's instructions, it may cause such

interference. If you suspect interference, you can test this equipment by turning it off and on. If this | |

equipment does cause interference, correct it by doing any of the following: ■—'

• Reorient the receiving antenna or AC plug. [\
• Change the relative positions of the computer and the receiver.

• Plug the computer into a different outlet so the computer and receiver . ,

are on different circuits. LJ

CAUTION: Only peripherals with shield-grounded cables (computer I j

input-output devices, terminals, printers, etc.), certified to comply with ***-*

Class B limits, can be attached to this computer. Operation with non-

certified peripherals is likely to result in communications interference. \ j

Your house AC wall receptacle must be a three-pronged type (AC . ,

ground). If not, contact an electrician to install the proper receptacle. If I—i
a multi-connector box is used to connect the computer and peripherals

to AC, the ground must be common to all units. j j

If necessary, consult your Commodore dealer or an experienced radio-television technician for addi

tional suggestions. You may find the following FCC booklet helpful: "How to Identify and Resolve j j
Radio-TV Interference Problems." The booklet is available from the U.S. Government Printing

Office, Washington, D.C. 20402, stock no. 004-000-00345-4. , >

i I

First Printing, April 1986 j j

Copyright © 1986 by Commodore Electronics Limited

All rights reserved

This manual contains copyrighted and proprietary information. No part of this publication may be / j

reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, I—*
mechanical, photocopying, recording or otherwise, without the prior written permission of Commo

dore Electronics Limited. j J

Commodore 64C is a trademark of Commodore Electronics Limited. I I

Commodore and Commodore 64 are registered trademarks of Commodore Electronics Limited.

U
Commodore BASIC 7.0

U
Copyright © 1986 by Commodore Electronics Limited

All rights reserved j j

Copyright © 1977 by Microsoft Corp. 1)
All rights reserved

U

U

u

i F

n

n

n

n

n

n

H

n

n

n

TABLE OF

CONTENTS

n

n

n

r—>
i \

n

n

n

n

n

n

Chapter I—Introduction

Chapter 2—Getting Started in BASIC

Chapter 3—Advanced BASIC Programming

Chapter 4—Graphics, Color and Sprites

Chapter 5—Sound and Music

Chapter 6—BASIC 2.0 Encyclopedia

Appendices

A. BASIC 2.0 Error Messages

B. Connectors/Ports for Peripheral Equipment

C. Screen Display Codes

D. ASCn and CHR$ Codes

E. Screen and Color Memory Maps

R Derived Trigonometric Functions

G. Memory Map

H. BASIC 2.0 Abbreviations

I. Sprite Register Map

J. Sound and Music

Glossary

Index

39

63

95

107

149

151

155

161

163

167

169

171

173

175

177

181

195

n

n

u

u

u

U

u

u

u

u

LJ

U

U

U

U

u

u

LJ

LJ

U

U

U

u

LJ

LJ

U

u

u

u

■ - — .v-::M^MM;&<%j...■-.,■.■■. -.,;-v.:;:^aii&&;,kviv... ^';:^,v^^ysssi^

u

u

u

o

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

a

u

u

u

n

n

n

n

n

H

H

n

n

n

n

n

(—1

n

n

n

n

n

n

n

n

n

CHAPTER 1

Introduction
HOW TO USE THIS GUIDE

OVERVIEW OFTHE COMMODORE 64C PERSONAL

COMPUTER

CHAPTER 1-INTRODUCTION

u

u

u

u

LJ

LJ

U

U

U

LJ

U

U

U

U

u

u

LJ

U

U

U

u

u

U

U

U

U

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

How to Use This

Guide

H

! t

n

n

n

n

n

n

n

n

This Guide is designed to help you make full use of the advanced capabili

ties of the Commodore 64C™ personal computer. Here's how to use the

Guide:

1. Before you read any further in this book, make sure youVe read the

COMMODORE 64C QUICK-CONNECT GUIDE, which tells how

to unpack and set up your new 64C computer and peripheral equip

ment. Also be sure to read the COMMODORE 64C INTRODUC

TORY GUIDE, which contains important information on getting

started with the Commodore 64C, including how to load and run

prepackaged disk, cartridge and tape software. Both pieces of docu

mentation come packed in the computer carton.

2. If you are interested mostly in learning the BASIC® language to create

and run your own programs, you should first read Chapters 2 and 3 of

this book. Chapter 2 gets you started quickly by introducing you to

BASIC 2.0 concepts and providing numerous explanations and exam

ples of commonly used commands and elementary programming tech

niques. Chapter 3 defines a number of more advanced BASIC com

mands and programming techniques, again giving explanations and

examples ofhow to use them. Together, these two chapters provide a

solid foundation from which you can move on to more specialized

programming activities, such as graphics and sound.

3. If you want to learn how to add graphics and animation to your

BASIC programs, read Chapter 4. This chapter tells how to program

the 64C's powerful and varied graphics capabilities, which include

eight sprites, 16 colors and a variety of animation techniques.

4. If you are interested in programming sound and music on the 64C,

read Chapter 5, which describes the extensive sound and music fea

tures provided by the SID (Sound Interface Device). The SID is the

64C's versatile three-voice, six-octave sound sythesizer.

5. For more information on any facet of BASIC 2.0, read Chapter 6,

BASIC 2.0 ENCYCLOPEDIA. This chapter defines all the elements

of the BASIC 2.0 language and includes specific format and usage

information on all BASIC 2.0 commands, statements and functions.

6. If, after reading Chapters 2 through 6, you are looking for additional

technical information about a particular Commodore 64C topic, first

check the APPENDICES to this book. These appendices contain a

wide range of information, such as a complete list of BASIC error mes

sages, ASCII and CHR$ codes, screen and color memory maps, etc.

See the GLOSSARY following the Appendices for definitions of com

mon computer terms.

CHAPTER 1-INTRODUCTION

Overview of the

Commodore 64C

Personal Computer

The features of the Commodore 64C are so many and so varied that—even

in a book of this length—they can only be introduced. For additional

information on all the technical features of the Commodore 64C, see the

COMMODORE 64® PROGRAMMER'S REFERENCE GUIDE, available

from your Commodore dealer or at most bookstores. For additional infor

mation on BASIC, see the complete three-part course on BASIC

programming-INTRODUCTION TO BASIC, PARTS I, lly and III. This

series of three books is also available from your Commodore dealer.

Key Commodore 64C features include:

—Fully compatible with Commodore 64 hardware, software and

peripherals

—Versatile Commodore BASIC 2.0 programming language, offering more

than 70 commands and functions

—64K ofRAM (Random Access Memory)

—40 column screen output

—Ability to run thousands of off-the-shelf software programs for business,

industry, science, education and home, including word processors,

spreadsheets, databases, financial market software, telecommunications

programs, etc.

—Ability to handle software packaged in disk, tape or cartridge formats

—Ability to work with a wide variety of peripheral devices, including video

monitors, printers, modems, controllers (joysticks, mouse, etc.)

—Sophisticated graphics capabilities, including 8 individually program

mable sprites and several animation modes

—Sixteen colors

—A professional style low-profile keyboard

—Ability to incorporate 6502 machine language data in BASIC programs

—Eight user-programmable function keys

—A three-voice, six-octave, synthesizer for sound and music

u

u

u

u

LJ

LJ

U

U

LJ

U

LJ

u

u

LJ

U

U

LJ

U

LJ

U

LJ

U

CHAPTER 1-INTRODUCTION

u

\ I
I 1

LJ

H

n

n

n

n

n

n

n

n

n

n

n

These Commodore 64C features can be translated into wide-ranging capa

bilities. The advanced software included with your new 64C incorporates

icons, pulldown menus, a mouse and other sophisticated techniques, and is

typical of the ever-expanding capabilities you can expect to exercise with

your Commodore 64C.

n

n

n

n

n

n

CHAPTER 1-INTRODUCTION

u

u

u

u

y

u

LJ

U

LJ

y

LJ

y

u

u

u

y

y

u

y

y

y

u

y

y

y

y

y

n

n

n

u

u

D

U

y

u

u

o

D

u

u

o

y

u

u

D

o

u

u

u

G

u

u

LJ

u

n

n

n

n

n

h

n

n

n

n

n

H

n

n

n

h

n

n

n

n

n

n

n

n

n

n

n

CHAPTER 2

Getting Started

in BASIC

BASIC PROGRAMMINGLANGUAGE

Direct Mode

Program Mode

USINGTHE KEYBOARD

Keyboard Character Sets

Using the Command Keys

Function Keys

Displaying Graphic Characters

Rules for Typing BASIC Language Programs

GETTING STARTED-The PRINT Command

Printing Numbers

Using the Question Mark to Abbreviate the PRINT

Command

Printing Text

Printing in Different Colors

Using the Cursor Keys Inside Quotes with the PRINT

Command

BEGINNINGTO PROGRAM

What a Program Is

Line Numbers

Viewing your Program—The LIST Command

A Simple Loop—The GOTO Statement

Clearing the Computer's Memory—The NEW Command

Using Color in a Program

EDITING YOUR PROGRAM

Erasing a Line from a Program

Duplicating a Line

Replacing a Line

Changing a Line

MATHEMATICAL OPERATIONS

Addition and Subtraction

Multiplication and Division

Exponentiation

Order of Operations

Using Parentheses to Define the Order of Operations

CONSTANTS, VARIABLES AND STRINGS

Constants

Variables

Strings

13

13

13

14

14

14

19

20

20

21

21

21

22

23

23

24

24

24

25

25

26

26

27

27

27

27

28

28

28

29

29

29

30

30

30

31

32

11 CHAPTER 2-GETTING STARTED IN BASIC

u

u
SAMPLE PROGRAM 33

STORING AND REUSING YOUR PROGRAMS 34

Formatting a Disk 34 I—I
SAVEing on Disk 35

SAVEing on Cassette 35 LJ
LOADing from Disk 36

LOADing from Cassette 36 LJ
Other Disk-Related Commands 37

u

u

U

U

LJ

U

U

U

LJ

LJ

U

LJ

U

U

U

LJ

U

U
12 CHAPTER 2-GETTING STARTED IN BASIC

LJ

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

BASIC

Programming

Language

The BASIC programming language is a special language that lets you com

municate with your Commodore 64C. Using BASIC is one means by

which you instruct your computer what to do.

BASIC has its own vocabulary (made up of commands, statements and

functions) and its own rules of structure (called syntax). You can use

the BASIC vocabulary and syntax to create a set of instructions called a

program, which your computer can then perform or

Using BASIC, you can communicate with your Commodore 64C in two

ways: within a program, or directly (outside a program).

Direct Mode

Your Commodore 64C is ready to accept BASIC commands in direct

mode as soon as you turn on the computer. In the direct mode, you type

commands on the keyboard and enter them into the computer by pressing

the RETURN key. The computer executes all direct mode commands

immediately after you press the RETURN key. Most BASIC commands in

your Commodore 64C can be used in direct mode as well as in a program.

Program Mode

In program mode you enter a set of instructions that perform a specific

task. Each instruction is contained in a sequential program line. A state

ment in a program may be as long as 80 characters; this is equivalent to

two full screen lines in 40-column format.

Once you have typed a program, you can use it immediately by typing the

RUN command and pressing the RETURN key. You can also store the

program on disk or tape by using the SAVE command. Then you can

recall it from the disk or tape by using the LOAD command. This com

mand copies the program from the disk or tape and places that program in

the Commodore 64C's memory. You can then use or "execute" the pro

gram again by entering the RUN command. All these commands are

explained later in this section. Most of the time you will be using your

computer with programs, including programs you yourself write, and com

mercially available software packages. The only time you operate in direct

mode is when you are manipulating or editing your programs with com

mands such as LIST, LOAD, SAVE and RUN. As a rule, the difference

between direct mode and operation within a program is that direct mode

commands have no line numbers.

13 CHAPTER 2-GETTING STARTED IN BASIC

Using the Keyboard Shown below is the keyboard of the Commodore 64C Personal Computer.

64C Keyboard

Keyboard Character Sets

The Commodore 64C keyboard offers two different sets of characters:

■ Upper-case letters and graphic characters

■ Upper- and lower-case letters

You can use only one character set at a time.

When you turn on the Commodore 64C, the keyboard is normally using

the upper-case/graphic character set. This means that everything you type

is in capital letters. To switch back and forth between the two character

sets, press the SHIFT key and the C* key (the COMMODORE key) at the

same time. To practice using the two character sets turn on your computer

and press several letters or graphic characters. Then press the SHIFT key

and the Cf (Commodore) key. Notice how the screen changes to upper- and

lower-case characters. Press SHIFT and C? again to return to the upper

case and graphic character set.

Using the Command Keys

COMMAND keys are keys that send messages to the computer. Some

command keys (such as RETURN) are used by themselves. Other com

mand keys (such as SHIFT, CTRL, O and RESTORE) are used with other

keys. The use ofeach of the command keys is explained below.

Return When you press the RETURN key, what you have

typed is sent to the Commodore 64C computer's

14 CHAPTER 2-GETTING STARTED IN BASIC

u

u

u

u

LJ

U

U

U

U

LJ

U

LJ

U

LJ

U

U

LJ

U

U

U

LJ

LJ

0

LJ

U

U

U

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Shift

memory. Pressing the RETURN key also moves the

cursor (the small flashing rectangle that marks where

the next character you type will appear) to the

beginning of the next line.

At times you may misspell a command or type in

something the computer does not understand. Then,

when you press the RETURN key, you probably will

get a message like SYNTAX ERROR on the screen.

This is called an "Error Message." Appendix A lists

the error messages and tells how to correct the

errors.

NOTE: In the examples given in this book, the

following symbol indicates that you must press the

RETURN key:

There are two SHIFT keys on the bottom row of the

keyboard. One key is on the left and the other is on

the right, just as on a standard typewriter keyboard.

The SHIFT key can be used in three ways:

1. With the upper/lower-case character set, the

SHIFT key is used like the shift key on a regular

typewriter. When the SHIFT key is held down,

it lets you print capital letters or the top charac

ters on double-character keys.

2. The SHIFT key can be used with some of the

other command keys to perform special

functions.

3. When the keyboard is set for the upper-case/

graphic character set, you can use the SHIFT

key to print the graphic symbols or characters

that appear on the front face of certain keys. See

the paragraphs entitled "Displaying Graphic

Characters" later in this chapter for more

details.

n

n

n

15 CHAPTER 2-GETTING STARTED IN BASIC

Shift Lock When you press this key down, it locks into place.

Then, whatever you type will either be a capital

letter, or the top character of a double-character key.

To release the lock, press down on the SHIFT

LOCK key again.

Moving the Cursor Using the CRSR keys

You can use the two keys on the right side of the

bottom row of the main keyboard to move the

cursor:

• Pressing the CRSR key alone moves the cursor

down* T

• Pressing the CRSR and SHIFT keys together

moves the cursor up.

• Pressing the CRSR key alone moves the cursor

right.

• Pressing the CRSR and SHIFT keys together

moves the cursor left.

You don't have to keep tapping a cursor key to move

more than one space. Just hold the key down and the

cursor continues to move until it reaches the position

you want.

Notice that when the cursor reaches the right side of

the screen, it "wraps", or starts again at the begin

ning of the next row. When moving left, the cursor

will move along the line until it reaches the edge of

the screen, then it will jump up to the end of the

preceding line.

You should try to become very familiar with the

cursor keys, because moving the cursor makes your

programming much easier. With a little practice you

will find that you can move the cursor almost with

out thinking about it.

Inst/Del This is a dual purpose key. INST stands for INSerT,

and DEL for DELete.

16 CHAPTER 2-GETTING STARTED IN BASIC

U

u

u

u

u

u

LJ

u

LJ

U

LJ

U

1 I
I 1

u

I, J

I I

LJ

U

U

LJ

U

LJ

LJ

I)

I 1

LJ

U

U

LJ

n

n

n

n

n

n

n

n

n

n

Inserting Characters

You must use the SHIFT key with the INST/DEL

key when you want to insert characters in a line.

Suppose you left some characters out of a line,

like this:

WHILE U WERE OUT

To insert the missing characters, first use the cursor

keys to move the cursor back to the error, like this:

WHILEHWERE OUT

Then, while you hold down the SHIFT key, press the

INST/DEL key until you have enough space to add

the missing characters:

WHILE ■ U WERE OUT

Notice that INST doesn't move the cursor; it just

adds space between the cursor and the character to

its right. To make the correction, simply type in the

missing "Y" and "O", like this:

WHILE YOU WERE OUT

i \

H

i i

n

n

Deleting Characters

When you press the DEL key, the cursor moves one

space to the left and erases the character that is

there. This means that when you want to delete

something, you move the cursor just to the right of

the character you want to DELete. Suppose you have

made a mistake in typing, like this:

PRINT "ERROER"

You wanted to type the word ERROR, not

ERROER. To delete the incorrect E that precedes

the final R, position the cursor in the space where

the final R is located. When you press the DEL key,

the character to the right of the cursor (the R) auto

matically moves over one space to the left. You now

have the correct wording like this:

PRINT "ERROR"

i \

n
17 CHAPTER 2-GETTING STARTED IN BASIC

CTRL

Run/Stop

Using INSerT and DELete Together

You can use the INSerT and DELete functions

together to fix incorrect characters. First, move the

cursor to the incorrect characters and press the

INST/DEL key by itself to delete the characters.

Next, press the SHIFT key and the INST/DEL key

together to add any necessary space. Then type in

the corrections. You can also type directly on top of

undesired characters, then use INST to add any

needed space.

The CTRL (Control) key is used with other keys to

do special tasks called control functions. To perform

a control function, hold down the CTRL key while

you press some other key. Control functions are

often used in prepackaged software such as a word

processing system.

One control function that is used often is setting the

character and cursor color. To select a color, hold

down the CTRL key while you press a number key

(1 through 8), on the top row of the keyboard. There

are eight more colors available to you; these can be

selected with the Cf key, as explained later.

Pressing CTRL during a screen printout will slow

the display.

This is a dual function key. Under certain conditions

you can use the RUN function of this key by press

ing the SHIFT and RUN/STOP keys together. It is

also possible to use the STOP function of this key to

halt a program or a printout by pressing this key

while the program is running. However, in most

prepackaged programs, the STOP function of the

RUN/STOP key is intentionally disabled (made

unusable). This is done to prevent the user from

trying to stop a program that is running before it

reaches its normal end point. If the user were able to

stop the program, valuable data could be lost.

U

u

u

u

LJ

U

LJ

U

LJ

LJ

U

i I

1I

LJ

LJ

U

()
i)

LJ

U

LJ

LJ

U

LJ

Restore The RESTORE key is used with the RUN/STOP

key to return the computer to its standard condition.

18 CHAPTER 2-GETTING STARTED IN BASIC

LJ

U

U

LJ

n

n

H

n

n

To do this, hold down the RUN/STOP key and

press RESTORE.

Most prepackaged programs disable the RESTORE

key for the same reason they disable the STOP func

tion of the RUN/STOP key: to prevent losing valu

able data.

n

CLR/Home CLR stands for CLeaR. HOME refers to the upper-

left corner of the screen, which is called the HOME

position. If you press this key by itself the cursor

returns to the HOME position. When you use the

SHIFT key with the CLR/HOME key, the screen

CLeaRs and the cursor returns to the HOME

position.

n

I I

n

n

i \

H

n

n

n

Commodore Key The C* key (known as the COMMODORE key) has

(CK) a number of functions, including the following ones:

1. The Cs key lets you switch back and forth

between the upper/lower-case character set

(which displays the letters and characters on the

top of the keys), and the upper-case/graphic

display character set (which displays capital

letters and the graphics symbols on the front

face of the keys). To switch modes, press the C*

key and the SHIFT key at the same time.

2. The Cf key also lets you use a second set of eight

colors for the cursor. To get these colors, you

hold down the fr key while you press a number

key (1 through 8) in the top row.

Function Keys

The four large keys located to the right of the main keyboard (marked Fl,

F3, F5 and F7 on the top and F2, F4, F6 and F8 on the front) are called

function keys. These keys are often used by prepackaged software to

allow you to perform a task with a single keystroke.

n

n

19 CHAPTER 2-GETTING STARTED IN BASIC

u

Displaying Graphic Characters

To display the graphic symbol on the right front face of a key, hold down 1—I
the SHIFT key while you press the key that has the graphic character you

want to print. You can display the right side graphic characters only when t—J
the keyboard is in the upper-case/graphics character set (the normal char

acter set usually available at power-up). i—J

To display the graphic character on the left front face of a key, hold down 1—»
the Cs key while you press the key that has the graphic character you want. ,

You can display the left graphic character while the keyboard is in either i—i
character set.

Rules for Typing BASIC Language Programs {—I

You can type and use BASIC language programs even without knowing i)

BASIC. You must type carefully, however, because a typing error may

cause the computer to reject your information. The following guidelines j >

will help minimize errors when typing or copying a program listing.

1. Spacing between words is usually not critical; e.g., typing (i
FORT = 1TO10 is the same as typing FOR T = 1 TO 10. However, a

BASIC keyword itself must not be broken up by spaces or connected I i
to or contained in another word or connected to a letter. For example,

typing TAND15 gives a SYNTAX ERROR message, while typing T LJ
AND 15 is valid. (See the BASIC 2.0 Encyclopedia in Chapter 6 for a

list of BASIC keywords). LJ

2. Any characters can be typed inside quotation marks. Some characters i i

have special functions when placed inside quotation marks. These

functions are explained later in this Guide. i j

3. Be careful with punctuation marks. Commas, colons and semicolons

also have special properties, explained later in this chapter. \ 1

4. Always press the RETURN key (indicated in this Guide by i >

KliTUKlH) after completing a numbered line.

5. Never type more than 80 characters in a program line. Remember, this I \
is the same as two full screen lines.

6. Distinguish clearly between the letter I and the numeral 1 and between

the letter O and the numeral 0. v j

7. The computer does not execute anything following the letters REM on

a program line. REM stands for REMark. You can use the REM state- LJ

ment to put comments in your program that tell anyone listing the

program what is happening at a specific point. { j

u

20 CHAPTER 2-GETTING STARTED IN BASIC L-J

u

n

n

n

H

n

n

n

n

n

h

n

n

n

r-i
? i

n

n

n

n

i i

n

n

Getting Started—

The PRINT

Command

The PRINT command tells the computer to display information on the

screen. You can print both numbers and text (letters), but there are special

rules for each case, described in the following paragraphs.

Printing Numbers

To print numbers, use the PRINT command followed by the number(s) you

want to print. Try typing this on your Commodore 64C:

PRINT 5

Then press the RETURN key. Notice the number 5 is now displayed on

the screen.

Now type this and press RETURN:

PRINT 5,6

In this PRINT command, the comma tells the Commodore 64C that you

want to print more than one number. When the computer finds commas in

a string of numbers in a PRINT statement, each number that follows a

comma is printed starting in either the 1 lth, 21st or 31st column on the

screen, depending on the length of each number. If the previous number

has more than 7 digits, the following number is moved to the next starting

position, 10 columns to the right. The 64C always leaves at least two spaces

plus one space for a sign between numbers which are separated by a

comma. (For example, a negative number like — 4 will be preceded by two

spaces when it follows a comma.) If you don't want all the extra spaces, use

a semicolon (;) in your PRINT statement instead of a comma. The semico

lon tells the computer not to add any spaces between strings. Numbers and

numeric variables are printed with either a leading space or a minus sign,

and a trailing space. Omitting a semicolon, a comma, or any separators

acts the same as a semicolon. Type these examples and see what happens:

PRINT 5;6

PRINT 100;200;300;400;500

21

Using the Question Mark to Abbreviate the PRINT Command

You can use a question mark (?) as an abbreviation for the PRINT com-

mand. Many of the examples in this section use the ? symbol in place of the

word PRINT. In fact, most of the BASIC commands can be abbreviated.

However, when you LIST a program, the keyword appears in the long

version. The abbreviations for BASIC commands can be found in Appen

dix H of this Guide.

CHAPTER 2-GETTING STARTED IN BASIC

u

u
Printing Text

To print text, first type the PRINT command (i.e., the word PRINT or a '—'
question mark). Then type quotation marks, followed by the words or , }

characters you want to display, and another set of quotation marks. Then '—!
press the RETURN key. Remember that any words or characters you want s >

to display must be typed on the screen with a quote symbol at each end of •■—'
the string of characters. String is the BASIC name for any set of charao j .

ters surrounded by quotes* The quote character is obtained by pressing '—'
SHIFT and the numeral 2 key on the top row of the keyboard. Try these , ,

examples: '—'

? "COMMODORE 64C" HUTU UNI [_J

u
Notice that when you press RETURN, the computer displays the charac

ters within the quotes on the screen. Also note that the second example | J

did not calculate 4*5 since it was treated as a string and not a mathematical

calculation. If you want to calculate the result 4*5, use the following [J

command:

You can PRINT any string you want by using the PRINT command and | j

surrounding the printed characters with quotes. You can combine text and

calculations in a single PRINT command like this: [_J

1 "4*5 = "4*5 HUrUlfSF
LJ

See how the computer PRINTS the characters in quotes, makes the calcula

tion and PRINTS the result. It doesn't matter whether the text or calcula- i j

tion comes first. In fact, you can use both several times in one PRINT com

mand. Type the following statement: j_J

? 4*(2 + 3)" is the same as "4*5 WgSSSM

Notice that even spaces inside the quotation marks are printed on the

screen. Type: j_J

? " OVER HERE" WMmm
I i

LJ

LJ

LJ

U

U

* (

22 CHAPTER 2-GETT1NG STARTED IN BASIC L-'

LJ

n

n

n

n

n

n

/ «

n

Printing in Different Colors

The Commodore 64C is capable of displaying 16 different colors on the

screen. You can change colors easily. All you do is hold down the CTRL

key and press a numbered key between 1 and 8 on the top row of the main

keyboard. Notice that the cursor changes color according to the numbered

key you pressed. All the succeeding characters are displayed in the color

you selected. Hold down the Cs key and press a numbered key between 1

and 8, and eight additional colors are displayed on the screen.

The following table lists the colors available using the CTRL and Cs keys.

The table also shows the key used to specify a given color, and the resulting

control character that appears within the quotes of a PRINT statement.

n

DISPLAY KEYBOARD

YELLOW

COLOR

ORANGE

BROWN

LT. RED

GRAY 1

GRAY 2

LT. GREEN

LT. BLUE

GRAY 3

D SPLAY

IS
►H

m
PC*

■1

□

n

Using the Cursor Keys Inside Quotes with the PRINT Command

When you type the cursor keys inside quotation marks, graphic characters

are shown on the screen to represent the keys. These characters will NOT

be printed on the screen when you press RETURN. Try typing a question

mark (?), open quotes (SHIFTed 2 key); then press either of the down cur-

sor keys 10 times, enter the words "DOWN HERE", and close the quotes.

The line should look like this:

| DOWN HERE"

Now press RETURN. The Commodore 64C prints 10 blank lines, and on

the eleventh line, it prints "DOWN HERE". As this example shows, you

can tell the computer to print anywhere on your screen by using the cursor

control keys inside quotation marks.

n

i i

I i

23 CHAPTER 2-GETTING STARTED IN BASIC

Beginning to

Program

So far most of the commands we have discussed have been performed in

DIRECT mode. That is, the command was executed as soon as the

RETURN key was pressed. However, most BASIC commands and func

tions can also be used in programs.

What a Program Is

A program is a set of numbered BASIC instructions that tells your com

puter what you want it to do. These numbered instructions are referred to

as statements or lines*

Line Numbers

The lines of a program are numbered so that the computer knows in what

order you want them executed or RUN. The computer executes the pro

gram lines in numerical order, unless the program instructs otherwise. You

can use any whole number from 0 to 63999 for a line number. Never use a

comma in a line number.

Many of the commands you have learned to use in DIRECT mode can be

easily made into program statements. For example, type this:

10 ? "COMMODORE 64C"

Notice the computer did not display COMMODORE 64C when you

pressed RETURN, as it would do if you were using the PRINT command

in DIRECT mode. This is because the number, 10, that comes before the

PRINT symbol (?) tells the computer that you are entering a BASIC pro

gram. The computer just stores the numbered statement and waits for the

next input from you.

Now type RUN and press RETURN. The computer prints the words

COMMODORE 64C. This is not the same as using the PRINT command

in DIRECT mode. What has happened here is that YOU HAVE JUST

WRITTEN AND RUN YOUR FIRST BASIC PROGRAM. The pro

gram is still in the computer's memory, so you can run it as many times as

you want.

24 CHAPTER 2-GETTING STARTED IN BASIC

U

U

u

u

U

LJ

U

U

U

LJ

U

LJ

U

U

u

LJ

U

LJ

U

U

u

u

LJ

LJ

U

LJ

U

n

H

n

n

n

n

n

n

n

n

Viewing Your Program—The LIST Command

Your one-line program is still in the 64C's memory. Now clear the screen by

pressing the SHIFT and CLR/HOME keys together. The screen is empty.

At this point you may want to see the program listing to be sure it is still in

memory. The BASIC language is equipped with a command that lets you

do just this—the LIST command.

Type LIST and press RETURN. The 64C responds with:

10 PRINT "COMMODORE 64C"

READY,

Anytime you want to see all the lines in your program, type LIST This is

especially helpful if you make changes, because you can check to be sure

the new lines have been registered in the computer's memory. In response

to the command, the computer displays the changed version of the line,

lines, or program. Here are the rules for using the LIST command. (Insert

the line number you wish to see in place of the N.)

—To see line N only, type LIST N and press RETURN.

—To see from line N to the end of the program, type LIST N- and

press RETURN.

—To see the lines from the beginning of the program to line N, type

LISTO and press RETURN.

—To see from line Nl to line N2 inclusive, type LIST N1-N2 and

press RETURN.

n

n

n

n

n

n

n

n
25

A Simple Loop—The GOTO Statement

The line numbers in a program have another purpose besides putting your

commands in the proper order for the computer. They serve as a reference

for the computer in case you want to execute the command in that line

repetitively in your program. You use the GOTO command to tell the

computer to go to a line and execute the command(s) in it. Now type:

20 GOTO 10

When you press RETURN after typing line 20, you add it to your program

in the computer's memory.

Notice that we numbered the first line 10 and the second line 20. It is very

helpful to number program lines in increments of 10 (that is, 10, 20, 30, 40,

etc.) in case you want to go back and add lines in between later on. You

can number such added lines by fives (15, 25 ...) ones (1,2...)—in fact,

by any whole number—to keep the lines in the proper order.

CHAPTER 2-GETTING STARTED IN BASIC

u

Type RUN and press RETURN, and watch the words COMMODORE U
64C move down your screen. To stop the message from printing on the j i

screen, press the RUN/STOP key on the left side of your keyboard.

The two lines that you have typed make up a simple program that repeats

itself endlessly, because the second line keeps referring the computer back \ \

to the first line. The program will continue indefinitely unless you stop it or

turn off the computer.) /

Now type LIST Kli'JL'UKlgi ♦ The screen should say: \ i

10 PRINT "COMMODORE 64C"

20 GOTO 10 U
READY.

u
Your program is still in memory. You can RUN it again if you want to. This

is an important difference between PROGRAM mode and DIRECT |_J

mode. Once a command is executed in DIRECT mode, it is no longer in

the computer's memory. (J

Notice that even though you used the ? symbol for the PRINT statement, j [

your computer has converted it into the full command. This happens when

you LIST any command you have abbreviated in a program. j j

u
Clearing the Computer's Memory—The NEW Command

Anytime you want to start all over again or erase a BASIC program in the i—'
computer's memory, just type NEW and press RETURN. This command

clears out the computer's BASIC memory, the area where programs and '—'

data are stored. . .
<—f

Using Color in a Program *—>

To select color within a program, you must include the color selection j }

information within a PRINT statement. For example, clear your computer's

memory by typing NEW and pressing RETURN, then type the following, j j

being sure to leave space between each letter:

10 PRINT "SPECTRUM" MHHIIP U

Now type line 10 again but this time hold down the CTRL key and press] j

the 1 key directly after entering the first set of quote marks. Release the

CTRL key and type the "S". Now hold down the CTRL again and press j_j

the 2 key. Release the CTRL key and type the "P". Next hold down the

CTRL again and press the 3 key. Continue this process until you have \ /

typed all the letters in the word SPECTRUM and selected a color between

LJ

26 CHAPTER 2-GETTING STARTED IN BASIC I i

U

n

n

n

n

n

n

n

H

n

n

n

n

n

fmmt

I \

n

/ i

n

/ \

n

n

n

Editing Your

Program

27

each letter. Press the SHIFT and the 2 keys to type a set of closing quota

tion marks and press the RETURN key. Now type RUN and press the

RETURN key. The computer displays the word SPECTRUM with each

letter in a different color. Now type LIST and press the RETURN key.

Notice the graphic characters that appear in the PRINT statement in line

10. These characters tell the computer what color you want for each

printed letter. Note that these graphic characters do not appear when the

Commodore 64C PRINTs the word SPECTRUM in different colors.

The color selection characters, known as control characters, in the PRINT

statement in line 10 tell the Commodore 64C to change colors. The com

puter then prints the characters that follow in the new color until another

color selection character is encountered. While characters enclosed in quo

tation marks are usually PRINTed exactly as they appear, control charac

ters are only displayed within a program LISTing.

The following paragraphs will help you to type in your programs and make

corrections and additions to them.

Erasing a Line from a Program

Use the LIST command to display the program you typed previously. Now

type 10 and press RETURN. You just erased line 10 from the program.

LIST your program and see for yourself. If the old line 10 is still on the

screen, move the cursor up so that it is blinking anywhere on that line.

Now, if you press RETURN, line 10 is back in the computer's memory.

Duplicating a Line

Hold down the SHIFT key and press the CLR/HOME key on the upper

right side of your keyboard. This will clear your screen. Now LIST your

program. Move the cursor up again so that it is blinking on the "0" in the

line numbered 10. Now type a 5 and press RETURN. You have just dupli

cated (i.e., copied) line 10. The duplicate line is numbered 15. Type LIST

and press RETURN to see the program with the duplicated lines.

Replacing a Line

You can replace a whole line by typing in the old line number followed by

the text of the new line, then pressing RETURN. The old version of the

line will be erased from memory and replaced by the new line as soon as

you press RETURN.

CHAPTER 2-GETTING STARTED IN BASIC

Mathematical

Operations

Changing a Line

Suppose you want to add something in the middle of a line. Simply move

the cursor to the character or space that immediately follows the spot

where you want to insert the new material. Then hold down the SHIFT

key and the INST/DEL key together until there is enough space to insert

your new characters.

Try this example. Clear the computer's memory by typing NEW and press

ing RETURN. Then type:

28

10 ? "MY 64C IS GREAT"

Let's say that you want to add the word COMMODORE in front of the

number 64C. Just move the cursor so that it is blinking on the "6" in 64C.

Hold down the SHIFT and INST/DEL keys until you have enough room

to type in COMMODORE (don't forget to leave enough room for a space

after the E). Then type in the word COMMODORE.

If you want to delete something in a line (including extra blank spaces),

move the cursor to the character following the material you want to

remove. Then hold down the INST/DEL key by itself. The cursor will

move to the left, and characters or spaces will be deleted as long as you

hold down the INST/DEL key.

You can use the PRINT command to perform calculations like addition,

subtraction, multiplication, division and exponentiation. You type the

calculation after the PRINT command.

Addition and Subtraction

Try typing these examples:

PRINT 6 + 4

PRINT 50-20

PRINT 10+15-5

PRINT 75 -100

PRINT 30+ 40,55-25

PRINT30 + 40;55-25

Notice that the fourth calculation (75-100) resulted in a negative number.

Also notice that you can tell the computer to make more than one calcula

tion with a single PRINT command. You can use either a comma or a semi

colon in your command, depending on whether or not you want spaces

separating your results.

CHAPTER 2-GETTING STARTED IN BASIC

U

U

u

LJ

LJ

U

U

U

U

LJ

U

LJ

U

U

LJ

U

U

LJ

U

LJ

U

u

LJ

LJ

U

Li

LJ

n

n

n

n

n

n

n

n

/ i

i (

n

H

Multiplication and Division

Find the asterisk key (*) on the right side of your keyboard. This is the

symbol that the Commodore 64C uses for multiplication. The slash (/) key,

located next to the right SHIFT key, is used for division.

Try these examples:

PRINT 5*3

PRINT 100/2

Exponentiation

Exponentiation means to raise a number to a power. The up arrow key (t),

located next to the asterisk on your keyboard, is used for exponentiation. If

you want to raise a number to a power, use the PRINT command, followed

by the number, the up arrow and the power, in that order. For example, to

find out what 3 squared is, type:

PRINT 3T2

Order of Operations

You have seen how you can combine addition and subtraction in the same

PRINT command. If you combine multiplication or division with addition

or subtraction operations, you may not get the result you expect. For

example, type:

If you assumed you were dividing 10 by 2, you were probably surprised

when the computer responded with the answer 7. The reason you got this

answer is that multiplication and division operations are performed by the

computer before addition or subtraction. Multiplication and division are

said to take precedence over addition and subtraction. It doesn't matter in

what order you type the operation. In computing, the order in which

mathematical operations are performed is known as the order of

operations.

Exponentiation, or raising a number to a power, takes precedence over the

other four mathematical operations. For example, if you type:

PRINT 16/4T2 H^HS

the Commodore 64C responds with a 1 because it squares the 4 before it

divides 16.

n

29 CHAPTER 2-GETTING STARTED IN BASIC

Constants, Variables

and Strings

Using Parentheses to Define the Order of Operations

You can tell the Commodore 64C which mathematical operation you want

performed first by enclosing that operation in parentheses in the PRINT

command. For instance, in the first example above, if you want to tell the

computer to add before dividing, type:

PRINT(4 + 6)/2

This gives you the desired answer, 5.

If you want the computer to divide before squaring in the second example,

type:

print (i6/4)t2 mSsm

Now you have the expected answer, 16.

If you don't use parentheses, the computer performs the calculations

according to the above rules. When all operations in a calculation have

equal precedence, they are performed from left to right. For example, type:

PRINT 4*5/10*6 WggSBM

Since the operations in this example are performed in order from left to

right, the result is 12 (4*5 = 20 ... 20/10 = 2 ... 2*6 = 12). If you want to

divide 4*5 by 10*6 you type:

PRINT (4*5)/(10*6)

The answer is now .333333333.

Constants

Constants are numeric values that are permanent: that is, they do not

change in value over the course of an equation or program. For example,

the number 3 is a constant, as is any number. This statement illustrates

how your computer uses constants:

10 PRINT 3

No matter how many times you execute this line, the answer will always

be 3.

U

u

u

LJ

U

U

U

U

U

U

u

u

u

u

u

u

U

LJ

u

LJ

U

U

u

30 CHAPTER 2-GETTING STARTED IN BASIC

u

n

n

n

m

n

H

n

n

n

n

n

H

n

n

n

p

n

n

f"■»

n

n

n

n

Variables

Variables are values that can change over the course of an equation or

program statement. There is a part of the computer's BASIC memory that

is reserved for the characters (numbers, letters and symbols) you use in

your program. Think of this memory as a number of storage compartments

in the computer that store information about your program; this part of

the computer's memory is referred to as variable storage. Type in this

program:

10X= 5

20 ?X

Now RUN the program and see how the computer prints a 5 on your

screen. You told the computer in line 10 that the letter X will represent the

number 5 for the remainder of the program. The letter X is called a varia

ble, because the value ofX varies depending on the value to the right of the

equals sign. We call this an assignment statement because now there is a

storage compartment labeled X in the computer's memory, and the number

5 has been assigned to it. The = sign tells the computer that whatever

comes to the right of it will be assigned to a storage compartment (a mem

ory location) labeled with the letter X to the left of the equals sign.

The variable name on the left side of the = sign can be either one or two

letters, or one letter and one number (the letter MUST come first). The

names can be longer, but the computer only looks at the first two charac

ters. This means the names PA and PART would refer to the same storage

compartment. Also, the words used for BASIC commands (LOAD, RUN,

LIST, etc.) or functions (INT, ABS, SQR, etc.) cannot be used as names in

your programs. Refer to the BASIC Encyclopedia in Chapter 5 if you have

any questions about whether a variable name is a BASIC keyword. Notice

that the = in assignment statements is not the same as the mathematical

symbol meaning "equals", but rather means allocate a variable (storage

compartment) and assign a value to it.

In the sample program you just typed, the value of the variable X remains

at 5 throughout. You can put calculations to the right of the = sign to

assign the result to a variable. You can mix text with constants in a PRINT

statement to identify them. Type NEW and press RETURN to clear the

64C's memory; then try this program:

10 A = 3* 100

20 B = 3*200

30 ?"A IS EQUAL TO "A

40 ?"B IS EQUAL TO "B

n

31 CHAPTER 2-GETTING STARTED IN BASIC

n

u

Now there are two variables, labeled A and B, in the computer's memory,

containing the numbers 300 and 600 respectively. If, later in the program, | 1

you want to change the value of a variable, just put another assignment

statement in the program. Add these lines to the program above and RUN ; i

it again. '

50 A = 900*30/10 Lj

60B = 95 + 32+128

70 GOTO 30 J

You'll have to press the STOP key to halt the program.
u

Now LIST the program and trace the steps taken by the computer. First, it t /

assigns the value to the right of the = sign in line 10 to the letter A. It does

the same thing in line 20 for the letter B. Next, it prints the messages in i j

lines 30 and 40 that give you the values of A and B. Finally, it assigns new

values to A and B in lines 50 and 60. The old values are replaced and can- « >

not be recovered unless the computer executes lines 10 and 20 again. When

the computer is sent to line 30 to begin printing the values ofA and B j {

again, it prints the new values calculated in lines 50 and 60. Lines 50 and —'

60 reassign the same values to A and B and line 70 sends the computer j i

back to line 30. This is called an endless loop, because lines 30 through 70 '—

are executed over and over again until you press the RUN/STOP key to • i

halt the program. Other methods of looping are discussed later in this and

the following two sections. ■ i

Strings ^
A string is a character or group of characters enclosed in quotes. These \ f

characters are stored in the computer's memory as a variable in much the

same way numeric variables are stored. You can also use variable names to J_J

represent strings, just as you use them to represent numbers. When you put

the dollar sign ($) after the string variable name, it tells the computer that [j

the name is for a string variable, and not a numeric variable.

u
Type NEW and press RETURN to clear your computer's memory, then

type in the program below: } '

10 A$ = "COMMODORE "

20X= 64C 1—>
30 B$ = " COMPUTER"

40Y = l LJ
50? "THE "A$;X;B$" IS NUMBER "Y

Lj

U

U

32 CHAPTER 2-GETTING STARTED IN BASIC Lj

LJ

n

n

n

n

n

n

n

n

I \

n

n

H

n

n

n

n

n

n

Sample Program

See how you can print numeric and string variables in the same statement?

Try experimenting with variables in your own short programs.

You can print the value of a variable in DIRECT mode, after the program

has been RUN. Type ?A$;B$;X;Y after running the program above and

see that those four variable values are still in the computer's memory.

If you want to clear this area of BASIC memory but still leave your pro

gram intact, use the CLR command. Just type CLR (RETURN) and all

constants, variables and strings are erased. But when you type LIST, you

can see the program is still in memory. The NEW command discussed

earlier erases both the program and the variables.

Here is a sample program incorporating many of the techniques and com-

mands discussed in this section.

This program calculates the average of three numbers (X, Y and Z) and

prints their values and their averages on the screen. Ydu can edit the pro

gram and change the assignments in lines 10 through 30 to change the

values of the variables. Line 40 adds the variables and divides by 3 to get

the average. Note the use of parentheses to tell the computer to add the

numbers before it divides.

TIP: Whenever you are using more than one set of parentheses in a

statement, it's a good idea to count the number of left parentheses

and right parentheses to make sure they are equal.

10X = 46

20Y = 72

30Z=114

40A = (X + Y + Z)/3

60 ?"THE AVERAGE OF"X;Y;"AND "Z;"IS"A;

90 END

n

n 33 CHAPTER 2—GETTING STARTED IN BASIC

i i

Storing and Reusing

Your Programs

Once you have created your program, you will probably want to store it

permanently so you will be able to recall and use it at some later time. To

do this, you'll need either a Commodore disk drive or a Commodore

Datassette.

You will learn several commands that let you communicate between your

computer and your disk drive or Datassette. These commands are con

structed with the use of a command word followed by several parameters.

Parameters are numbers, letters, words or symbols in a command that sup

ply specific information to the computer, such as a filename, or a numeric

variable that specifies a device number. Each command may have several

parameters. For example, the parameters of the disk format command

include a name for the disk and an identifying number or code, plus several

other parameters. Parameters are used in almost every BASIC command;

some are variables which change and others are constants. These are the

parameters that supply disk information to the 64C and disk drive:

disk name-

file name—

i.d.-

drive number-

Disk Handling Parameters

arbitrary 16 character identifying name you

supply.

arbitrary 16 character identifying name you

supply.

arbitrary two-character identifier you supply

must use 0 for a single disk drive, 0 or 1 in a

dual drive.

device number— a preassigned number for a peripheral device.

For example, the device number for a Com

modore disk drive is usually 8.

Formatting a Disk

To store programs on a new (or blank) disk, you must first prepare the disk

to receive data. This is called "formatting" the disk. NOTE: Make sure

you turn on the disk drive before inserting any disk.

The formatting process divides the disk into sections called tracks and

sectors. A table of contents, called a directory, is created. Each time you

store a program on disk, the name you assign to that program will be

added to the directory.

34 CHAPTER 2-GETTING STARTED IN BASIC

U

U

U

U

U

U

LJ

U

LJ

U

u

u

u

u

u

u

u

u

u

LJ

u

u

i >
t i

Li

U

u

LJ

n

n

n

n

n

n

H

n

n

n

PI

n

n

n

n

To format a blank disk type this command:

OPEN 15,8,15: PRINT# 15, "N.A$,B$

In Place of A$, type a disk name of your choice; you can use up to 16 char-

acters to identify the disk. In place of B$, type a two-character code of your

choice (such as W2).

The cursor disappears for a second or so. When the cursor blinks again,

seal the disk with the following command:

The entire formatting process takes about a minute.

SAVEingonDisk

You can store your program on disk by using the following command:

SAVE"PROGRAM NAME",8

The program name can be any name you choose, up to 16 characters long.

Be sure to enclose the program name in quotes. You cannot put two pro

grams with the same name on the same disk. If you do, the second program

will not be accepted; the disk will retain the first one. In the example, the 8

indicates that you are saving your program on device number 8.

n

I \

i !

n

SAVEing on Cassette

If you are using a Datassette to store your program, insert a blank tape in

the recorder, rewind the tape if necessary, and type:

SAVE "PROGRAM NAME" HI' II I UN

You must type the word SAVE, followed by the program name. The pro

gram name can be any name you choose up to 16 characters.

NOTE: The screen will go blank while the program is being SAVEd,

but returns to normal when the process is completed.

Unlike disk, you can save two programs to tape under the same name.

However when you load it back into the computer, the first program

sequentially on the tape will be loaded, so avoid giving programs the same

name.

n

n

35 CHAPTER 2-GETTING STARTED IN BASIC

u

LJ
Once a program has been SAVEd, you lean LOAD it back into the com

puter's memory and RUN it anytime you wish. M

LOADing from Disk ^
Loading a program simply copies the contents of the program from the disk <—)

into the computer's memory. If a BASIC program was already in memory

before you issued the LOAD command, it is erased. UJ

To load your BASIC program from a disk, use the following command: (—1

LOAD'TROGRAM NAME",8 JUI'IUKN y

In the example, the 8 indicates to the computer that you are loading from

device number 8. Be careful to type the! program name exactly as you <—I
typed it when SAVEing the program, dr the computer will respond "FILE

NOT FOUND." U

Once the program is loaded, type RUN[and press RETURN to execute. LJ

U
LOADing from Cassette

To LOAD your program from cassette tape, type:

LOAD "PROGRAM NAME" IjltTIIIIN LJ

If you do not know the name of the program, you can type: j j

and the next program on the tape will rje found. While the Datassette is

searching for the program the screen is blank. When the program is found, j j

the screen displays:

FOUND PROGRAM NAME U

To actually load the program, you thenjpress the Commodore key. j /

You can use the counter on the Datassette to identify the approximate <' /

starting position of the programs. Then, when you want to retrieve a pro

gram, simply wind the tape forward from 000 to the program's start loca- i j

tion, and type: ^

In this case you don't have to specify the PROGRAM NAME; your pro- < j

gram will load automatically because it |s the next program on the tape. LJ

LJ

LJ

36 CHAPTER 2-GETTING STARTED IN BASIC j ^

LJ

H

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

f (

H

n

n

Displaying Your

Disk Directory

Other Disk-Related Commands

Verifying a To verify that a program has been correctly saved,

Program use the following command:

VERIFY'TROGRAM NAME",8 m."l.'UIFH

If the program in the computer is identical to the one

on the disk, the screen display will respond with the

letters "OK."

The VERIFY command also works for tape pro

grams. You type:

VERIFY'TROGRAM NAME" UIj I 1.1 UN

You do not enter the comma and a device number.

To see a list or directory of the programs on your

disk, use the following command sequence:

LOAD "&" 8 JK.LflU.KJN

The cursor disappears and the screen displays this

message:

SEARCHING FOR $

LOADING

When the directory (the $ file) has been loaded, the

READY message is displayed and the cursor reap

pears. You then type:

This lists the disk directory of files.

For further information on SAVEing and LOADing

your programs, or other disk related information,

refer to your Datassette or disk drive manual. Also

consult the LOAD and SAVE command descrip

tions in Chapter 6, BASIC 2.0 Encyclopedia.

You now know something about the BASIC language and some elementary

programming concepts. The next chapter builds on these concepts, introducing

additional commands, functions and techniques that you can use to program in

BASIC.

37 CHAPTER 2-GETTING STARTED IN BASIC

y

u

o

u

y

y

u

y

y

y

y

u

u

y

y

y

u

u

u

y

a

LO

U

u

03

LO

L3

D

E

a

0

D

O

D

a

a

a

Q

U

u

n

n

n

i (

H

H

n

n

r—>

t)

n

n

H

n

i i

n

n

n

n

n

n

CHAPTER 3

Advanced BASIC

Programming

COMPUTER DECISIONS—The IF-THEN Statement

Using the Colon

LOOPS-The FOR-NEXT Command

Empty Loops—Inserting Delays in a Program

The STEP Command

INPUTTING DATA

The INPUT Command

Assigning a Value to a Variable

Prompt Messages

Sample Program

The GET Command

The READ-DATA Command

The RESTORE Command

Using Arrays

Subscripted Variables

Dimensioning Arrays

Sample Program

PROGRAMMING SUBROUTINES

The GOSUB-RETURN Command

The ON GOTO/GOSUB Command

USING MEMORY LOCATION

Using PEEK and POKE for RAM Access

Using PEEK

Using POKE

BASIC FUNCTIONS

What Is a Function?

The INTEGER Function (INT)

Generating Random Numbers—The RND Function

The ASC and CHR$ Commands

Converting Strings and Numbers

The VAL Function

The STR$ Function

The Square Root Function (SQR)

The Absolute Value Function (ABS)

THE STOP AND CONT (CONTINUE) COMMANDS

43

44

44

45

46

47

47

47

47

48

49

50

52

52

53

54

54

56

56

56

57

57

57

58

58

58

59

60

60

61

61

61

61

61

62

41 CHAPTER 3-ADVANCED BASIC PROGRAMMING

LJ

LU

LU

U

Ul

u

u

iy

u

iy

u

yj

LJ

Ui

LJ

LJ

iii

LJ

Li

U

Ul

LJ

y

y

y

y

n

n

n

r-i

H

H

H

n

n

n

n

n

n

n

p.

n

•L J

n

n

n

n

Computer

Decisions—

The IF-THEN

Statement

This chapter describes how to use a number of powerful BASIC com

mands, functions and programming techniques.

These commands and functions allow you to program repeated actions

through looping and nesting techniques; handle tables of values; branch or

jump to another section of a program, and return from that section; assign

varying values to a quantity—and more. Examples and sample programs

show just how these BASIC concepts work and interact.

In the preceding chapter you learned how to change the values of variables.

The next step is to have the computer make decisions based on these

updated values. You do this with the IF-THEN statement. You tell the com

puter to execute a command only IF a condition is true (e.g., IF X = 5). The

command you want the computer to execute when the condition is true

comes after the word THEN in the statement. Clear your computer's mem

ory by typing NEW and pressing RETURN, then type this program:

10 J = 0

20 ? J,"COMMODORE 64C"

3OJ = J+1

40 IF J<>5 THEN 20

60 END

You no longer have to press the STOP key to break out of a looping pro

gram. The IF-THEN statement tells the computer to keep printing "COM

MODORE 64C" and incrementing (increasing) J until J = 5 is true. When

an IF condition is false, the computer jumps to the next line of the pro

gram, no matter what comes after the word THEN.

Notice the END command in line 60. It is good practice to put an END

statement as the last line of your program. It tells the computer where to

stop executing statements.

Below is a list of comparison symbols that may be used in the IF statement

and their meanings:

MEANINGSYMBOL

> =

< =

EQUALS

GREATERTHAN

LESS THAN

NOT EQUALTO

GREATERTHAN OR EQUALTO

LESS THAN OR EQUALTO

43 CHAPTER 3-ADVANCED BASIC PROGRAMMING

Loops—The

FOR-NEXT

Command

These comparisions work in expected rhathematical ways with numbers.

There are different ways to determine if one string is greater than, less

than, or equal to another. You can learn about these "string handling"

functions by referring to Chapter 6, BASIC 2.0 Encyclopedia.

Using the Colon

A very useful tool in programming is the colon (:). You can use the colon

to separate two (or more) BASIC commands on the same line.

Statements after a colon on a line will be executed in order, from left to

right. In one program line you can put as many statements as you can fit

into 80 characters, including the line number. This is equivalent to two full

screen lines in 40-column format. This provides an excellent opportunity

to take advantage of the THEN part of the IF-THEN statement. You can

tell the computer to execute several commands when your IF condition is

true. Clear the computer's memory, type in the following program and

RUN it.

10N = 0

15N = N+1

20 IF N<5 THEN PRINT N;"LESS THAN 5":GOTO 15

30 ? N; "GREATER THAN OR! EQUAL TO 5"

40 END

Now change line 10 to read N = 20, and RUN the program again. Notice

you can tell the computer to execute mcjre than one statement when N is

less than 5. You can put any statement(s) you want after the THEN com

mand. Remember that the GOTO 15 will not be reached until N<5 is true.

Any command that should be followed whether or not the specified

condition is met should appear on a separate line.

In the first RUN of the program used in the previous example, we made

the computer print the variable N five times by telling it to increase or

"increment" the variable N by units of one, until the value ofN equalled

five; then we ended the program. There is a simpler way to do this in

BASIC. We can use a FOR-NEXT loop, like this:

10FORN=lTO5

20 ?N; "IS LESS THAN OR EQUAL TO 5"

30 NEXT N

40 END

44 CHAPTER 3-ADVANCED BASIC PROGRAMMING

U

U

u

u

u

u

u

u

u

LJ

LJ

U

u

u

u

u

LJ

LJ

LJ

U

u

LJ

LJ

U

LJ

U

LJ

n

n

n

n

n

H

n

n

n

n

n

n

r—i
! i

n

n

Type and RUN this program and compare the result with the result of the

IF-THEN program—they are similar. In fact, the steps taken by the com

puter are almost identical for the two programs. The FOR-NEXT loop is a

very powerful programming tool. You can specify the number of times the

computer should repeat an action. Let's trace the computer's steps for the

program above.

First, the computer assigns a value of 1 to the variable N. The 5 in the FOR

statement in line 10 tells the computer to execute all statements between

the FOR statement and the NEXT statement, until N is equal to 5. In this

case there is just one statement—the PRINT statement.

This is how the computer interprets the inner workings of a FOR ...

NEXT loop—it operates in much the same way as the IF... THEN exam

ple on the previous page. First, the 64C assigns a value of 1 to the variable

N. It then executes all instructions between the FOR and NEXT key

words. When the NEXT statement is encountered, it tells the computer to

increment the counter variable N (in this case by 1), compare N to 5 and

continue with another cycle through the FOR . . . NEXT loop ifN = 5 is

false. The increment defaults to 1 if no other increment is specified in the

FOR statement. After five passes through the loop, and once N = 5 is true,

the computer processes the statement which immediately follows the

NEXT statement and resumes with the rest of the program. Since the com

puter does not compare the value ofN to the start value of the loop varia

ble until the NEXT statement is encountered, every loop is executed at

least once.

n

n

n

Empty Loops—Inserting Delays in a Program

Before you proceed any further, it will be helpful to understand about

loops and some ways they are used to get the computer to do what you

want. You can use a loop to slow down the computer (by now you have

witnessed the speed with which the computer executes commands). See if

you can predict what this program will do before you run it.

10 A$ = "COMMODORE 64C"

20 FOR J=l TO 20

30 PRINT

40FORK=1TO 1500

50 NEXT K

60 PRINT A$

70 NEXT J

80 END

45 CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

u
Did you get what you expected? The ldop contained in lines 40 and 50 tells

the computer to count to 1500 before executing the remainder of the pro- I 1
gram. This is known as a delay loop ar^d is often useful. Because it is inside

the main loop of the program, it is called a nested loop. Nested loops can 1 1
be very useful when you want the computer to perform a number of tasks

in a given order, and repeat the entire sequence of commands a certain 1 !
number of times.

u

The STEP Command jj

You can tell the computer to increment your counter by units (e.g. 10, 0.5 , ,

or any other number). You do this by Using a STEP command with the '—'
FOR statement. For example, if you want the computer to count by tens to >

100, type: U

10 FOR X= 0 TO 100 STEP 10 (_J

20 ?X

30 NEXT U

Notice that you do not need the X in the NEXT statement if you are only

executing one loop at a time—NEXT refers to the most recent FOR state- I—1

ment. Also, note that you do not have to increase (or "increment") your

counter—you can decrease (or "decrement") it as well. For example, change '—'
line 10 in the program above to read:

10 FOR X= 100 TO 0 STEP- 10

The computer will count backward from 100 to 0, in units of 10. <—'

If you don't use a STEP command with a FOR statement, the computer '—'

will automatically increment the counter by units of 1.

The parts of the FOR-NEXT command in the original line 10 are:

FOR — word used to indicate beiginning of loop LJ
X — counter variable; any number variable can be used

0 — starting value; may be apy number, positive or negative 1—I
TO — connects starting value to ending value

100 — ending value; may be any number, positive or negative i I
STEP — indicates an increment other than 1 will be used

10 — increment; can be any niimber, positive or negative i I

u

LJ

LJ

U

I [

46 CHAPTER 3-ADVANCED BASIC PROGRAMMING L™J

u

n

n

n

n

n

n

n

n

n

n

H

n

n

n

n

n

> i

n

n

n

n

n

n

n

n

Inputting Data The INPUT Command

Assigning a Value

to a Variable

Prompt Messages

Clear the computer's memory by typing NEW and

pressing RETURN, and then type and RUN this

program.

10K=10

20 FOR 1=1 TO K

30 ? "COMMODORE"

40 NEXT

50 END

In this program you can change the value of K in

line 10 to make the computer execute the loop as

many times as you want it to. You have to do this

when you are typing the program, before it is RUN.

What if you wanted to be able to tell the computer

how many times to execute the loop at the time the

program is RUN?

In other words, you want to be able to change the

value of the variable K each time you run the pro

gram, without having to change the program itself.

We call this the ability to interact with the computer.

You can have the computer ask you how many times

you want it to execute the loop. To do this, use the

INPUT command. For example, replace line 10 in

the program with:

10 INPUT K

Now when you RUN the program, the computer

responds with a ? to let you know it is waiting for you

to enter what you want the value of K to be. Type 15

and press RETURN. The computer will execute the

loop 15 times.

You can also make the computer print a message in

an INPUT statement to tell you what variable it's

waiting for. Replace line 10 with:

10 INPUT'TLEASE ENTER A VALUE

FOR K";K

Remember to enclose the message to be printed in

quotes. This message is called a prompt. Also, notice

that you must use a semicolon between the ending

47 CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

u
quote marks of the prompt and the K. You may put

any message you want in the prompt, but the LJ
INPUT statement (line number included) must fit

within 80 characters, just as any BASIC command j I
must.

u
The INPUT statement can also be used with string

variables. The ssime rules that apply for numeric I |
variables apply for strings. Don't forget to use the $

to identify all your string variables. Clear your com- | 1

puter's memory by typing NEW and pressing

RETURN. Then type in this program. LJ

10 INPUT"WHAT IS YOUR NAME";N$ < ,

20 ? "HELLO ",N$ Lj
30 END (j

Now RUN the pirogram. When the computer

prompts "WHAT IS YOUR NAME?", type your LJ

name. Don't forget to press RETURN after you type

your name. j |

Once the value of a variable (numeric or string) has LJ

been inserted intp a program through the use of

INPUT, you can irefer to it by its variable name any LJ

time in the program. Type ?N$ (RETURN>—your

computer remembers your name. j |

LJ
Sample Program

Now that you know how to use the FOR-NEXT loop and the INPUT com- •—'

mand, clear the computer's memory by typing NEW mm inrjj (then

type the following program: '—'

10T = 0 '■■ jj
20 INPUT'HOW MANY NUMBERS";N

30FORJ=1TON (J

40 INPUT'TLEASE ENTER A NUMBER ";X

50T =T+X (J

60 NEXT

70 A=T/N : jj

80 PRINT

90 ? "YOU HAVE";N"NUMBERS TOTALING";T M

100 ? "AVERAGE =";A

110 END j_j

u

48 CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

H

n

n

n

n

i j

n

n

n

n

H

49

This program lets you tell the computer how many numbers you want to

average. You can change the numbers every time you run the program

without having to change the program itself.

Let's see what the program does, line by line:

Line 10 assigns a value of 0 to T (which will be the running total of

the numbers).

Line 20 lets you determine how many numbers to average, stored in

variable N.

Line 30 tells the computer to execute a loop N times.

Line 40 lets you type in the actual numbers to be averaged.

Line 50 adds each number to the running total.

Line 60 tells the computer to go back to line 30, increment the

counter (]) and start the loop again.

Line 70 divides the total by the amount of numbers you typed (N)

after the loop has been executed N times.

Line 80 prints a blank line on the screen.

Line 90 prints the message that gives you the amount of numbers and

their total.

Line 100 prints the average of the numbers.

Line 110 tells the computer that your program is finished.

The GET Command

There are other BASIC commands you can use in your program to interact

with the computer. One is the GET command which is similar to INPUT.

To see how the GET command works, clear the computer's memory and

type this program.

10 GET A$

20 IF A$ = "" THEN GOTO 10

30? A$

40 END

When you type RUN and press RETURN, nothing seems to happen. The

reason is that the computer is waiting for you to press a key. The GET com

mand, in effect, tells the computer to check the keyboard and find out

what character or key is being pressed. The computer is satisfied with a

null character (that is, no character). This is the reason for line 20. This

line tells the computer that if it gets a null character, indicated by the two

CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

u
double quotes with no space between them, it should go back to line 10
and try to GET another character. This loop continues until you press a I—i
key. The computer then assigns the character on that key to A$.

The GET command is very important because you can use it, in effect, to

program a key on your keyboard. The Example below prints a message on I—1
the screen when Q is pressed. Type the program and RUN it. Then press Q

and see what happens. I—I

10 ?"PRESS Q TO VIEW MESSAGE" LJ
20 GET A$. .

30 IF A$ = "" THEN GOTO 20 U
40IFA$ = "Q"THENGOTO60 .

50 GOTO 20 L-l
60 FOR 1=1 TO 25 (

70 ? "NOW I CAN USE THE QET STATEMENT" ^
80 NEXT (

90 END t-J

Notice that if you try to press any key cither than the Q, the computer j_J

will not display the message, but will gd back to line 20 to GET another

character. | j

u

The READ-DATA Command >j

There is another powerful way to tell th£ computer what numbers or

characters to use in your program. You tan use the READ statement in LJ
your program to tell the computer to get a number or character(s) from

the DATA statement. For example, if ydu want the computer to find the 1 I
average of five numbers, you can use the READ and DATA statements

this way: I j

10T = 0 u

20FORJ=lTO5 L-J
30 READ X , |

40T=T+X ! U
50 NEXT , ,

60 A=T/5 U
70? "AVERAGE = ";A , ,

80 END L-1
90 DATA 5,12,1,34,18 , ,

u

u

50 CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

h

n

n

n

n

n

n

n

n

n

n

n

When you run the program, the computer will print AVERAGE = 14.

The program uses the variable T to keep a running total, and calculates the

average in the same way as the INPUT average program. The READ-

DATA average program, however, finds the numbers to average on a

DATA line. Notice line 30, READ X. The READ command tells the com

puter there must be a DATA statement in the program. It finds the DATA

line, and uses the first number as the current value for the variable X. The

next time through the loop the second number in the DATA statement will

be used as the value for X, and so on.

You can put any number you want in a DATA statement, but you cannot

put calculations in a DATA statement. The DATA statement can be any

where you want in the program—even after the END statement. This is

because the computer never really executes the DATA statement; it just

refers to it. Be sure to separate your data items with commas, but be sure

not to put a comma between the word DATA and the first number in

the list.

The computer uses an internal pointer to remind itself which piece of data

was read last. After the computer reads the first number in the DATA

statement, the pointer points to the second number. When the computer

comes to the READ statement again, it assigns the second number to the

variable name in the READ statement.

DATA statements can be placed anywhere in a program—at the beginning,

in the middle, at the end, or interspersed throughout the program. For

efficiency, DATA statements are usually placed at the end of program. If

you have more than one DATA statement in your program, the internal

DATA pointer will refer to the DATA statement containing the next

unread DATA value.

You can use as many READ and DATA statements as you need in a pro

gram, but make sure there is enough data in the DATA statements for the

computer to read. Remove one of the numbers from the DATA statement

in the last program and run it again. The computer responds with ?OUT

OF DATA ERROR IN 30. What happened is that when the computer

executed the loop for the fifth time, there was no data for it to read. That is

what the error message is telling you. Putting too much into the DATA

statement doesn't create a problem because the computer never realizes the

extra data exists.

51 CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

u
The RESTORE Command

LJ
You can use the RESTORE command in a program to reset the data

pointer to the first piece of data if you need to. Replace the END statement i i

(line 80) in the program above with:

80 RESTORE LJ

and add: I j

85 GOTO 10

u
Now RUN the program. The program will run continuously using the

same DATA statement. NOTE: If the computer gives you an OUT OF
u

DATA ERROR message, it is because ^ou forgot to replace the number

that you removed previously from the DATA statement, so the data is all j i

used before the READ statement has been executed the specified number

of times. , ,
i I

You can use DATA statements to assigft values to string variables. The / >

same rules apply as for numeric data. Clear the computer's memory and

type the following program: , ,

10FORJ=lTO3

20 READ A$ LJ

30 ? A$

40 NEXT LJ

50 END

60 DATA COMMODORE,64C,GOMPUTER LJ

If the READ statement calls for a string variable, you can place letters or j i

numbers in the DATA statement. Notice however, that since the computer

is READing a string, numbers will be stored as a string of characters, not < |

as a value which can be manipulated. Numbers stored as strings can be

printed, but not used in calculations. Also, you cannot place letters in a i I

DATA statement if the READ statement calls for a number variable.

LJ

Using Arrays i j

You have seen how to use READ-DATA to provide many values for a vari

able. But what if you want the computer to remember all the data in the I I
DATA statement instead of replacing the value of a variable with the new

data? What if you want to be able to recall the third number, or the second 1 I
string of characters?

LJ

LJ

LJ

52 CHAPTER 3-ADVANCED BASIC PROGRAMMING

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

H

Each time you assign a new value to a variable, the computer erases the old

value in the variable's box in memory and stores the new value in its place.

You can tell the computer to reserve a row of boxes in memory and store

every value that you assign to that variable in your program. This row of

boxes is called an array.

Subscripted If the array contains all of the values assigned to the

Variables variable X in the READ-DATA example, it is called

the X array. The first value assigned to X in the pro-

gram is named X(l), the second value is X(2), and so

on. These are called subscripted variables. The num

bers in the parentheses are called subscripts. You can

use a variable or a calculation as a subscript. The

following is another version of the averaging pro

gram, this time using subscripted variables.

5 DIM X(5)

10T = 0

20FORJ=lTO5

30 READ X(J)

40T =T + X(J)

50 NEXT

60 A = T/5

70? "AVERAGE =";A

80 END

90 DATA 5,12,1,34,18

Notice there are not many changes. Line 5 is the

only new statement. It tells the computer to set aside

six storage compartments [X(0) through X(5)] in

memory for the X array. Line 30 has been changed

so that each time the computer executes the loop, it

assigns a value from the DATA statement to the

position in the X array that corresponds to the loop

counter Q). Line 40 calculates the total, just as it did

before, but you must use a subscripted variable to

doit.

After you run the program, if you want to recall the

third number, type ?X(3)<RETURN). The com

puter remembers every number in the array X. You

can create string arrays to store the characters in

string variables the same way. Try updating the

53 CHAPTER 3—ADVANCED BASIC PROGRAMMING

Dimensioning

Arrays

Sample Program

COMMODORE 64C COMPUTER READ-DATA

program so the Computer will remember the ele

ments in the A$; array.

5 DIM ^
10FORjilTO3
20 READ A$(J)

30?A$(J)i
40 NEXT

50 END

60 DATA tOMMODORE,64C,COMPUTER

TIP: You do not need the DIM statement in your

program unless tihe array uses values greater than

A (10)—i.e., involves more than 11 elements. See
DIMENSIONING ARRAYS.

Arrays can be used with nested loops, so the com

puter can handle data in a more advanced way.

What if you hadj a large chart with 10 rows and 5

numbers in eacH row. Suppose you wanted to find
the average of the five numbers in each row. You

could create 10 Arrays and have the computer calcu

late the average of the five numbers in each one.

This is not necessary, because you can put all the

numbers in a two-dimensional array. This array

would have the ^ame dimensions as the chart of

numbers you want to work with—10 rows by 5

columns. The DIM statement for this array (we will

call it array X) should be:

10 DIM Xj(10,5)

This tells the computer to reserve space in its mem
ory for a two-dimensional array named X. The com

puter reserves enough space for 66 numbers. You

do not have to fill an array with as many numbers

as you DIMensibned it for, but the computer will

still reserve enough space for all of the positions in

the array. i

Now it becomes very easy to refer to any number in

the chart by its column and row position. Refer to

the chart below. Find the third element in the tenth

row (1500). You would refer to this number as

X(10,3) in your program. The program at the bot-

54 CHAPTER 3-ADVANCED BASIC PROGRAMMING

LJ

U

LJ

LJ

LJ

LJ

LJ

U

U

LJ

U

U

u

u

LJ

u

u

u

u

u

u

LJ

i i
i i

u

u

u

LJ

n

n

n

n

n

n

H

n

n

n

n

n

n

n

n

n

n

n

n

n

n

torn of this page reads the numbers from the chart

into a two-dimensional array (X) and calculates the

average of the numbers in each row.

Row

1

2

3

4

5

6

7

8

9

10

1

1

2

5

10

20

30

40

50

100

500

2

3

4

10

20

40

60

80

100

200

1000

Column

3

5

6

15

30

60

90

120

150

300

1500

4

7

8

20

40

80

120

160

200

400

2000

5

9

10

25

50

100

150

200

250

500

2500

10 DIMX(10,5),A(10)

20FORR=1TO 10

30T = 0

35FORC=1TO5

40 READ X(R,C)

50T =T + X(R,C)

60 NEXT C

70 A(R) = T/5

80 NEXT R

90FORR=1TO 10

100 PRINT "ROW #";R

110FORC=1 TO 5

120 PRINT X(R,C):NEXT C

130 PRINT "AVERAGE = ";A(R)

140 FOR D= 1 TO 1000:NEXT

150 NEXT R

160 DATA 1,33,7,9

170 DATA 2,4,6,8,10

180 DATA 5,10,15,20,25

190 DATA 10,20,30,40,50

200 DATA 20,40,60,80,100

210 DATA 30,60,90,120,150

220 DATA 40,80,120,160,200

230 DATA 50,100,150,200,250

240 DATA 100,200,300,400,500

250 DATA 500,1000,1500,2000,2500

260 END

n

55 CHAPTER 3-ADVANCED BASIC PROGRAMMING

n

Programming

Subroutines

The GOSUB-RETURN Command

Until now, the only method you have had to tell the computer to jump to

another part of your program is to use the GOTO command. What if you

want the computer to jump to another part of the program, execute the

statements in that section, then return to the point it left off and continue

executing the program?

The part of program that the computer jumps to and executes is called a

subroutine* Clear your computer's memory and enter the program below.

10 A$ = "SUBROUTINE":B$ = "PROGRAM"

20FORJ=lTO5

30 INPUT "ENTER A NUMBER";X

40 GOSUB 100

50 PRINT B$:PRINT

60 NEXT

70 END

100 PRINT A$:PRINT

110Z= XT2:PRINTZ

120 RETURN

This program will square the numbers you type and print the result. The

other print messages tell you when the computer is executing the subrou

tine or the main program. Line 40 tells the computer to jump to line 100,

execute it and the statements following it until it sees a RETURN com-

mand. The RETURN statement tells the computer to go back in the pro

gram to the statement following the GOSUB command and continue exe

cuting. The subroutine can be anywhere in the program—including after

the END statement. Also, remember that the GOSUB and RETURN

commands must always be used together in a program (like FOR-NEXT

and IF-THEN), otherwise the computer will give an error message.

The ON GOTO/GOSUB Command

There is another way to make the computer jump to another section of

your program (called branching). Using the ON statement, you can have

the computer decide what part of the program to branch to based on a

calculation or keyboard input. The ON statement is used with either the

GOTO or GOSUB-RETURN commands, depending on what you need

the program to do. A variable or calculation should be after the ON com

mand. After the GOTO or GOSUB command, there should be a list of

line numbers. Type the program below to see how the ON command

works.

56 CHAPTER 3-ADVANCED BASIC PROGRAMMING

U

u

u

LJ

i I

U

u

LJ

U

U

LJ

U

U

U

LJ

U

LJ

U

U

U

U

U

i i

LJ

U

LJ

U

n

n

n

n

n

n

n

r—i

n

n

n

n

n

n

n

n

n

n

Using Memory

Locations

10 ? "ENTER A NUMBER BETWEEN ONE AND FIVE"

20 INPUT X

30 ON X GOSUB 100,200,300,400,500

40 END

100 ? "YOUR NUMBER WAS ONE":RETURN

200 ? "YOUR NUMBER WAS TWO":RETURN

300 ? "YOUR NUMBER WAS THREE":RETURN

400 1 "YOUR NUMBER WAS FOUR":RETURN

500 ? "YOUR NUMBER WAS FIVE":RETURN

When the value ofX is 1, the computer branches to the first line number in

the list (100). When X is 2, the computer branches to the second number in

the list (200), and so on.

Using PEEK and POKE for RAM/ROM Access

Each area of the computer's memory has a special function. For instance,

there is a very large area to store your programs and the variables associ

ated with them. This part of memory, called RAM, is cleared when you

use the NEW command. Other areas are not as large, but they have very

specialized functions. For instance, there is an area of memory locations

that controls the music features of the computer.

There are two BASIC commands—PEEK and POKE—that you can use to

access and manipulate the computer's memory. Use ofPEEK and POKE

commands can be a powerful programming device because the contents of

the computer's memory locations determine exactly what the computer

should be doing at a specific time.

Using PEEK PEEK can be used to make the computer tell you

what value is being stored in a memory location (a

memory location can store any value between 0 and

255). You can PEEK the value of any memory loca

tion (RAM or ROM) in DIRECT or PROGRAM

mode. Type:

P = PEEK(650)

?P

The computer assigns the value in memory location

650 to the variable P when you press RETURN after

the first line. Then it prints the value when you press

RETURN after entering the ? P command. Memory

location 650 determines whether or not keys like the

spacebar and CRSR repeat when you hold them

H

n

57 CHAPTER 3-ADVANCED BASIC PROGRAMMING

BASIC Functions

down. A 0 in location 650 tells the computer to

repeat these keys when you hold them down. Hold

down the spacebar and watch the cursor move

across the screen.

Using POKE To change the value stored in a RAM location, use

the POKE command. Type:

POKE 650,96 Ivli IUKN

The computer stores the value after the comma (96)

in the memory location before the comma (650). A

96 in memory location 650 tells the computer not to

repeat keys like the spacebar and CRSR keys when

you hold them down. (A value of 128 in location 650

allows all keys to repeat.) Now hold down the space

bar and watch the cursor. The cursor moves one

position to the right, but it does not repeat. To

return your computer to its normal state, type:

You cannot alter the value of all the memory loca

tions in the computer—the values in ROM can be

read, but not changed.

NOTE: Refer to the Commodore 64 Program

mer's Reference Guide for a complete memory

map of the Commodore 64C computer, this

map shows you the contents of all memory

locations.

What Is a Function?

A function is a predefined operation of the BASIC language that generally

provides you with a single value. When the function provides the value, it

is said to "return" the value. For instance, the SQR function is a mathe

matical function that returns the square root of a specific number.

There are two kinds of functions:

Numeric—returns a result which is a single number. Numeric func

tions range from calculating mathematical values to specifying the

numeric value of a memory location.

String—returns a result which is a character.

U

u

u

u

LJ

U

LJ

U

U

U

LJ

LJ

LJ

LJ

U

LJ

LJ

U

U

LJ

U

LJ

LJ

58 CHAPTER 3-ADVANCED BASIC PROGRAMMING LJ

U

n

n

n

Following are descriptions of some of the more commonly used functions.

For a complete list of BASIC 2.0 functions see Chapter 6, BASIC 2.0

Encyclopedia.

n

n

n

n

n

n

n

n

n

n
< i

n

n

n

The INTEGER Function (INT)

What if you want to round off a number to the nearest integer? You'll need

to use INT, the integer function. The INT function takes away (truncates)

everything after the decimal point (for positive numbers only). Try typing

these examples:

? INT(4.25)

? INT(4-75)

? INT(SQR(50))

If you want to round off to the nearest whole number, then the second

example should return a value of 5. In fact, you should round up any num

ber with a decimal of 0.5 and above. To do this, you have to add 0.5 to the

number before using the INT function. In this way, numbers with decimal

portions of 0.5 and above will be increased by 1 before being rounded

down by the INT function. Try this:

The computer added 0.5 to 4.75 before it executed the INT function, so

that it rounded 5.25 down to 5 for the result. If you want to round off the

result of a calculation, do this:

?INT((100/6) + 0.5)

You can substitute any calculation for the division shown in the inner

parentheses.

What if you want to round off numbers to the nearest 0.01? Instead of add

ing 0.5 to your number, add 0.005, then multiply by 100. Let's say you

want to round 2.876 to the nearest 0.01. Using this method, you start with:

? (2.876 + 0-005)* 100 USHlg

Now use the INT function to get rid of everything after the decimal point

(which moves two places to the right when you multiply by 100). You are

left with:

? INT((2.876 + 0-005)* 100) JJSUB

which gives you a value of 288. All that's left to do is divide by 100 to get

the value of 2.88, which is the answer you want. Using this technique, you

can round off calculations like the following to the nearest 0.01:

? INT((2.876 + 1.29+ 16.1*9-534 + 0.005)* 100)/100

59 CHAPTER 3-ADVANCED BASIC PROGRAMMING

U

Generating Random Numbers—The RND Function LJ

The RND function tells the computer to generate a random number. This j j

can be useful in simulating games of chance, and in creating interesting

graphic or music programs. All random (RND) numbers are nine digits, in j^J

decimal form, between the values 0.000000001 and 0.999999999. Type:

_ j |

Multiplying the randomly generated number by six makes the range of | j

generated numbers increase to greater than 0 and less than 6. In order to

include 6 among the numbers generated, we add one to the result of j j

RND(0)*6. This makes the range 1<X< 7. If we use the INT function to

eliminate the decimal places, the command will generate whole numbers j |

from 1 to 6. This process can be used to simulate the rolling of a die. Try

this program: j j

10 R= INT(RND®*6+1)

20 ?R <—I
30 GOTO 10

(j
Each number generated represents one toss of a die. To simulate a pair of

dice, use two commands of this nature. Each number is generated sepa- j j

rately, and the sum of the two numbers represents the total of the dice.

LJ

The ASC and CHR$ Functions |_j

Every character that the Commodore 64C can display (including graphic

characters) has a number assigned to it. This number is called a character i—I
string code (CHR$) and there are 256 of them in the Commodore 64C.

There are two functions associated with this concept that are very useful. 1—1
The first is the ASC function. Type:

The computer responds with 81. 81 is the character string code for the Q ^ 1

key. Substitute any character for Q in the command above to find out the

Commodore ASCII code number for any character. I I

The second function is the CHR$ function. Type: I)

The computer responds with Q. In effect, the CHR$ function is the oppo

site of the ASC function. They both refer to the table of character string [!

codes in the computer's memory. CHR$ values can be used to program

function keys. See Appendix E of this Guide for a full listing of ASC and (j

CHR$ codes.

LJ

LJ

60 CHAPTER 3-ADVANCED BASIC PROGRAMMING |_J

u

n

n

n

i j

n

n

n

n

Converting Strings and Numbers

Sometimes you may need to perform calculations on numeric characters

that are stored as string variables in your program. Other times, you may

want to perform string operations on numbers. There are two BASIC

functions you can use to convert your variables from numeric to string

type and vice versa.

The VAL Function The VAL function returns a numeric value for a

string argument. Clear the computer's memory and

type this program:

10 A$ = "64"

20 A = VAL(A$)

30 ? "THE VALUE OF ";A$;" IS";A

40 END

n

n

n

n

n

n

The STR$ The STR$ function returns the string representa-

Function tion of a numeric value. Clear the computer's mem

ory and type this program.

10 A = 65

20 A$ = STR$(A)

30 ? A" IS THE VALUE OF ";A$

The Square Root Function (SQR)

The square root function is SQR. For example, to find the square root of

50, type:

You can find the square root of any positive number in this way.

n

n

n

n

n

The Absolute Value Function (ABS)

The absolute value function (ABS) is very useful in dealing with negative

numbers. You can use this function to get the positive value of any

number—positive or negative. Try these examples:

?ABS(-10)

? ABS(5)" IS EQUAL TO "ABS(- 5)

i i

61 CHAPTER 3-ADVANCED BASIC PROGRAMMING

The STOP and

CONT (Continue)

Commands

You can make the computer stop a program, and resume running it when

you are ready. The STOP command must be included in the program. You

can put a STOP statement anywhere you want to in a program. When the

computer "breaks" from the program (that is, stops running the program),

you can use DIRECT mode commands to find out exactly what is going on

in the program. For example, you can find the value of a loop counter or

other variable. This is a powerful device when you are "debugging" or

fixing your program. Clear the computer's memory and type the program

below.

10X= INT(SQR(630))

20 Y = (.025*80)t2

30Z= INT(X*Y)

40 STOP

45 ? "RESUME PROGRAMMING"

50A= (X* Y) + Z

80 END

Now RUN the program. The computer responds with "BREAK IN 40".

At this point, the computer has calculated the values of X, Y and Z. If you

want to be able to figure out what the rest of the program is supposed to

do, tell the computer to PRINT X;Y;Z. Often when you are debugging a

large program (or a complex small one), you'll want to know the value of a

variable at a certain point in the program.

Once you have all the information you need, you can type CONT (for

CONTinue) and press RETURN assuming you have not edited anything

on the screen. The computer then CONTinues with the program, starting

with the statement after the STOP command.

This chapter and the preceding one have been designed to familiarize you with

the BASIC programming language and some of its capabilities. Remember that

more information on every command and programming technique in this book

can be found in the Commodore 64 Programmer's Reference Guide. The syntax

for all Commodore 2.0 commands is given in Chapter 6, BASIC 2.0

Encyclopedia.

u

u

LJ

u

LJ

))
d l

u

u

u

u

LJ

LJ

LJ

U

LJ

U

U

LJ

U

LJ

LJ

LJ

62 CHAPTER 3-ADVANCED BASIC PROGRAMMING

LJ

n

n

u

u

u

G

LJ

U

a

u

u

u

u

u

u

a

u

D

U

U

U

U

U

U

Q

U

U

u

u

n

n

H

n

(—!
l_ 1

n

r»

n

n

PI

n

n

H

p

p

n

i f

n

n

n

n

r—■>

<—i
/_ i

n

CHAPTER 4

Graphics, Color and

Sprites

COLOR CHARACTER STRING CODES (CHR$) 67

COLOR REGISTERS-CHANGING SCREEN, BORDER

AND CHARACTER COLORS 68

SCREEN MEMORY 70

COLOR MEMORY 72

ANIMATION 73

SPRITE GRAPHICS 77

Sprite Concepts 77

Designing a Sprite Image 78

Converting Your Sprite Image Into Data 80

Controlling Sprites 83

Animating Your Sprites 86

Tying Your Sprite Program Together 88

GRAPHICS MODES 91

65 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

n

n

G

H

n

n

n

I s

n

H

n

n

r-)

n

n

Color Character

String Codes

(CHR$)

Your Commodore 64C gives you exceptional graphics capabilities. The

Commodore 64C offers sixteen colors, five graphics modes and program

mable animated objects called sprites. This chapter elaborates on the sev

eral powerful graphics features built into the Commodore 64C and how

they are used.

Each character on the 64C keyboard has a number associated with it.

When you press a key, the computer scans the keyboard and understands

exactly which character is typed. A character code value is entered into

memory each time a key is pressed. These codes are referred to as character

string codes. Appendix D lists all the character string codes for the

Commodore 64C.

Within a program, you can select colors using character string codes

instead of holding down the CTRL key and pressing a numbered key. For

instance, enter the following sample program:

10 PRINT CHR$ (5)

20 PRINT "WHITE"

NOTE: In the remainder of this section, the KLliJi^ symbol is

shown only after DIRECT mode statements, not after program lines.

When you RUN this program, the character color changes from blue to

white and the word "WHITE" is displayed. The other 15 colors also have a

character string code assigned to them. The following is a list of all the

colors available on the Commodore 64C and the corresponding character

string codes:

Color

White

Red

Green

Blue

Orange

Black

Brown

Lt. Red

CHR$Code

CHR$ (5)

CHR$ (28)

CHR$ (30)

CHR$(31)

CHR$ (129)

CHR$ (144)

CHR$ (149)

CHR$ (150)

Color

Dk. Gray

Gray

Lt. Green

Lt. Blue

Lt. Gray

Purple

Yellow

Cyan

CHR$Code

CHR$(151)

CHR$ (152)

CHR$ (153)

CHR$ (154)

CHR$ (155)

CHR$ (156)

CHR$ (158)

CHR$ (159)

To select any of the 64C colors, PRINT the above character string codes

according to the colors you want to display on the screen. The following

program illustrates how to select colors within a program.

n

67 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

Color Registers—

Changing Screen,

Border and

Character Colors

10 PRINTCHR$(5)

15 PRINT"WHITE"

20 PRINTCHR$(28)

25 PRINT"RED"

30 PRINTCHR$(30)

3 5 PRINT"GREEN"

40 PRINTCHR$(31)

45 PRINT"BLUE"

47 PRINTCHR$(129)

48 PRINT"ORANGE"

50 PRINTCHR$(144)

5 5 PRINT"BLACK"

60 PRINTCHR$(149)

65 PRINT"BROWN"

70 PRINTCHR$(150)

7 5 PRINT"LT. RED"

80 PRINTCHR$(151)

85 PRINT"DK. GRAY"

90 PRINTCHR$(152)

95 PRINT"GRAY"

100 PRINTCHR$(153)

110 PRINT"LT. GREEN1

120 PRINTCHR$(154)

130 PRINT"LT. BLUE"

140 PRINTCHR$(155)

150 PRINT"LT. GRAY"

200 PRINTCHR$(156)

210 PRINT"PURPLE"

220 PRINTCHR$(158)

230 PRINT"YELLOW"

240 PRINTCHR$(159)

250 PRINT"CYAN"

Your Commodore 64C has 64K of memory. This means the 64C holds 64

times 1024 (65536) bytes of information. Think of the internal structure of

your computer as 65536 storage compartments piled one on top of the

other. They are labeled starting from the bottom at location zero (0) and

continue upward to location 65535 on top. You can also refer to each byte

as a register, so your 64C has 65536 registers.

Each byte inside your computer is used for a specific purpose. For instance,

you have 38911 bytes available to program in BASIC. Your Commodore

64C tells you this as soon as you turn on the computer and read the open

ing screen. You may ask, what are all the rest of the bytes used for? They

control the computer's brain, known as the operating system. The operat

ing system registers control all the features of your Commodore 64C.

A portion of the operating system controls graphics and color. You can

select different colors by changing the contents of the 64C color registers.

There are three color registers which control the colors of the border, the

U

u

u

u

LJ

U

u

u

u

u

u

LJ

U

U

U

LJ

U

u

LJ

U

LJ

U

U

68 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

G

n

n

n

f . I

n

n

n

H

n

n

n

n

background and the characters. When you first turn on your 64C, the

background color is dark blue and the character and border colors are light

blue. You can change the background, border and character color registers

with the BASIC POKE statement.

The POKE command modifies the contents of the specified location and

places the newly specified value in that location. The format of the POKE

command is:

POKE memory location, value

For example, type the following POKE command:

POKE 53280,0 KMLJKN

Did you notice what happened? The border color changed from light blue

to black. Location 53280 is the border color register. Location 53281 is the

background color register and location 646 is the character color register.

Now change the background color from dark blue to black with the follow

ing command:

POKE 53281,0 mmS

Now all you need to know is how to change the character color with a

POKE command. You already learned the two other methods to change

the character color in the last section, first with the CTRL key and second

with character string codes (CHR$). The following POKE changes the

character color from light blue to white:

POKE 646,1

Note that the character color changes to white, but the characters already

on the screen remain the same color as before. All the characters you type

from now on are displayed in white unless you change the character color

again.

You're probably wondering what the values that are POKEd into the color

registers mean. These values are the color information codes for the 16

colors available on the Commodore 64C. The following list contains all the

Commodore 64C colors and the corresponding color codes:

n

0

1

2

3

4

5

6

7

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

8

9

10

11

12

13

14

15

Orange

Brown

Light Red

Dark Gray

Gray

Light Green

Light Blue

Light Gray

69 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

Screen Memory

Try the following program. It uses FOR . . . NEXT loops, which you

learned in the last chapter.

5 PRINT "□": REM Use shifted CLR/HOME key to produce heart sym

bol shown in parentheses

10 FORI=0TO15

15 POKE53280,I

16 FORJ=lTO500:NEXT

18 NEXT

19 POKE53280,0

20 FORI=0TO15

25 POKE53281,I

26 FORJ=lTO500:NEXT

28 NEXT

29 POKE53281,0

30 FORI=0TO15

35 POKE646,I

36 PRINT"COLOR"

37 FORJ=lTO500:NEXT

3 8 NEXT

39 POKE646f14

50 POKE53280,14:POKE646, 14:POKE53281,6

This program changes the color code value of each of the color registers

using a FOR... NEXT loop. Lines 10 through 18 POKE each color value

from 0 (black) to 15 (light gray) into the border color register and displays

each border color on the screen. Lines 20 through 28 POKE each color

value into the background color register and display each background color

on the screen. Lines 30 through 38 POKE each color value into the charac

ter color register and display each character color on the screen.

Lines 16, 26 and 37 are FOR ... NEXT loops that slow down the program.

They are empty FOR... NEXT loops that delay program execution so

you can notice the color changes on the screen. Try the program without

the delay loops and see how fast the Commodore 64C runs. Line 40

restores the original border, screen and character color registers.

Since graphics is one of the Commdore 64C's strongest features, the screen

is an important part of the computer. The 64C's screen has 1000 character

positions—40 columns by 25 rows. Each character position uses one byte

of memory, so the 64C needs 1000 bytes to store the information you see

on the screen.

In the Color Register section, we referred to the memory of the Commo

dore 64C as 65536 storage compartments piled one on top of the other.

U

LJ

U

u

LJ

U

U

LJ

U

U

i >

LJ

U

U

LJ

LJ

LJ

LJ

U

\ J

LJ

70 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

t /

n

n

n

n

n

n

n

n

n

n

< i

n

/ i

Screen memory uses part of those storage compartments starting at loca

tion 1024 and ending at location 2023. The screen appears as a grid having

40 X (horizontal) positions and 25 Y (vertical) positions. In memory, how

ever the character positions are actually stored sequentially.

The top left character position on the screen, referred to as the HOME

position, is stored at location 1024. The character position directly to the

right ofHOME is stored at location 1025 and so on. The character posi

tion at the top right corner of the screen is stored at location 1063, 40 loca

tions past the beginning of screen memory. The last character position,

located at the bottom right corner of the screen, is stored at location 2023,

the end of screen memory. Examine Figure 4-1 to understand the corre

spondence between the way the screen looks and the way information is

sequentially stored in memory.

FIGURE 4-1- SCREEN MEMORY MAP

COLUMN

20 30

1063

1024-

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824

1864

1904

1944

1984

2023

24

Remember when you learned about character string codes in the Color

Character String Code section? The Commodore 64C has a separate set of

codes used only by screen memory to display characters on the screen.

Instead of outputting characters to the screen in PRINT statements, you

POKE a screen code value directly into a specific screen memory location.

For example, enter the following line:

POKE 1024,1

n

n
71 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

Color Memory

Did you notice what happened? The letter "A" is displayed in the upper left

corner of the screen. Appendix C contains a list of the screen codes used

in POKE statements to display characters on the screen. Notice that the

screen codes in Appendix C and the character string codes in Appendix D

are different. Appendix C contains screen codes that can only be POKEd

directly into screen memory. Appendix D contains character string codes

that are used more universally for inputting from and outputting to the

screen, printer, disk drive and Datassette.

You can POKE any of the values in Appendix C into any of the screen

locations between 1024 and 2023. Experiment with different characters

and try displaying messages on the screen by POKEing a series of screen

codes into consecutive screen memory locations. You can create character

graphic images by POKEing different screen code graphic symbols in pat

terns that form picture images.

Now that you have grasped the concept of screen memory, you need to

know how to control the color of each character position on the screen.

The Commodore 64C has a separate section of memory called COLOR

MEMORY, that controls the color of information on the screen. The 64C

uses 1000 bytes to store the color information for the 1000 character posi

tions on the screen. Each screen memory location has a corresponding

color memory location assigned to it. Compare Figure 4-1 with Figure 4-2,

to understand the correspondence between screen memory and color mem

ory and the way screen and color information are stored sequentially.

FIGURE 4-2: COLOR MEMORY MAP

COLUMN

20 30 39

55335

72

55296-

55336

55376

55416

55456

55496

55536

55576

55616

55656

55696

55736

55776

55816

55856

55896

55936

55976

56016

56056

56096

56136

56176

56216

56256

CHAPTER 4-GRAPHICS, COLOR AND SPRITES

20

56295

u

u

u

u

LJ

U

u

u

u

U

u

u

u

u

LJ

LJ

u

LJ

U

LJ

u

u

u

LJ

LJ

LJ

U

n

n

n

n

n

n

n

n

n

n

n

n

n

j l

n

n

n

Animation

Location 1024 in screen memory corresponds to location 55296 in color

memory. Location 1063 corresponds to location 55335. Screen memory

location 2023 corresponds to color memory location 56295. Remember,

each screen location has a one to one correspondence to a color memory

location that controls its color.

In the screen memory example you POKEd a 1 into location 1024 as

follows:

POKE 1024,1

This places the letter "A" in the HOME position on the screen. Now

change the color of the letter "A" in the HOME position with the following

POKE:

POKE 55296,1

Did you notice the difference? The letter "A* in the HOME position

changed from light blue to white. At this point you may wonder what the

"1" means in POKE 55296,1. This time the "1" is not a screen code that

represents a character. Instead it is the color code for white. Refer to the

Color Registers section for the list of Commodore 64C colors and the cor

responding color codes.

Remember, if you want to POKE a character to the screen, you actually

need two POKEs. First, POKE a screen code into screen memory to display

a character. Second, POKE a color code into color memory to display the

color of the character.

The Commodore 64C is capable of animating objects on the screen. The

idea behind computer animation is to display an image on the screen and

simulate its motion through computer instructions.

Remember when you POKEd a character into screen memory and it was

displayed on the screen? That's what you are going to do to animate a

graphic character. To animate a graphic character on the screen, POKE its

screen code into a screen memory location. Next, POKE the screen code

for a blank (32) into the same screen location. Then POKE the graphic

character screen code into a screen location next to the original one.

Repeat the process with a series of adjacent screen memory locations. Since

the computer is displaying and blanking out the graphic character in suc

cessive screen locations so quickly, the image appears to be moving. For

example, type in the following program and RUN it.

G

H

73 CHAPTER 4-GRAPH1CS, COLOR AND SPRITES

u

u
10 PRINT"D"

20 FOR 1=1024 TO 2023 STEP41 LJ
3 0 POKEI,81

35 POKE54272+If7 LJ
40 FOR J=1TO45:NEXT

45 POKEI,32 LJ
5 0 NEXT

100 FOR I=2009TO1450 STEP-39 U

110 POKEI,81

120 POKE54272+I,7 U
130 FOR J=1TO45 :NEXT

140 POKEI,32 LJ
150 NEXT

160 GOTO20 LJ

This is your first taste of animation. You have just made a yellow ball \ (

bounce on the screen. Although the bouncing ball program is a simple

example of animation, you are now on your way to programming sophisti- [^J

cated, animated graphics.

LJ
Here's an explanation of the program:

t (

• Line 10 clears the screen. Loop 1, lines 10 through 50, displays and *—'

moves the ball from the top of the screen to the bottom. Line 20 ,

begins a loop at the start of screen memory. Notice the FOR ... ^
NEXT statement has the words STEP 41. This tells the computer to) ,

increment the index variable I, by 41 locations at a time, starting at *—^
location 1024 and ending at location 2023. When STEP is not spec- ^

ified in a FOR ... NEXT loop, your computer cycles through each *—'

index variable one at a time. , ,

• Line 30 POKEs screen code value 81 into the screen location

according to the index variable I. The value 81 represents the screen ,

code for the ball character that bounces on the screen. The first "—^
cycle of the loop POKEs screen code 81 into location 1024. The s .

second cycle POKEs screen code 81 into screen location 1065 *—

(1024 + 41). The third cycle POKEs screen code 81 into screen loca- . .

tion 1106 (1065 + 41) and so on. Each cycle through the loop skips *—'

40 screen locations and POKEs the ball 41 locations past the pre- , j

vious screen location. *—*

u

LJ

LJ

LJ
74 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

n

n

n

n

n

n

L J

n

• Line 35 POKEs color code 7 (yellow) into the color memory loca

tion corresponding to the screen location that is POKED with the

ball character. Remember, when you POKE a screen code value

into screen memory, you also have to POKE a color code value into

the corresponding color memory location. See Figure 7-1 and 7-2 to

understand how each screen memory location corresponds to its

own color memory location.

• In line 35, location 54272 4- I is the beginning of color memory

during the first cycle of the loop (54727 + 1024 = 55296). The

loop increments the color memory location the same way as screen

memory. The second cycle of the loop increments the index variable

I, so the POKE statement in line 35 POKEs the color code value

into location 55337 (55296 + 41). Color location 55337 corres

ponds to screen location 1065. As you can see, the loop takes care

of POKEing the screen location and corresponding color location

so that the ball is always displayed correctly in yellow.

• Line 40 is an empty FOR... NEXT loop. It acts as a time delay

to slow down the program so the animation appears smooth. Try

the program without line 40. You'll notice the program becomes

choppy.

• Line 45 POKEs screen code value 32, the blank character, into the

same screen location that was POKEd with screen code 81 in line

30. This turns off the ball character. The ball character is turned

on and off so quickly, it looks as though the ball is always on the

screen.

• Line 50 is a NEXT statement. It updates the index variable I. The

loop then cycles until the index variable equals 2023. At that point

the program executes loop 2.

• Loop 2 bounces the ball upward and off the right side of the screen.

Loops 1 and 2 both have the same statements, except different

screen memory locations are decremented in line 100 instead of

incremented as in line 20. The GOTO statement in line 60 tells the

computer to go back to line 20 and execute everything again. The

GOTO statement gives you a way to RUN your programs continu

ously. Stop the program by pressing the RUN/STOP key.

n

n
75 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

u
Here's another animation program that bounces the yellow ball off all four

"walls" of the screen. This program is based on program three, but it has '—'
five loops instead of three. Each of the five loops is just like the two loops

in the preceding program, except that the last three loops use different LJ
screen locations to control the three additional bounces of the ball.

u
10 PRINT"Q"

20 FOR 1 = 1024 TO 2023 STEP41 l_[

30 POKEI,81

35 POKE54272+I,7 |l

40 FOR J=1TO45:NEXT

45 POKEI,32 \j

50 NEXT

100 FOR I=2009TO1450 STEP-39 »J

110 POKEI,81

120 POKE54272+I,7 _j

130 FOR J=1TO45 .-NEXT

140 POKEI,32 (J

150 NEXT

200 FOR I=1423TO1044 STEP-41 [\

210 POKEI,81

220 POKE54272+I,7 j_j

230 FOR J=1TO45 :NEXT

240 POKEI,32 [J

250 NEXT

300 FOR I=1050TO1554 STEP38 |J

310 POKEI,81

320 POKE54272 + I,7)_}

330 FOR J=1TO45 :NEXT

340 POKEI,32]_j

350 NEXT

400 FOR I=1544TO2009 STEP42 «J

410 POKEI,81

420 POKE54272+I,7 j_j

430 FOR J=1TO45 :NEXT

440 POKEI,32 jj

45 0 NEXT

490 GOTO100 i i
i >

Now that you can animate a simple graphic character, it's time to learn a s >
much more sophisticated method called sprite animation.

LJ

LJ

[j

76 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

LJ

n

n

n

n

n

n

Sprite Graphics

n

I !

r-i

n

Sprite Concepts

YouVe learned how to control color with the CTRL key, with PRINT

statements, and with character string codes. You now know how to PRINT

alphanumeric and graphic characters on the screen within quotes, as char

acter strings, and by POKEing values directly into screen memory. Ani

mating existing character images, as described in the last section, has cer

tain limitations. For true graphic animation, you need a way to create your

own images, color those images and control their movement on the screen.

That's where sprites come in.

Sprites are programmable movable objects. They are animated, high reso

lution images you can create into any shape. You can move these images

anywhere on the screen and color them in 16 colors. The Commodore 64C

has a set of sprite registers that control the color, movement and shape of

the sprite. Sprites on the 64C provide you with true animation and sophis

ticated graphics capabilities.

A special chip inside the 64C, called the VIC (Video Interface Controller)

chip, controls graphics modes and sprites. Border and screen color registers

as well as the sprite registers are all part of the VIC chip. The VIC chip

normally can control 8 sprites at once. Through advanced programming

you can control more than eight sprites. The VIC chip can even determine

if a sprite has moved in front of or behind another sprite. The size of each

sprite can also be expanded both vertically and horizontally. You can use

sprites in any mode: standard character, multi-color, standard and multi

color bit map and extended color modes. See the discussion of Graphics

Modes later in this section for more information.

Let's begin by examining the properties of characters first, and then relate

them to sprites. A character on the screen is an 8 by 8 dot grid. Since there

are 40 columns by 25 lines on the screen, the entire screen has 320 (40 x 8

dots per character width) dots across times 200 (25 lines x 8 dots per char

acter height) tall, which equals 64,000 total dots.

Each character pattern requires 8 bytes of storage in character memory.

Each of the eight rows of dots in the 8 by 8 character grid require a byte of

memory storage. In other words, each screen dot requires a bit of memory,

so an 8 by 8 dot grid consists of 64 square dots and requires 64 bits (8 bytes)

of memory.

Each dot on the screen is called a pixel. Pixel is a computer term for picture

element. A sprite is made up of a 24 by 21 pixel grid, compared to a charac

ter which is an 8 by 8 pixel grid. The width of a sprite is 24 pixels, which is

equal to the width of three screen characters (bytes). Since a sprite is 21

n

n
77 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

rows of three bytes wide, a sprite requires 63 bytes (21 rows x 3 bytes per

row) of storage. Figure 4-3 illustrates the layout and storage requirements of
a sprite.

Designing a Sprite Image

The first step in programming a sprite is designing the sprite image. For a

beginner, the best way to design a sprite is on a piece of graph paper. Draw

a box 24 blocks across by 21 blocks tall, just like Figure 4-3. The box you

have just drawn is 504 (21 x 24) square blocks. Each block represents a bit

in memory. If you divide 504 by 8 bits per byte, you'll see that the sprite

uses up 63 bytes of memory.

ROM

FIGURE 4-3. SPRITE GRID

SPRITE GRID

ROM

1

2

3

4

5

6
7

3

9

10

11

12

13

14

13

16

17

13

19
20

21

24 BITS<D0T5> X 21 BITS<D0TS> * 504 DOTS
504 BITS/8 BITS PER BYTE = 63 BYTES

OR

21 ROWS X 3 BYTES PER ROW = 63 BYTES

24 BITS<D0TSV8«3 BYTES PEF

........ |,

„......« J

,

. ,

........

........

|. .

|

|

........ 1

........ 1

........ I

........

........

........

........

u

u

u

u

u

u

u

U

LJ

U

U

u

LJ

LJ

LJ

U

U

U

a

u

u

u

u

U

LJ

78 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

n

n

n

L J

i \

n

n

H

n

<—i

n

n

n

I i

n

n

n

You can now start designing your sprite image. Keep in mind that each

block within the box you have drawn represents one bit in the Commo

dore 64C's memory. As you probably know by now, a bit can take on one

of two values, zero or one. That is why a bit is called a binary digit, since

the root "bi" means two. A zero (0) means that a bit is "off' and a one (1)

means that a bit is turned "on".

When you are designing your sprite on a piece of graph paper, darken a

block if you want that bit to be on, and leave a block blank if you want that

bit off. The combination of darkened blocks and blank blocks forms your

sprite image. That is, if you want to turn on a dot in the sprite image, you

must turn on a corresponding bit in memory where the sprite DATA

is stored.

Refer to Figure 4-4 as an example of designing a sprite on a piece of graph

paper. Remember, the darkened blocks are "on" bits and the blank blocks

are "off1 bits. The sprite image in Figure 4-4 represents a smiling face. Use

the blank sprite-making grid in Figure 4-5 to create your own sprite images.

FIGURE 44- SAMPLE SPRITE

79 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

FIGURE 4-5- SPRITE-MAKING GRID

Converting Your Sprite Image Into Data

The next step in programming a sprite is coding the sprite image into data

the computer can understand. On your sheet of graph paper, label the top

of each column the same as in Figure 4-6.

Label the first eight columns as follows: 128, 64, 32, 16, 8, 4, 2, 1. Label

the second and third set of eight columns the same way.

You now have three sub-sets (bytes) of eight columns (bits) per row, each

labeled from 128 on the left to 1 on the right. Each 8 column sub-set repre

sents 8 pixels that correspond to a byte of memory. Again, since there are

21 rows with three bytes each, the total amount of memory the sprite

requires is 63 bytes.

U

u

u

u

U

u

LJ

u

LJ

u

LJ

u

u

1 /
i)

u

u

LJ

LJ

LJ

U

LJ

U

80 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

LJ

LJ

LJ

LJ

n

n

n

H

n

n

n

n

n

n

n

n

n

n

n

n

H

FIGURE 4-6. LABELING THE SPRITE-MAKING GRID.

128

■■■1

■Mi

64 32 16 8 4 2 1 128 64

I I I I I I

i

■■

i
_■

_

■■■■

•
■■■■

4

-P
+

i

I I

i
■

IB

1
=ff
-.
TTi

32 16 8 4

!

MB

!
■1
■I

MB

■

!

2 1 128 64 32 16 8 4 2

I I I I I I

i
I I

!"■■I

■T

■

1■

|=

i
i

1

|!
II

!-

1

—

Now you have a way to convert the graph paper image to computer data.

For each darkened square within an eight column sub-set (byte) add up the

number at the top of the column. Do this for each of the three 8 column

sub-sets per row or a total of 63 times. Do not add column values in which

individual squares are blank since these represent "off pixels. Only add up

the column values for the darkened squares. Once you calculate all the byte

values for each eight column sub-set, you have 63 pieces of data to define

your sprite. These values must be READ by the 64C and stored in DATA

statements within a program. Study Figure 4-7 to grasp the concept of

converting a sprite picture on graph paper to data used by the 64C.

n
81 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

FIGURE 4-7. SPRITE-MAKING GRID WITH DATA VALUES

128

mmi

MMI

■Hi

MMI

MM

64 32 16 8 4 2

I I I I I

-L

-

■■■■
!t

.-

E

:

■
■■■a

|

1 |128 64 32 16 8 4 2 1 1126

MJlllllll

1
I

!
MMI

i
MMB

;!

s!

!■
rT

I
i
■ffiLJJ

64 32 16 8 4 2

I I I

I

■
■MM

MMB

E
MMB

J-

I
I

ZtJZC

P
!I

1

Ml

Ml

Ml

Ml

Mi

MM!

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

0,0,0

0,126,0

1,129,128

2,0,64

12,0,48

8,0,16

19,197,200

16,0,8

32,195,4

32,195,4

32,24,4

32,24,4

32,24,4

16,126,8

17,60,136

8,129,16

8,126,16

4,0,32

2,0,64

1,129,128

0,126,0

In the program shown in Figure 4-7, the DATA values in line 100 corres

pond to the three sub-sets of the first row of the sprite grid. All three pieces

ofDATA equal zero since all three sub-sets of the first row of the sprite grid

are blank (off). Line 110 corresponds to the second row of the sprite grid.

The first DATA value in line 110 equals zero, because again, no pixels are

turned on in that sub-set. The second piece ofDATA in line 110 equals

126, since the squares in the column positions labeled 64, 32, 16, 8, 4 and 2

in the middle sub-set are all turned on.

LJ

U

U

LJ

U

LJ

LJ

U

u

u

LJ

LJ

LJ

LJ

U

LJ

U

U

LJ

u

u

u

u

u

82 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

LJ

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Again the third DATA value in line 110 is zero because none of the pixels

in that 8 column sub-set is turned on. The DATA in line 120 represents

the pixel values for the third row of the sprite grid, line 130 represents the

values in the fourth row of the sprite grid, and so on. Line 300 corresponds

to the last row of the sprite grid.

Now that you know how to design a sprite on a sheet of graph paper and

code it into DATA that the Commodore 64C can understand, you are

almost ready to write your first sprite program. But first let's examine the

sprite registers and how they work.

Controlling Sprites

Special memory locations within the video chip, known as sprite registers,

are set aside to control sprites. Each sprite register is assigned a specific

task. The first register you need to set is the sprite enable register at loca

tion 53269. As the name implies, the sprite enable register turns on a

sprite. You must POKE a value into the sprite enable register, depending on

which sprite(s) you want to turn on. Here's a list of the POKE values that

enable each sprite:

Sprite No.

0

1

2

3

4

5

6

7

POKE Value

1

2

4

8

16

32

64

128

You may have noticed the POKE value for each sprite is equal to two,

raised to the sprite number. For example, the POKE value for sprite seven is

two raised to the seventh power, which equals 128. Figure 4-8 illustrates

this concept.

FIGURE 4-8. SPRITE POKE VALUES

Decimal values of each

sprite number

128 64 32
Sprite Level Number

21 0 0 0 0 0 1 0 | 0

Put a 1 For The SPRITE You Want

83 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

LJ
The POKE command to turn on sprite 7 is:

POKE 53269,128 *—'

If you want to enable more than one sprite, add the POKE values of the LJ
sprites you want to turn on, and POKE the sum into the sprite enable

register.] |

Now you have to store the sprite DATA somewhere in the Commodore j j
64C's memory. Although you already converted your sprite picture into

DATA as in lines 100 through 300 in Figure 4-7, you still have to READ LJ

that DATA and POKE it into memory. Before you can do that, you must

tell the 64C where to store the DATA. LJ

You point out where the DATA is stored using a sprite pointer. Each of the [|
eight sprites has its own pointer. The following is a list of the sprite pointer

memory locations: 1 j

LJ

LJ

Sprite No.

0

1

2

3

4

5

6

7

Memory Location

2040

2041

2042

2043

2044

2045

2046

2047

I }

i >

u

u

Now that you know what location to POKE for each sprite pointer, you j j

need to know the value to POKE into these locations. Here's the formula:

LJ
1. Choose an available memory location that is not being used. For

this example, choose location 12288. LJ

2. Divide the chosen location by 64: 12288/64 = 192

3. POKE the sprite pointer of the sprite you previously enabled with (_j

the quotient from step 2. To continue our previous example, the

following POKE command uses the seventh sprite pointer to point l_J

to sprite DATA starting at location 12288:

POKE 2047, 192 llllifllP Li

To determine other locations to store sprite DATA, consult the Commo-) /

dore 64 Programmer's Reference Guide.

LJ

LJ

\ \

84 CHAPTER 4-GRAPHICS, COLOR AND SPRITES ^

U

n

n

h

n

n

n

n

n

n

n

n

n

n

As mentioned before, the sprite DATA must be READ and then POKEd

into memory once the sprite pointers tell the 64C where to store the

DATA. The sprite pointer was set with the previous POKE command. Now

you can READ the sprite DATA you converted from your sprite image and

POKE it into memory starting at location 12288. POKEing the DATA into

memory actually creates the sprite. The following program segment

READs the DATA and POKEs it into memory starting at location 12288.

50 FOR N = 0 to 62

60 READ Q

70 POKE 12288+ N,Q

80 NEXT

So far you have enabled the sprite, set the sprite pointer to tell the 64C

where to store the sprite DATA and POKEd the sprite into memory. All

you need to do now is to assign a sprite color and control the sprite's move

ment on the screen, and your sprite program will be finished.

Each sprite has its own sprite color register. The following is a list of sprite

color register locations:

Sprite No.

0

1

2

3

4

5

6

7

Memory Location

53287

53288

53289

53290

53291

53292

53293

53294

To assign a sprite color, POKE a sprite color register with a color code

between 0 and 15. For example, if you enter:

POKE 53294,7 ItltTUHN

sprite 7 is colored yellow. (For a list of color codes, see the Color Registers

discussion given earlier in this section.)

n

n
85 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

u
Animating Your Sprites

Animation is the last step before your program can RUN. The key behind 1—I
animation is motion. Each of the eight sprites has two registers that control ,

movement on the screen. One register is the sprite X position, which con- L-J
trols the horizontal sprite movement. The other is the sprite Y position,

which controls the sprite's vertical movement. The following is a list of the <—f
sprite X and Y position registers for each sprite:

u

LJ

U

u

LJ

LJ

LJ

LJ

LJ
The easiest way to control the vertical and horizontal coordinate values is

within a FOR ... NEXT loop. Set up a loop and POKE the index variable LJ
from the loop into the vertical and horizontal sprite position registers. For

example, to move sprite 7 diagonally on the screen, use the following 1—1
program segment:

85 FOR Z = 0 TO 200: REM Set up loop; index variable = z

90 POKE 53262,Z : REM Poke sprite 7 x pos. with index variable z M

95 POKE 53263,Z : REM Poke sprite 7 y pos. with index variable z

98 NEXT : REM Update index variable position m

Notice that the FOR... NEXT loop moves sprite 7 the maximum number

of vertical values (200), but only moves horizontally 200 out of the 320 LJ
possible positions. That was done to keep the example program simple.

u
The sprite Y position register can store any of the 200 possible vertical

position values. The sprite X position register cannot store all of the 320 LJ
horizontal position values because the sprite position register, like all other

memory locations in the Commodore 64C, can only represent a value up Li
to 255.

u

86 CHAPTER 4-GRAPHICS, COLOR AND SPRITES ^

LJ

Sprite No.

0 - X pos

0 - Y pos

1 - X pos

1-Ypos

2 - X pos

2-Ypos

3-Xpos

3-Ypos

4-Xpos

4-Ypos

5 - X pos

5-Ypos

6 - X pos

6 - Y pos

7 - X pos

7-Ypos

Memory Location

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

53260

53261

53262

53263

n

n

n

n

n

n

n

n

[..I

n

n

n

n

n

r—i
i i

n

n

n

How do you position a sprite past the 255th horizontal screen position?

The answer is, you have to borrow a bit from another register in order to

represent a value greater than 255.

An extra bit is already set aside in the 64C's memory in case you want to

move a sprite past the 255th horizontal location. Location 53264 controls

sprite movement past position 255. Each of the 8 bits in 53264 controls a

sprite. Bit 0 controls sprite 0, bit 1 controls sprite 1 and so on. For example,

if bit 7 is on, sprite 7 can move past the 255th horizontal position.

Each time you want a sprite to move across the entire screen, turn on the

borrowed bit in location 53264 when the sprite reaches horizontal position

255. Once the sprite moves off the right edge of the screen, turn off the

borrowed bit so the sprite can move back onto the left edge of the screen.

The following POKE command allows sprite seven to move past the 255th

horizontal position:

POKE 53264,128

The number 128 is the resulting value from turning on bit 7. You arrive at

this value by raising two to the seventh power. If you want to enable bit 5,

raise two to the fifth power, which of course equals 32. The general rule is

to raise two to the power of the sprite number that you want to move past

the 255th horizontal screen position. Now you can borrow the extra bit

you need to move a sprite all the way across the screen. To allow the

sprite to reappear on the left side of the screen, turn off bit seven again,

as follows:

POKE 53264,0

Not all of the horizontal (X) and vertical (Y) positions are visible on the

screen. Only vertical positions 50 through 249 and horizontal positions 24

through 342 are visible. In the example, when you moved sprite 7 on the

screen, you started the sprite moving at horizontal location zero and verti

cal position zero. Location 0,0 is off the screen as is any horizontal location

less than 24 and greater than 343. Any vertical location less than 50 and

greater than 249 is also off the screen. The OFF-SCREEN locations are set

aside so that an animated image can move smoothly onto and off of the

screen. Study Figure 4-9 to understand the layout of the visible horizontal

and vertical sprite positions.

n

n

H

87 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

FIGURE 4-9. VISIBLE SPRITE POSITIONS

0 (S00) 24 (S18)

50 ($32)

208 ($00)-1

250 (SFA)-

VISIBLE VIEWING AREA

NTSC*

40 COLUMNS

25 ROWS

i--50 ($32)

229 ($E5)

250 ($FA)

1 (S1E8) 24 ($18)

I I

I I

I I

I I
320 ($140) 344 ($158)

'North American television transmission standards lor your home TV

Tying Your Sprite Program Together

Now you are ready to tie all the sprite concepts together into a sprite pro

gram. Let's review the entire procedure. In order to program a sprite,

you must:

1. Create the sprite image on a sheet of graph paper.

2. Convert the sprite image into DATA values the Commodore 64C

can understand.

3. Enable the sprite.

4. Use a pointer to tell the Commodore 64C where to store the sprite

DATA.

5. READ the sprite DATA and POKE it into memory, starting at the

location indicated by the sprite pointer.

6. Color the sprite.

7. Control the sprite's movement on the screen.

The following program combines all the concepts, statements and program

segments covered so far in this section. Type in the program, and press

him \n\\M after each line. Once you've typed in the complete program,

type RUN and press SH . You'll see a smiling face moving diago

nally across the screen.

U

u

u

u

u

u

LJ

u

u

LJ

LJ

LJ

U

LJ

u

LJ

U

u

u

U

u

LJ

LJ

LJ

88 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

U

n

n

n

n

n

n

n

n

h

n

n

n

n

n

10 PRINT"C"
20 POKE53269,128

30 POKE2047,192

50 FORN=0TO62

60 READ Q

70 POKE12288+N,Q

80 NEXT

85 FOR Z=lTO200

90 POKE53262,Z

95 POKE53263,Z

98 NEXT

100 DATA 0,0,0

110 DATA 0,126,0

120 DATA 1,129,128

130 DATA 2,0,64

140 DATA 12,0,48

150 DATA 8,0,16

160 DATA 19,197,200

170 DATA 16,0,8

180 DATA 32,195,4

190 DATA 32,195,4

200 DATA 32,24,4

210 DATA 32,24,4

220 DATA 32,24,4

230 DATA 16,126,8

240 DATA 17,60,136

250 DATA 8,129,16

260 DATA 8,126,16

270 DATA 4,0,32

280 DATA 2,0,64

290 DATA 1,129,128

300 DATA 0,126,0

Now add the following lines and RUN the program again.

55 POKE 53271,128

57 POKE 53277,128

Notice that the sprite now appears twice its original size. Location 53277

controls horizontal expansion and location 53271 controls vertical expan

sion of the sprite. The value POKEd into these locations is calculated

according to which sprite you want to expand. The general rule is raise two

to the power of the sprite number. For example, to expand sprite 7, the

value 128 in lines 55 and 57 is calculated as two raised to the seventh

power, or 128.

H

n

n

89 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

You have successfully written your first sprite program. Use this program as

a basis and try adding other sprites to it. Notice lines 100 through 300 only ii

contain three pieces ofDATA each. The program is written this way to

illustrate the correspondence between each DATA item and each eight < j

column byte in Figure 4-7. When you become more familiar with sprite

concepts you can shorten the program by including more DATA items in ij

each DATA statement. Lines 100 through 300 are still stored as 80 charac

ter lines. The spaces are stored in memory just as visible characters, but ij

they use memory needlessly. The process of shortening programs is called

crunching. Later, when you become a more advanced programmer, you i j

will realize the value of crunching your programs and using the Commo

dore 64Cs memory more efficiently. j j

Change line 20 of the program as follows: j j

20 POKE 53269,224 : REM Enable sprites 7, 6 and 5

i_J
Add the following lines to the program and RUN it again. The REM state

ments are optional. You don't have to type them in. They document the t *

program so you can follow each program step.

15 POKE 53280,1 :REM Change the border color to white LJ

17 POKE 53281,1 :REM Change the background color to white

35 POKE 2046,192 :REM Set sprite 6 data pointer to 12288 LJ

37 POKE 2045,192 :REM Set sprite 5 data pointer to 12288

43 POKE 53293,6 :REM Color sprite 6 blue (6) U

45 POKE 53292,2 :REM Color sprite 5 red (2)

92 POKE 53260,Z :REM Set sprite 6 horizontal (X) position LJ

94 POKE 53258,100 :REM Set sprite 5 horizontal (X) position

96 POKE 53261,100 :REM Set sprite 6 vertical (Y) position LJ

97 POKE 53259,Z :REM Set sprite 5 vertical (Y) position

99 GOTO 85 :REM Put the program into a continuous loop LJ

u
Two more sprites appear on the screen, one from the left side of the screen

and one from the top. Notice in the program, both sprites 5 and 6 use the j j

same sprite DATA as sprite 7. That's why all three sprites look the same. If

you want to change the way a sprite looks, design another sprite image on a [_J

piece of graph paper just as you did before. Then add another complete set

of sprite DATA as in lines 100 through 300. In addition, READ the DATA |_J

and POKE it into a section of memory other than locations 12288 through

12351, since the other sprite DATA is already there. Finally, set the sprite j_J

DATA pointer to the starting location where the sprite DATA is POKEd

into memory. LJ

All three sprites in the above program store their DATA starting at loca- j [

tion 12288. That's why lines 30, 35 and 37 POKE the same value into each

LJ

90 CHAPTER 4-GRAPHICS, COLOR AND SPRITES LJ

LJ

n

n

n

n

n

vn

n

n

n

h

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Graphics Modes

91

of the three respective sprite DATA pointers. If all eight sprites were

enabled, each one could use the same DATA and you would have eight

identical sprites on the screen.

Lines 43 and 45 color sprite 6 blue and sprite 5 red. Lines 92 through 97

control the movement of sprites 5 and 6. Line 99 puts the program into a

continuous loop. If you want to stop it, press the RUN/STOP key. Notice

the sprite remains on the screen. To clear the screen completely, hold down

the RUN/STOP key and press the RESTORE key.

Up to now, youVe programmed three sprites on the screen. Try using all

eight. In a relatively short time you should be able to create your own

sprites in several colors and animate them on the screen. You can then

move on to explore the very sophisticated color, graphics and animation

features available on the 64C. Consult the Commodore 64 Programmer's

Reference Guide for more information on color graphics, sprites and

animation.

The Commodore 64C can operate in five different graphics modes. They

are divided into two groups known as character display modes and bit

map modes. Character display modes, as the name implies, display an

entire 8x8 dot character grid at a time. In character display modes, the

smallest unit of information you can display is an 8 x 8 pixel grid which

equals one character. Bit map modes allow you to display each pixel, one at

a time. Bit map mode gives you absolute control over the screen image.

Graphics performed in bit map mode are referred to as high resolution

graphics.

Both groups of graphics modes can be divided into separate subdivisions.

Character display modes are separated into these three subdivisions:

1. Standard Character Mode

2. Multi-Color Character Mode

3. Extended Background Color Mode

Bit map modes are separated into these two subdivisions:

1. Standard Bit Map Mode

2. Multi-Color Bit Map Mode

Each of the character display modes get character information from one of

two places in the 64Cs memory. Normally, character information is taken

from character memory stored in a separate chip called a ROM (Read Only

Memory). However, the 64C gives you the option of designing your own

CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

characters and replacing the original Commodore 64C characters with LJ
your own. Your own programmable characters are stored in a portion of . ,

the 64K ofRAM (Random Access Memory) available to you in the 64C. LJ

When you first turn on the 64C, you are automatically in standard charac- '—'
ter mode. When you write programs, the 64C is also in standard character ,

mode. Standard character mode displays characters in one of 16 colors on LJ
a background of one of 16 colors. All the information contained in this , f

chapter operates in standard character mode except sprites. Sprites are —»

classified separately from character display modes and bit map modes.

Multi-color character mode gives you more control over color than the

standard graphics modes. Each screen dot within an 8 x 8 character grid L-J
can have one of four colors, compared to the standard modes which can

only have one of two colors. Multi-color mode uses two additional back- >—'

ground color registers. The three background color registers and the char

acter color register together give you a choice of four colors for each dot —I
within an 8 x 8 dot character grid.

Multi-color mode has one disadvantage. Each screen dot in multi-color

mode is twice as wide as a dot in standard character mode and standard i—I

bit map mode. As a result, multi-color mode has only half the horizontal

resolution (160 x 200) of the standard graphics modes. However, the in- I—I
creased control of color more than compensates for the loss in horizontal

resolution. I—'

Extended background color mode allows you to control the background I—I
color and foreground color of each character. Extended background color

mode uses all four background color registers. In extended color mode, I—I
however, you can only use the first 64 characters of the screen code charac

ter set. The second set of 64 characters is the same as the first, but they are LJ
displayed in the color assigned to background color register 2. The same

holds true for the third set of 64 characters and background color register LJ

3, and the fourth set of 64 characters and background color register 4. The

character color is controlled by color memory. For example, in extended LJ

color mode, you can display a purple character with a yellow background

on a black screen. ! 1

Standard bit map mode allows you to control each screen dot in one of two LJ
colors. This gives you the ability to create detailed graphic images on the

screen. Bit mapping is a technique that stores a bit in memory for each dot 1 j
on the screen. If the bit in memory is turned off, the corresponding dot on

the screen becomes the color of the background. If the bit in memory is LJ

turned on, the corresponding dot on the screen becomes the color of the

foreground image. The series of 64,000 dots on the screen and 64,000 cor- LJ

u

92 CHAPTER 4-GRAPHICS, COLOR AND SPRITES LJ

LJ

n

n

n

n

n

h

n

n

n

n

n

n

n

n

n

H

h

n,

n

n

n

responding bits in memory control the image you see on the screen. Most

of the finely detailed computer graphics you see in demonstrations and

video games are bit mapped high resolution graphics.

Multi-color bit map mode is a combination of standard bit map mode and

multi-color character mode. You can display each screen dot in one of four

colors within an 8 x 8 character grid. Again, as in multi-color character

mode, there is a tradeoff between the horizontal resolution and color

control.

**

This chapter has described a variety of color and graphics techniques based on

advanced programming concepts. The full explanation of these concepts is

beyond the scope of this Guide. If you want more details on graphics techniques

and graphics programming, refer to the Commodore 64 Programmer's Reference

Guide.

The next chapter completes your introduction to the Commodore 64C computer

by outlining the 64C}s varied sound and music capabilities.

n

n

n

n

n

93 CHAPTER 4-GRAPHICS, COLOR AND SPRITES

u

u

u

u

a

LJ

LJ

U

U

UJ

u

u

u

u

LJ

J

U

U

LJ

U

LJ

U

u

u

LJ

U

n

n

U

U

□

D

U

□

U

CJ

LJ

U

CJ

U

□

a

G

u

a

u

Q

D

D

LJ

Li

n

n

n

n

n

n

n

n

n

n

n

n

pi

n

n

H

n

n

n

n

n

n

CHAPTER 5

Sound and Music

THE SID MICROPROCESSOR

MUSIC

Playing From Sheet Music

Obtaining the Data

Writing the Program

SOUND EFFECTS

Program Notes

99

99

99

100

101

104

106

97 CHAPTER 5-SOUND AND MUSIC

u

u

u

u

u

LJ

U

U

LJ

LJ

LJ

LJ

U

U

u

LJ

u

u

LJ

LJ

LJ

LJ

LJ

LJ

n

n

n

r-1
{ !

n

H

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

H

n

The SID

Microprocessor

Music

99

A special microprocessor known as the SID (Sound Interface Device) pro

vides the 64C with extraordinary capabilities in generating musical tones

and sound effects. This chapter introduces you to these capabilities. For

more details, see Appendix J of this book and consult the Commodore 64

Programmer's Reference Guide.

The Commodore 64C is capable of producing musical tones over a large

range—a full six octaves for up to three separate voices (musical instru

ments) simultaneously. You can teach your 64C to play anything from

Happy Birthday to Beethoven's Fifth Symphony.

By controlling a series of internal registers in the SID, you can program

your 64C to play a variety of complex musical sounds. These sounds or
notes have the qualities of a particular musical instrument and vary in

pitch and duration.

Playing From Sheet Music

In a musical score sheet you will find notes indicated by position and

appearance. Compare these with Figure 5-1 for the note name and Figure

5-2 for note duration.

FIGURE 5-1. NOTENAMES

MM I : I | I S I

I. ii I : I :

ri r
i
^m

Middle

C

FIGURE 5-2. NOTE DURATION

O= WHOLE Note

= QUARTER Note

CHAPTER 5-SOUND AND MUSIC

J-= HALF Note

= DOTTED HALF Note

100

To create these notes through the speakers of your monitor or TV, you

must turn ON several registers in the SID microprocessor. There are seven

registers for each of three voices. Each must be filled with a particular

value. See Table 5-1 for the values of registers 2 through 6. Registers 0 and 1

are for sound frequency and are adjusted later in the program.

Table 5-1 ♦ Sound Register Values

Register number 2 3 4-ON 4-OFF 5 6

Musical

instruments:

Piano

Flute

Harpsichord

Xylophone

Accordian

Trumpet

Noise

225

0

0

0

0

0

0

0

0

0

0

0

0

0

65

17

33

17

17

33

129

64

16

32

16

16

32

128

9

96

9

0

102

96

0

0

0

240

0

0

Obtaining the Data

To insert a musical score into your computer, follow each step in this exam

ple, which incorporates the music of the song "Tom Dooley":

CHORUS:
G

}\ J J) .1
Hang down your head, Tom Doo - ley,

D7

Hang down your head and cry.

Am C 07

t=5l

Hang down your head, Tom Doo - ley,

C G

m
Poor boy, you're bound to die.

CHAPTER 5-SOUND AND MUSIC

LJ

U

U

U

U

LJ

U

u

u

! j
' '

LJ

LJ

U

U

J

LJ

LJ

LJ

LJ

U

U

U

LJ

U

H

n

n

n

n

n

n

n

n

n

r-i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

1. Select the musical instrument and determine the register values

from Table 5-1.

Piano: register 2 is 255, register 3 is 0; register 4 is 65 for ON and 64

for OFF; register 5 is 9 and register 6 is 0.

2. Determine the name and value of each note; use Figures 5-1 and

5-2 as guides. Tabulate the results.

Notes read: D (eighth), D (quarter), D (eighth), E (quarter),

G (quarter), B (half), B (half), etc.

3. Convert each note into the proper register settings called Nl and

N2 from the Note Table in Appendix J and the duration (DR),

based upon the following note values:

Eighth note :

Quarter note

Half note =

Whole note =

A note with i

Note

D

D

D

E

G

B

B

etc.

= 250

= 500

1000

= 2000

a dot = DR*'1.5

Tabulated Data

Value

1/8

1/4

1/8

1/4

1/4

1/2

1/2

Nl

18

18

18

20

24

30

30

N2

104

104

104

169

146

245

245

DR

250

500

250

500

500

1000

1000

4. Write the program.

NOTE: Registers 2,3, 4, 5 and 6 are set based on the musical instru

ment selected. Registers 0 and 1 are based upon each note and will

vary. There is a register 24. It is the volume for all instruments and is

always set to 15. The volume from your speaker is controlled by the

TV or monitor volume control.

Writing the Program

Playing music requires turning on the appropriate registers, reading the

notes and turning the sound on and off. All the registers can be turned on

early in the program except register 4, which is turned on only when the

music is needed.

101 CHAPTER 5-SOUND AND MUSIC

u

u
Selecting a register is done by the BASIC term POKE, followed by the

register number plus 54272, a comma and the proper value. |_J

1. Set all the registers to zero: j J

= 54272:FORSW = StoS + 24:POKESW,O:NEXTSW

lJ
2. Set the volume to the maximum of 15:

20 POKES+ 24,15 LJ

3. Turn on registers 2, 3, 5 and 6, based upon the instrument you j j

are using (in this case, the piano):

30 POKES+ 2,255 LJ
40 POKES+ 3,0

50 POKES+ 5,9 1-1
60 POKES+ 6,0 .

4. POKE a note into registers 1 and 0 from the table developed

above. Since it will vary, represent the value with variable names j

NlandN2.

80 POKE S + 1,N1:POKE S,N2 LJ

5. Activate the sound with register 4, using the value for the proper i j

instrument (65 for piano):

90 POKES+ 4,65 LJ

6. Keep the sound on for the required time based on the value of t j

DR in your table. Since this value is a variable, it is represented by

its variable name, DR: i i

100FORZ=ltoDR:NEXTZ

7. Turn off the sound, using the proper value:

110 POKES+ 4,64 LJ

8. Keep the sound off for a very short time—about a tenth of j i

a second.

120FORT=lto50:NEXTT LJ

9. Continue steps 4 through 8 with successive notes by using a j i

READ statement and a loop.

70READNl,N2,DR LJ
125 GOTO 70

10. Store the note information in DATA statements. For simplicity,

each DATA statement below represents one note: s \

LJ

102 CHAPTER 5-SOUND AND MUSIC L->

LJ

n

n

H

n

H

I)

n

n

r—>

n

n

n

n

n

r—i

n

r~>,

H

n

H

n

130 DATA 18,104,250

132 DATA 18,104,500

134 DATA 18,104,250

136 DATA 20,169,500

138 DATA 24,146,500

140 DATA 30,245,1000

142 DATA 30,245,1000

etc,

11. Include a means to stop the program:

75IFNl = 0THENEND

200 DATA 0,0,0

Your sample program, when completed from sheet music, will look

like this:

5 REM CHORUS FROM TOM DOOLEY

10 S = 54272:FOR SW = S TO S + 24:POKE SW,0:NEXT

20 POKES+ 24,15

30 POKES+ 2,255

40 POKES+ 3,0

50 POKES+ 5,9

60 POKES+ 6,0

70 READ N1,N2,DR

75 IF Nl = 0 THEN END

80 POKE S+ 1,N1:POKE S,N2

90 POKES+ 4,65

100 FOR Z = 1 TO DR:NEXT Z

110 POKES+ 4,64

120 FOR T = 1 TO 50:NEXT T

125 GOTO 70

130 DATA 18,104,250,18,104,500,18,104,250,20,169,500,24,146,

500

140 DATA 30,245,1000,30,245,1000

150 DATA 18,104,250,18,104,500,18,104,250,20,169,500,24,146,

500

160 DATA 27,148,2000

170 DATA 18,104,250,18,104,500,18,104,250,20,169,500,24,146,

500

180 DATA 27,148,1000,27,148,1000

190 DATA 27,148,250,27,148,500,30,245,250,24,146,500,20,169,

500,24,146,1500

200 DATA 0,0,0

n

n

n

103 CHAPTER 5-SOUND AND MUSIC

Sound Effects

Be sure to raise the volume on your monitor when you run your program.

To double the tempo, change line 100:

100 FOR T = 1 TO DR/2: NEXT T

To play a different song, change DATA statements to the appropriate

values.

Now that you have created your first song, experiment with other instru

ments by varying the register values. You can also combine several voices to

represent chords or other instruments by adding 7 or 14 to each of the

register numbers (except register 24). Thus, registers 7 through 13 can con

trol the second voice, and registers 14 through 20 the third voice.

Besides music, you can also create special sound effects by using the noise

registers and varying the sound characteristics known as ADSR (Attack,

Decay, Sustain and Release). These are combined in registers 5 and 6. A

thorough explanation is provided in the Commodore 64 Programmer's Refer-

ence Guide. Below are register values for sample sound effects.

Sound Effects Register Values

Registers

Variable

Names

Sound effects:

Police Siren

Crash

Rocket Blast

off

Machine Gun

Wailing

Shooting

0

N2

85

251

100

75

N2

200

1

Nl

36

5

25

34

40

40

2

P2

0

0

0

0

0

0

3

PI

0

0

0

0

0

0

4-ON

Wl

33

129

129

129

65

129

4-OFF

W2

32

128

128

128

64

128

5

AD

136

129

9

8

15

15

6

SR

129

65

129

1

0

15

*

DR

350

50

50

50

1

1

24

V

15

0

0

15

15

0

*Not a register. Part of the timing loop.

The following program, called "Sound Effects", incorporates all these vari

ables and can produce each of these sounds. The technique is identical to
creating music, except generally only one note is needed; hence there are

no data statements. For details, see the Commodore 64 Programmer's Refer
ence Guide.

104 CHAPTER 5-SOUND AND MUSIC

U

u

u

u

u

LJ

LJ

U

U

U

U

LJ

lJ

J

LJ

U

LJ

U

LJ

LJ

U

LJ

LJ

LJ

LJ

LJ

LJ

n

n

n

/_ j

H

I. 1

n

n

r—»

n

n

n

r i

n

n

n

r—<

H

n

n

10 CLR: REM ** SOUND EFFECTS **

15 PRINT"WHICH SOUND EFFECT?" :PRINT "1.

WAILING":PRINT "2. SHOOTING": PRINT "3. ";

16 PRINT"SIREN":PRINT"4. ROCKET":PRINT"5. CRASH":

PRINT"6. MACHINE GUN"

17 INPUT X

20 S = 54272:FOR SW « S TO S + 24:POKESW,0:NEXT:K = - 1:

Tl$ = "000000"

21 ON X GOTO 23,24,25,26,27,28

23V=15:N1 = W1 = 65:W2 = 64:AD=15:SR = O:DR=1:P1=9:

P2 = 255:Q= l:GOTO30:REM WAILING

24 N2 = 2OO:N1 = 4O:W1 = 129:W2 = 128:AD= 15:SR= 15:

DR= l;GOTO30:REM SHOOTING

25 N2 = 85:N1 = 36:Wl = 33:W2 = 32:AD = 136:SR = 129:

DR = 350:V = 15:Q=2:GOTO30:REM SIREN

26 N2 = 100:N 1 = 25-.W1 = 129:W2 = 128:AD = 9:SR = 129:

DR = 50:K = -.25:GOTO30:REM ROCKET

27N2 = 251 :N1 = 5:W1 = 129:W2=128:AD=129:SR = 65:

DR = 50:GOTO30:REM CRASH

28 N2 = 75:N1 = 34:Wl = 129:W2 = 128:AD = 8:SR = 1:DR = 50:

V= 15:REM MACHINE GUN

30 POKE S + 2,P2:POKE S + 3,Pl:REM PULSE

40 POKE S + 5,AD:POKE S + 6,SR:REM ADSR

50 POKE S+ 1,N1:POKE S,N2:REM NOTE

55IFQ =2THENQ=3

56 IF Q=2 THEN POKE S+ 1,64:POKE S.188

60 POKE S + 4,W1:REM ON SWITCH

63 IF Q<> 1 GOTO70

65 FOR N2 = 200TO5 STEP-1:POKE S,N2:NEXTN2

68 FOR N2= 150TO5 STEP-1:POKE S,N2:NEXTN2

70 FOR VL = 15 TO V STEP K:POKE S + 24,VL:REM VOLUME

80 FOR T= 1 TO DR:NEXT T:REM DURATION

90 NEXT VL

100 POKE S + 4,W2:REM SOUND OFF

110 IF TI$> = "000005"THEN 10

115 IFQ = 3THENQ=2:GOTO56

120 GOTO50

n

n

H

n

105 CHAPTER 5-SOUND AND MUSIC

u

u
Program Notes

The Sound Effects program contains six sound effects the user can pick <—'
from. Lines 10 through 21 clear all the variables and request a selection. ,

The variable K in line 20 is necessary for the rocket sound. TI$ sets the *-—'

built-in timer to zero. Lines 23 through 28 establish the values of the regis- (.

ter variables for each sound. Lines 30 through 50 enter these values into {—*

the proper registers. The variable Q in lines 55, 56 and 115 restricts those .

lines to the siren. The variable Q in line 63 restricts lines 65 and 68 for wail- *—»

ing only. Line 70 allows for a variable volume; where none was required, . ,

V was set to 15. Line 80 allows for a variable note duration; when not re- '—'
quired, the variable DR was set to 1. Lines 60 and 100 are the main regis- . >

ters. Line 110 cuts off the sound after five seconds. You can then select '—*
another effect.

** | j

LJ

Although by now you have experienced first hand the versatility and power of

the Commodore 64C compute^ you probably realize that you have only begun to t-*

tap the potential of this extraordinary computer. The next chapter defines the

format and use of all elements of the BASIC 2.0 programming language. Lj

u

u

u

u

u

u

u

a

u

LJ

U

106 CHAPTER 5-SOUND AND MUSIC i—!

U

n

n

n

:t«f^

■■'■\!&'"■■""' ' ■ .;..'■;• K '■' "' "■'■■ "■:"*■■ ' ' '"SV ■' ' ■ ""■ \-'V.' ■ ■ . ' ' ■■■■>. ■■•■]:■; ■■ * ; ■..'■; " ■ ■"■ ' ..'

^^^^■4jM^^:yX^^^MH
H

n

u

u

u

Q

U

U

U

U

U

U

u

u

u

u

u

u

a

(J

u

u

Li]

u

LJ

u

u

n

n

n

n

n

n

n

i i

n

n

n

n

H

CHAPTER 6

BASIC 2.0

Encyclopedia

INTRODUCTION

Organization of Encyclopedia

Definition Format

BASIC COMMANDS AND STATEMENTS

BASIC FUNCTIONS

VARIABLES AND OPERATORS

Variables

Operators

RESERVED WORDS AND SYMBOLS

Reserved System Words (Keywords)

Reserved System Symbols

111

111

111

113

133

142

142

144

146

146

147

109 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

y

LJ

LJ

U

u

LJ

LJ

U

LJ

LJ

y

LJ

LI

LJ

UJ

U

u

u

u

LJ

U

y

u

n

n

n

n

n

n

n

n

G

n

n

n

n

n

n

Introduction Organization of Encyclopedia

This chapter lists BASIC 2.0 language elements. It gives a complete list of

the rules (syntax) of Commodore BASIC 2.0, along with a concise descrip

tion of each.

The different types of BASIC operations are listed in individual sections,

as follows:

1. COMMANDS and STATEMENTS: the commands used to

edit, store and erase programs; and the BASIC program statements

used in the numbered lines of a program.

2. FUNCTIONS: the string, numeric and print functions.

3. VARIABLES AND OPERATORS: the different types of

variables, legal variable names, arithmetic operators and logical

operators.

4. RESERVED WORDS AND SYMBOLS: the words and sym

bols reserved for use by the BASIC 2.0 language, which cannot be

used for any other purpose.

Definition Format

The definitions in this encyclopedia are arranged in the following format:

Command name

i

CLOSE

Format-*

Discussion of

format and use-*

Example(s)-

Brief definition

—Close logical file

CLOSE file number

This statement closes any files used by the OPEN

statement. The number or variable following the word

CLOSE is the file number to be closed

EXAMPLE:

CLOSE 2 Logical file 2 is closed.

n

CHAPTER 6-BAS1C 2.0 ENCYCLOPEDIA

u

u
In a typical definition, the boldface line that defines the format consists of

the following elements: j 1

LOAD "filename" [,device number] [,relocate flag]

T t T jj
keyword argument additional arguments

(possibly optional) { .

The parts of the command or statement that must be typed exactly as

shown are in capital letters. Words not capitalized indicate words that the [_J

user supplies, such as the name of a program.

Lj
When quote marks (" ") appear (usually around a program name or

filename), the user must include them in the appropriate place, according | \

to the format example.

u
KEYWORDS, also called reserved words, appear in upper-case letters.

Keywords are words that are part of the BASIC language. They are the j [

central part of a command or statement, and they tell the computer what

kind of action to take. These words cannot be used as variable names. A \ j

complete list of reserved words and symbols is given in Section 20.

LJ
Keywords may be typed using the full word or the approved abbreviation.

(A full list of abbreviations is given in Appendix K). The keyword or \ j

abbreviation must be entered correctly or an error will result. The BASIC

and DOS error messages are defined in Appendices A and B, respectively. s v

ARGUMENTS, also called parameters, appear in lower-case letters. \ [

Arguments complement keywords by providing specific information to the

command or statement. For example, the keyword load tells the computer j j

to load a program while the argument tells the computer which specific

program to load. A second argument specifies from which drive to load the ^ >

program. Arguments include filenames, variables, line numbers, etc.

SQUARE BRACKETS [] show optional arguments. The user selects any

or none of the arguments listed, depending on requirements. j j

ANGLE BRACKETS < > indicate the user MUST choose one of the jj
arguments listed.

LJ
A VERTICAL BAR | separates items in a list of arguments when the

choices are limited to those arguments listed. When the vertical bar \J

appears in a list enclosed in SQUARE BRACKETS, the choices are lim-

ited to the items in the list, but the user still has the option not to use any [j

arguments. If a vertical bar appears within angle brackets, the user must

choose one of the listed arguments. \ j

u

112 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA LJ

LJ

n

n

n

n

n

n

n BASIC Commands

and Statements

CLOSE

CLR

n

ELLIPSIS ♦. • a sequence of three dots means an option or argument can

be repeated more than once.

QUOTATION MARKS " " enclose character strings, filenames and

other expressions. When arguments are enclosed in quotation marks, the

quotation marks must be included in the command or statement. Quota

tion marks are not conventions used to describe formats; they are required

parts of a command or statement.

PARENTHESES () When arguments are enclosed in parentheses, they

must be included in the command or statement. Parentheses are not con

ventions used to describe formats; they are required parts of a command

or statement.

VARIABLE refers to any valid BASIC variable names, such as X, A$,

T%, etc.

EXPRESSION refers to any valid BASIC expressions, such as A + B + 2,

.5*(X + 3),etc.

—Close logical file

CLOSE file number

This statement closes any files used by the OPEN statement. The number

or variable following the word CLOSE is the file number to be closed.

Logical file 2 is closed.

EXAMPLE:

CLOSE 2

—Clear program variables

CLR

This statement restores default I/O channels, clears (not closes) I/O chan

nels, resets DATA statement pointer, resets stack pointer, and resets varia

ble pointers, but leaves the program intact. This statement is automatically

executed when a RUN or NEW command is given.

n

113 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

CMD

CONT

DATA

—Redirect screen output

CMD logical file number [,write list]

This command sends the output, which normally goes to the screen

(i.e., PRINT statement, LIST, but not POKES into the screen) to another

device, such as a disk data file or printer. This device or file must be

OPENed first. The CMD command must be followed by a number or

numeric variable referring to the file. The write list can be any alpha

numeric string or variable. This command is useful for printing headings

at the top of program listings.

EXAMPLE:

OPEN 1,4

CMD 1

LIST

PRINT#1

CLOSE 1

OPENS device #4, which is the printer.

All normal output now goes to the printer.

The LISTing goes to the printer, not the screen-

even the word READY.

Sends output back to the screen.

Closes the file.

—Continue program execution

CONT

This command is used to restart a program that has been stopped by either

using the STOP key, a STOP statement, or an END statement. The pro

gram resumes execution where it left off. CONT will not resume the pro

gram execution if any editing of the program has been performed during

the pause. If the program stopped due to an error; or if you have caused an

error before trying to restart the program, CONT will not work. The error

message in this case is CANT CONTINUE ERROR.

—Define data to be used by a program

DATA list of constants

This statement is followed by a list of data items to be input into the com

puters variable memory by READ statements. The items may be numeric

or string and are separated by commas. String data need not be inside

quote marks, unless they contain any of the following characters: space,

colon, or comma. If two commas have nothing between them, the value is

input as a zero if numeric, or as an empty string. Also see the RESTORE

statement, which allows the Commodore 64C to reread data.

u

u

LJ

U

LJ

U

U

U

u

u

u

u

u

LJ

LJ

LJ

u

u

u

u

LJ

U

LJ

LJ

LJ

114 CHAPTER 6—BASIC 2.0 ENCYCLOPEDIA

u

D

n

n

EXAMPLE:

DATA 100, 200, FRED, "HELLO, MOM",, 3, 14, ABC123

n

n

n

n

DEFFN —Define a user function

DEF FN name (variable) = expression

This statement allows the definition of an arithmetic calculation as a func

tion. In the case of a long formula that is used several times within a pro

gram, use of a function can save valuable program space. The name given

to the function begins with the letters FN, followed by any alphanumeric

name beginning with a letter. First, define the function by using the state

ment DEF, followed by the name given to the function. Following the name

is a set of parentheses () with a dummy numeric variable name (in this case,

X) enclosed. Next is an equal sign, followed by the formula to be defined.

The function can be performed by substituting any number for X, using

the format shown in line 20 of the example below:

EXAMPLE:

10 DEF FNA(X) = 12*(34-75-X/.3) + X

20 PRINT FNA(7)

The number 7 is inserted each place X is located in the formula given in

the DEF statement. In the example above, the answer returned is 144.

DIM

n

n

n
115

—Declare number of elements in an array

DIM variable (subscripts) [,variable(subscripts)] ♦ ♦.

Before arrays of variables can be used, the program must first execute a

DIM statement to establish DIMensions of the array (unless there are 11 or

fewer elements in the array). The DIM statement is followed by the name of

the array, which may be any legal variable name. Then, enclosed in paren

theses, put the number (or numeric variable) of elements in each dimen

sion. An array with more than one dimension is called a matrix. Any num

ber of dimensions may be used, but keep in mind the whole list of variables

being created takes up space in memory, and it is easy to run out of mem

ory if too many are used. Here's how to calculate the amount of memory

used by an array:

5 bytes for the array name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables

3 bytes/element for string variables

1 byte for each character in each string element

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

END

FOR/TO/STEP/

NEXT

Integer arrays take up two-fifths the space of floating-point arrays (e.g.,

DIM A% (100) requires 209 bytes; DIM A (100) requires 512 bytes.)

Array elements are numbered 0 to N, where N is the maximum value speci

fied in the DIM statement. Thus, X(0) through X(10) indicates 11 elements.

More than one array can be dimensioned in a DIM statement by separat

ing the array variable names by commas. If the program executes a DIM

statement for any array more than once, the message "RE'DIMed ARRAY

ERROR" is posted. It is good programming practice to place DIM state

ments near the beginning of the program.

EXAMPLE:

10 DIM A$(40),B7(15),CC%(4,4,4)

Dimensions three arrays, where arrays A$, B7, and CC% have,

respectively, 41 elements, 16 elements and 125 elements

—Define the end of program execution

END

When the program encounters the END statement, it stops RUNning

immediately. The CONT command can be used to restart the program at

the next statement (if any) following the END statement. END is not

required to terminate a program.

—Define a repetitive program loop structure.

FOR variable = start value TO end value [STEP increment]

NEXT [variable]

The FOR ... NEXT statement sets up a section of the program (i.e., a

loop) that repeats for a set number of times. This is useful when something

needs to be counted or something must be done a certain number of times

(such as printing).

This statement executes all the commands enclosed between the FOR and

NEXT statements repetitively, according to the start and end values. The

start value and the end value are the beginning and ending counts for the

loop variable. The loop variable is added to or subtracted from during the

FOR/NEXT loop.

The logic of the FOR/NEXT statement is as follows. First, the loop varia

ble is set to the start value. When the program reaches a program line con-

u

u

LJ

U

U

u

LJ

U

U

U

LJ

LJ

U

u

u

LJ

u

u

u

u

LJ

U

LJ

LJ

LJ

116 CHAPTER 6-BAS1C 2.0 ENCYCLOPEDIA LJ

n

n

n

t i

/ i

n

n

n

L j

n

n

n

n

n GET

n

taining the NEXT statement, it adds the STEP increment (default = 1) to

the value of the loop variable and checks to see if it is higher than the end

value of the loop. If the loop variable is less than or equal to the end value,

the loop is executed again, starting with the statement immediately follow

ing the FOR statement. If the loop variable is greater than the end value,

the loop terminates and the program resumes immediately following the

NEXT statement. The opposite is true if the step size is negative.

EXAMPLE:

10 FOR L = 1 TO 10

20 PRINT L

30 NEXT L

40 PRINT "FM DONE! L = "L

This program prints the numbers from one to 10 followed by the message

I'M DONE! L= 11.

The end value of the loop may be followed by the word STEP and another

number or variable. In this case, the value following the STEP is added

each time instead of one. This allows counting backwards, by fractions, or

in increments other than one.

The user can set up loops inside one another. These are known as nested

loops. Care must be taken when nesting loops so the last loop to start is the

first one to end. NEXT without a variable name completes the last exe

cuted FOR loop.

EXAMPLE:

10 FOR L = 1 TO 100

20 FOR A = 5 TO 11 STEP -5

30 NEXT A

40 NEXT L

The FOR ... NEXT loop in lines 20 and 30 is nested inside the one in

line 10 and 40. Using a STEP increment of .5 is used to illustrate the fact

that floating point indices are valid.

—Receive input from the keyboard, one character at a time, without wait

ing for a key to be pressed

GET variable list

The GET statement is a way to receive data from the keyboard, one char

acter at a time. When GET is encountered in a program, the character that

is typed is stored in the 64C's memory. If no character is typed, a null

(empty) character is returned, and the program continues without waiting

117

n

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

GET#

for a key. There is no need to hit the RETURN key. The word GET is fol

lowed by a variable name, either numeric or string.

If the program intends to GET a numeric key and a key besides a number

is pressed, the program stops and an error message is displayed. The GET

statement may also be put into a loop, checking for an empty result. The

GET statement can be executed only within a program. Otherwise an

ILLEGAL DIRECT ERROR occurs.

EXAMPLE:

10 GETA$:IF A$O"A"THEN 10

20 GET B, C, D

This line waits for the A

key to be pressed to

continue.

GET numeric variables B,C

and D from the keyboard

without waiting for a key to

be pressed.

—Receive input data from an input device

GET# file number, variable list

This statement inputs one character at a time from a previously opened

file. In accepting keyboard input, the GET# statement works like the GET

statement. The GET# statement can be executed only within a program.

EXAMPLE:

10 GET#1,A$ This example receives one character, which is

stored in the variable A$, from file number 1.

This example assumes that file 1 was previously

opened. See the OPEN statement.

U

LJ

U

U

Li

U

LJ

U

U

\ }
\ i

u

\ •

u

LJ

LJ

LJ

U

GOSUB —Call a subroutine from the specified line number

GOSUB line number

This statement is similar to the GOTO statement, in that the statement

directs the computer to jump to a specified line and continue program

execution at that line. However, a GOSUB statement must eventually

encounter a RETURN statement. When the RETURN statement is

encountered, the program jumps back to the statement immediately follow

ing the GOSUB statement.

u

u

u

y

u

u

u

118 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

LJ

n

n

n

n

n

^ GOTO/GOTO

n

n

/ i
IF/THEN

n

n

n

119

The target of a GOSUB statement is called a subroutine. A subroutine

is useful if a task is repeated several times within a program. Instead of

duplicating the section of program over and over, set up a subroutine,

and GOSUB to it at the appropriate time in the program. See also the

RETURN statement.

EXAMPLE:

20 GOSUB 800 This example calls the subroutine beginning at

line 800 and executes it. All subroutines must

terminate with a RETURN statement.

800 PRINT "HI THERE": RETURN

—Transfer program execution to the specified line number

GOTO line number

After a GOTO statement is encountered in a program, the computer exe

cutes the statement specified by the line number in the GOTO statement.

When used in direct mode, GOTO executes (RUNs) the program starting

at the specified line number without clearing the variables or clearing disk

channels, etc.

EXAMPLES:

10 PRINT"COMMODORE'3

20 GOTO 10

GOTO 100

The GOTO in line 20 makes line 10

repeat continuously until RUN/STOP is

pressed.

Starts (RUNs) the program starting at

line 100, without clearing the variable

storage area.

—Evaluate a conditional expression and execute portions of a program

depending on the outcome of the expression

IF expression THEN [clause]

The IF... THEN statement evaluates a BASIC expression and takes one

of two possible courses of action depending upon the outcome of the ex

pression. If the expression is true, the clause following THEN is executed.

This can be any BASIC statement. If the expression is false, the program

resumes with the program line immediately following the program line

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

INPUT

10 IF X= 10 THEN 100

120

containing the IF statement. The entire IF... THEN statement must be

contained within 80 characters (two screen lines).

The IF... THEN statement can take two additional forms:

IF expression THEN line number

or:

IF expression GOTO line number

These forms transfer program execution to the specified line number if the

expression is true. Otherwise, the program resumes with the program line

number immediately following the line containing the IF statement. Con

sider the following example:

50 IF X > 0 THEN PRINT "OK"

This line checks the value of X. If X is greater than 0, the statement imme

diately following the keyword THEN (PRINT "OK") is executed. IfX is less

than or equal to 0, the program goes to the next line.

EXAMPLE:

This example evaluates the

value of X. IF X equals 10,

the program control is

transferred to line 100 and

the message "X EQUALS

20 PRINT "X DOES NOT EQUAL 10" 10" is printed. IF X does

: not equal 10, the program

99 STOP resumes with line 20, the

100 PRINT "X EQUALS 10" 64C prints the messsage "X

DOES NOT EQUAL 10"

and the program stops.

—Receive a data string or a number from the keyboard and wait for the

user to press RETURN

INPUT ["prompt string";] variable list

The INPUT statement asks for data from the user while the program is

RUNning and places the data into a variable or variables. The program

stops, prints a question mark (?) on the screen, and waits for the user to

type the answer and hit the RETURN key. The word INPUT is followed

by a prompt string and a variable name or list of variable names separated

by commas. The message in the prompt string inside quotes suggests

(prompts) the information the user should enter. If this message is present,

there must be a semicolon (;) after the closing quote of the prompt.

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

U

U

LJ

U

u

u

u

u

u

i /
t >

u

u

LJ

U

u

Li

LJ'

u

))
\)

u

u

LJ

LJ

U

u

n

n

n

n

I J

i . l

n

n

n

n

n

n

n

INPUT*

LET

When more than one variable is INPUT, separate them by commas. The

computer asks for the remaining values by printing two question marks (??).

If the RETURN key is pressed without INPUTting a value, the INPUT

variable retains its previous value. The INPUT statement can be executed

only within a program.

EXAMPLE:

10 INPUT "PLEASE TYPE A NUMBER";A

20 INPUT "AND YOUR NAME";A$

30 PRINT A$ " YOU TYPED THE NUMBER";A

—Inputs data from an I/O channel into a string or numeric variable

INPUT* channel number, variable list

This statement works like INPUT, but takes the data from a previously

OPENed channel, usually on a disk or tape instead of the keyboard. No

prompt string is used. This statement can be used only within a program.

EXAMPLE:

10 OPEN 2,8,2

20 INPUT#2, A$, C, D$

This statement INPUTs the data stored in variables A$, C and D$ from

the disk channel number 2, which was OPENed in line 10.

—Assigns a value to a variable

[LET] variable = expression

The word LET is rarely used in programs, since it is not necessary. When

ever a variable is defined or given a value, LET is always implied. The vari

able name that receives the result of a calculation is on the left side of the

equal sign. The number, string or formula is on the right side. You can only

assign one value with each (implied) LET statement.

EXAMPLE:

10 LET A = 5

20 B = 6

Assign the value 5 to numeric variable A.

Assign the value 6 to numeric variable B.

30C = A*B + 3 Assign the numeric variable C, the value resulting

from 5 times 6 plus 3.

40 D$ = "HELLO" Assign the string "HELLO" to string variable D$.

n

121 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

LIST

LOAD

—List the BASIC program currently in memory

LIST [first line] [- last line]

The LIST command displays a BASIC program that has been typed or

LOADed into the Commodore 64C's memory so you can read and edit it.

When LIST is used alone (without numbers following it), the Commodore

64C gives a complete LISTing of the program on the screen. The listing

process may be slowed down by holding down the CTRL key, or stopped

by hitting the RUN/STOP key. If LIST is followed by a line number, the

Commodore 64C shows only that line. If LIST is typed followed by a num

ber and just a dash, the Commodore 64C shows all lines from that number

to the end of the program. If LIST is typed with a dash followed by a num

ber, all lines from the beginning of the program to that line number are

LISTed. If LIST is typed with two numbers separated by a dash, all lines

from the first to the second line number inclusive are displayed. By using

these variations, any portion of a program can be examined or brought to

the screen for modification. LIST can be used in a program. Program exe

cution will reset after the LIST is performed.

EXAMPLES:

LIST

LIST 10

LIST 100-

LIST -100

LIST 10-200

Shows entire program.

Shows only line 10.

Shows from line 100 until the end of the

program.

Shows all lines from the beginning through line

100.

Shows lines from 10 to 200, inclusive.

122

—Load a program from a peripheral device such as a disk drive or

Datassette

LOAD "filename" [,device number] [,relocate flag]

This is the command used to recall a program stored on disk or cassette

tape. Here, the filename is a program name up to 16 characters long, in

quotes. The name can be followed by a comma (outside the quotes) and a

device number to determine where the program is stored (disk or tape). If

no number is supplied, the Commodore 64C assumes device number 1 (the

Datassette tape recorder).

The relocate flag is a number (0 or 1) that determines where a program is

loaded in memory. A relocate flag of 0 tells the Commodore 64C to load

the program at the start of the BASIC program area. A flag of 1 tells the

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

U

U

LJ

U

U

U

LJ

bJ

U

u

u

u

\ i

LJ

LJ

U

LJ

LJ

U

U

LJ

U

l_j

LJ

U

LJ

U

n

n

n

H

n

n

n

n

n

t i

n

n

computer to LOAD from the point where it was SAVEd. The default

value of the relocate flag is 0. A value of 1 is generally used when loading

machine language programs or bit-map screens.

The device most commonly used with the LOAD command is the disk

drive. This is device number 8.

If LOAD is typed with no arguments, followed by RETURN, the 64C

assumes you are loading from tape and you are prompted to "PRESS PLAY

ON TAPE". If you press PLAY, the 64C starts looking for a program on

tape. When the program is found, the 64C prints FOUNDufilename",

where the filename is the name of the first file which the Datassette finds

on the tape. Press the Commodore key or spacebar to LOAD the found

filename. (If you press no key, after about 10 seconds the file is loaded auto-

matically.) Once the program is LOADed, it can be RUN, LISTed or

modified.

EXAMPLES:

LOAD

LOAD "HELLO"

LOAD A$,8

LOAD"HELLO",8

Reads in the next program from tape.

Searches tape for a program called

HELLO, and LOADs it if found.

LOADs the program from disk whose

name is stored in the variable A$.

Looks for the program called HELLO on

disk drive number 8, drive 0.

LOAD"MACHLANG",8,1 LOADs the machine language program

called "MACHLANG" into the location

from which it was SAVEd.

The LOAD command can be used within a BASIC program to find and

RUN the next program on a tape or disk. This is called chaining.

n
NEW

n

n

n

n

n

123

—Clear program and variable storage

NEW

This command in effect "erases" the entire program in memory. NEW

invokes an automatic CLR command, so that it restores default I/O chan

nels, clears (but does not close) I/O channels, resets DATA statement

pointer, resets stack pointer and resets variable pointers. Unless the pro

gram was stored on disk or tape, it is lost. Be careful with the use of this

command. The NEW command also can be used as a statement in a

BASIC program. However, when the Commodore 64C gets to this line,

the program is erased and everything stops.

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

ON

OPEN

—Conditionally branch to a specified program line or call a subroutine

according to the results of the specified expression

ON expression <GOTO/GOSUB> line #1 [, line #2, • •.]

The word ON is followed by a mathematical expression, then either of

the keywords GOTO or GOSUB and a list of line numbers separated by

commas. If the integer result of the expression is 1, the first line in the list

is executed. If the result is 2, the second line number is executed and so on.

If the result is 0, or larger than the number of line numbers in the list, the

program resumes with the line immediately following the ON statement. If

the number is negative, an ILLEGAL QUANTITY ERROR results.

EXAMPLE:

10 INPUT X:IF X<0 THEN 10

20 ON X GOTO 30, 40, 50, 60 When X= 1,ON sends control to the

25 STOP

30 PRINT "X

40 PRINT "X

50 PRINT "X

60 PRINT "X

1"

2"

3"

4"

first line number in the list (30)

When X = 2, ON sends control to the

second line (40),etc

If X = 0 or X > 4 the program

terminates (breaks) at line 25.

—Open an input or output channel

OPEN logical file number, device number [,secondary address]

[/'filename, filetype, mode"]|[,cmd string])

The OPEN statement allows the Commodore 64C to access files within

devices such as a disk drive, a Datassette cassette recorder, a printer or even

the screen of the Commodore 64C. The word OPEN is followed by a logi

cal file number, which is the number to which all other BASIC input/

output statements will refer, such as PRINT#(write), INPUT#(read), etc,

This number is from 0 to 255, but for most uses it should be from 1 to 127.

The number zero and the numbers over 127 are reserved for special use.

The second number, called the device number, follows the logical file

number. Device number 0 is the Commodore 64C keyboard; 1 is the cas

sette recorder; 2 is RS-232; 3 is the Commodore 64C screen, 4-7 are usu

ally for printers; and 8-11 are usually for disk drives. It is often a good idea

to use the same file number as the device number because it makes it easy

to remember which is which. Valid device numbers are 0 to 30, of which

the values from 4 to 30 are assumed to be serial bus devices.

LJ

U

LJ

U

LJ

LJ

U

LJ

U

LJ

U

U

LJ

U

LJ

U

LJ

U

U

U

u

LJ

LJ

U

124 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

n

n

n

i i

n

n

< i

n

Following the device number may be a third parameter called the second

ary address. In the case of the cassette, this can be 0 for read, 1 for write

and 2 for write with END-OF-TAPE marker at the end. In the case of the

disk, the number refers to the channel number. See your disk drive manual

for more information on channels and channel numbers. For the printer,

the secondary addresses are used to select certain programming functions.

There may also be a filename specified for disk or tape OR a string follow

ing the secondary address, which could be a command to the disk/tape

drive or the name of the file on tape or disk. If the filename is specified,

the type and mode refer to disk files only. Disk file types currently include

PROGRAM, SEQUENTIAL, RELATIVE and USER; modes are READ

and WRITE.

EXAMPLES:

10 OPEN 3,3

20 OPEN 1,0

OPENs the screen as file number 3.

OPENs the keyboard as file number 1.

30 OPEN 1,1,0,"DOT" OPENs the cassette for reading, as file number

1, using "DOT" as the filename.

OPEN 4,4

OPEN 15,8,15

OPENs the printer as file number 4.

OPENs the command channel on the disk as

file 15, with secondary address 15. Secondary

address 15 is reserved for the disk drive

command/error channel.

5 OPEN 8,8,12,<TESTFILE,SEQ,WRITE" OPENs a sequential

disk file for writing

called TESTFILE as file

number 8, with secondary

address 12.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT/ statements and

system variable ST.

R POKE

n

i \

H

n

n

125

—Change the contents of a memory location

POKE address, value

The POKE statement allows changing of any value in the Commodore

64C RAM, and allows modification of many of the Commodore 64C's

Input/Output registers. The keyword POKE is always followed by two

parameters. The first is a location inside the Commodore 64C memory.

This can be a value from 0 to 65535. The second parameter is a value from

0 to 255, which is placed in the location, replacing any value that was there

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

PRINT

previously. The value of the memory location determines the bit pattern of

the memory location.

EXAMPLE:

10 POKE 53280,1 Changes screen border color

NOTE: PEEK, a function related to POKE, returns the contents of the

specified memory location, is listed under FUNCTIONS.

—Output to the text screen

PRINT [print list]

The PRINT statement is the major output statement in BASIC. While the

PRINT statement is the first BASIC statement most people learn to use,

there are many variations of this statement. The word PRINT can be fol

lowed by any of the following:

Characters inside quotes ("text")

Variable names A, B, A$, X$

Functions SIN(23), ABS(33)

Expressions 2 + 2, A + 3, A = B

Punctuation marks ;,

The characters inside quotes are often called literals because they are

printed literally, exactly as they appear. Variable names have the value they

contain (either a number or a string) printed. Functions also have their

number values printed.

Punctuation marks are used to help format the data neatly on the screen.

The comma separates printed output by 10 spaces, while for numeric out

put only the semicolon causes the numbers to be preceded by a space or

minus sign and followed by a cursor right. When used with text the semi

colon adds no spaces. Either punctuation mark can be used as the last

symbol in the statement. This results in the next PRINT statement acting

as if it is continuing the previous PRINT statement.

u

u

u

u

u

LJ

u

lJ

LJ

I >

u

< /
i !r

LJ

\ i
i I

U

LJ

U

u

LJ

I i
I >

LJ

LJ

126 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

(i

n

n

n

n

H

rmm>
i. i

H

H

i i

n

H

n

n

n

n

n

n

n

n

PRINT*

127

EXAMPLES: RESULTS

10 PRINT "HELLO" HELLO

20 A$ = "THERE":PRINT "HELLO ";A$ HELLO THERE

30 A = 4:B = 2:?A + B 6

4OJ = 41:PRINTJ;:PRINTJ-1 41 40

50 PRINT A;B;:D = A + B:PRINTD;A-B 4 2 6 2

See also POS, SPC and TAB functions.

—Output data to files

PRINT# logical channel number, [print list]

PRINT# is followed by a number which refers to the data channel previ'

ously OPENed. The number is followed by a comma and a list of items to

be output to the channel, which can be strings, numeric or string variables

or numeric data. The comma and semicolon act in the same manner for

spacing with printers as they do in the PRINT statement. Some devices

may not work with TAB and SPC.

EXAMPLE:

10 OPEN 4,4 Outputs the data "HELLO

20 PRINT#4,"HELLO THERE!",A$,B$ THERE" and the variables

A$ and B$ to the printer.

10 OPEN 2,8,2

20 PRINT#2,A,B$,C,D

Outputs the data variables

A, B$, C and D to the disk

file number 2.

NOTE: After a CMD command has been used, the PRINT/ command is

used by itself to "unlisten" a device (e.g., close the channel to the printer)

before closing the file, as shown in this example:

10 OPEN 4,4

20 CMD 4

30 PRINT#4,"PRINT WORDS"

40 PRINT#4

50 CLOSE 4

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

READ

REM

—Read data from DATA statements and input it into variable memory

READ variable list

This statement inputs information from DATA statements and stores it in

variables. The READ statement variable list may contain both strings and

numbers. Be careful to avoid reading strings where the READ statement

expects a number and vice versa. This produces a TYPE MISMATCH

ERROR message.

The data in the DATA statements are READ in sequential order. Each

READ statement can read one or more data items. Every variable in the

READ statement requires a data item. If one is not supplied, an OUT OF

DATA ERROR occurs. See the DATA statement.

In a program, you can READ the data and then re-read it by issuing

the RESTORE statement. The RESTORE sets the sequential data

pointer back to the beginning, where the data can be read again. See

the RESTORE statement.

EXAMPLES:

10 READ A, B, C

20 DATA 3, 4, 5

READ the first three numeric

variables.

10 READ A$, B$, C$ READ the first three string

20 DATA JOHN, PAUL, GEORGE variables.

10 READ A, B$, C

20 DATA 1200, NANCY, 345

READ (and input into the 64C's

memory) a numeric variable, a

string variable and another

numeric variable.

128

—Comments or remarks about the operation of a program line

REM message

The REMark statement is a note to whoever is reading a listing of the pro

gram. REM may explain a section of the program, give information about

the author, etc. REM statements do not affect the operation of the pro

gram, except to add length to it (and therefore use more memory). Nothing

to the right of the keyword REM is interpreted by the computer as an exe

cutable instruction. (However, LIST will interpret graphic characters as

tokens.) Therefore, no other executable statement can follow a REM on the

same line.

EXAMPLE:

10 NEXT X:REM THIS LINE INCREMENTS X-

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

U

u

LJ

U

LJ

U

<)

u

LJ

u

LJ

LJ

U

LJ

LJ

LJ

LJ

LJ

LJ

u

u

LJ

< i

I)

LJ

LJ

LJ

n

n

n

n

n

RESTORE

n

n

n

n

RETURN

n

n

H

n

n

129

—Reset DATA pointer so the DATA can be reREAD

RESTORE [line #]

BASIC maintains an internal pointer to the next DATA constant to be

READ. This pointer can be reset to the beginning of the program with

RESTORE. When the RESTORE statement is executed in a program, the

DATA pointer is reset to the first item in the first DATA statement of the

program. This provides the capability to reREAD the data.

EXAMPLES:

10 FOR I = 1 TO 3 This example READs the data

20 READ X

30 GROSS = X +

40 NEXT

50 RESTORE

60 GOTO 10

70 DATA 10,20,30

in line 70 and stores it in

GROSS numeric variable X. It adds

the total of all the numeric

data items. Once all the data

has been READ, three cycles through

the loop, the READ pointer is

RESTOREd to the beginning of the

program and it returns to line 10 and

performs repetitively.

10 READ A,B,C

20 DATA 100,500,750

30 READ X,Y,Z

40 DATA 36,24,38

50 RESTORE

60 READ S,P,Q

This example RESTORES the DATA

pointer to the beginning data

item in line 20. When line 60

is executed, it will READ the

DATA 100,500,750.

—Return from subroutine

RETURN

This statement is always paired with the GOSUB statement. When the

program encounters a RETURN statement, it goes to the statement im

mediately following the last GOSUB command executed. If no GOSUB

was previously issued, then a RETURN WITHOUT GOSUB ERROR

message is displayed and the program stops. All subroutines end with a

RETURN statement.

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

RUN

EXAMPLE?

10 PRINT "ENTER SUBROUTINE"

20 GOSUB 100

30 PRINT "BACK FROM SUBROUTINE"

90 STOP

100 PRINT "SUBROUTINE 1"

110 RETURN

This example calls the subroutine at line 100 which prints the message

"SUBROUTINE 1" and RETURNs to line 30, the rest of the

program.

—Execute BASIC program

1) RUN [line #]

Once a program has been typed into memory or LOADed, the RUN com

mand executes it. Before starting program execution, RUN clears all varia

bles, resets DATA statement pointer, clears (but does not close) I/O chan

nels, and restores default I/O channels. If there is a number following the

RUN command, execution starts at that line number.

EXAMPLES:

RUN

RUN 100

Starts execution from the beginning of the

program.

Starts program execution at line 100.

U

U

u

u

LJ

u

u

LJ

LJ

LJ

u

u

u

u

U

SAVE

130

—Store the program in memory to disk or tape

SAVE ["faename"][,device number][,EOT flag]

This command stores a program currently in memory onto a cassette tape

or disk. If the word SAVE is typed alone followed by RETURN, the Com

modore 64C assumes that the program is to be stored on cassette tape. It

has no way of checking if there is already a program on the tape in that

location, so make sure you do not record over valuable information on

your tape. If SAVE is followed by a filename in quotes or a string variable

name, the Commodore 64C gives the program that name, so it may be

located easily and retrieved in the future. If a device number is specified for

the SAVE, follow the name with a comma (after the quotes) and a number

or numeric variable. Device number 1 is the tape drive, and number 8 is

the disk drive. After the device number on a tape command, there can be a

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

LJ

U

U

LJ

U

U

LJ

u

n

H

n

n

n

n

n

H

comma and a second number or secondary address. If this number is 0, a

normal BASIC SAVE occurs. If the number is 1, the 64C saves the current

starting address in the tape header for use in subsequent LOAD opera

tions. If the number is 2, the Commodore 64C puts an END-OF-TAPE

marker (EOT flag) after the program. If the number 3 is encountered, the

64C saves the current starting address in the tape header and an EOT

marker is set. If, in trying to LOAD a program, the Commodore 64C finds

one of these markers, the program is not loaded and a FILE NOT FOUND

ERROR is reported.

EXAMPLES:

SAVE

SAVE "HELLO"

Stores program on tape, without a name.

Stores a program on tape, under the name

HELLO.

SAVE A$,8 Stores on disk, with the name stored in variable

A$.

SAVE "HELLO", 8 Stores on disk, with name HELLO (equivalent

to DSAVE "HELLO").

SAVE "HELLO", 1, 2 Stores on tape, with name HELLO, and places

an END-OF TAPE marker after the program.

STOP

n

n

—Halt program execution

STOP

This statement halts the program. A message, BREAK IN LINE XXX,

occurs (only in program mode), where XXX is the line number containing

the STOP command. The program can be restarted at the statement fol

lowing STOP if the CONT command is used immediately, without any

editing occurring in the listing. The STOP statement is often used while

debugging a program.

n

ri

n

SYS —Call and execute a machine language subroutine at the specified address

SYS address

This statement performs a call to a subroutine at a given address. The

address range is 0 to 65535. The program begins executing the machine-

language program starting at that memory location.

EXAMPLE:

SYS 40960 Calls and executes the machine-language routine at

location 40960.

n

n
131 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

VERIFY

WAIT

—Verify program in memory against one saved to disk or tape

VERIFY''filename1' [,device number] [,relocate flag]

This command causes the Commodore 64C to check the program on tape

or disk against the one in memory, to determine if the program was

SAVEd. This command is also very useful for positioning a tape so that

the Commodore 64C writes after the last program on the tape. It will do

so, and inform the user that the programs don't match. The tape is then

positioned properly, and the next program can be stored without fear of

erasing the previous one.

VERIFY, with no arguments after the command, causes the Commodore

64C to check the next program on tape, regardless of its name, against the

program now in memory. VERIFY, followed by a program name in quotes

or a string variable in parentheses, searches the tape for that program and

then checks it against the program in memory when found. VERIFY, fol

lowed by a name, a comma and a number, checks the program on the

device with that number (1 for tape, 8 for disk). The relocate flag is the

same as in the LOAD command. It verifies the program from the memory

location from which it was SAVEd.

EXAMPLES:

VERIFY

VERIFY "HELLO"

Checks the next program on the tape.

Searches for HELLO on tape, checks it

against memory.

VERIFY "HELLO", 8,1 Searches for HELLO on disk, then checks it

against memory.

—Pause program execution until a data condition is satisfied

WAIT (location), <mask-l> [,mask-2>]

The WAIT statement causes program execution to be suspended until a

given memory address recognizes a specified bit pattern or value. In other

words, WAIT can be used to halt the program until some external event

has occurred. This is done by monitoring the status of bits in the Input/

Output registers. The data items used with the WAIT can be values in the

range 0-65535 for location and 0-255 for masks. For most programmers,

this statement should never be used. It causes the program to halt until a

specific memory location's bits change in a specific way. This is useful for

certain I/O operations. The WAIT statement takes the value in the mem

ory location and performs a logical AND operation with the value in

mask-1. If mask-2 is specified, the result of the first operation is exclusively

ORed with mask-2. In other words, mask-1 "filters out" any bits not to be

tested. Where the bit is 0 in mask-1, the corresponding bit in the result will

U

LJ

U

U

U

LJ

LJ

U

LJ

LJ

U

U

u

Li

U

\ f

LJ

U

U

LJ

U

\ /

I)

U

u

132 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

LJ

n

n

n

n

n

<—^
! i

n

H

n

n

H

n

n

n

n

n

BASIC Functions

ABS

always be 0. The mask-2 value flips any bits, so that an off condition can be

tested for as well as an on condition. Any bits being tested for a 0 should

have a 1 in the corresponding position in mask-2. If corresponding bits of

the <mask-l > and < mask-2 > operands differ, the exclusive-OR operation

gives a bit result of 1. If the corresponding bits get the same result the bit is

0. It is possible to enter an infinite pause with the WAIT statement, in

which case the RUN/STOP and RESTORE keys can be used to recover.

The first example below WAITs until a key is pressed on the tape unit to

continue with the program. The second example will WAIT until a sprite

collides with the screen background.

EXAMPLES:

WAIT 1, 32, 32

WAIT 53273, 6, 6

133

Function Format

The format of the function descriptions in the following pages is:

FUNCTION (argument)

where the argument can be a numeric value, variable or string.

Each function description is followed by an EXAMPLE. The lines appear

ing in bold face in the examples are what you type. The line without bold is

the computer's response.

—Return absolute value

ABS(X)

The absolute value function returns the unsigned value of the argument X.

EXAMPLE:

PRINT ABS (7*(- 5))

35

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

ASC

ATN

CHR$

COS

—Return CBM ASCII code for character

ASC(X$)

This function returns the Commodore ASCII code of the first character of

X$. You must append CHR$(0) to a null string, or else an ILLEGAL

QUANTITY ERROR is issued.

EXAMPLE:

X$ = "CBM":PRINT ASC (X$)

67

Compute arctangent, in radians, ofX

—Return angle whose tangent is X radians

ATN(X)

This function computes the arctangent, measured in radians, of X. The

value returned is in the range — ir/2 through ir/2.

EXAMPLE:

PRINT ATN (3)

1.24904577

—Return ASCII character for specified CBM ASCII code

CHR$(X)

This is the opposite ofASC and returns the string character whose CBM

ASCII code is the integer value of X. X must be 0-255. Refer to Appendix

D for a table ofCHR$ codes.

EXAMPLES:

PRINT CHR$ (65) Prints the A character.

A

PRINT CHR$ (147) Clears the text screen.

—Return cosine for angle ofX radians

COS(X)

This function returns the value of the cosine of X, where X is an angle

measured in radians. The value returned is in the range — 1 to 1.

134 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

u

u

u

LJ

LJ

U

U

U

U

U

LJ

U

u

LJ

U

u

u

LJ

U

U

LJ

i t

t)

U

LJ

U

LJ

n

n

n

r—\

n

i i

n

n

n

n

n

n

n

n

H

n

n

n

n

EXP

FNxx

FRE

EXAMPLE:

PRINT COS (t/3)

.500000001

—Return value of e (2.71828183) raised to the X power

EXP(X)

This function returns a value of e (2.71828183) raised to the power of X.

EXAMPLE:

PRINT EXP(1)

2.71828183

—Return value from user defined function

FNxx(x)

This function returns the value from the user-defined function xx created

in a DEF FNxx statement.

EXAMPLE:

10 DEF FNAA(X) = (X-32)*5/9

20 INPUT X

30 PRINT FNAA(X)

RUN

? 40 (? is input prompt)

4.44444445

—Return number of available bytes in memory

FRE(X)

where X a dummy argument. The 64C returns the number of bytes as a

signed 16-bit value. To get the actual number of bytes, use:

PRINT FRE (0)<0* - 65536 + FRE(0)

EXAMPLE:

PRINT FRE (0) Returns the current number of free bytes for

BASIC programs and variables.

n

n

H

135 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

INT

LEFT$

LEN

—Return integer form (truncated) of a floating point value

INT(X)

This function returns the integer value of the expression. If the expression

is positive, the fractional part is left out. Any fraction causes the next lower

integer to be returned.

EXAMPLES:

PRINT INT(3.14)

3

PRINTINT(-3.14)

-4

—Return the leftmost characters of string

LEFT$ (string,integer)

This function returns a string consisting of the number of leftmost charac

ters of the string determined by the specified integer. The integer argument

must be in the range 0 to 255. If the integer is greater than the length of the

string, the entire string is returned. If an integer value of zero is used, then

a null string (of zero length) is returned.

EXAMPLE:

PRINT LEFT$ ("COMMODORE",5)

COMMO

—Return the length of a string

LEN (string)

This function returns the number of characters in the string expression.

Non-printed characters and blanks are included.

EXAMPLE:

PRINT LEN ("COMMODORE")

u

u

u

u

u

LJ

LJ

U

U

U

LJ

U

U

u

LJ

U

U

LJ

LJ

LJ

U

U

136 CHAPTER 6—BASIC 2.0 ENCYCLOPEDIA

LJ

U

LJ

n

n

n

n

h

n

H

n

n

n

rn
i j

n

n

H

n

H

H

n

n

n

n

n

LOG

MID$

PEEK

—Return natural log ofX

LOG(X)

This function returns the natural log of X, where X>0. The natural log

is log to the base e (see EXP(X)). To convert to log base 10, divide by

LOG(IO).

EXAMPLES

PRINT LOG (37/5)

2.00148

—Return a substring from a larger string

MID$ (string,starting position!,length])

This function returns a substring specified by the LENGTH, starting at

the character specified by the starting position. The starting position of

the substring defines the first character where the substring begins. The

length of the substring is specified by the length argument. The starting

position value can range from 1 to 255; the length value can range from 0

to 255. If the starting position value is greater than the length of the string,

or if the length value is zero, then MID$ returns a null string value. If the

length argument is left out, all characters to the right of and including the

starting position are returned.

EXAMPLE?

PRINT MID$("COMMODORE 64C",3,5)

MMODO

—Return contents of a specified memory location

PEEK(X)

This function returns the contents of memory location X, where X is

located in the range 0 to 65535, returning a result between 0 and 255. This

is the counterpart of the POKE statement.

EXAMPLE:

PRINT PEEK (650)

0

In this example, the 0 indicates that keyboard is in normal operating mode

with regard to which keys repeat when held down.

n

n

n

137 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

POS

RIGHT$

—Return the value of pi (3.14159265)

TT

EXAMPLE:

PRINT -k This returns the result 3.14159265.

—Return the current cursor column position on the screen

POS(X)

The POS function indicates in which screen column the cursor is currently

located. X is a dummy argument, which must be specified, but the value is

ignored.

EXAMPLE:

10 PRINT"CURSOR IS IN COLUMN";

20 PRINTPOS(O)

When you run this program, the screen displays this:

CURSOR IS IN COLUMN 19

This means that, after displaying the words CURSOR IS IN COLUMN,

the cursor was in column 19.

—Return sub-string from rightmost end of string

RIGHT$(string, integer)

This function returns a sub-string taken from the rightmost characters of

the string argument. The length of the sub-string is defined by the length

argument which can be any integer in the range of0 to 255. If the value of

the numeric expression is zero, a null string (zero length) is returned. If the

value given in the length argument is greater than the length of the string,

the entire string is returned. Also see the LEFT$ and MID$ functions.

EXAMPLE:

PRINT RIGHT$("BASEBALL",5)

EBALL

u

u

u

u

u

LJ

LJ

U

U

u

LJ

U

u

LJ

LJ

LJ

U

U

LJ

u

u

u

138 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

u

LJ

n

n

n

r-i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

H

n

RND

SGN

SIN

—Return a random number

RND(X)

This function returns a random number between 0 and 1. This is useful in

games, to simulate dice roll and other elements of chance. It is also used in

some statistical applications.

If X = 0 Returns a random number based on the hardware clock.

IF X > 0 Generates a reproducible random number based on the

seed value below.

IF X < 0 Produces a random number which is used as a base called

a seed. Starts a repeatable sequence.

To simulate the rolling of a die, use the formula INT(RND(1)*6 + 1). First

the random number from 0 to 1 is multipled by 6, which expands the range

to 0-6 (actually, greater than zero and less than six). Then 1 is added, malo

ing the range greater than 1 and less than 7. The INT function truncates

all the decimal places, leaving the result as a digit from 1 to 6.

EXAMPLES:

PRINT RND(O)

.507824123

PRINT INT(RND(l)*100

89

Displays a random number

between 0 and 1.

1) Displays a random number

between 1 and 100.

139

—Return sign of argument X

SGN(X)

This function returns the sign,(positive, negative or zero) of X. The result

is + 1 if X > 0, 0 ifX = 0, and - 1 ifX < 0.

EXAMPLE:

PRINT SGN(4.5);SGN(0);SGN(- 23)

1 0 -1

—Return sine of argument

SIN(X)

This is the trigonometric sine function. The result is the sine of X. X is

measured in radians.

EXAMPLE:

PRINT SIN Or/3)

.866025404

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

SPC

SQR

STR$

—Skip spaces on print output

SPC(X)

This function is used in PRINT or PRINT# commands to skip over X num

bers from the current character position. Note that characters passed over

are not erased. See also the TAB function, which advances to a fixed

column position.

EXAMPLE

PRINT "COMMODORE";SPC(3);"64C"

COMMODORE 64C

—Return square root of argument

SQR(X)

This function returns the value of the SQuare Root of X, where X is a

positive number or 0. The value of the argument must not be negative, or

the BASIC error message ILLEGAL QUANTITY is displayed.

EXAMPLE:

PRINT SQR(25)

5

—Return string representation of number

STR$(X)

This function returns the STRing representation of the numeric value of

the argument X. The string characters are the same as those that would be

printed. That is, positive numbers and zero are preceded by a space, while

negative numbers are preceded by a minus sign. The counterpart of the

STR$ function is the VAL function.

EXAMPLE

PRINT STR$(123.45)

123.45

PRINT STR$(-89.03)

-89.03

PRINT STR$(1E2O)

IE+ 20

u

u

u

u

LJ

U

LJ

u

u

u

u

LJ

U

U

U

LJ

LJ

LJ

LJ

LJ

U

LJ

140 CHAPTER 6—BASIC 2.0 ENCYCLOPEDIA

U

LJ

LJ

n

n

n

n.

n

n

n

n

n

n

n

n

n

n

n

H

n

h

n

n

n

H

H

n

H

n

n

TAB

TAN

USR

—Move cursor to tab position in present statement

TAB (X)

The TAB function is used in PRINT and PRINT/ commands to condition

ally skip to a specified column position. TAB operates differently with

screens than with printers or disk files. For printers or disk output, TAB

acts exactly as SPC does (see the SPC description). For screen output, if

column X is to the right of the current column position, then X becomes

the current column position. If X is at the same position as or left of the

current column position, TAB has no effect. Characters passed over are

not erased.

EXAMPLE:

10 PRINT"COMMODORE"TAB(25)"64C"

COMMODORE 64C

—Return tangent of argument

TAN(X)

This function returns the tangent of X, where X is an angle in radians.

EXAMPLE:

PRINT TAN(.785398163)

1

—Call user-defined subprogram

USR(X)

When this function is used, BASIC puts the value of X into the Floating

Accumulator (FAC) in locations $0061 through $0066 (97 through 102)

and calls the USR vector. You must put your machine language routine's

address at $0311(785) and $0312(786) (low/high bytes). Since USR is a

function, it returns a real value. Whatever is in the FAC when your

machine language routine returns is passed. The USR vector defaults

to an ILLEGAL QUANTITY ERROR routine.

EXAMPLE:

10 POKE 785,0

20 POKE 786,192

30 A = USR(X)

40 PRINT A

141 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

VAL

Variables and

Operators

Place starting location ($C000 = 49152:$00 = 0:$C0 = 192) of machine

language routine in location 785 and 786. Line 30 stores the returning

value from the floating point accumulator.

—Return the numeric value of a number string

VAL(X$)

This function converts the string X$ into a number which is the inverse

operation of STR$. The string is examined from the left-most character to

the right, for as many characters as are in recognizable number format. If

the Commodore 64C finds illegal characters, only the portion of the string

up to that point is converted. Acceptable numeric characters are:

0-9 spaces + , — Preceding a number or following E only

decimal point E Exponential location

(one only) (one only)

If no numeric characters are present, VAL returns a 0.

EXAMPLE:

10 A$ = "120"

20 B$ = "365"

30 PRINT VAL (A$)

RUN

485

+ VAL (B$)

142

Variables

The Commodore 64C uses three types of variables in BASIC. These are:

normal numeric, integer numeric and string (alphanumeric).

Normal NUMERIC VARIABLES, also called floating point variables, can

have any value from **superscript** — 10 to **superscript** + 10, with

up to nine digits of accuracy. When a number becomes larger than nine

digits can show, as in + 10 or - 10, the computer displays it in scientific

notation form, with the number normalized to one digit and eight decimal

places, followed by the letter E and the power of 10 by which the number is

multiplied. For example, the number 12345678901 is displayed as

1.23456789E+10.

INTEGER VARIABLES can be used when the number is from + 32767

to - 32768, and with no fractional portion. An integer variable is a num

ber like 5, 10 or — 100. Integers take up less space than floating point varia
bles, particularly when used in an array.

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

u

u

u

u

u

LJ

U

U

U

u

u

u

u

LJ

U

LJ

U

LJ

U

U

U

U

U

U

U

LJ

p

p

p

1 I

P

I—"
I \

«™I
r i

p

p

p

p

p

p

p

p

p

p

P

I !

n

H

143

STRING VARIABLES are those used for character data, which may con

tain numbers, letters and any other characters the Commodore 64C can

display. An example of a string variable is "Commodore 64C."

VARIABLE NAMES may consist of a single letter, a letter followed by a

number or two letters. Variable names may be longer than two characters,

but only the first two are significant. An integer is specified by using the

percent sign (%) after the variable name. String variables have a dollar sign

($) after their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ

Integer Variable Names: A%, A5%, BZ%

String Variable Names: A$, A5$, BZ$

ARRAYS are lists of variables with the same name, using an extra number

(or numbers) to specify an element of the array. Arrays are defined using

the DIM statement and may be floating point, integer or string variable

arrays. The array variable name is followed by a set of parentheses () enclos

ing the number of the variable in the list.

EXAMPLE:

A(7),BZ%(11),A$(87)

Arrays can have more than one dimension. A two-dimensional array may

be viewed as having rows and columns, with the first number identifying

the row and the second number identifying the column (as if specifying a

certain grid on a map).

EXAMPLE:

A(7,2), BZ%(2,3,4), Z$(3,2)

RESERVED VARIABLE NAMES are names reserved for use by the

Commodore 64C, and may not be used for another purpose. These are the

variables ST, TI and TI$. Words such as TO and IF or any other names

that contain keywords, such as RUN, NEW or LOAD, cannot be used.

ST is a status variable for input and output (except normal screen/

keyboard operations). The value of ST depends on the results of the last

I/O operation. In general, if the value of ST is 0, then the operation was

successful.

TI and TI$ are variables that relate to the real time clock built into the

Commodore 64C. The system clock is updated every l/60th of a second. It

starts at 0 when the Commodore 64C is turned on, and is reset only by

changing the value of TI$. The variable TI gives the current value of the

CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

u

clock in l/60th of a second. TI$ is a string that reads the value of the real .

time clock as a 24-hour clock. The first two characters of TI$ contain the I—1
hour, the third and fourth characters are minutes and the fifth and sixth (.

characters are seconds. This variable can be set to any value (so long as all '—'
characters are numbers) and will be updated automatically as a 24-hour .

clock. LJ

EXAMPLE: IJ

TI$ = "101530" Sets the clock to 10:15 and 30 seconds (AM). { ,
I i

The value of the clock is lost when the Commodore 64C is turned off. It

starts at zero when the Commodore 64C is turned on, and is reset to zero j j

when the value of the clock exceeds 235959 (23 hours, 59 minutes and 59

seconds). l j

u
Operators

The BASIC operators include ARITHMETIC, RELATIONAL and LJ
LOGICAL operators. The ARITHMETIC operators include the following

signs: I—i

+ addition I j

— subtraction

* multiplication j I

/ division

t raising to a power (exponentiation) i)

On a line containing more than one operator, there is a set order in which

operations always occur. If several operators are used together, the con> I—I

puter assigns priorities as follows: First, exponentiation, then multiplication

and division, and last, addition and subtraction. If two operators have the I—I
same priority, then calculations are performed in order from left to right. If

these operations are to occur in a different order, Commodore 64C BASIC I—i
allows giving a calculation a higher priority by placing parentheses around

it. Operations enclosed in parentheses will be calculated before any other 1—1
operation. Make sure the equations have the same number of left and right

parentheses, or a SYNTAX ERROR message is posted when the program I I
is run.

u

u

u

u
144 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

n

n

n

C 1

(I

n

n

i s

n

n

There are also operators for equalities and inequalities, called RELA

TIONAL operators. Arithmetic operators always take priority over rela

tional operators.

= is equal to

< is less than

> is greater than

< = or = < is less than or equal to

) = or =) is greater than or equal to

<> or >< is not equal to

Finally, there are three LOGICAL operators, with lower priority than

both arithmetic and relational operators:

AND

OR

NOT

These are most often used to join multiple formulas in IF ... THEN state

ments. When they are used with arithmetic operators, they are evaluated

last (i.e., after + and —). If the relationship stated in the expression is

true, the result is assigned an integer value of — 1. If false, a value of 0 is

assigned.

EXAMPLES:

IFA = BANDC = DTHEN 100

IF A = B OR C = D THEN 100

A = 5:B = 4:PRINTA = B

A = 5:B = 4:PRINTA>3

PRINT 123 AND 15:PRINT 5

OR 7

Requires both A= B and

C = D to be true.

Allows either A = B or

C = D to be true.

Displays a value of 0.

Displays a value of — 1.

Displays 11 and 7.

n

n

n

n

n

n

145 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

Reserved Words and

Symbols

Reserved System Words (Keywords)

This section lists the words and symbols used to make up the BASIC 2.0

language. These words and symbols cannot be used within a program as

other than a component of the BASIC language. The only exception is

that they may be used within quotes in a PRINT statement.

ABS

AND

ASC

ATN

CHR$

CLOSE

CLR

CMD

CONT

COS

DATA

DEF

DIM

END

EXP

FN

FOR

FRE

GET

GET#

GOSUB

GO

GOTO

IF

INPUT

INPUT#

INT

LEFT$

LEN

LET

LIST

LOAD

LOG

MID$

NEW

NEXT

NOT

ON

OPEN

OR

PEEK

POKE

POS

PRINT

PRINT/

READ

REM

RESTORE

RETURN

RIGHT$

RND

RUN

SAVE

SGN

SIN

SPC

SQR

ST

STEP

STOP

PRINT

PRINT/

STR$

SYS

TAB

TAN

THEN

TI

TIME

TIME$

TI$

TO

USR

VAL

VERIFY

WAIT

u

u

u

u

M

1 i
I)

1 1

I i

t j
t i

1 {

})
L-J

U

U

LJ

i i
< i

LJ

U

U

U

U

U

i i

LJ

LJ

LJ

146 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

LJ

n

n

H

n

n

n

I \

Reserved System Symbols

The following characters are reserved system symbols.

Symbol

$

Plus sign movement

Minus sign

movement

Asterisk

Slash

Up arrow

Blank space

Equal sign

Less than

Greater than

Comma

Period

Semicolon

Colon

Quotation mark

Question mark

Left parenthesis

Right parenthesis

Percent

Number

Dollar sign

Pi

Use(s)

Arithmetic addition; string concatenation

Arithmetic subtraction; negative number; unary

minus

Arithmetic multiplication

Arithmetic division

Arithmetic exponentiation

Separate keywords and variable names

Value assignment; relationship testing

Relationship testing

Relationship testing

Format output in variable lists; command/

statement function parameters

Decimal point in floating point constants

Format output in variable lists

Separate multiple BASIC statements on a

program line

Enclose string constants

Abbreviation for the keyword PRINT

Expression evaluation and functions

Expression evaluation and functions

Declare a variable name as integer

Precede the logical file number in input/output

statements

Declare a variable name as a string

Declare the numeric constant 3.14159265

n

f i

n

n

n

n

n

147 CHAPTER 6-BASIC 2.0 ENCYCLOPEDIA

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

n

n

n APPENDICES

n

H

n

n

r-i

n

n

n

APPENDIX A - BASIC 2.0 ERROR MESSAGES

APPENDIX B - CONNECTORS/PORTS FOR PERIPHERAL

EQUIPMENT

APPENDIX C - SCREEN DISPLAY CODES

APPENDIX D - ASCH AND CHR$ CODES

APPENDIX E - SCREEN AND COLOR MEMORY MAPS

APPENDIX F - DERIVED TRIGONOMETRIC FUNCTIONS

APPENDIX G -MEMORY MAP

APPENDIX H - BASIC 2.0 ABBREVIATIONS

APPENDIX I - SPRITE REGISTER MAP

APPENDIX J - SOUND AND MUSIC

n

n

n

n

r—t

n

/ s

n

n

n

149 APPENDICES

u

u

u

u

LJ

U

U

u

u

u

u

u

u

u

u

u

u

LJ

LJ

U

LJ

LJ

U

u

u

LJ

u

n

n

n

n

n

<—-i

I \

n

PI

n

n

n

APPENDIX A

BASIC 2.0 ERROR

MESSAGES

n

ERROR MESSAGES

MESSAGE

BAD DATA

BAD

SUBSCRIPT

BREAK

CANT

CONTINUE

DEVICE NOT

PRESENT

DIVISION BY

ZERO

EXTRA

IGNORED

FILE NOT

FOUND

FILE NOT OPEN

FILE OPEN

What the Problem Is

String data was received from an

open file, but the program was

expecting numeric data.

The program was trying to

reference an element of an array

whose number is outside the range

specified in the DIM statement.

Program execution was stopped

because you hit the STOP key.

The CONT command will not

work, either because the program

was never RUN, there has been an

error, or a line has been edited.

The required I/O device not

available for an OPEN, CLOSE,

CMD, PRINT #, INPUT #, or

GET#.

Division by zero is a mathematical

oddity and not allowed.

Too many items of data were

typed in response to an INPUT

statement. Only the first few items

were accepted.

No file with that name exists.

The file specified in a CLOSE,

CMD, PRINT #, INPUT #, or

GET #, must first be OPENed.

An attempt was made to open a

file using the number of an

already open file.

What to Do

Make sure data was saved with a

separator between each item.

Verify you have dimensioned the

array properly. In direct mode,

have the 64C print the value of the

subscript as a clue.

Use the CONT command

to proceed or reRUN the

program.

You probably made a correction;

reRUN the program.

Verify the peripheral you are

calling for is on and proper OPEN

statement is used.

Command the 64C to print the

suspect variables to determine

which one became a zero.

Check your punctuation.

Verify you have the correct tape

or disk and you spelled the name

correctly; note especially spacing

and upper-case characters.

Open file. Verify you used proper

file number.

Close file first or use new file

number.

FORMULA TOO

COMPLEX

The string expression being

evaluated should be split into at

least two parts for the system to

work with, or a formula has too

many parentheses.

Use smaller strings. Reduce the

number of parentheses.

ILLEGAL Occurs when you try to access a

DEVICE device illegally (e.g., LOADING

NUMBER from keyboard, screen or RS-

232C).

Use correct device number.

151 APPENDIX A-BASIC 2.0 ERROR MESSAGES

152

MESSAGE

ILLEGAL

DIRECT

ILLEGAL

QUANTITY

LOAD

MISSING FILE

NAME

NEXT

WITHOUT FOR

NOT INPUT

FILE

NOT OUTPUT

FILE

OUT OF DATA

OUT OF

MEMORY

OVERFLOW

REDIM'D

ARRAY

What the Problem Is

The INPUT statement can only

be used within a program, and not

in direct mode.

A number used as the argument

of a function or statement is out of

the allowable range.

There is a problem with the

program on disk.

LOADs and SAVEs from the

serial port (e.g., the disk) require a

file name to be supplied.

This is caused by either

incorrectly nesting loops or

having a variable name in a

NEXT statement that doesn't

correspond with one in a FOR

statement.

An attempt was made to INPUT

or GET data from a file which

specified to be for output only.

An attempt was made to PRINT

data to a file which was specified

as input only.

A READ statement was executed

but there is no data left unREAD

in a DATA statement.

There is no more RAM available

for program or variables. This may

also occur when too many FOR

loops have been nested, or when

there are too many GOSUBs in

effect.

The result of a computation is

larger than the largest number

allowed, which is

1.70141884E + 38.

An array may only be

DIMensioned once. If an array

variable is used before that array is

DIM'd, an automatic DIM

operation is performed on that

array setting the number of

elements to ten, and any

subsequent DIMs will cause this

error.

APPENDIX A-BASIC 2.0 ERROR MESSAGES

What to Do

Use another command.

Use direct mode to determine the

value of the variables at the

moment. Correct negative

subscripts. Verify dimensions are

large enough.

Reload.

Key in the file name.

Verify the loop has a starting and

ending point. Do not jump into

the middle of a loop.

Correct the OPEN statement's

secondary address.

Correct the OPEN statement's

secondary address.

Verify data was not missed; add

more data if necessary.

Reduce the quantity ofGOSUBs

and FOR NEXT loops operating

at once. Reuse loop variables

where possible to prevent too

many unfinished loops. Clean up

the memory using FRE(X)

function.

Check your computation steps.

If the array was identified early it

was automatically dimensioned to

10. Locate the DIM statement

before using the

variable.

Lj

LJ

U

LJ

l ,:

(i

LJ

LJ

i i

U

u

LJ

U

t |

u

LJ

u

LJ

LJ

LJ

LJ

U

LJ

LJ

i !

u

u

u

u

n

n

n

n

n

n

n

n

n

n

n

n

I \

/ s

n

MESSAGE What the Problem Is What to Do

REDO FROM Character data was typed in

START during an INPUT statement when

numeric data was expected. Just

re-type the entry so that it is

correct, and the program will

continue by itself.

Provide the proper INPUT

response.

RETURN

WITHOUT

GOSUB

STRING TOO

LONG

?SYNTAX

ERROR

TYPE

MISMATCH

UNDEF'D

FUNCTION

UNDEF'D

STATEMENT

VERIFY

A return statement was

encountered, and no GOSUB

command has been issued.

A string can contain up to 255

characters.

A statement is unrecognizable by

the Commodore 64C. A missing

or extra parenthesis, misspelled

keywords, etc.

This error occurs when a number

is used in place of a string, or vice-

versa.

A user defined function was

referenced, but it has never been

defined using the DEFFN

statement.

An attempt was made to GOTO

or GOSUB or RUN a line

number that doesn't exist.

The program on tape or disk does

not match the program currently

in memory.

Verify the program ends before

coming to subroutines tagged at

program's end.

Keep strings to 255 characters and

any single INPUT to 80

characters.

Look for spelling or grammar

errors or words not in the BASIC

vocabulary.

Verify $ signs were typed where

they belong.

Define the function with DEF

within the program.

Make sure line numbers exist.

Save the program again, under

another name.

NOTE: A common error is to type a 41-character line, not hit

and type a second line as if it were a new line,

will then treat both lines as one. To find this type of error,

list your program and continue hitting Kii'JL'LJlg^ . Watch the cursor

jump to the beginning of each instruction line. A skipped line means it

was tagged onto the line above it. Retype these lines.

n 153 APPENDIX A-BASIC 2.0 ERROR MESSAGES

u

u

u

u

u

u

u

u

L)

LJ

u

u

u

u

LJ

LJ

u

u

u

u

LJ

U

LJ

U

LJ

U

U

n

n

n

n

n

n

n

n

H

n

I t

H

n

r—)
{_ \

n

n

n

f >

/ i

n

n

APPENDIX B

CONNECTORS/

PORTS FOR

PERIPHERAL

EQUIPMENT

155

COMMODORE CONNECTIONS FOR PERIPHERALS

CO (2) CO

1. Power Socket

2. Power Switch

3. Control Ports

4. Expansion Port

5. Channel Selector

6. RF (TV) Connector

7. Video Port

8. Serial Port

9. Cassette Port

10. User Port

APPENDIX B-CONNECTORS/PORTS FOR PERIPHERAL EQUIPMENT

Side Panel

Connections

1. Power Socket—The free end of the cable from the power supply is

attached here.

2. Power Switch—Turns on power from the transformer.

3. Control Ports—There are two Control ports, numbered 1 and 2. Each

Control port can accept a joystick or game controller paddle. A light

pen or mouse can be plugged only into port 1, the port closest to the

front of the computer. Use the ports as instructed with the software.

Control Port 1

Pin

1

2

3

4

5

6

7

8

9

Type

JOYAO

JOYA1

JOYA2

JOYA3

POT AY

BUTTON A/IP

+ 5V

GND

POT AX

Note

MAX. 50mA
(front view of port)

Control Port 2

Pin

1

2

3

4

5

6

7

8

9

Type

JOYBO

JOYB1

JOYB2

JOYB3

POT BY

BUTTON B

+ 5V

GND

POT BX

Note

AAAX. 50mA

156 APPENDIX B-CONNECTORS/PORTS FOR PERIPHERAL EQUIPMENT

LJ

U

U

LJ

LJ

U

U

u

LJ

U

LJ

LJ

U

LJ

U

u

LJ

LJ

U

LJ

LJ

U

LJ

LJ

U

u

LJ

n

n

n

r-i

n

H

n

Rear Connections

H

I i

n

n

4. Expansion Port—This rectangular slot is a parallel port that accepts

program or game cartridges as well as special interfaces.

Cartridge Expansion Slot

Pin

12

13

14

15

16

17

18

19

20

21

22

Pin

N

P

R

S

T

U

V

w

X

Y

z

Type

BA

DMA

07

D6

D5

D4

D3

D2

D1

00

GND

Typt

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

GND

Pin

1

2

3

4

5

6

7

8

9

10

11

Pin

A

B

C

D

E

F

H

J

K

I

M

Typt

GND

+5V

+5V

IRQ

R/W

Dot Clock

I/O 1

GAME

EXROM

I/O 2

ROML

Typt

GND

ROMH

RESET

NMI

S 02

A15

A14

A13

A12

All

A10

22 21 20101S 17 16151413 12 1110 0 S 7 • S 4 3 2 1

ZV XWVUTSRPNMLKJHFEDCIA

(view of port while facing the rear of the 64C)

5. Channel Selector—Use this switch to select which TV channel

(L = channel 3, H = channel 4) the computer's picture will be dis

played on when using a television instead of a monitor.

6. RF Connector—This connector supplies both picture and sound to

your television set.

/ I

157 APPENDIX B-CONNECTORS/PORTS FOR PERIPHERAL EQUIPMENT

7. Video Port—This DIN connector supplies direct audio and composite

video signals. These can be connected to the Commodore monitor or

used with separate components.

(view of port while facing the rear of the 64C)

Pin

1

2

3

4

5

6

7

8

Type

LUM/SYNC

GND

AUDIO OUT

VIDEO OUT

AUDIO IN

COLOR OUT

NC

NC

Note

Luminance/SYNC output

Composite signal output

Chroma signal output

No connection

No connection

LJ

U

LJ

LJ

U

U

LJ

U

LJ

U

U

u

u

u

i I
LJ

158

8. Serial Port—A Commodore serial printer or disk drive can be attached

directly to the Commodore 64C through this port.

Serial I/O

Pin

SERIAL SRQIN

GND

SERIAL ATN IN/OUT

SERIAL CLK IN/OUT

SERIAL DATA IN/OUT

RESET

(view of port

while facing the

rear of the 64C)

APPENDIX B-CONNECTORS/PORTS FOR PERIPHERAL EQUIPMENT

u

u

LJ

u

u

u

LJ

LJ

LJ

LJ

U

n

n

n

I _ \

n

n

n

n

G

n

n

9. Cassette Port—A 1530 Datassette recorder can be attached here to

store programs and information.

Cassette

Pin

A-l

B-2

C-3

D-4

E-5

GND

+5V

CASSEHE

CASSETTE

CASSETTE

CASSEnE

Type

MOTOR

READ

WRITE

SENSE

12 3 4 5 6

A 8 C D E f

(view of port

while facing the

rear of the 64C)

10. User Port—Various interface devices can be attached here, including a
Commodore modem.

User I/O

Pin

1

2

3

4

5

6

7

8

9

10

11

12

Type

GND

+5V

RESET

CNT1

SP1

CNT2

SP2

PC2

SER. ATN IN

9 VAC

9 VAC

GND

now

MAX. 100 mA

AAAX. 100 mA

MAX. 100 mA

Pin

A

B

C

D

E

F

H

J

K

L

M

N

Type

GND

FLAG2

PBO

PB1

PB2

P*3

PB4

P&5

PB6

PB7

PA2

GND

Ma**Iwlt

12 3 U 6 7 8 9 10 1112

ABCDEFHJKLMN

(view of port while facing the rear of the 64C)

n

n

159 APPENDIX B-CONNECTORS/PORTS FOR PERIPHERAL EQUIPMENT

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

U

u

u

u

n

p

n

n

n

n

n

n

n

H

n

APPENDIX C

SCREEN DISPLAY

CODES

161

The following chart lists all of the characters built into the Commodore

screen character sets. It shows which numbers should be POKEd into the

VIC chip (40 column) screen memory (location 1024 to 2023) to get a

desired character on the 40-column screen. (Remember, to set color mem

ory, use locations 55296 to 56295.) Also shown is which character corres

ponds to a number PEEKed from the screen.

Two character sets are available, but only one is available at a time. The sets

are switched by holding down the SHIFT andO (Commodore) keys
simultaneously. The entire screen of characters changes to the selected

character set.

From BASIC, PRINT CHR$(142) will switch to upper-case/graphics mode

and PRINT CHR$(14) will switch to upper/lower-case mode.

Any number on the chart may also be displayed in REVERSE. The

reverse character code may be obtained by adding 128 to the values shown.

8ET1

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

SETS

a

b

c

d

e

f

g

h

i

i

k

I

m

n

0

P

POKE

0

1

2

3

4

5

6

7

B

9

10

11

12

13

14

15

16

8ET1

Q

R

S

T

U

V

w

X

Y

z

£

]

T

!

8ET2

q

r

8

t

U

V

w

X

y

2

■A

■

POKE

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

8ET1

it

#

$

%

&

1

(

)

t

-

1

0

1

2

SET a POKE

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

APPENDIX C-SCREEN DISPLAY CODES

8ET1

3

4

5

6

7

8

9

:

;

<

-

>

?

B

m
B
B

a
□

D
a

SET2

A

B

C

D

E

F

G

H

1

J

K

L

POKE

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

SET1

s

□
n
m
□

H
D
a

O

IS
CD
SI
ffl
E

CD

a

E
H

n

□
□

B

SET 2

M

N

0

P

Q

R

S

T

U

V

w

X

Y

z

9
ES

3

POKE

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

too

101

102

SET 1 SET 2

a

Q

B 0

□

a

a
H
□

CB
B
B
ffl
D

c

LI

n

n

y

□ 0

ED

a
EJ
E
B

POKE

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

128

127

Codes from 128-255 are reversed Images of codes 0-127.

162 APPENDIX C-SCREEN DISPLAY CODES

u

u

u

u

u

u

u

u

u

LJ

u

LJ

U

U

U

U

u

u

u

u

u

u

u

LJ

LJ

u

u

H

n

n

n

n

H

n

n

H

I i

APPENDIX D

ASCII AND CHR$

CODES

/ \

This appendix shows you what characters will appear if you PRINT

CHR$(X), for all possible values of X. It also shows the values obtained by

typing PRINT ASC ("X"), where X is any character that can be displayed.

This is useful in evaluating the character received in a GET statement,

converting upper to lower case and printing character-based commands

(like switch to upper/lower case) that could not be enclosed in quotes.

PRINTS CHR$

0

1

2

3

4

6

7

O.SABLEsHiae

ENABLESHBQ9

10

11

12

^^^^fl 13

BnffllHnHM 1^

15

16

gg 17

KRk 18

■ 19
B 20

21

22

23

24

25

PRINTS

1
m

•

#

$

%

&

•

(

)

•

+

-

.

0

1

2

3

CHR$

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

PRINTS

4

5

6

7

8

9

I

;

<Z

z>

?

@

A

B

C

D

E

F

Q

H

I

J

K

L

M

CMRS

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

PRINTS

N

0

P

Q

R

S

T

U

V

w

X

Y

z

c

)

T

•-

B

®

CD
B

B
□

B

CHR$

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

n

163 APPENDIX D-ASCII AND CHR$ CODES

MINTS

D
a
a

a
a
□

0
□
□
m

□

□
a

O

IS

a
(9
ffl

CM*

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

MINTS

E

m
on
a

CHfl$

124

125

126

127

128

Orange 129

11

«

15

17

f2

f4

f6

(8

ma

iflrti

130

131

132

133

134

135

136

137

138

139

140

D141

|142

143

144

PAINTS CNRS

■

■
■

Brown

Lt. Red

Dk. Gray

Gray

145

146

147

148

149

150

151

152

Li Green 153

Lt. Blue

Lt. Gray

M

am

X
IDD

B

H

n
□

154

155

156

157

158

159

160

161

162

163

164

165

MINTS

■

□
H

B
a
m
a

H
S3
u

a
s

HI
D
c
J
n

CNW

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

164 APPENDIX D-ASCII AND CHR$ CODES

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

u

u

LJ

LJ

u

LJ

u

n

n

n

n

n

n

MINTS

0
y

CMfH

164

165

MINTS

□
B

CNNI

186

187

MINTS

a
a

CHW

186

169

MINTS

B
B

vffffW

190

191

COOES

CODES

CODE

192-223

224-254

255

SAME AS

SAME AS

SAME AS

96-127

100-190

120

n

H

n

n

n

n
165 APPENDIX D-ASC1I AND CHR$ CODES

u

u

u

u

u

LJ

U

u

u

u

u

u

u

u

y

u

u

u

Q

U

U

u

u

u

u

u

n

n

n

n

H

n

i \

H

J t

n

n

APPENDIX E

SCREEN AND

COLOR MEMORY

MAPS

Screen Memory

Map

The following maps display the memory locations used in specifying the

placement and color of characters on the screen. Each map is separately

controlled and consists of 1,000 positions (25 lines of 40 characters each).

The characters displayed on the maps can be controlled directly with the

POKE command. (Remember to POKE the colors to the color map as

well.)

VIC SCREEN MEMORY MAP

COLUMN

0 10 20 30 39

1024-

1064

1104

1144

1184

1224

1264

1304

1344

1384

1424

1464

1504

1544

1584

1624

1664

1704

1744

1784

1824

1864

1904

1944

1984

1063

t
2023

The Screen Map is POKEd with a Screen Display Code value (see

Appendix C). For example:

POKE 1024,13

will display the letter M in the upper-left corner of the screen.

167 APPENDIX E-SCREEN AND COLOR MEMORY MAPS

Color Memory Map VIC COLORMEMORYMAP

COLUMN

20 30

55296-

55336

55376

55416

55456

55496

55536

55576

55616

55656

55696

55736

55776

55816

55856

55896

55936

55976

56016

56056

56096

56136

56176

56216

56256

55335

56295

24

The color RAM appears in this range in I/O space. If the color map is

POKEd with a color value; this changes the character color. For example:

POKE 55296,1

will change the letter M inserted above from light green to white.

Note: Only the lower nybble (4 bits) is used. If you PEEK color RAM, do

this to determine color at location X:

= PEEK(X)andl5

Color Codes

0 Black

White

Red

Cyan

Purple

5 Green

6 Blue

7 Yellow

8 Orange

9 Brown

10 Light Red

11 Dark Gray

12 Medium Gray

13 Light Green

14 Light Blue

15 Light Gray

Border Control Memory 53280

Background Control Memory 53281

U

u

u

u

u

LJ

U

y

u

u

i !
< 1

y

u

u

u

u

u

u

u

u

u

u

LJ

LJ

U

168 APPENDIX E-SCREEN AND COLOR MEMORY MAPS

n

n

n

n

i j

n

n

n

n

/ i

i ;

n

n

n

J ;

n

I \

H

APPENDIX F

DERIVED

TRIGONOMETRIC

FUNCTIONS

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC EQUIVALENT

SEC(X)=1/COS(X)

CSC(X)=1/SIN(X)

COT(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X*X+1))

ARCCOS(X)= -ATN(X/SQR

(-X*X +1)) +tt/2

ARCSEC(X)=ATN(X/SQR(X*X-1))

ARCCSC(X)=ATN(X/SQR(X*X-1))

+ (SGN(X)-1*tt/2

ARCOT(X)=ATN(X)+7t/2

SINH(X)=(EXP(X)-EXP(-X))/2

COSH(X)=(EXP(X)+ EXP(- X))/2

TANH(X)=EXP(-X)/(EXP(x)+EXP

SECH(X)= 2/(EXP(X)+ EXP(- X))

CSCH(X)=2/(EXP(X)- EXP(- X))

COTH(X)=EXP(-X)/(EXP(X)

-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X)=LOG(X+SQR(X*X-1))

ARCTANH(X)=LOG((1 +X)/(1 -X))/2

ARCSECH(X)=LOG((SQR

ARCCSCH(X)=LOG((SGN(X)*SQR

(X*X+1/x)

ARCCOTH(X)= LOG((X+1)/(x-1))/2

169 APPENDIX F-DERIVED TRIGONOMETRIC FUNCTIONS

u

u

u

u

u

LJ

u

u

u

u

Lf

U

U

u

u

u

u

u

u

u

u

LJ

U

u

u

u

n

n

n

n

n

n

n

n

n

n

I \

n

H

n

!_ i

1 I

1 \

n

H

n

n

APPENDIX G

MEMORY MAP

E000

D000

C00O

A000

8000

COMMODORE 64C

MEMORY MAP

Cartridges
FFFF , , FFFF

GAME CARD

I/O. Char ROM

or RAM

RAM (4K)

Application ROM

Card—HI

Application ROM

Card-10

E000

D000

C000

64C

KERNAL

and

EDITOR

I/O and Chars
ROM or RAM

RAM (4K)

BASIC ROM

or RAM (8K)

COMMODORE 64C

MEMORY MAP

4000

Cartridges 64C

0800

0400

0300

0200

0100

0000 ■

BASIC PROGRAM SPACE

VIC (40 Column) TEXT

SCREEN

SYSTEM STACK

171 APPENDIX G-MEMORY MAP

u

u-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

LJ

u

u

u

n

n

n

n

n

n

n

n

n

n

n

H

n

n

n

n

n

APPENDIX H

BASIC 2.0

ABBREVIATIONS

Note: The abbreviations below operate in uppercase/graphics mode. Press

the letter key(s) indicated, then hold down the SHIFT key and press

the letter key following the word SHIFT.

Com
mand

ABS

AND

ASC

ATN

CHR$

CLOSE

CLR

CMD

CONT

COS

DATA

DEF

DIM

END

EXP

FN

FOR

FRE

GET

GET#

GOSUB

GOTO

IF

INPUT

INPUT#

INT

Abbrevi
ation

Looks like

this on
screen

C

C

c

NONE

D

D

E

E

NONE

F

F

G

NONE

GO

G

NONE

NONE

NONE

B

N

S

T

H

O

L

M

O

A

E

I

N

X

O

R

E

S

O

A0

a[¥1

'□

cos

0
E |

FN

n

GET#

G □

IF

INPUT

• 0
INT

Com
mand

Abbrevi
ation

LEFTS

LEN

LET

LIST

LOAD

LOG

AAIDS

NEW

NEXT

NOT

ON

OPEN

OR

PEEK

POKE

POS

PRINT

PRINT#

READ

REM

RESTORE

RETURN

RIGHTS

RND

RUN

SAVE

LE

NONE

L

L

NONE

M

NONE

N

NONE

NONE

P

P

R

NONE

RE

RE

P ggjim o

NONE

R

E

S

T

I

N

U

A

Looks like

this on
screen

LEN

LOG

NEW

ON

OR

pB

POS

REM

RE f%

173 APPENDIX H-BASIC 2.0 ABBREVIATIONS

Com-
mono

SGN

SIN

SPC(

SQR

STATUS

STEP

STOP

STR$

SYS

Abbrevi

ation

seibi

sGSD

sna

ST

stQQ|

s QQ|

st QQQ

G

1

P

Q

E

T

R

Y

Looks like

this on
screen

$D

m

ST

S D

stEI
s [])

Com
mand

TAB(

TAN

THEN

TIME

TIME$

USR

VAL

VERIFY

WAIT

Abbrevi
ation

T ^^^^H

NONE

tEBI

Tl

Tl$

u ^^Q

vEan

vQog

A

H

S

A

E

A

Looks like

this on
screen

T®

TAN

T Q
Tl

Tl$

u@

V®

VB
W®

174 APPENDIX H-BASIC 2.0 ABBREVIATIONS

U

u

u

u

u

u

u

u

u

u

u

LJ

u

LJ

u

u

LJ

U

u

LJ

U

U

LJ

U

LJ

U

U

n

n

n

n

n

n

n

n

n

<—>

n

n

n

n

n

i |

n

n

n

n

n

G

n

APPENDIX I

SPRITE REGISTER
MAP

Register #
Dec Hex

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

16 10

17 11

18 12

19 13

20 14

DB7

S0X7

S0Y7

S1X7

S1Y7

S2X7

S2Y7

S3X7

S3Y7

S4X7

S4Y7

S5X7

S5Y7

S6X7

S6Y7

S7X7

S7Y7

S7X8

RC8

RC7

LPX7

LPY7

DB6 DB5

S6X8

ECM

RC6

S5X8

BMM

RC5

DB4

S4X8

BLNK

RC4

DB3

S3X8

RSEL

RC3

DB2

S2X8

YSCL2

RC2

DB1

S1X8

YSCL1

RC1

DBO

SOXO

SOYO

S1X0

S1Y0

S2X0

S2Y0

S3X0

S3Y0

S4X0

S4Y0

S5X0

S5Y0

S6X0

S6Y0

S7X0

S7Y0

S0X8

YSCLO

RCO

LPXO

LPYO

SPRITE 0 X

Component

SPRITE 0 Y

Component

SPRITE 1 X

SPRITE 1 Y

SPRITE 2 X

SPRITE 2 Y

SPRITE 3 X

SPRITE 3 Y

SPRITE 4 X

SPRITE 4 Y

SPRITE 5 X

SPRITE 5 Y

SPRITE 6 X

SPRITE 6 Y

SPRITE 7 X

Component

SPRITE 7 Y

Component

MSB of X

COORD.

Y SCROLL

MODE

RASTER

LIGHT PEN X

LIGHT PEN Y

175 APPENDIX I-SPRITE REGISTER MAP

n

Register #

Dec Hex

21 15

22 16

23 17

24 18

25 19

26 1A

27 IB

28 1C

29 ID

30 IE

31 IF

DB7

SE7

N.C.

SEXY7

VS13

IRQ

N.C.

BSP7

SCM7

SEXX7

SSC7

SBC7

DB6

N.C.

VS12

N.C.

N.C.

DB5

RST

VS11

N.C.

N.C.

DB4

MCAA

VS10

N.C.

N.C.

DB3

CSEL

CB13

LPIRQ

MLPI

DB2

XSCL2

CB12

ISSC

AAISSC

DB1

XSCL1

CB11

ISBC

MISBC

DBO

SEO

XSCLO

SEXYO

N.C.

RIRQ

AARIRQ

BSPO

SCAAO

SEXXO

SSCO

SBCO

SPRITE

ENABLE

(ON/OFF)

X SCROLL

MODE

SPRITE

EXPAND Y

SCREEN

Character

Memory

Interrupt

Requests

Interrupt

Request

MASKS

Background-

Sprite

PRIORITY

MULTICOLOR

SPRITE

SELECT

SPRITE

EXPAND X

Sprite-Sprite

COLLISION

Sprite-

Background

COLLISION

Register

Dec

32

33

34

35

36

37

38

#

Hex

20

21

22

23

24

25

26

Color

BORDER COLOR

BACKGROUND

COLOR 0

BACKGROUND

COLOR 1

BACKGROUND

COLOR 2

BACKGROUND

COLOR 3

SPRITE

MULTICOLOR 0

SPRITE

MULTICOLOR 1

Register

Dec

39

40

41

42

43

44

45

46

Hex

27

28

29

2A

2B

2C

2D

2E

Color

SPRITE 0 COLOR

SPRITE 1 COLOR

SPRITE 2 COLOR

SPRITE 3 COLOR

SPRITE 4 COLOR

SPRITE 5 COLOR

SPRITE 6 COLOR

SPRITE 7 COLOR

176 APPENDIX I-SPRITE REGISTER MAP

(t

n

h

n

n

n

n

n

n

n

i i

n

n

n

r^
i \

H

m
I .!

n

n

n

n

n

H

n

APPENDIX]

SOUND AND

MUSIC

Music Note Table

Note values are POKEd into two memory locations 54272 and 54273,

also known as registers or switches 0 and 1 respectively.

POKE the value Nl (the HIGH value) into Register 1 (location 54273)

and the value N2 (the LOW value) into Register 0 (location 54272).

The list below covers three octaves of notes for the Bass and Treble Clefs.

For the full list of note values, see the Commodore 64 Programmer's Reference

Guide.

F G A B CD]

(I fTTTTTTTTTTTTT

i'i irrf
Middle

C

TABLE OF NOTE VALUES

NOTE

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

*C

C#

D

D#

E

Nl

6

6

6

7

7

8

8

9

9

10

10

11

12

13

13

14

15

16

17

18

19

20

* MIDDLE C

N2

36

130

228

77

189

50

175

51

191

84

241

152

73

4

201

156

122

101

96

104

128

169

177 APPENDIX J-SOUND AND MUSIC

Sound Control

Settings

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

21

23

24

26

27

29

30

32

34

36

39

41

43

46

227

49

146

8

148

57

245

204

192

208

1

83

200

99

178

Each sound parameter is POKEd into a register of the specialized sound

generating chip. Each register is a memory location (called byte address)

starting with 54272.

Each sound has a characteristic ADSR consisting of the following four

parameters: Attack, Decay, Sustain, Release.

Attack is the rate sound rises to maximum volume. It can vary from a 2-

millisecond cycle to an 8'Second cycle. The corresponding register value is

0tol5.

Decay is the rate sound falls from maximum volume to sustain level.

This varies from a 6-millisecond cycle to 24 seconds, corresponding with 0

to 15.

The values of Attack and Decay are POKEd together into register 5 by a

single number derived by multiplying the ATTACK value by 16 and add-

ing the DECAY value.

Sustain is the amplitude level at which the sound is held, varying from

0% to 100% of maximum level corresponding to register values of 0 to 15.

Release is the rate at which volume falls from the sustain level to zero;

similar in timing to the decay rate.

Sustain and Release are POKEd into register 6 together as one number

derived by multiplying SUSTAIN by 16 and adding the RELEASE value.

Waveform is the shape of the sound wave produced. The waveforms

called Triangle, Sawtooth and Pulse are related to the sound of musical

instruments. Noise is a randomized waveform. Only specific register values

will activate this characteristic of sound.

Pulse is the tonal quality of the Pulse waveform. Thus, whenever register

4 is activated with a 65, a value other than zero must be POKEd into either

register 2 or 3 for the Pulse Rate.

APPENDIX J-SOUND AND MUSIC

u

u

u

LJ

u

u

u

u

u

u

u

u

u

LJ

U

u

u

LJ

U

U

LJ

u

LJ

U

u

u

n

n

H

H

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

H

n

n

n

H

n

Frequency is the vibratory level of sound which distinguishes one note

from another. Concert A is 440 cycles per second. Registers 0 and 1 are

required to define the frequency. 256 times the value in Register 1 plus the

value of Register 0 is the sound generator's oscillator frequency. This is

directly proportional to the sound frequency.

Following is a table of values which can be POKEd into these registers.

The actual memory location is 54272 plus the register number.

Voice 1

0

1

2

3

4

5

6

Register

Voice 2

7

8

9

10

11

12

13

All voices

21

22

23

23

24

Voice 3

14

15

16

17

18

19

20

Description

frequency

frequency

pulse

pulse

Waveform

Attack/Decay

Sustain/Release

Filter-low cutoff

Filter-high cutoff

Resonance

Filter switch/

voice

Volume

Range of Values

0 to 255

0 to 255

0 to 255

0tol5

16,32,64,128

17,33,65,129

0 to 255

0 to 255

0to7

0 to 255

16,32,64,128

or any sum

1,2 or 4

0tol5

See the Commodore 64 Programmer's Reference Guide

for more details on the SID sound chip.

179 APPENDIX J-SOUND AND MUSIC

u

u

u

u

u

U

U

U

u

u

LJ

U

U

u

u

LJ

U.

LJ

U

u

u

u

u

u

u

u

LJ

H

n

n

n

n

H

n

n

n

n

n

n

n

n

n

n

H

n

n

n

n

n

n

n

GLOSSARY

GLOSSARY

181

This glossary provides brief definitions of frequently used computing

terms.

Acoustic Coupler or Acoustic Modem: A device that converts digital

signals to audible tones for transmission over telephone lines. Speed is

limited to about 1,200 baud, or bits per second (bps). Compare

direct-connect modem.

Address: The label or number identifying the register or memory location

where a unit of information is stored.

Alphanumeric: Letters, numbers and special symbols found on the key

board, excluding graphic characters.

ALU: Arithmetic Logic Unit. The part of a Central Processing Unit

(CPU) where binary data is acted upon.

Animation: The use of computer instructions to simulate motion of an

object on the screen through gradual, progressive movements.

Array: A data-storage structure in which a series of related constants or

variables are stored in consecutive memory locations. Each constant

or variable contained in an array is referred to as an element. An

element is accessed using a subscript. See Subscript.

ASCII: Acronym for American Standard Code for Information Inter

change. A seven-bit code used to represent alphanumeric charac

ters. It is useful for such things as sending information from a key

board to the computer, and from one computer to another. See

Character String Code.

Assembler: A program that translates assembly-language instructions

into machine-language instructions.

GLOSSARY

u

u
Assembly Language: A machine-oriented language in which mnemonics

are used to represent each machine-language instruction. Each CPU LJ
has its own specific assembly language. See CPU and machine

language. LJ

Assignment Statement: A BASIC statement that sets a variable, constant I 1
or array element to a specific numeric or string value.

LJ
Asynchronous Transmission: A scheme in which data characters are

sent at random time intervals. Limits phone-line transmission to I I
about 2,400 baud (bps). See Synchronous Transmission.

Attack: The rate at which the volume of a musical note rises from zero to

peak volume. I—I

Background Color: The color of the portion of the screen that the char- LJ
acters are placed upon.

u
BASIC: Acronym for Beginner's All-purpose Symbolic Instruction Code.

LJ
Baud: Serial-data transmission speed. Originally a telegraph term, 300

baud is approximately equal to a transmission speed of 30 bytes or I I
characters per second.

Binary: A base-2 number system. All numbers are represented as a

sequence of zeros and ones. 1 I

Bit: The abbreviation for Binary diglT. A bit is the smallest unit in a I s
computer. Each binary digit can have one of two values, zero or one.

A bit is referred to as enabled or "on" if it equals one. A bit is dis- 1 I
abled or "off* if it equals zero.

u
Bit Control: A means of transmitting serial data in which each bit has a

significant meaning and a single character is surrounded with start Lj

and stop bits.

u
Bit Map Mode: An advanced graphic mode in the Commodore 128 in

which you can control every dot on the screen. 1 I

Border Color: The color of the edges around the screen. 1 I

Branch: To jump to a section of a program and execute it. GOTO and j i

GOSUB are examples of BASIC branch instructions.

u

LJ

IJ
182 GLOSSARY

u

n

n

H

n

H

n

n

n

n

n

n

n

Bus: Parallel or serial lines used to transfer signals between devices. Com

puters are often described by their bus structure.

Bus Network: A system in which all stations or computer devices commu

nicate by using a common distribution channel or bus.

Byte: A group of eight bits that make up the smallest unit of addressable

storage in a computer. Each memory location in the Commodore

64C contains one byte of information. One byte is the unit of storage

needed to represent one character in memory. See Bit.

Carrier Frequency: A constant signal transmitted between communicat

ing devices that is modulated to encode binary information.

Character: Any symbol on the computer keyboard that is printed on the

screen. Characters include numbers, letters, punctuation and

graphic symbols.

Character Memory: The area in the Commodore 64C's memory which

stores the encoded character patterns that are displayed on the

screen.

Character Set: A group of related characters. The Commodore 64C char

acter sets consist of: upper-case letters, lower-case letters and graphic

characters.

Character String Code: The numeric value assigned to represent a Com

modore 64C character in the computer's memory.

Chip: A miniature electronic circuit that performs a computer operation

such as graphics, sound and input/output.

Clock: The timing circuit for a microprocessor.

Clocking: A technique used to synchronize a sending and a receiving

data-communications device that is modulated to encode binary

information.

Coaxial Cable: A transmission medium, usually employed in local

networks.

Collision Detection: Determination of occurrence of collision between

two or more sprites, or between sprites and data.

183 GLOSSARY

u

u
Color Memory: The area in the Commodore 64C's memory that controls

the color of each location in screen memory. I—I

Command: A BASIC instruction used in direct mode to perform an lJ
action. See Direct Mode.

LJ
Compiler: A program that translates a high-level language, such as

BASIC, into machine language. I i

Composite Monitor: A device used to provide a 40-column video display. i >

Computer: An electronic, digital device that stores and processes LJ
information.

u
Condition: Expression(s) between the words IF and THEN, evaluated as

either true or false in an IF... THEN statement. The condition IF LJ
. . . THEN statement gives the computer the ability to make

decisions. i *

Coordinate: A single point on a grid having vertical (Y) and horizontal «i I
(X) values.

LJ
Counter: A variable used to keep track of the number of times an event

has occurred in a program. I 1

CPU: Acronym for Central Processing Unit. The part of the computer i I

containing the circuits that control and perform the execution of

computer instructions. 1 j

Crunch: To minimize the amount of computer memory used to store a s !
program.

LJ
Cursor: The flashing square that marks the current location on the

screen. [j

Data: Numbers, letters or symbols that are input into the computer to be I I
processed.

u
Data Base: A large amount of data stored in a well-organized manner. A

data-base management system is a program that allows access to the ' \

information.

i i

Data Rate or Data Transfer Rate: The speed at which data is sent to a

receiving computer—given in baud, or bits per second (bps). l j

LJ

184 GLOSSARY ^

LJ

p

p

p

p

p

p

p

p

p

p

p

Datassette: A Commodore device used to store programs and data files

sequentially on tape.

Debug: To correct errors in a program.

Decay: The rate at which the volume of a musical note decreases from its

peak value to a mid-range volume called the sustain level. See

Sustain.

Decrement: To decrease an index variable or counter by a specific value.

Delay Loop: An empty FOR ... NEXT loop that slows the execution of a

program.

Digital: Of or relating to the technology of computers and data communi

cations where all information is encoded as bits of Is or Os that repre

sent on or off states.

Dimension: The property of an array that specifies the direction along an

axis in which the array elements are stored. For example, a two-

dimensional array has an X-axis for rows and a Y-axis for columns.

See Array.

Direct Connect Modem: A device that converts digital signals from a

computer into electronic impulses for transmission over telephone

lines. Contrast with Acoustic Coupler.

Direct Mode: The mode of operation that executes BASIC commands

immediately after the RETURN key is pressed. Also called Immedi

ate Mode. See Command.

Disable: To turn off a bit, byte or specific operation of the computer.

Disk Drive: A random access, mass-storage device that saves and loads

files to and from a floppy diskette.

Disk Operating System: Program used to transfer information to and

from a disk. Often referred to as a DOS.

Duration: The length of time a musical note is played.

Electronic Mail or E-Mail: A communications service for computer users

where textual messages are sent to a central computer, or electronic

"mail box," and later retrieved by the addressee.

P

H
185 GLOSSARY

u

u

Enable: To turn on a bit, byte or specific operation of the computer. < ,

Envelope Generator: Portion of the Commodore 64C that produces spe- i i

cific waveforms (sawtooth, triangle, pulse width and noise) for musi- *—'

cal notes. See Waveform. t ,

EPROM: A PROM that can be erased by the user, usually by exposing it t ,

to ultraviolet light. See PROM. ^

Error Checking or Error Detection: Software routines that identify, and

often correct, erroneous data.
u

Execute: To perform the specified instructions in a command or program < }

statement. '—'

Expression: A combination of constants, variables or array elements acted '—!

upon by logical, mathematical or relational operators that return a { }

numeric value. '—'

t j

File: A program or collection of data treated as a unit and stored on disk *—'

or tape. , ,

Lj

Firmware: Computer instructions stored in ROM, as in a game cartridge. t }
I i

Frequency: The number of sound waves per second of a tone. The fre- ^ l

quency corresponds to the pitch of the audible tone. i—i

Full-Duplex Mode: Allows two computers to transmit and receive data at '—'
the same time. s ;

Function: A predefined operation that returns a single value. ^ ,
i i

Function Keys: The four keys on the far right of the Commodore 64C ^ }

keyboard. Each key can be programmed to execute a series of instruc- '—•

tions. Since the keys can be SHIFTed, you can create eight different t

sets of instructions. '—'

GCR Format: The abbreviation for Group Code Recording, a method of '—'

storing information on a disk in CP/M mode. v }
i j

Graphics: Visual screen images representing computer data in memory {

(i.e., characters, symbols and pictures). •—'

Graphic Characters: Non-alphanumeric characters on the computer's «—•

keyboard.
I i

186 GLOSSARY

LJ

n

n

n

n

n

l i

n

n

n

n

Grid: A two-dimensional matrix divided into rows and columns. Grids are

used to design sprites and programmable characters.

Half-Duplex Mode: Allows transmission in only one direction at a time;

if one device is sending, the other must simply receive data until it's

time for it to transmit.

Hardware: Physical components in a computer system such as keyboard,

disk drive and printer.

Hexadecimal: Refers to the base-16 number system. Machine language

programs are often written in hexadecimal notation.

Home: The upper-left corner of the screen.

IC: Integrated Circuit. A silicon chip containing an electric circuit made

up of components such as transistors, diodes, resistors and capacitors.

Integrated circuits are smaller, faster and more efficient than the indi

vidual circuits used in older computers.

Increment: To increase an index variable or counter with a specified

value.

Index: The variable counter within a FOR .. .NEXT loop.

Input: Data fed into the computer to be processed. Input sources include

the keyboard, disk drive, Datassette or modem.

Integer: A whole number (i.e., a number containing no fractional part),

such asO, 1, 2, etc.

Interface: The point of meeting between a computer and an external

entity, whether an operator, a peripheral device or a communications

medium. An interface may be physical, involving a connector, or

logical, involving software.

I/O: Input/output. Refers to the process of entering data into the computer,

or transferring data from the computer to a disk drive, printer or

storage medium.

Keyboard: Input component of a computer system.

Kilobyte (K): 1,024 bytes.

H

n
187 GLOSSARY

u

u

Loop: A program segment executed repetitively a specified number of i i

times.

u
Machine Language: The lowest level language the computer understands.

The computer converts all high-level languages, such as BASIC, into [\

machine language before executing any statements. Machine Ian- ' '

guage is written in binary form that a computer can execute directly. j •

Also called machine code or object code.

Matrix: A two-dimensional rectangle with row and column values.

Memory: Storage locations inside the computer. ROM and RAM are two

different types of memory. j i

Memory Location: A specific storage address in the computer. There are t)

65,536 memory locations (0-65535) in the Commodore 64C.

\)

MFM: The abbreviation for Modified Frequency Modulation, a method ' }
of stbring information on disks. There are a number of different i \

MFM formats used for CP/M programs. The Commodore 1571 disk

drive can read and write to many MFM formats. | >

Microprocessor: A CPU that is contained on a single integrated circuit i)

(IC). Microprocessors used in Commodore personal computers

include the 6510, the 8502 and the Z80. vj

Mode: A state of operation. . >

Modem: Acronym for MOdulator/DEModulator. A device that trans- N i

forms digital signals from the computer into electrical impulses for 4—

transmission over telephone lines, and does the reverse for reception. ^ >

Monitor: A display device resembling a television set but with a higher- . ,

resolution (sharper) image on the video screen. —'

Motherboard: In a bus-oriented system, the board that contains the bus —'

lines and edge connectors to accommodate the other boards in the i ,

system. '—'

Multi*Color Character Mode: A graphic mode that allows you to display j /

four different colors within an 8 X 8 character grid. '—'

Multi'Color Bit Map Mode: A graphic mode that allows you to display L^

one of four colors for each pixel within an 8 X 8 character grid. See v ;

Pixel. '—>

u

u
188 GLOSSARY

u

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Multiple*Access Network: A flexible system by which every station can

have access to the network at all times; provisions are made for times

when two computers decide to transmit at the same time.

Null String: An,empty character ("")• A character that is not yet assigned

a character string code.

Octave: One full series of eight notes on the musical scale.

Operating System: A built-in program that controls everything your

computer does.

Operator: A symbol that tells the computer to perform a mathematical,

logical or relational operation on the specified variables, constants or

array elements in the expression. The mathematical operators are -I-,

-, *, / and t . The relational operators are <, =, >, < = , > = and

< >. The logical operators are AND, OR NOT, and XOR.

Order of Operations: Sequence in which computations are performed in

a mathematical expression. Also called Hierarchy of Operations.

Parallel Port: A port used for transmission of data one byte at a time over

multiple wires.

Parity Bit: A 1 or 0 added to a group of bits that identifies the sum of the

bits as odd or even.

Peripheral: Any accessory device attached to the computer such as a disk

drive, printer, modem or joystick.

Pitch: The highness or lowness of a tone that is determined by the fre

quency of the sound wave. See Frequency.

Pixel: Computer term for picture element. Each dot on the screen that

makes up an image is called a pixel. Each character on the screen is

displayed within an 8 X 8 grid of pixels. The entire screen is com

posed of a 320 X 200 pixel grid. In bit-map mode, each pixel corres

ponds to one bit in the computer's memory.

Pointer: A register used to indicate the address of a location in memory.

/ i

n

189 GLOSSARY

u

u

Polling: A communications control method used by some computer/ j i

terminal systems whereby a "master" station asks many devices

attached to a common transmission medium, in turn, whether they < !(i

have information to send. ^

Port: A channel through which data is transferred to and from the CPU. *—'

Printer: Peripheral device that outputs the contents of the computer's '—'

u

u

memory onto a sheet of paper. This paper is referred to as a hard , ,

copy. LJ

Program: A series of instructions that direct the computer to perform a

n

u

specific task. Programs can be stored on diskette or cassette, reside in ^ .

the computer's memory, or be listed on a printer.

Programmable: Capable of being processed with computer instructions.

Program Line: A statement or series of statements preceded by a line

number in a program. The maximum length of a program line on the

Commodore 64C is 80 characters.

PROM: Acronym for Programmable Read Only Memory. A semiconduc- '—l

tor memory whose contents cannot be changed. . ,
I i

Protocol: The rules under which computers exchange information, includ

ing the organization of the units of data to be transferred. LJ

Random Access Memory (RAM): The programmable area of the com- ^—J
puter's memory that can be read from and written to (changed). All s

RAM locations are equally accessible at any time in any order. The *—>

contents ofRAM are erased when the computer is turned off. . f

Random Number: A nine-digit decimal number from 0.000000001 to ,

0.999999999 generated by the RaNDom (RND) function. L->

Read Only Memory (ROM): The permanent portion of the computer's '—'

memory. The contents ofROM locations can be read, but not

changed. The ROM in the Commodore 64C contains the BASIC '—'

language interpreter, character-image patterns and portions of the

operating system. (—1

Register: Any memory location in RAM (usually referenced to an I/O «—>

device or the microprocessor itself). Each register stores one byte.
t I

LJ

LI
190 GLOSSARY

u

n

n

H

n

n

n

n

n

n

n

} I

H

Release: The rate at which the volume of a musical note decreases from

the sustain level to zero.

Remark: Comments used to document a program. Remarks are not exe

cuted by the computer, but are displayed in the program listing.

Resolution: The number of addressable pixels on the screen; determines

the fineness of detail of a displayed image.

RGBI Monitor: Red/Green/Blue/Intensity. A high-resolution display

device necessary to produce an 80-column screen format.

Ribbon Cable: A group of attached parallel wires.

RS-232: A recommended standard for electronic and mechanical specifi

cations of serial transmission ports. The Commodore 64C parallel

user port can be treated as a serial port if accessed through software,

sometimes with the addition of an interface device.

Screen: Video display unit which can be either a television or video

monitor.

Screen Code: The number assigned to represent a character in screen

memory. When you type a key on the keyboard, the screen code for

that character is entered into screen memory automatically. You can

also display a character by storing its screen code directly into screen

memory with the POKE command.

Screen Memory: The area of the Commodore 64C's memory that con

tains the information displayed on the video screen.

Serial Port: A port used for serial transmission of data; bits are transmit

ted one bit after the other over a single wire.

Serial Transmission: The sending of sequentially ordered data bits.

Software: Computer programs (sets of instructions) stored on disk, tape or

cartridge that can be loaded into random access memory. Software,

in essence, tells the computer what to do.

Sound Interface Device (SID): The sound synthesizer chip responsible
for all the audio features of the Commodore 64C. See the Commo

dore 64 Programmer's Reference Guide for chip specifications.

H
191 GLOSSARY

u

u

Source Code: A non-executable program written in a high-level language. < .

A compiler or assembler must translate the source code into an

object code (machine language) that the computer can understand. j ^

Sprite: A programmable, movable, high-resolution graphic image. Also , .

called a Movable Object Block (MOB). U

Standard Character Mode: The mode the Commodore 64C operates in '—■
when you turn it on and when you write programs. , j

{ »

Start Bit: A bit or group of bits that identifies the beginning of a data

word.

Sustain: The midranged volume of a musical note.

LJ

Statement: A BASIC instruction contained in a program line. (—

Stop Bit: A bit or group of bits that identifies the end of a data word and '—*
defines the space between data words. t ,

String: An alphanumeric character or series of characters surrounded by ^ ,

quotation marks. (—*

Subroutine: An independent program segment separate from the main '—J
program that performs a specific task. Subroutines are called from j

the main program with the GOSUB statement and must end with a '—*
RETURN statement. , (

I—i

Subscript: A variable or constant that refers to a specific element in an

array by its position within the array. '—'

u

Synchronous Transmission: Data communications using a synchroniz- <—>

ing, or clocking signal between sending and receiving devices. ,
I i

Syntax: The grammatical rules of a programming language. ,

Tone: An audible sound of specific pitch, amplitude and waveform. ,

Transparent: Describes a computer operation that does not require user

intervention. <—1

Variable: A unit of storage representing a changing string or numeric *—'

value. Variable names can be any length, but only the first two char

acters are stored by the Commodore 64C. The first character must i—j
be a letter.

u

LJ
192 GLOSSARY

LJ

n

n

n

n

n

n

n

i i

n

n

n

Video Interface Controller (VIC): The chip responsible for the 40-

column graphics features of the Commodore 64C. See the Commo

dore 64 Programmer's Reference Guide for chip specifications.

Voice: A sound-producing component inside the SID chip. There are

three voices within the SID chip so the Commodore 64C can pro

duce three different sounds simultaneously. Each voice consists of a

tone oscillator/waveform generator, an envelope generator and an

amplitude modulator.

Waveform: A graphic representation of the shape of a sound wave. The

waveform determines some of the physical characteristics of the

sound.

Word: Number of bits treated as a single unit by the CPU. In an eight-bit

machine, the word length is eight bits.

n

/ i

n

n

n

n

n

n

n

n

193 GLOSSARY

u

u

u

u

u

u

u

LJ

U

U

u

u

u

u

u

LJ

u

u

u

LJ

LJ

U

LJ

LJ

U

U

U

H

n

n

n

n

1 \

n

n

r—>
I ;

I i

n

n

H

i I

n

INDEX

n

rmm\

i I

n

n

H

n

n

Abbreviations-BASIC, 173-174

ABSolute function, 61, 133

Accessories, 5

Addition, 28, 147

ADSR, 178

Animation, 73, 86

Arrays, 52, 143

ASC function, 60, 134, 163-165

ASCII character codes, 163-165

Asterisk key, 29, 147

Attack, 178

ATN function, 134

B
BASIC

abbreviations, 173-174

commands, 111-133

language, 13, 107-147

math functions, 28-30, 133-141

numeric functions, 61, 169

operators, 28-30, 144,147

statements, 111-133

string functions, 61, 140

variables, 31, 142

Bit Map mode, 91-93

c
Cartridge slot, 157

Cassette tape recorder, 159

Channel selector, 157

Character Display mode, 159

CHR$ codes, 67, 163-165

CHR$ function, 60, 134

CLR statement, 113

CLR/HOME key, 19

Clock, 143-144

CLOSE statement, 35, 113

CMD, 114

Colon, 44

Color

code display, 67

CHR$ codes, 67

keys, 23

memory map, 72

screen and border registers, 68

screen codes, 69

Comma, 21

Commodore key, 19

Connections, 135-159

constants, 30

CONT command, 62, 114

ConTRoLkey, 18

COSine function, 169

CuRSoR keys, 16,23

D
DATA statement, 50, 128

Decay, 104

DEFine statement, 115

Delay loop, 70

DELetekey, 16

DIMension statement, 54, 115

Direct mode, 13

Disk commands, 37

Disk Directory, 37

Disk Programs, 34-37

Division, 29

Displaying Graphics characters, 20

Dollar sign, 37

Duration, 99

Editing programs, 27-28

END statement, 43, 116

Error messages, 20, 131

EXPonent function, 135

Extended background color, 91-92

F
File, 124

FN function, 135

FOR ... NEXT statement, 44-46,

116

Formatting disks, 34-35

FRE function, 135

Frequency, 179

Function keys, 19

G
Game controls and ports, 156

GET statement, 48-49, 117

GET# statement, 118

n

n

195 INDEX

J

GOSUB statement, 56-57, 118

GOTO statement, 25-26, 119

Graphic keys, 20

Graphic modes, 91-93

Music programs, 101-104

Musical notes, 101, 177

Musical scale, 99, 177

N

High resolution mode, 91-93

HOME key, 19

Hyperbolic functions, 169

I

IF... THEN statement, 43-44, 119

INPUT statement, 47-49, 120

INPUT#, 121

INSerT key, 16-18

INTeger function, 59, 136

Integer variable, 142

J
Joystick ports, 156

Joysticks, 156

K
Keyboard, 14-20

L

LEFT$ function, 136

LENgth function, 136

LET statement, 121

LIST command, 25, 122

LOAD command, 36

LOADing cassette software, 36

LOADing disk software, 36

LOGarithm function, 137

Loops, 44-46,116

M

Machine language, 131, 141

Memory, 57-58, 70-72

Memory maps, 71, 72, 167, 168, 171

MID$ function, 137

Modem, 5, 6

Multicolors, 23, 67-70, 91-93

Multiplication, 29, 144, 147

NEW command, 26, 123

NEXT statement, 44-46, 116

Noise, 178

Null string, 49, 191

Numeric variables, 31

o
ON statement, 56, 124

OPEN statement, 35, 124-125

Operators, 144

arithmetic, 28, 144

logical, 145

order of, 29

relational, 145

P

Paddle, 156

Parentheses, 30, 147

PEEK function, 57, 137

Peripherals, 155-159

Pi, 138

Pixel, 77

POKE statement, 57, 58-125

Ports, 155-159

POS function, 138

PRINT statement, 21-23, 126

Printers, 6

PRINT#, 127

Program, 24

line numbering, 24

mode, 13

music, 101

viewing, 25

Programmable keys, 19

Programmer's Reference Guide, 6

Pulse, 178

Q
Question mark, 21

Quotation marks, 20, 22

Quote mode, 20, 22, 23

196 INDEX

u

u

u

u

u

LJ

LJ

U

U

LJ

U

U

LJ

LJ

U

LJ

U

U

U

LJ

U

u

LJ

LJ

U

I (
< >

LJ

n

n

n

n

n

n

n

n

n

n

i i

i >

n

n

n

n

n

J i

R

RAM, 171

RaNDom function, 60, 139

Random numbers, 60, 139

READ statement, 50-51, 128

Registers, 78, 100, 177, 179

Release, 178

REMark statement, 128

Reserved variables, 143

RESTORE key, 18

RESTORE statement, 52

RETURN key, 14

RETURN statement, 56

RIGHT$ function, 138

ROM, 171

RUN command, 24

RUN/STOP key, 18

SAVE command, 35, 130

Saving programs (tape), 35

Saving programs (disk), 35

Screen codes, 71, 161, 162

Screen memory map, 71, 167

Semicolon, 21

serial port, 158

SGN function, 139

Shift key, 15

Shift lock key, 16

SID chip, 5,99-106,177-179

SINe function, 139

Slash key, 29, 147

Software programs,

loading, 36

saving, 34-35

Sound effects, 104, 106

Sound registers, 100, 177-179

SPC function, 140

Sprite control, 80, 91

Sprite programming, 88

Sprite Register Map, 175

Sprite viewing area, 87, 88

Sprites, 77, 91

SQuaRe function, 61, 140

STEP, 46, 116

STOP statement, 62, 131

STOP key, 18

Storing Programs, 34, 35

String variables, 32, 61

Strings, 32, 61

STR$ function, 61, 140

Subroutine, 56

Subscripts, 53

Subtraction, 28, 147

Sustain, 178

Syntax, 111,113

Syntax error, 153

SYS statement, 131

T

TAB function, 141

TAN function, 141

THEN, 43,119"

TI variable, 143-144

TI$ variable, 143-144

u

Up arrow key, 29

Upper case/graphic mode, 14

Upper/lower case mode, 14

User port, 159

USR function, 141

VALue function, 61, 142

Variables, 142

array, 52

dimensions, 54

floatingpoint, 142

integer, 142

numeric, 31

string ($), 32

VERIFY command, 37, 132

VIC chip, 77

Voice, 99-104, 177-179

w
WAIT command, 132

Waveform, 198

H

n

197 INDEX

T
TAB function,

TAN function,

Telecommunications,

THEN,

TI variable,

TI$ variable,

Trackball,

Troubleshooting chart,

u
Up arrow key,

Upper case/graphic mode,

Upper/Lower Case mode,

User groups,

User port,

USR function,

V
VALue function,

Variables

array,

dimensions,

floating point,

integer,

numeric,

string ($),

VERIFY command,

VIC chip,

Voice,

w
WAIT command,

Waveform,

u

u

u

u

u

u

u

u

u

LJ

u

u

u

LJ

LJ

U

U

u

u

u

LJ

u

198 INDEX

u

LJ

n

— NOTES

n

n

n

n

n

n

n

n

n

n

n

n

o

n

n

n

n

n

n

n

n

n

n

n

n

u

NOTES ^
y

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

u

u

u

u

u

u

n

n NOTES

n

a

n

n

n

n

o

n

n

n

n

n

a

n

n

n

n

n

n

n

n

n

n

n

n

u

NOTES U

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

u

u

LJ

u

u

u

LJ

n

H NOTES

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

a

H

n

D

n

n

n

n

n

n

NOTES-

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

u

u

u

u

u

u

n

G

n

n

n

n

n

n

i i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n.

GET FREESOFTWARE

WHEN YOU SUBSCRBE TO
COMMODOREMAGAZINE.
You'll find unbiased in-depth reviews of the best new software

and hardware... discover how to make your own programs...

learn practical home and business applications. And much,

much more.

Plus, in every issue, you'll receive free programs—

both games and practical applications—you can type in

and use right away!

And, if you act now we'll send you a FREE "Best of Loadstar"

disk.. .full of great games, practical programs, plus utilities,

graphics, music, tutorials and much more!

Subscribe or renew your subscription now at the low rate of $26.95 and we'll

send you a full year of CommodoreMagazine (12 issues, total) PLUS your FREE

"Best of Loadstar" disk ($6.95 value).

To order call toll free 800-345-8112. In Pennsylvania call 800-662-2444.

Yes,
C64SG

j I want to save 10% offthe

basic subscription rate of$30.00for

Commodore Magazine and receive the

"Best ofLoadstar" Disk, FREE.

Name.

Address _

City . State. .Zip.

METHOD OF PAYMENT

□ Enclosed is my check or money order for $26.95

(Make payable to COMMODORE PUBLICATIONS)

□ Bill me

□ Charge my VISA or MasterCard Card number

■ i i i i i i i i i i i i i rrn

Signature

Expiration Date

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 251 HOLMES, PA

POSTAGE WILL BE PAID BY ADDRESSEE

Commodore Publications
Magazine Subscription Department

Box 651

Holmes, PA 19043

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

LJ

u

u

u

u

u

u

u

u

u

u

u

u

LJ

u

u

u

u

Lf

U

U

u

u

u

u

u

u

u

u

LJ

U

u

u

u

n

-

-

-

-

COMMODORE^

Commodore Business Machines, Inc.

1200 Wilson Drive-West Chester, PA 19380

Commodore Business Machines, Ltd.

327974-04 3470 Pharmacy Avenue • Agincourt, Ontario. M1W 3G3 Printed in USA

