=/ _ @ =) S &l =] S R
R T A e 2, T 0 e A A T R R e

SHOCIOININO D

300000033003 00333323233003303323233309%

) '

COMMODORE ‘B’ Series
ADVANCED BUSINESS
COMPUTERS

User's Guide

User’'s Guide Statement

"This equipment generates and uses radio frequency energy. If it is not properly
installed and used in strict accordance with the manufacturer’s instructions, this
equipment may interfere with radio and television reception. This machine has
been tested and found to comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of FCC rules. which are
designed to provide reasonable protection against such interference in a residen-
tial installation. If you suspect interference. you can test this equipment by turn-
ing it offand on. If vou determine that there is interference with radio or television
reception. try one or more of the following measures to correct it:

— reorient the receiving antenna

— move the computer away from the receiver

— change the relative positions of the computer equipment and the receiver

— plug the computer into a different outlet so that the computer and the
receiver are on different branch circuits.

If necessary. consult vour Commodore dealer or an experienced radio /television
technician for additional suggestions. You may also wish to consult the following
booklet. which was prepared by the Federal Communications Commission:

“"How to Identify and Resolve Radio-TV Interference Problems™ This booklet is
available from the U.S. Government Printing Office. Washington. D.C. 20402. Stock
No. 004-000-00345-4."

First Edition— 1983
First Printing— 1983

Copyright © 1983 by Commodore Business
Machines. Inc.
All rights reserved.

This manual is copyrighted and contains proprietary
information. No part of this publication may be
reproduced. stored in a retrieval system. or
transmitted in any form or by any means. electronic.
mechanical. photocopying. recording. or otherwise,
without the prior written permission of
COMMODORE BUSINESS MACHINES. Inc.

Printed in the United States of America

2 USER'S GUIDE STATEMENT

8686 (

(

TABLE
OF
CONTENTS

1. INTRODUCTIONcx i wons s wmsias sins sravats aiois siaiars e5ern aisiots s 7
¢ Featires DVEIVIEW wuu suww sus sivs g0y svews v o o saasss s & 8
® OrganizationoftheManual.......................... 10
o How to'Use THISGUIAR o vw sarvs san v s s sow snoms s 11
2. SETTINGUPTHECOMPUTERccoivinnnnn. 13
e Unpackingand Packingoooiiiiian. 14
e Installationoiiiiiii e 14
e Hookup and Configurations Available 18
e Expanding Your System with Peripherals............. 19
e Additional MiCrOProCeSSOISvvvvuriinrnnnnrennns 20
e Trouble Shootingo, 22
3. USINGTHEKEYBOARDcciiitiiiinnnnnnnnan 25
® FormatKeyscuiiiieriniiiiinaiiieianenn, 26
e EditingKeys ... 27
® Programmable FunctionKeysc.oonne 28
e CalculatorPadKeysc.ccoiiiiiiiiiiiiniiinn, 32

TABLE OF CONTENTS 3

5. USINGYOURDISKDRIVEcoouuvennnn... 41
® Connecting Your Disk Drive 42
® Loading Prepackaged Programs from Diskette 43
® Preparing New Diskettes: HEADER Command 4
¢ Loading Your Own Programs from Diskette 45
® Saving Programs on Diskette 46
®* Copying Diskettes: BACKUP Command 47
6. EXTENDED BASIC 4.0+
COMMANDS AND STATEMENTS 49
Conventionsin Formats 50
Using BASIC Commangds .« oo 5585 565 Lommen s aieimn sce 52
® Using BASIC Statements 65
APPENDICESt 97
A. BASIC 40FUNCTIONSoviiieieaaeae 98
B. BASIC 40ABBREVIATIONSovvvvevnnnnnnn.., 111
C. SCREEN DISPLAY CODESccovuuiuineinii, 114
L CHESCODES) .. v < o vavs s 58050 0055 £5% 5 85 sems s » 116
E. SCREENMEMORYMAPc.cooiiiiiiiii .. 118
F. MEMORYMAP. ..., 119
G. MATHEMATICAL FUNCTIONS TABLE 120
H. PINOUTS FOR INPUT /OUTPUT DEVICES 121
L. CONVERTING FROM STANDARD BASIC
TOEXTENDED BASIC 4.0.......ooovuinn, 124
J. ERRORMESSAGEScoovuuiiiii 126
K. NON-ERRORMESSAGESc.ooioiiii . 133
L. 6581 (SID) CHIP REGISTERMAP 134
4 TABLE OF CONTENTS

M. PRINTERCOMMANDS s 135
N. USING THE RS-232C CHANNEL ...t 137
0. MACHINE LANGUAGE MONITORcoonnn 141
P. BIBLIOGRAPHY 145
Q. USER'S CLUBS. MAGAZINES. AND
THE COMMODORE INFORMATION NETWORK........ 148
INDEZX. o a5 s s oes st sosine sisme s soim siminss siaie % vorsy 3 #0808 480 153

TABLE OF CONTENTS 5

CHAPTER 1

INTRODUCTION

® Fealures overview
® Organization of the Manual
® How (o Use This Guide

You can design the business computer system that best meets

your needs by choosing one of the Advanced Business Computers

in Commodore’s ‘B’ Series:

® The B-128-80 ® The CBM-128-80
® The B-256-80 ® The CBM-256-80
® The BX-128-80 ® The CBMX-128-80
® The BX-256-80 ® The CBMX-256-80

The computer is only one part of your business computer
system. Your system should also include a high capacity dual
floppy or hard disk drive . and a dot matrix or letter-quality prin-
ter. Networking and telecommunications accessories help extend

vour system to include multiple computers. even in different sites.
Your Commodore business dealer can tell vou more about these
peripherals.

Software is also important to your business system—word

processing. electronic spread sheets. accounting. record keep-
ing—these are just a few of the many practical functions good
business software can provide. expecially if it's easy-to-use and

‘friendly” like the business programs licensed and developed by

Commodore for your 'B" Series computer system.

FEATURES OVERVIEW

The computers in the ‘B Series have many common features.

and you can add enhancements to the lower end systems to give
them the extra capabilities that are standard on our more sophis-
ticated systems. The following features are common to all ‘B’
Series compulters:

8

® 80 column by 25 line screen display

¢ Separate calculator keypad for quick computations
® 10 predefined function keys

® Total of 20 easy-to-define function keys

® Extended BASIC version 4.0+

® Expandable memory

® [EEE-488 bus

® RS-232C interface

® 6509 microprocessor

® Direct audio output

NTRODUCTION

=

—

—

These features distinguish the models:

e Amount of memory (128K or 256K)

e Monochrome tilt and swivel monitor built in (CBM models)

e Dual microprocessors. with the 16-bit 8088 microprocessor
built in (indicated by the X in the name)

CHAPTER 1

The following table shows which features are offered by various
‘B Series computers:

Model Memory Standard Optional Built-in
(RAM) Microprocessors Microprocessors Monitor
B-128-80 128 6509 780, 8088 NO
B-256-80 256 6509 Z80, 8088 NO
BX-128-80 128 6509, 8088 280" NO
BX-256-80 256 6509, 8088 280" NO
CBM-128-80 128 6509 280, 8088 YES
CBM-256-80 256 6509 780, 8088 YES
CBMX-128-80 128 6509, 8088 280" YES
CBMX-256-80 256 6509, 8088 280" YES
All of these models will not necessarily be offered for sale in your area

NOTE: Your Commodore dealer can install a Z80 microprocessor in a
machine that has the 8088 microprocessor built in. Only one at a time of

these two microprocessors can be present in your 'B’ system.

You can customize vour system by adding the variety of easy-to-
install peripherals and additional microprocessors that are avail-
able for the ‘B’ Series computers. These peripherals include
Commodore’s Floppy Disk Drives and Hard Disk Drives. a variety
of printers for letter-quality printing or fast printing. modems for
telecomputing. monochrome monitors for the B and BX ma-
chines. and other devices that make vour computer the ideal bus-
iness assistant.

The microprocessors you can add to your computer include
Commodore's Z80 microprocessor. which gives you access (o
CP /M* software. If vour ‘B’ Series computer doesn't have the 8088
microprocessor built-in. you can add it yourself to gain access to
MS-DOS**. CP/M-86. and Concurrent CP/M-86*** software.

* CP/M is a registered trademark of Digital Research, Inc.

" MS-DOS is @ trademark of Microsoft, Inc.

** CP/M-86 ond Concurrent CP/M-86 are trademarks of Digital
Research, Inc

INTRODUCTION 9

Chapter 4. Software. explains the capabilities of these useful
microprocessors.

The new ‘B’ Series computers give vou state-of-the-art computer
capabilities at an affordable price. Commodore is committed to
providing you with hardware and software that meet vour needs.
See your Commodore dealer for more information about Commo-
dore’s peripherals and software packages.

ORGANIZATION OF THE MANUAL

This User’'s Guide introduces vou to the ‘B’ Series of Advanced
Business Computers. The manual begins by showing vou how to
set up vour computer and by describing optional equipment that
expands your computer’s uses. The next chapters explain how to
use the keyboard. and how to load and save programs. You'll also
find descriptions of BASIC commands. statements. and functions.
and some information about software available for the ‘B’ Series.

Chapter 1

INTRODUCTION describes Commodore’s ‘B’ Series of Advanced
Business Computers and presents the different features of each
machine. The introduction also shows how (o use this manual.

Chapter 2

SETTING UP THE COMPUTER contains the instructions vou
need to unpack. connect. and install your 'B” Series computer. The
CBM / CBMX systems, which include built-in monitors. and the
B /BX systems. which do not include built-in monitors. are des-
cribed in separate sections. Chapter 2 also describes the variety of
configurations and optional equipment (peripherals) available for
vour computer. This chapter also contains a few trouble shooting
and diagnostic procedures that can help you make adjustments to
solve minor problems that may appear after vou've installed vour
computer system.

10 INTRODUCTION

Chapter 3

USING THE KEYBOARD describes how to use the keys on your
computer's keyboard. Special keys. including the programmable
function keys. are explained in detail.

Chapter 4

SOFTWARE describes how you can enhance your computer sys-
tem with software systems that give you access to a variety of
business. scientific. and educational software.

Chapter 5

USING YOUR DISK DRIVE tells you how to load and save both
prepackaged soltware and your own custom designed programs.
This chapter also explains how to prepare new disks and how to
copy old ones. For additional details on the Disk Operating Sys-
tems. consult the manuals that come with vour Floppy Disk Drive
or the fast and powerful Commodore Hard Disk Drive.

Chapter 6

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS are
briefly explained. Complete formats and examples are provided.

APPENDICES include quick reference information about the
major technical features that programmers and many users need.
For an additional in-depth presentation of technical material.
consult the Advanced Business Computers Programmer's Refer-
ence Guide.

HOW TO USE THIS GUIDE:

Special Considerations

1. Asyou look at the edge of each page you will notice that there
is what we call an “inset tab.” The “inset tab” shows you
exactly where the seven chapters are located. Note that the
beginning of each chapter is a solid blue page. Both of these
features make it easy for you to get to the information you
need quickly.

INTRODUCTION 11

CHAPTER 1

2.

12

To help you unpack. hook up. set up. and begin operating
your computer. Chapter 2 contains many detailed illustra-
tions that can make the installation of your equipment. with
all its options. a quick and easy task,

. When we discuss a specific key. or want you to press a par

ticular key. we show you a visual cue (Example: IEEIEN
means press the RETURN key.)

. Please note that this manual is not designed to teach the

computer language BASIC (the primary language used in all
Commodore computers). If you want to learn BASIC language
programming techniques. or any of the other languages
available for use with your computer(s): we suggest that yvou
consult the “Bibliography” (Appendix P) for books that
teach programming.

INTRODUCTION

CHAPTER

SETTING UP
THE COMPUTER

e Unpacking and Packing

e [nstallation

e Hookup and Configurations Available

e Expanding Your System with Peripherals
e Additional Microprocessors

e Trouble Shooting

Unpacking/Packing

B and BX Computers

The B and BX systems are shipped in one part. The package also
contains a video cable (5-pin DIN or RCA phone-type cable) and an
AC power cord (120 volts).

CBM and CBMX Computer
The CBM and CBMX systems are shipped in two parts:
1. Base and video display screen.
2. Keyboard with attached telephone-type cable that plugs into

the base.

The package also contains an AC power cable (120 volts).

NOTE: Never try to remove or disconnect the video display screen from
the computer base. If the screen must be removed, take the entire unit
back to your dealer.

Installation

CBM and CBMX Models

1. Make sure that your computer is turned off before starting
installation. The CBM and CBMX computers have their
power switch located in the back of the machine on the left
hand side.

2. Plug the 25 PIN CABLE attached to the keyboard into the
connector on the lower right hand side of the base /video
display unit. Make sure that the Commodore Logo KR is
Jacing up.

3. Plug the 3-prong AC power cord into the power cord jack
located in the back of the base /video display unit. on the left
hand side. The power cord fits only one way.

4. Plug the 3-prong AC power cord into a standard wall outlet.

14 SETTING UP THE COMPUTER

2080 (

(

o/l

e

Fig.2-1 ‘B’ Series CBM and CBMX (Front view)

SETTING UP THE COMPUTER

15

CHAPTER 2

Fig. 2-2. ‘B’ Series B and BX (Front view)

16 SETTING UP THE COMPUTER

BRIGHTNESS

CONTROL

u []
AUDIO

OUTPUT

POWER CORD POWER
-\ ‘/\ SWITCH

\
IEEE RS232C

CARTRIDGE
sLot PORT
POWER CORD
CARTRIDGE
RESET SLOT / POWER SWITCH
\ /

SES——

\

g/

RS232C VIDEO

! I 1

AUDIO IEEE
OUTPUT PORT

Fig. 2-3 'B’ Series (Rear view)

SETTING UP THE COMPUTER 17

CHAPTER 2

B and BX Models

Connect the computer to your monochrome monitor as des-
cribed below. See Fig. 2-3 to locate each input and output on the
back of yvour B or BX computer.

1. Make sure that your computer and your monitor are turned
off before starting installation. The B and BX computers have
their power switch located in the back of the machine on the
left hand side.

2. Attach the video cable to the computer at the connector
labeled audio /video (5 pin DIN). Line up the pins with the
corresponding holes and push the connector in. The cable
will only go in one way.

3. Attach the two RCA phone-type jacks to your video monitor
inputs. See the monitor's manual for instructions.

4. Plug the computer AC power cord into a 120 volt. 60 Hz AC
outlet.

Your B or BX computer should now be connected properly. No
additional connections are required to use the computer with
your monitor.

NOTE: Save the packing materials that your computer came in. Then, to
pack your equipment back in the box for storage or transit, reverse the
procedures described above.

Expanding Your System with Peripherals

Printers

A full range of printers is available. designed to match any need.
Low cost. high speed dot matrix units such as Commodore’s 8023
Tractor Printer are ideal for most applications. Where letter qual-
ity printing is required. the Commodore “daisy-wheel” printer
produces the best results.

18 SETTING UP THE COMPUTER

—

—

Monitor

B and Bx only
Keyboard
o™
External o
disk drive w
] 1 S F
IEEE-488 8 Cartridge Program o
Interface SERIES slot cartridges g
Printers —I_- (&)
RS-232
Port
[|
U
Printer Modem oppfif:ilrlion

Fig. 2-4 Hook-up and Configuration Available. Accessories and peripherals connect to the expansion ports

as shown.

External Disk Drive Units

Single or dual floppy disk units. with storage capacity from
170.000 characters to over 2 million characters. can be easily
attached to store programs and data. Commodore’s dual floppy disk
drives include the 8050 and the 4040. Hard disk units with
capacities of 5 and 7.5 million characters can also be used with
equal ease. See your Commodore dealer for a complete list of
available disk drives.

RS-232C Port

Your computer comes equipped with an industry-standard RS-
232C serial interface. This interface provides vou with access to a
wide variety of peripherals. such as printers. terminals. modems,
and data collection equipment.

The RS-232C interface is implemented using the fully pro-
grammable 6551 Asynchronous Communications Interface Adap-

SETTING UP THE COMPUTER 19

ter. With the 6551. you can program vour RS-232C interface (o
match exactly the requirements of the device you're connecting to
it.

The Extended BASIC 4.0 interpreter includes file level software
support for the RS-232C interface channel. Open the RS-232C
channel as you would any other file and access it with standard
BASIC input /output statements. The RS-232C Port is device #2.
See Appendix N.

CBM IEEE Port

Your advanced computer supports the full range of Commodore
CBM peripherals via the built-in IEEE-488 interface. Most disk
units are “intelligent.” meaning they have their own microproces-
sor and memory. You can connect up to five disk drives at one
time to your computer by “daisy chaining” them together through
the IEEE-488 connector port.

NOTE: The device numbers that are used with the IEEE port must be within the
range of 4 to 31 inclusive.

Additional Microprocessors and
Operating Systems:

Special Options to Increase Your Computer's Power

Each computer in the 'B" Series uses the 6509 microprocessor.
which was developed by Commodore’'s MOS Technology subsi-
diary. Commodore has designed the ‘B’ Series computers to be
easily expanded to dual processor computers with the addition of
the 16-bit 8088 microprocessor or the Z-80 microprocessor.
These additional microprocessors give you access to hundreds of
software packages that are independently developed for use with
the 8088 and Z-80 microprocessors.

In some ‘B’ series models. the 8088 microprocessor is built-in;

20 SETTING UP THE COMPUTER

in the others. it can be added. In addition. you can add the Z-80
microprocessor to any ‘B’ Series computer.

The 168-Bit 8088 microprocessor:
MS-DOS and Concurrent CP/M-88

The 8088 microprocessor gives you access (o two operating sys-
tems that let you increase the software applications available for
your ‘B’ Series computer. These operating systems. MS-DOS and
Concurrent CP/M-86. offer a variety of business and personal
software programs.

The 8088 microprocessor is built into four models of the B’
Series of advanced business computers. The presence of the built-
in 8088 microprocessor is indicated by the X in the ‘B Series
model name (the BX-128-80. the BX-256-80. the CBMX-128-80.
and the CBMX-256-80). These machines are dual processor
computers.

You can upgrade the B-128-80. the B-256-80. the CBM-128-80.
and the CBM-256-80 by adding the 8088 microprocessor. If you
have one of these systems. your Commodore dealer can install the
8088 microprocessor for you.

The Z-80 Microprocessor and CP/M®
Operating System

The Z-80 microprocessor and CP /M Operating System give you
access to a variety of CP /M software applications that you can use
on vour ‘B’ Series computer. These applications include:

e widely used business programs, such as CALCSTAR

® word processing programs. such as WORDSTAR

® database programs. such as INFOSTAR

® mailing list programs. such as MAILMERGE

e many other specialized software programs. such as high level
computer language compilers

The CP /M Operating System User's Guide that comes with the
Z-80 and CP /M package explains how to operate this system.

The Z-80 microprocessor can be installed by your Commodore
dealer. If your ‘B’ Series computer already has an 8088 micropro-

SETTING UP THE COMPUTER 21

CHAPTER 2

cessor, your Commodore dealer can remove the 8088 and replace
it with the Z-80 microprocessor. This installation is reversible:
yvour Commodore dealer can switch the Z-80 and 8088 micropro-
cessors repeatedly. This is possible for every ‘B’ Series model.
including those with the 8088 microprocessor built in.

PROBLEM

CAUSE

TROUBLE SHOOTING

SOLUTION

1. Power indicator

light not on

Computer not on

Power cable not
pugged in

Power supply not
plugged in

Bad fuse in
Computer

Make sure power
switch is in the
On position
Check power
socket for loose or
disconnected
power cable
Check connection
with wall outlet
Take system to
authorized dealer
for replacement of
fuse

2. No picture on
video screen

[ncorrect hookup

Video cable not
plugged in

Computer

connects to video
and audio inputs
on video monitor.

Check monitor

output cable
connection

3. Random
pattern on
monitor with
cartridge in
place

Cartridge not
inserted properly

Turn power off
and then reinstert
the cartridge

22

SETTING UP THE COMPUTER

—

—

TROUBLE SHOOTING (cont'd.)

PROBLEM CAUSE SOLUTION
4. Picture with Monitor volume Lower the
excess audio setting is up too monitor's audio
background high volume control
noise
5. Picture is OK Monitor volume Adjust the audio

but vou don’t
have sound

setting is down too
low

Auxillary output
not properly
connected

volume control

CHAPTER 2

Connect the
sound jack to the
auxillary input on
vour amplifier
and then turn the
amp. selector
switch to the
“Aux.” position

6. The picture is
too dark or too
light

Brightness level is
set incorrectly

Adjust the
brightness
control level on
your monitor or
built-in video
display screen

Characters on
the screen are
hard to read

~

Contrast ratio
between characters
and background is
too greal or too
small

Adjust the
contrast control
on vour monitor.
or built-in Video
Display Screen

SETTING UP THE COMPUTER 23

3333230330330 23330338323330023308323881

CHAPTER 3

USING THE
KEYBOARD

® Format Kevs

e Editing Kevs

® Programmable Function Keys
e Calculator Pad Kevs

The ‘B’ Series 96-key business-style keyboard makes a variety of
business applications easy to use. The keyboard resembles a
typewriter kevboard. but the computer has additional keys that
control special functions. You should be familiar with these spe-
cial keys before vou begin using the computer.

Format Keys

RSN and ERE

The and IEILEGH keys tell the computer to look at what
you've keyed in and put that information into memory. These
keys. which have identical functions. also move the cursor to the
next line.

When you key in a calculation in direct mode (i.e.. not in a

program). the solution is immediately displaved when you press
either [GENLELE or IEEE

NORM/GRAPH

This key lets you switch between the standard character set on
your keyboard and the GRAPHICS mode. When you enter the gra-
phics mode by pressing the key. your keyboard's
operations undergo the following changes:

® The keys print uppercase letters only. The key is not
used.

® The key lets you print the graphics characters on the
fronts of the keys.

Press the M ed DEGIIEGYGNE key to return to the standard
character set of upper and lower case letters. You can't use the
graphics characters in this NORMAL mode.

This key works like the key on aregular typewriter: it lets
vou print uppercase letters or the top characters on double char-
acter keys. When you are in the NORMAL mode. the standard
alphabet of lower and uppercase characters is displayed. and the
key gets the uppercase characters.

26 USING THE KEYBOARD

When vou are in the GRAPHICS mode. however. the alphabet
appears in only uppercase. and the key gets the graphics
characters on the fronts of the kevs.

The ERIEM key also lets you use an extra sel of ten function
keys. The Eillaled function key is ten more than the function key
vou press. For example. [EZIEM and &l activate function key 13.

OFF/RVS

This key lets you display the REVERSED image of all the char-
acters available on the keyboard. In other words. characters
appear on the screen as black on green rather than the usual
green on black (vour monitor’s characters may be a color other
than green). When you press the key. all characters you
key in appear in reverse. Press the key and the
key to turn off the reverse image display.

Editing Keys

The editing keys let you correct errors easily. move information
around on the screen. and place the cursor wherever you want it.

Cursor Control Keys: Hl Il B &

The cursor is the small rectangle that marks your place on the
screen. The four cursor control keys let you move the cursor wher-
ever you want it.

The arrows on the keys show how they move the cursor:

Bl Moves the cursor DOWN.
B Moves the cursor UP.
Moves the cursor LEFT.
B Moves the cursor RIGHT.

The cursor has a repeat feature that lets it continue to move as
long as you hold down the cursor key.

The IEEMete key moves the cursor a space to the left. erasing
the previous character you typed. If vou're in the middle of a line.

USING THE KEYBOARD 27

CHAPTER 3

the character to the left is deleted and the characters to the right
automatically move together to close up the space.

You can insert characters in the middle of text by pressing both
the IEiEM and the IIEEEM keys. To use the insert function. use
the cursor control keys to move the cursor (o the character im-
mediately to the right of where you want (o insert. Hold down the
EZE# and kevs until there is enough space to add miss-
ing information.

Like the cursor control keys. the key has a repeat fea-
ture that lets it continue to work as long as you hold down the key.

CLR/HOME

EEITE moves. the cursor back to the upper left corner of the
screen. This is called the HOME position.
You can move the cursor to HOME and clear the screen by

pressing and [HGGEIE

Programmable Function Keys

(F1lF2 F3JFafFsJF6] F7]Fa]FofFio]

The ten keys on the upper left side of the keyboard are function
keys that let vou perform a variety of repetitive tasks such as
clearing the screen. printing a message, or pausing a program.
The keys through are predefined:

Key 1, "print” Key 6, “dclose”
Key 2, “list” Key7, “copy”
Key 3, "dload” + chr$ (34) Key 8, “directory”
Key 4, "dsave’ + chr$ (34) Key 9, “scratch”
Key 5, "dopen” Key 10, “chr$("

You can display this list by keying in: KEY

In addition. there are ten more function keys available that are
not predefined. Keys 11 through 20 are not marked on the key
board. but you can use them by pressing the IS kev while vou

28 USING THE KEYBOARD

press one of the function keys. The [Eill@#Med function Key is ten
more than the number on the key you press. For example.
and @ activate function key 15.

You can redefine these function keys with a simple procedure:
just follow this format:

KEY n, [|definition| ... +[]definition]]| ["]

1. You must enter the word KEY.

9. nis the number for the function key you want to program (1
through 20). Be sure to include the comma.

3. definition defines what you want the function key to do.

Here are some examples:

KEY 9, CHRS (142) Automatically switches to graphics
mode.

KEY 15, "CHR$(14) +

CHR$(13) + CHR$(77)" Automatically switches to nor.sial mode.
advances to next line. and prints M.

KEY 1,

“OPEN4 ,4:CMD4:LIST:

CLOSE4" + CHR$(13) Lists program on printer.

Function keys retain vour definition only during the current
session at the computer. Once you turn the computer off. your
definitions are lost for all function keys. unless vou save these
definitions in a program.

The key lets you print the graphics characters on the
fronts of the non-alphabetic keys (e.g.. number keys. punctuation
keys. etc.) These graphics keys are displayed in either GRAPHICS
or NORMAL mode. The alphabetic keys’ graphics are displayed by
using the key in GRAPHICS mode only.

The key lets you use special control functions. To use a
control function. hold down the ISIM key while you press the key
that gives you the function you want. Here are some examples:

USING THE KEYBOARD 29

CHAPTER 3

SCREEN

EDITOR

FUNCTION CODE MEANING

Set CTRL-B Set the bottom right boundary for the screen

Window window to the current cursor position

Bottom

Delete CTRL-D Delete the current line and scroll up all lines

Line below the current line to replace the current line.
Blank lines are inserted at the bottom of the
screen. The cursor is positioned at the beginning
of the new line.

Bell CTRL-GToggle the end of line bell. IF the bell rings, then
the end of line bell is enabled. If not, the end of
line bell is disabled.

Insert CTRL-I Insert a blank line after the line on which the

Line cursor is currently positioned. Place the cursor at
the beginning of the blank line.

Erase To CTRL-P Delete all text from the cursor position to the end

Line End of the line. Replace all deleted text with blank
characters (spaces).

Erase CTRL-QDelete all text from the beginning of the line to

From Line the cursor position. Replace all deleted text with

Start blank characters (spaces).

Set CTRL-T Set the top left boundary for the screen win-

Window dow to the current cursor position.

Top

ESC

This key is used in conjunction with any of the 26 alphabet keys
EN through [l to perform a variety of special functions. To per-
form any function listed below. press the key. release it, and
press the appropriate letter.

LA
"I

Automatic insert
Set bottom right corner of window

30 USING THE KEYBOARD

Cancel automatic insert
Delete line

Nonflashing cursor
Flashing cursor

Enable (turn on) bell
Disable (turn off) bell
Insert line

Move to the start of the line
Move to the end of the line
Enable scrolling

Disable scrolling

Normal screen

EEEEERERREER

EEE Cancel insert. quote and reverse modes
| P | Erase to the start of the line
Il Erase to the end of the line
(R | Reverse screen
B Solid cursor
y T Set the top left corner of window
Underscore cursor
B2 Scrollup
KB Scroll down
Ed Cancel escape sequence
Normal character set
Alternate character set (not currently implemented)

Quote and Insert Modes

When you press the quote key () once. you enter QUOTE MODE:
when you press the IREN key. you enter INSERT MODE. In these
modes. control and cursor keys are displayed rather than exe-
cuted. Quote mode is cancelled when you press a second quote.
Insert mode ends when the number of characters you entered
equals the number of spaces vou opened up with the INS key. For
example. if you press the EREH key six times. insert mode ends
when you have entered six characters.

In addition. if your machine is in quote or insert mode. the
key cancels the mode and returns you to normal (text) mode.
When vou are in a mode other than normal mode. you must press
the key twice to use any of the key special functions.

* Cancel these two functions by pressing the mkey twice

USING THE KEYBOARD 31

CHAPTER 3

RUN/STOP

You can halt a BASIC program while it is running by pressing
the Il keyv. You can also use this key (o halt a print out.

The IGIIA key lets vou automatically load the first program on a
diskette (drive 0). Just press the EZEE and EEIE keys (o use this
function.

The K&l key stops a program from cont inuing to scroll down the
screen. This key is used most often when you are listing a pro-
gram and vou want Lo stop to view part of the program. Press any
key to restart the scrolling.

Calculator Pad Keys

The calculator keypad on the right side of your keyboard offers all
the standard calculator functions. This keypad lets vou perform
calculations quickly and conveniently. The keypad is not affected
when you enter special modes such as the graphics mode.

Question Mark

The question mark is the standard abbreviation for the PRINT
statement in BASIC. To execute a calculation on a computer. vou
must precede the calculation with a PRINT statement or a ques-
tion mark. The question mark had been placed on the keypad for
your convenience.

For example:

¢23.45* .06
1.407

=
(0§ . J§ 00

ERE

The number keys are arranged like a regular calculator. We have
included a double zero @ for vour convenience. All numbers

32 USING THE KEYBOARD

o’

located at the top of the main keyboard section can be used in
calculations when your computer is operating in the unshifted.
normal mode. The keypad numbers work in any mode.

B Decimal Point

This serves as a decimal point for floating point computations.
The period. located at the bottom right section of the main key-
board. also works as a decimal point in the unshifted. normal
mode.

Slash Key

The slash key operates as a symbol for division. The slash key
located at the bottom right section of the main keyboard also
works as a division symbol. but only when you are in the
unshifted. normal mode.

Bl Minus Sign

This key operates as a symbol for subtraction. It also operates as
the unary minus symbol. which is the minus sign preceding nega-
tive numbers. The minus sign key located at the top right section
of the main keyboard also works as the symbol for subtraction
and unary minus in the unshifted. normal mode.

Clear/Entry

This key resembles the Clear Entry key found on most calcula-
tors. Use this key to eliminate the last number entered. &3l clears
the last number of a computation line. back to the last arithmetic
operator. If the last entry is an arithmetic operator. 3 clears the
operator. If the entry is not numeric. works like the

key.

For example:
10 PRINT 45*96 + 9.8/52 + 31

If you press the key once. the line looks like this:
10 PRINT 4596 + 9.8/52 +

USING THE KEYBOARD 33

CHAPTER 3

Press once more:

10 PRINT 45*96 + 9.8/52
Press twice more:

10 PRINT 45796 + 9.8
Press once more:

10 PRINT 45*96 +
Press five times more:

10 PRIN

Bl Multiplication

This operates as a symbol for multiplication. You can't use the
conventional X because the computer can’t distinguish the let-
ter X from the multiplication sign. You can also use the [l key on
the main keyboard when you are in the unshifted. normal mode.

Plus Sign

This operates as a symbol for addition. It also serves as the
unary plus symbol to represent positive numbers. Unary plus is
automatically assumed by the computer. however. and is not
necessary. You can also use the plus sign kev on the main key-
board when you are in the unshifted. normal mode.

Exponentiation

Use the up arrow (a [Eill@lled 6) to raise a number to a power.
For example;

e12 15
248832

Execution Order In Calculations

The computer performs multiple calculations in a certain order.
Problems are solved from left to right. but within that general

34 USING THE KEYROARD

movement. some types of calculations take precedence over others.
The order of precedence follows these guidelines:

First = unary minus (minus sign for negative num-
bers. not for subtraction)

Second exponentiation. left to right

Third EIEE multiplication and division. left to right

Fourth EM B addition and subtraction. left to right

This means that the computer checks the whole calculation for
negative numbers before doing anything else. Then it looks for
exponents: then it performs all multiplication and division: then it
adds and subtracts. For example:

233 + 11/ 4
35.75

In this example. 11 is divided by 4 and the result is added to 33.
To override the order of precedence. enclose any calculations you
want solved first in parentheses. All parenthetical calculations are
solved before any other calculations. When more than one calcula-
tion is enclosed in parentheses. these calculations are solv ed left
to right. Within parentheses. calculations are solved according to
the order of precedence. If you add parentheses to the previous
example. here’'s what happens:

2(33 + 11)/ 4
1

When you have more than one calculation within parentheses,
you can further control the order by using parentheses within
parentheses. The problem in the innermost parentheses is solved
first. For example:

230 + (15° (2 - 3))
15

USING THE KEYBOARD 35

CHAPTER 3

CHAPTER 4
SOFTWARE

Commodore software available for vour computer will cover a
broad range of business and personal applications. These pro-
grams include word processing packages. database programs. and
avariety of financial applications. such as spread sheet programs
and accounting packages. Easy-to-use software will also be avail-
able for a variety of professional fields including medicine, law.
agriculture, construction. and restaurant management.

Data processing professionals will be able to purchase develop-
mental tools such as assembler software to facilitate machine lang-
uage level programming. A BASIC compiler will also be available.
This program permits compilation of BASIC programs into highly
efficient machine language.

The 18-bit 8088 Microprocessor

The 8088 microprocessor gives you access to two widely-used
operating systems. MS-DOS* and Concurrent CP/M**and to the
variety of software products these systems support.

The 8088 microprocessor is built into the X Series of advanced
business machines (the BX-128-80. BX-256-80, CBMX-128-80.
and the CBMX-256-80). and it can be added to all the other ‘B’
Series models. so the variety of software products the 8088 sup-
ports can be available to you.

The Z-80 Microprocessor and the CP/M Operating System

The Z-80 microprocessor lets you use the popular CP /M Oper-
ating System. which offers many prepackaged software programs.
These programs include widely used business applications. word
processing packages. high level language compilers. and more.
With the CP/M Operating System. you can use many popular
software packages. such as the wordprocessor WORDSTAR. the
address manager MAILMERGE. database programs such as
INFOSTAR. and many other best-seller industry standards.

The Commodore Software Division

The Commodore Software Division is working with software
publishers to develop a high quality library of software products
that will fill vour computing needs. Products not already on the

* MS - DOS is a trademark of Micrasoft, Inc

** Concurrent CP/M is a trademark of Digital Research, Inc

38 SOFTWARE

C

c

market will be available soon from your local Commodore dealer.
Your dealer has more information about Commodore software,
and can keep vyou informed of the arrival of new software
products.

CHAPTER 4

SOFTWARE 39

 ERRE R SR RERRRERARERNREEYRRRERRRRRRRERR

CHAPTER

USING YOUR
DISK DRIVE

e Connecting Your Disk Drive

® Loading Prepackaged Programs from Diskette
® Preparing New Diskettes: HEADER Command
e [oading Your Own Programs from Diskette

® Saving Programs on Diskette

® Copving Diskettes: BACKUP Command

CONNECTING YOUR DISK DRIVE

Your computer supports the full range of Commodore CBM
peripheral devices via the built-in IEEE-488 interface. Most
Commodore disk units are intelligent, which means that they
have their own microprocessor and memory. so they don't take up
memory from your computer.

Your disk drive is easy to install:

1. Attach the PET-to-IEEE cable to the IEEE port on the back of
the disk drive (see diagram).

2. Plug the other end of the cable into the IEEE port on the back
of the computer. The Commaodore logo faces up.

3. Make sure the plugs are securely attached.

If you are also attaching a printer. plug the cables into the disk
drive first. then attach the computer and the printer. You can
connect up to five disk drive units at one time to your computer by
daisy chaining them together. When you attach more than one
cable to the disk drive. just plug the additional cables into the first
cable (see diagram). Make sure the plugs are secure.

T e e T
@ U]
S - _) ’ . ,:

Cw

Fig. 5-1 Daisy chained peripherals

42 USING YQOUR DISK DRIVE

(

(

Turn on the machines’ power; all power lights on all your dev-
ices should be ON.
The manual that comes with your disk drive contains more

information.

NOTE: Never turn your disk drive OFF when there are disks in any drive.
Always remove disks first. If the drive is turned off with disks in place,
remove them before turning the drive back on.

Most prepackaged software includes special commands that
show you how to load. save. and retrieve programs using your
disk drive.

Loading Prepackaged Programs from Diskette

1. Start by carefully inserting the preprogrammed disk into
drive zero (0).

NOTE: The computer will always assume that you're putting your disk into
drive zero (0) and that you're using disk drive unit number eight (8). These
are known as “default values.” If you want to use another drive or unit
number you must use the optional codes shown in Chapter 6 in square
brackets[+1.].

CHAPTER 5

2. Make sure that the label on the disk is facing up and is
closest to you.

3. Look for alittle notch on the disk (it might be covered with a
small strip of tape). If you're inserting the disk properly the
notch will be on the left side.

4. Close the door on the disk drive to secure the diskette.

5. Key in:

DLOAD “program name”

USING YOUR DISK DRIVE 43

6. Press the key.

The disk will make noise and the busy light will turn on. Your
screen will say:

SEARCHING FOR 0: program name
LOADING
READY

7. Wail until the READY message comes on and the cursor
appears: then key in:

RUN

8. Press the key and your prepackaged software is
ready to use.

Preparing New Diskettes: HEADER Command

Before you can use a new disk for the first time. you must for-
mat it with the HEADER command. This command divides the
disk into sections called blocks. and it formats a table of contents,
called a directory or catalog. for the disk. You can also reuse a disk
by erasing all stored data with the HEADER command.

Follow these steps:

1. Insert the disk in drive 0. Remember to handle the disk care-
fully. Put the disk in so the label side is up and the small
notch is on the left side as you face the drive unit. The side
with the oval exposed area should go in first.

2. Close the disk drive’s protective gate to secure the disk.

3. Key in:

HEADER “diskname"’, Ds(,Inn) (,ON Un)
diskname is any name for the disk. For example. MYDISK.
MEMOS. PAYRECS. etc.

Ds identifies the drive number (O or 1).

44 USING YOUR DISK DRIVE

nnisa 2 character identification number for the diskette. The
id number should be unique for each disk.
n identifies the drive unit if you have more than one.

4. Press the key and wait until the computer displays
this message:

ARE YOU SURE?
5. Respond by keving in: Y (for Yes). and
The disk drive makes a noise while the new diskette is being

headered. This process takes a few minutes. The computer will
display a READY message when the diskette is finished.

NOTE: The HEADER command erases any information stored on a diskette
and you will not be able to retrieve it. Use this command carefully.

Here are some examples of the HEADER command:

HEADER "LETTERS", D1, I04 Formats a diskette named LET-
TERS indrive 1 and. gives it the id
number 04.

HEADER “"NOTES", DO, 124,

ON U9 Formats a diskette names NOTES
in drive O of drive unit number 9
The id number is 24.

Loading Your Own Programs From Diskette
Loading a program from diskette is simple and takes only a few
seconds. Once a program is loaded. you can RUN it. LIST it. or
make changes and save the new version. Follow these steps to load
a program:
1. Key in:
DLOAD “program name"

USING YOUR DISK DRIVE 45

CHAPTER 5

NOTE: You can load the first program on a diskette by using * instead of the
program name. For example: DLOAD **"
You can LOAD the first program from a diskette in drive 0 by pressing a

SHIFT el RUN/STOP [HAW

. Press the key and wait for this message to be dis-

played on your screen:

SEARCHING FOR 0: program name
LOADING
READY

NOTE: When you load a new program into the computer’s memory, any
unsaved instructions and programs in memory are erased. Be sure you
SAVE any information you want to keep before you key in DLOAD.

Here are some examples of the DLOAD command:

DLOAD "WORDCRAFT" Loads the program named WORD-

CRAFT into memory.

DLOAD """ Loads the first program on the disk-

ette. regardless of its name.

Saving Programs On Diskette

46

Follow these simple steps to save a BASIC program on diskette:

1.

Key in:

DSAVE “program name”

. Press IGIZGIN and wait for this message:

SAVING 0: program name
oK
READY

USING YOUR DISK DRIVE

NOTE: When you change a saved program and want to replace the old
version, add the @ sign before the program name. For example, DSAVE
“®OLDPROG" saves the new version of OLDPROG and erases the original
version of the program. If you want to keep both versions, use an
original name for the changed version.

Copying Diskettes: BACKUP Command

You should keep an extra copy of your stored programs for your
protection. Follow these simple steps to make a backup copy ofa
diskette:

1. Insert a blank disk into drive 1. Insert the master disk into
drive 0. Key in:

BACKUP Ds TO Dd (,ON Un)

s is the drive number of the source drive (i.e.. the diskette you
want to copy):

d is the drive number of the destination drive (i.e.. the blank
diskette you're copying on to):

n is the disk drive unit number if you have more than one drive

unit connected to your system. ON Uz is an optional part of

this command. Omit it if you have only one disk drive unit
in operation.
2. Press IGEGEIE and wait for this message:

READY

NOTE: Backing up takes a minute or so, but the READY message appears
before the process is complete. You can find out when the backup is com-
plete and be sure that it was successful by keying in PRINT DSS. DSS is o
reserved word variable that displays a diagnostic message about disk sta-
tus, including an error message if an error occurred during a backup.

If DSS$ tells you the backup was successful (00,0K,00,00,0) you can list a
directory of files on the disk: CATALOG (Dn) (On Uz). Here, n is the drive
number of the disk onto which you just copied. This part of the command is
required unless you have only a single disk drive. Otherwise, you must name
the drive. ON Uz is required when you have more than one disk drive unit.
The z names the drive unit where the computer can find the disk whose
contents you wish to display.

USING YOUR DISK DRIVE 47

CHAPTER 5

BACKUP DO TO D1

BACKUP DO TO D1,ON U9

48

Here are some examples of the BACKUP command:

USING YOUR DISK DRIVE

Use when you have one dual disk
drive and you are copying from
drive O to drive 1.

Use when you have more than one
disk drive unit and you are copying
from drive O to drive 1 on drive
unit 9.

CHAPTER 6

EXTENDED
BASIC 4.0+
COMMANDS AND
STATEMENTS

e Conventions in Formats
® Using BASIC Commands
® Using Basic Statements

This chapter provides formats. brief explanations and examples
of the BASIC 4.0 commands and statements. It is not intended to
teach BASIC. Appendix P lists tutorial books that help you learn
BASIC.

This chapter lists commands and statements in separate sec-
tions. Within the sections. the commands and statements are
listed in alphabetical order. In most cases, commands can be used
as statements in a program if you prefix them with a line number.
You can use many statements as commands by issuing them in
direct mode (i.e.. without line numbers).

CONVENTIONS IN FORMATS

The following conventions are used in the formats of the BASIC
commands and statements:

¢ KEYWORDS, also called RESERVED WORDS, appear in
uppercase letters. YOU MUST ENTER THESE KEYWORDS
EXACTLY AS THEY APPEAR. However. many keywords have
abbreviations that you can also use (see Appendix B).
Keywords are words that are part of the BASIC language.
and that your computer knows. Keywords are the central part
of a command or statement. They tell the computer what
kind of action you want it to take. These words cannot be
used as part of your filenames or other variable names unless
they are enclosed in quotation marks. However. we recom-
mend that you NOT use keywords for variable names.

® ARGUMENTS, also called parameters. appear in lowercase
letters. Arguments are the parts of a command or statement
that you select: they complement keywords by providing spe-
cific information about the command or statement. For
example. a keyword tells the computer to load a program,
while an argument tells the computer which specific pro-
gram to load and in which drive the disk containing the
program is located. Arguments include filenames, variables,
line numbers, etc.

50 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

C

C

e SQUARE BRACKETS ([]) show OPTIONAL arguments. You
select any or none of the arguments listed, depending on your
requirements.

e ANGLE BRACKETS (< >) indicate that you MUST choose
one of the arguments listed.

e VERTICAL BAR (|) separates items in a list of arguments
when your choices are limited to those arguments listed. and
you can't use any other arguments. When the vertical bar
appears in a list enclosed in SQUARE BRACKETS. your choi-
ces are limited to the items in the list. but you still have the
option not to use any arguments.

e ELLIPSIS (...) a sequence of three dots. means that an
option or argument can be repeated more than once.

e QUOTATION MARKS (“ ") enclose character strings. file
names, and other expressions. When arguments are enclosed
in quotation marks in a format, you must include the quota-
tion marks in your command statement. Quotation marks
are not conventions used to describe formats: they are
required parts of a command or statement.

e PARENTHESES. When arguments are enclosed in paren-
theses in a format. you must include the parentheses in your
command or statement. Parentheses are not conventions
used to describe formats: they are required parts of a com-
mand or statement.

CHAPTER 6

e VARIABLE means any valid BASIC variable name, such as
X. AS. or T%.

e EXPRESSION means any valid BASIC expression, such as
A+ B+ 2or.5*X + 3).

EXTENDED BASIC 40+ COMMANDS AND STATEMENTS 51

BASIC COMMANDS

BACKUP

This command copies all the files on a diskette to another
diskette. You can copy onto a new diskette without first using the
HEADER command to format the new diskette because BACKUP
also formats diskettes. You should always backup disks in case
the original is lost or damaged.

NOTE: Because the BACKUP command also headers diskettes, it destroys
any information already stored on the diskette onto which you are copying
information. Therefore, be careful when you use this command. If you're
copying onto an old diskette, be sure it doesn’t contain any programs you
wish to keep. See also the COPY command.

BACKUP Ds TO Dd [ON Un]

s is the number of the source drive (i.e.. the drive containing the
disk whose files you want to copy).

d is the number of the destination drive (i.e.. the drive contain-
ing the disk onto which you want to copy).

nis the number of the disk drive unit. Use this argument only if
you have more than one unit connected to your system.

Examples:

BACKUP DO TO D1 Copies all the files from the disk in
drive O to the disk in drive 1.

BACKUP DO TO D1, ON U9 Copies all files from drive O to drive
1 in disk drive unit 9.

CATALOG

This command displays the names of all the files on a diskette.
The catalog of files is also called the directory.

CATALOG ["filename"] [Ds] [ON Un]

s is the number of the drive containing the disk whose directory
of filenames you want to display.

52 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

n is the number of the disk drive unit. Use this argument only if
you have more than one disk drive.

Examples:

CATALOG DI Displays a directory of all files on
the disk in drive 1.

CATALOG DO, ON U9 Displays a directory of all files on
the disk in drive O of drive unit 9
(use when the drive unit number is
not 8).

cA "ABC,DO Displays all directory files that be-
gin with ABC. cA is the abbrevia-
tion for CATALOG. Appendix B lists
other BASIC keyvword abbrevi-
ations.

COLLECT

Use this command to search the files in your directory for
improperly closed files. COLLECT frees up space allocated to
improperly closed files and deletes their references from the
directory.

COLLECT [Ds] [ON Un]

s is the number of the drive containing the diskette whose files

you want to COLLECT. :
n is the number of the drive unit. Use this only when you have]
more than one drive unit in operation. 'E
T
Examples: O
COLLECT Searches files on the last drive
accessed.
COLLECT D1 Searches the files on the diskette in
drive 1.
COLLECT DO, ON U12 Searches the files on the diskette in

drive O of drive unit 12.

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 53

CONCAT

Merges (concatenates) two sequential data files. When you con-
catenate files, the second file in your command is deleted and
replaced by a new file which is the concatenation of the two files,
The first file in your CONCAT command remains unaltered.

CONCAT [Ds| “sourcefile” TO [Dd] " destfile” [ON Un]

s is the drive number of the disk drive containing the file you
want to add to another file.

“sourcefile” is the name of that file which is appended to the
“destination file". and which remains unaltered.

d is the drive number of the disk drive containing the file to
which you want to append the “sourcefile”.

“destfile” is the name of the destination file. which receives the
sourcefile and becomes a combination of the two files.

n is the number of the drive unit. Use this only when you have
more than one disk drive unit.

Examples:

CONCAT "MYFILE" TO "YOURFILE" Merges MYFILE and
YOURFILE. YOURFILE
becomes YOURFILE
+ MYFILE.

CONCAT "INDEX" TO

“MSFILE”, ON U9 Merges INDEX and MSFILE
on disk drive unit 9.
MSFILE becomes MSFILE
+ INDEX.

CONT

This command restarts the execution of a program that has
been interrupted by a STOP or END statement in a program, or
when you have pressed the STOP key. Execution resumes at the
point where the break in the program occurred. If the break
occurred after a prompt from an INPUT statement. execution con-
tinues by reprinting the prompt.

54 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

CONT is generally used in conjunction with STOP for debug-
ging. When you stop execution. you may examine and change the
values of variables (e.g.. B = 200) and issue commands in direct
mode. such as PRINT B. You can then resume execution with
CONT or with a direct mode GOTO. which restarts at a specified
line number. However. the changes you can make during a break
are limited: if you edit any line of your program during a break.
you can’'t use CONT to restart the program.

CONT

Example:
RUN
279
79
4
0999999996
-3.8
BREAK IN 10
READY
LIST
10 INPUT A
20 X=X-8B
30 B=39
35 PRINTX + A
40 GOTO 10
READY
B =236
READY
CONT

-74

- 113
COPY

Program begins executing.

STOP key pressed.
Break in execution.

You can LIST a program
during a break and still
use CONT to resume.

You can change the value
of a variable IF you do
this in DIRECT MODE.
Key in CONT to restart
execution.

CHAPTER 6

This command copies files from one diskette to another. Unlike
the BACKUP command. which erases all information on the disk

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 55

that receives the transfer. COPY does not affect what is already on
the destination disk. In addition. COPY lets you transfer just some
of the files on a disk while BACKUP transfers the entire contents
of the source disk.

COPY [Ds,] ['sourcefile”] TO [Dd,] | destfile”'] [ON Un]

s is the drive number of the disk whose file is being copied.
“sourcefile” is the name of the file being copied.

d is the drive number of the disk that will receive the trans-
ferred file.

“destfile” is the name of the file that is the destination of the
transferred file.

n is the unit number of the disk drive. Use only when the
number is not 8 (the default value).

Examples:

COPY DO, “FILE4" TO D1, "TESTS" Copies the file named FILE4
from the disk in drive O to the
file named TESTS in drive 1.
Only that file is copied. and
all data stored on D1 remains
unalffected.

COPY DO TO DI Copies all files on drive 0 to
drive 1 without deleting any
files already on drive 1.

DCLEAR

This command initializes one or more disk drives. The com-
mand defaults to drive O if you don’t name a drive number.

DCLEAR [Ds] [ON Un]

s is the number of the drive you want to initialize.
n is the unit number of the drive. Use if the number isn't 8.

Examples:

56 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

DCLEAR Initializes drive 0.
DCLEAR D1 Initializes drive 1.

DELETE

This command erases from memory a line or group of lines from
the BASIC program currently in memory:

DELETE Erases the entire program current-
ly in memory.

DELETE linenumber- Erases all lines from the line num-
ber named to the end of the pro-
gram.

DELETE -linenumber Erases all lines from the start of

the program to the line number named.
DELETE linenumber-linenumber Erases all lines between and includ-
ing the line numbers named.

DELETE [linenumber] [-] [linenumber]
Examples:
DELETE -50 Erases all lines of the current pro-
gram from the first line through
line 50.
DELETE 50- Erases all lines of the current pro-

gram from line 50 to the last line.

DIRECTORY

This command displays the names of the files on vour diskette.
If you list a filename or a prefix common to more than one file-
name, only those files are displayed. For example, all sequential
files named SEQFILE can be listed. or you can list all filenames
beginning with a common prefix by placing an * after the prefix
(e.g. "WORD™*" would list files including WORDPRO. WORDCRAFT.
WORDLIST. etc.). If you use the ON U argument to name a drive
unit and do not specify a disk drive number. the directories of
both drives are displayed.

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 57

CHAPTER 6

DIRECTORY [Ds] [, filename”] [ON Un]

sis the number of the drive containing the disk whose contents
you want to display.

“filename” is the name of a file or files with the same prefix that
you wish to list.

n is the unit number of the disk drive. Use if the number is not
8. which is the default value.

Examples:
DIRECTORY D1 Displays a list of all the filenames
) in drive 1.

DIRECTORY D1 "INTRO™ Displays a list of all files named
INTRO in drive 1.

DIRECTORY ON U9 Displays a list off all the filenames
in both drives on drive unit 9.

DIRECTORY DO, "ABC*" Displays all directory files that be-
gin with "ABC" on drive 0.

DLOAD

Brings into memory a BASIC program that is stored on disk.
You follow the same procedure to load a prepackaged program and
a program you wrote and saved vourself. You can use DLOAD as a
statement in the body of a program to chain other programs on
the same diskette. This automatically runs the program in the
DLOAD statement.

DLOAD "filename™ [,Ds| [ON Un]

“filename” is the name of the file you want the load.
s is the number of the drive whose disk contains the file (the
default is 0).

n is the number of the drive unit. Use only if this number is not
8. which is the default value.
Examples:

DLOAD "OLDFILE" Loads a file named OLDFILE from
drive O into memory.

58 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

DLOAD "XFILE", D1, ON U13 Loads XFILE from drive 1 of drive
unit 13 into memory.

DSAVE

This command stores a BASIC program on disk. The filename
can be up to 16 characters long. If you use a variable or an evalu-
ated expression as a filename. enclose it in parentheses.

DSAVE “filename" [,Ds] [ON Un]

“filename” is the name of the file you want to save.

s is the number of the drive containing the disk on which you
want to store a file. The default is O.

n is the number of the drive unit. Use only if this number is not
8. which is the default value.

Examples:
DSAVE "BASFILE" Saves the file BASFILE to drive 0.
DSAVE "FILET1",D1 Saves the file FILET]1 to drive 1.
HEADER

Before you can use a new diskette for the first time. you must
format it with the HEADER command. This command divides the
disk into sections called blocks. and it formats a table of contents,
called a directory or catalog, for the disk. You can also reuse a disk
because the HEADER command erases all stored data.

See Preparing New Diskettes: HEADER Command. in Chapter 5
for more information.

HEADER “diskname”, Ds[,Inn] [ON Un]

“diskname” is the name you give to the diskette.

s is the number of the drive containing the disk you want to
HEADER.

nn is the 2 character identification number for the diskette.
nis the number for the drive unit. Use only if the unit number is
not 8. which is the default value.

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 59

CHAPTER 6

Examples:

HEADER “"MEYERDISK™, D1, 128 Headers a disk in drive
1. giving it the name
MEYERDISK

and the id number 28

HEADER "SCMFILE",D0,I07,ON U9 Headers a disk in drive
0. of unit 9. naming it
SCMFILE with the id
number 07.

KEY

This command displays a list of the current definitions of the
function keys and lets vou define these keys. Recall that keys F1
through F10 are predefined. but that you can redefine them. Any
definition you give is erased at the end of the current session,
whether it is a redefinition of an F1 through F10 key or a defini-
tion of an F11 through F20 key.

To define a function key. follow these steps:

1. Key in the word KEY and the number of the key you want to
define, followed by a comma. For example:

KEY 15,

2. Enter the definition for the key. If you want to print the
definition before you execute the function, enclose the defini-
tion in quotation marks. To use the function. press the key
and then press to execute. If you don’t enclose the
definition in quotation marks. the function is executed
immediately when you press the function key. If you want the
function to do more than one operation. string the opera-
tions together with plus signs. For example:

KEY 15,"PRINT + CHR$(142)"
This switches the keyboard to graphics mode.

60 EXTENDED BASIC 40+ COMMANDS AND STATEMENTS

KEY [keynumber, "definition| + definition ... + definition]"]

Examples:

KEY 5,CHRS$(34) PRINTs a quotation mark im-
mediately when you press Key 5.

KEY 17,

CPRINT CHRS(142) +

CHRS(77) + CHR$(13) When vou press Key 17. the

+ CHR$(65)" text of what the key does is dis-
played without quotation
marks. Cursor remains at the
end of the line until you press
to execute the func-
tion. This function does four
things:
1. switches to graphics mode
2. PRINTsan M
3. activates IEENGIH key
4. PRINTs an A

LIST

This command displays a listing of all or part of the program
currently in memory. After a LIST command executes. BASIC
always returns to the direct mode, also called the command level.

LIST Lists the entire program.

LIST linenumber- Lists all lines from the line
number named to the end of]
the program. o«

LIST-linenumber Lists all the lines from the |fud
beginning of the program to 3
the line number named. =

e

LIST linenumber-linenumber Lists all the lines between [8]
and including the numbers
named.

LIST [[linenumber] [-] [linenumber]] ’
Examples:

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 81

LIST Lists all the lines in the cur-
rent program.
LIST-50 Lists the lines from the begin-

ning to line 50.

LOAD

This command brings into memory a program stored on disk-
ette. LOAD closes all open files and deletes all variables and pro-
gram lines currently in memory. so be sure to save anything you
want to keep before you issue the LOAD command.

You can use LOAD as a statement in a program to chain several
programs. If you execute a LOAD statement from one program. the
loaded program is RUN after it is LOADed. and all data files are
kept open. None of the variables is cleared during a chain
operation.

LOAD "[Ds:lfilename’ ,Dev#

s is the drive number containing the disk from which the pro-
gram will be loaded. The default is O.

“filename” is the name of the file you want to load into memory.
Dev# is the device number of the disk drive containing the file
yvou want to load. The disk drive device number is 8 unless you
change it.

Examples:

LOAD "' 8 Loads the first file on the disk in
drive O.

LOAD "MEYERFILE",8 Loads the file MEYERFILE from
drive O into memory.

LOAD "1.SCMFILE" 8 Loads SCMFILE from drive 1 into
memory.

LOAD "1:MY*"' 8 Loads first file in drive 1 that beg-
ins with the letters MY.

NEW

New erases the BASIC program and data currently in memory
so that a new program can be entered. Be sure to save anything
you want to keep before you issue a NEW command.

62 EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS

You should always use the NEW command before you enter a
new program to be sure that memory is clear, otherwise unwanted
lines from the previous program could merge with your new
prograim.

NEW

RENAME

This command changes the name of a file on a diskette without
altering the file itself. You cannot execute a RENAME command
on a currently open file.

RENAME [Ds,] “oldname” TO “"newname’ [,ON Un]

sis the number of the disk drive containing the file you want to
RENAME. The default is O.

“oldname” is the current name of the file.

“newwname’ is the name to want to use.

n is the unit number. Use only if this number is not 8. which is
the default value.

Examples:

RENAME D1, "HERFILE" TO "MYFILE" Gives the new name
MYFILE to HERFILE on
drive 1.

RENAME “DRAFT" TO “"BOOKFILE" Gives the new name
BOOKFILE to DRAFT
on drive 0.

RUN

This command executes the BASIC program currently in
memory.

RUN Executes the program currently in
memory.
RUN linenumber Executes the program beginning at

the line number named.

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 63

CHAPTER 6

RUN [linenumber]

linenumber is the number of the line at which vou want to
begin execution if vou don't want to start at the first line.

Example:
RUN 60 Executes the program from line 60.
ignoring previous lines.
SAVE

SAVE stores a program on diskette. II' you include the @ sign
when you SAVE a program whose name is the same as another
program you already have saved on the same diskette. the pro
gram that is already saved is replaced by the new program. If you
revise a program but want to keep both copies. save them under
different names.

SAVE "[[@]Ds:|filename’ ,Devit

@ replaces an existing program that has the same file name.

s is the drive number containing the disk on which you want to
save the program. The default is 0.

“filename™ is the name of the program you want to save.

Dev# is the device number of the disk drive that contains the
disk on which you want to store the program. The disk drive
device number is 8 unless you change it.

Examples:

SAVE "T:MEYERFILE "8 Stores the program MEYERFILE on
the disk in drive 1.

SAVE "SCMFILE",8 Stores the program SCMFILE on
the disk in drive O.

SAVE "@1:MEYERFILE",8 Replaces the existing program
MEYERFILE in drive 1.

SCRATCH

Use this command to delete files from a diskette. When you
issue this command. the computer displays the prompt ARE YOU
SURE? before executing the SCRATCH. You must respond with
YES or Y to begin execution.

64 EXTENDED BASIC 40+ COMMANDS AND STATEMENTS

SCRATCH *filename " [,Ds] [ON Un]

“filename” names the file you want to delete.

s is the drive number of the file containing the file you want to
SCRATCH. The default is O.

n is the unit number of the drive. Use only if the number is not
8. the default value.

Examples:
SCRATCH "SCMFILE" Deletes the file SCMFILE
ARE YOU SURE? YES from the disk in drive O.
SCRATCH "THESIS",D1 Deletes the file THESIS
ARE YOU SURE? YES from the disk in drive 1.
VERIFY

Use this command to check a program on disk against the
program currently in memory. VERIFY informs you if there are
discrepancies.

VERIFY “[Ds:]filename",Dev#t

s is the drive number containing the stored program.

The default is O.

“filename” is the name of the file you want to verify.

Dev# is the device number of the drive containing the stored
program vou're checking against the current program.

The disk drive device number is 8 unless you change it.

Example:

VERIFY "MEYERFILE",8 Checks the program MEYERFILE
stored on drive 0 against the pro-
gram currently in memory.

VERIFY "“1:MYFILE" 8 Checks the program MYFILE stored
on drive 1 against the program
currently in memory.

BASIC STATEMENTS

Statements are BASIC instructions that are issued in pro-
grams. They are always preceded by a line number. Most of the
statements described here can also be used as BASIC commands

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 65

CHAPTER 6

in direct mode if you omit the line number. Similarly. most BASIC
commands can be used as BASIC statements in program mode if
you prefix them with a line number.

APPEND

This statement opens a sequential file and positions the file
pointers beyond the current end of file so that you can write addi-
tional data to that file. APPEND is like the DOPEN statement.
except that APPEND applies only to sequential files.

[linenumber] APPEND#fn," filename " [,Ds] [ON Un]

n is the filenumber of the file you want to reopen and add to
(this is called the logical file number).

“filename" is the name of the file you want to APPEND.

s is the number of the drive that contains the file (defaults to 0).
n is the unit number of the disk drive unit (defaults to 8).

Example:

10 APPEND#3,"MEYERFILE" Reopens MEYERFILE. logical file
#3. on drive O for appending.

BANK

This statement sets the indirection bank number for use with
some BASIC commands such as PEEK. POKE, BLOAD, and
BSAVE that refer directly to memory bank locations. The BANK
statement lets you pick the memory bank into which information
will be placed. There are 16 BANKs numbered O through 15.

[linenumber| BANK expression

expression is any number, variable or numeric expression that
equals any number between 0 and 15.

Examples:

66 EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS

—

10 BANK 3 Sets the bank number to 3.

20 POKE 1024,20 Stores 20 at location 1024 in BANK
3.
5FORA =0TO5 Starts a loop that gives A a new

value (0 through 5) each time the
loop executes.

10 BANK A Sets the bank number to the value
of A. which progresses from O
through 5.

20 BLOAD “TEST" Loads the file TEST to the bank

whose number is the value A. By
the end of the loop. TEST is loaded
30 NEXT A in BANKS O through 5.

BLOAD

This BASIC statement loads an executable machine language
program into any memory location.

[linenumber] BLOAD [fileoptions| [,ON Un] [,Bz] [,P]

fileoptions are the arguments that specify the file you want to
load. They can include file name. file number. drive number,
drive unit number, etc.

z is the number of the memory BANK where you want to load
the machine language program. If you don't name a bank,
BLOAD loads to the last bank named. If no bank has been

named in the program. BLOAD defaults to bank 15. ©o
lis the location (low offset) in the bank where you want to start E
loading, -
o
. <<
Examples: I
o

10 BLOAD "RATES",D1,ON U9,B3 Loads RATES from

drive 1. drive unit 9. in-

to BANK 3.
20 BLOAD "TEST",D1, B3,P1024 Loads TEST into BANK

3 from drive 1 starting
at location 1024.

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 67

BSAVE

This BASIC statement saves a machine language program from
any memory location you name. BSAVE defaults to the last byte in
the bank (SObFFFF. where b = bank 0 through F).

[linenumber]| BSAVE " filename'[,fileopts] [, ON Un] [,Bz]
[,PI[TO Ph]

“filename™ is the name of the file you want to save.
ileopts include drive number. drive unit number. etc.

z is the number of the BANK where the program is located.

lis the location (low offset) in the bank where you want to start
saving,

his the location (high offset) in the bank where the information
you're saving ends.

Example:
10 BSAVE "TEST",D1,B3, Saves file TEST on drive 1. from
P512 TO P1024 BANK 3. memory location 512 to
1024.
CLOSE

This statement closes a files that was opened previously with an
OPEN statement. You must use the same file number in both the
OPEN and the CLOSE statements. A CLOSE for a sequential out-
put file writes the final buffer of output.

[linenumber] CLOSE filenumber
Example:

100 CLOSE 3 Closes file number 3.

CLR

This command clears all BASIC variables currently in memory.
but leaves the program itself intact. The CLR command is auto-
matically executed when you give a RUN command.

68 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

[linenumber] CLR

Example:
10 FORX =1 TO Loop executes 4 times.
20 A =5B = As X is incremented by 1.
30C=A+ B RINT C X C and X are PRINTed on the
40 NEXT same line until X = 4.
50 CLR CLeaRs all variables.
60 PRINT C,X PRINTSs the CLeaRed variables.
RUN
6 1 The values for C and X are
7 2 PRINTed as the loop executes
8 3 4 times.
9 4
0 0 The zeroes PRINTed for C and X
after the CLR statement show
that the variables are CLeaRed.
CMD

This statement lets you redirect output. For example. output
that would normally go to the screen can be redirected with CMD
to go instead to a printer or a file. You must use CMD with an
OPEN statement that uses the same file number. The device to
which output will be redirected is named in the OPEN statement.

[linenumber] CMD filenumber [,printlist]

filenumber is the number of the file whose output you want to
redirect.
printlist is a list of character strings. numeric variables. or
expressions written to the device when the CMD statement is
executed.

CHAPTER 6

Example:

10 OPENS5 4 OPENSs file number 5 and names
the printer as the output device (4).

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 69

20 CMDS5, "PROGLIST" Directs PROGLIST to be written to
the printer.

30 PRINT "TEXT" PRINT statements following a CMD
are directed to the device named in
CMD.

DATA

The DATA statement holds numeric and string constants that
are matched with variables in READ statements. The DATA con-
stants are accessed consecutively by READ variables. The variable
type (numeric or string) in the READ statement must match the
constant type in the corresponding DATA statement. Constants
in DATA statements may be reread after you issue a RESTORE
statement.

The DATA statement does not have to precede the READ state-
ment. When a READ statement has read all the constants in a
DATA statement, it will look for another DATA statement, so the
number of items in any DATA statement does not have to equal
the number of items in a READ statement. However, the computer
will display an OUT OF DATA error message if the total number of
DATA constants accessible in a program is fewer than the total
number of READ variables.

[linenumber] DATA constant|,constant, . .., constant|

constant is any numeric (fixed point. floating point. or integer)
value or any string value. Numeric expressions are not allowed.
String constants do not need to be enclosed in quotation marks
unless they contain commas. colons. or leading or trailing
spaces.

Examples:
10 DATA 12345 Lists DATA constants.
20 READ AB The first READ variable
30 READ C,D acquires the first DATA
40 PRINT A:B.C;D constant. etc.
RUN

] 2 3 4

70 EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS

NEW

10 DATA1,234.5 You can have more DATA
20 READ A,B,C,D,E,F,G,H constants than READ variables
RUN but not vice versa.

20OUT OF DATA IN 20

DCLOSE

This command can CLOSE all the files currently open on a disk,
or only the logical file specified. If you don't specify a file number.
all OPENed filed are CLOSEd.

[linenumber] DCLOSE [#1f] [ON Un]

1f is the number of the logical file you want to CLOSE.
n is the number of the drive unit.

Examples:
10 DCLOSE Closes all files OPEN on default
device (8).
10 DCLOSE#3 Closes the file with the logical file
number 3.
10 DCLOSE ON U9 Closes all files OPEN on unit 9.
DEF FN

This statement lets you define your own functions and use
them in a program by using only the function name. This state-
ment can save time and space when you want to use a complex
formula more than once in a program. You must define the func-
tion with the DEF FN statement before you can call the function
in a program.

CHAPTER 6

[linenumber] DEF FNna (argument) = formula
na is the name of the function. It must be alegal variable name.
and you must precede the name with FN when you call the

function.

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 71

argument can be any numeric variable: it must be enclosed in
parentheses.

Jformula is the expression that performs the function's opera-
tions. Any variable name that appears in this formula serves
only to define the function: it does not affect program variables
that have the same name.

Example:

10 DEF FNAB (X) = X/Y3 Defines the function FNAB.
20 T = FNAB(I) Calls FNAB.

DIM

The DIMension statement allocates storage for an array and
sets the maximum values for the array variable subscripts. You
MUST use the DIM statement to DIMension arrays containing
more than 10 elements. To find the number of elements in an
array. multiply the values of each subscript plus one. For example.
an array DIMensioned (3.2) has (3 + 1)*(2 + 1) elements.

The DIM statement sets the value of all elements of the array to
an initial value of zero.

Matrices can have up to 255 dimensions. but the size of each
must be less than 32767.

[linenumber] DIM variable(subscript|, . .. ,subscript]),
[variable (subscript [, . . . ,subscript]) .. .|

variable is the name of the array.
subscript is the size of the dimension of the array.
Subscripts must be enclosed in parentheses.

Examples:
10 DIM A(20) DIMensions a one-dimensional
array with 21 elements.
20 DIM A%(4,4 4) DIMensions a three-dimensional
array with 125 elements (4 + 1*4 +
1*4 + 1 = 125).

72 EXTENDED BASIC 40+ COMMANDS AND STATEMENTS

DISPOSE

Use this statement in error trapping procedures to eliminate
unwanted FOR /NEXT loops or GOSUB /RETURN addresses with-
out leaving invalid information on the stack.

[linenumber] DISPOSE << FOR| GOSUB >

You must choose either FOR or GOSUB as an argument for a
DISPOSE statement.

Example:

30 FORJ =1T0O10 Starts a FOR /NEXT loop.

40 PRINT J

50 IFJ = 5THEN DISPOSE Eliminates the loop when
FOR:GOTO 70 J = 5. and moves to line 70.

60 NEXT J

DOPEN

This statement declares a sequential or random access file for
read or write access. A sequential file is opened for read access
unless you include the W argument in the statement.

[linenumber] DOPEN #1f, “'filename’ [Ly] [,Ds] [ON Un] [, W]

1fis the logical file number of the file you want to open.
“filename” is the name of this file.

y is the record length for a nonsequential file. You must include
this argument when you create a relative file.

s is the disk drive number. Default is O.

n is the disk drive unit number. Default is 8.

W indicates write access to a sequential file.

CHAPTER 6

Examples:

10 DOPEN#S5, ' TEST” Opens file 5 named TEST on drive
0.

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 73

10 AS = "RATES" Opens file 6 named RATES.

20 DOPEN#6,(AS) When you use a variable to stand
for a file name. you must enclose it
in parentheses.

20 DOPEN#2,"@FILE1 W ",D1 Replaces file 1 with file 2 and opens
file 2 on drive 1.

END

END terminates program execution and returns to direct mode.
[linenumber] END

FOR/TO /STEP

This compound statement starts a loop that performs a series of
instructions a set number of times, and always executes at least
once. This statement is always used with a next statement.

FOR names a variable that serves as a counter to control the
number of executions of the loop. TO sets the number of execu-
tions. such as 1 TO 10. which means that the loop executes 10
times.

STEP is an optional part of the statement that you can use to
change the amount the counter is incremented from the default of
1. For example. 1 TO 10 STEP 2 makes the loop execute only 5
times, since the counter is now incremented by 2 each time the
loop executes.

You can also count backwards in a FOR loop by reversing the
order of the numbers in the TO arguments and by using a nega-
tive value as the STEP argument.

You can also nest FOR /NEXT loops. that is. a FOR/NEXT loop
can be placed inside another FOR /NEXT loop. When you do this.
the inside loop must end before the outside loop. and the loops
must have a different variable as the counter.

[linenumber] FOR variable = expression] TO expression?
[STEP expression3]

variable is the name of the loop counter.

expression] is the beginning value of the counter.
expression?2 is the ending value of the counter.
expression3 is the value of the increment of the counter.
Defaults to 1.

74 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

=

LS

Examples:

10 FORX =1TO5 Sets X as the counter and limits
to 5 the number of executions of
the loop.

20 A = A + X:PRINT A Each time the loop runs. this
statement will execute again.

30 NEXT Tells the computer to get the next
value of X.

10 FORG = 1 TO10STEP 2 Starts a loop whose counter incre-
20 PRINT G: NEXT G ments by 2 each time the loop exe-
cutes.

10 FORR = 25TO 5STEP -.5 Starts a loop whose counter decre-
ments by -.5 each time the loop
executes.

GET

This statement provides another way to assign data values to
variables. GET scans the keyboard buffer and reads a single char-
acter. If you don’t type a character, a null character is automati-
cally assigned. The GET statement is often placed in a loop that
continues until you type a character that is assigned to the GET
variable.

The GET variable is usually a string variable, which can accept
either string or numeric input. A numeric variable can only accept
numeric input.

[linenumber] GET variable

CHAPTER 6

Example:

10 GETAS: IF AS = ""THEN 10 GET asks vou to type a single
character that is assigned to
AS. The IF tells the computer to
keep checking until you enter a
character.

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 75

GET#

GET# reads a single character from a file. You must have
already OPENed the file with the same logical file number before
you can use GET#.

[linenumber| GET# filenumber, variable

filenumber is the logical file number of the OPENed file from
which your GET# is reading a character.

variable is the variable to which the character read by GET# is
assigned.

Example:
10 DOPEN#5, "TEST® Opens logical file 5.
30 GET#5, F$ Reads a single character from file 5
and assigns it to FS.
GOSUB

The GOSUB statement lets you branch to a subroutine. The
subroutine must be terminated by a RETURN statement that
sends control back to the body of the program. You can nest
GOSUB /RETURN statements up to 23 deep.

[linenumber] GOSUB linenumber?

linenumber?2 is the line where the subroutine starts.

Examples:
75 GOSUB 10 Sends control to a subroutine start-
ing at line 10.
95 GOSUB 125 Sends control to a subroutine at
line 125.
GOTO

GOTO unconditionally branches the program to a specified line.
GOTO does not require any sort of return statement. If you want

76 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

to stop a loop begun by a GOTO statement. you must break into
execution with a STOP or include another statement that ends
the loop.

[linenumber] GOTO linenumber2

Examples:
10 INPUT AS: PRINT AS The GOTO in line 20 causes
20 GOTO 10 line 10 to execute repeatedly.
10 INPUT A: PRINT A*1.06 The [F statements provide a
20 IF A<100 GOTO 10 way to end the GOTO loop in
30 IF A==>100 THEN END line 20. which stops executing

when line 20 is false.

IF/THEN/ELSE
IF/GOTO

The IF statement is another way to control program execution.
This statement tells the computer to check IF a condition is true.
and IF it is. follow the instructions following THEN. IF that condi-
tion is false. the program skips to the next line to continue. You
can use an IF statement to start a loop or to decide whether cer-
tain parts of a program will execute. IF statements may be nested.

[linenumber] IF expression THEN tclause [:ELSE eclause]

expression sets the condition to be verified. The THEN clause
instructions are executed only if the expression is true.
tclause is the set of instructions to be performed when the
expression is true.

eclause is another set of instructions to be performed when the
expression is false.

CHAPTER 6

Expressions in IF statements usually include one of the follow-
ing relational operators:

SYMBOL MEANING SYMBOL MEANING
= greater than g not equal to
< less than >= equal to or greater than
= equal to <= equal to or less than

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 77

Examples:

10 IF A>BTHEN PRINT AB A and B are printed only if A is
greater than B.

10 IFA>100 GOTO 125 Il A is greater than 100, execution
goes to line 125.

10 IFA< =99 THEN A =

A*1 5:ELSEA=2 If A is less than or equals 99, in-
structions after THEN are executed
and the ELSE clause is not. If A is
greater than 99. THEN's argument
isn't executed, and ELSE’s is.

INPUT

This statement lets you input values from the keyboard during
execution. When vou execute the program. you are automatically
prompted by a question mark for INPUT. You can also write a
prompt message. Program execution does not continue until you
respond to an INPUT prompt.

The number of data items you supply in response to an INPUT
prompt must equal the number of variables in the INPUT state-
ment. INPUT variables may be either string or numeric. INPUT
assumes that commas and colons signal the end of a data item.

[linenumber] INPUT [promptstring ;] variable list

“promptstring” is optional text you can add to precede the ques-
tion mark prompt.

variable list is one or more variables whose values you are
INPUTting.

Example:

10 INPUT AS: PRINT "CONTINUE " As long as you don't enter
20 IF AS <>"STOP" GOTO 10 STOP when you are prompted

RUN for INPUT. execution
2 COMMODORE continues and you
CONTINUE are prompted again.
2 B SERIES

78 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

CONTINUE
2STOP
READY

INPUT#

INPUT* is similar to the INPUT statement. except it reads data
from an OPENed disk file. Leading spaces are ignored.
INPUT# assumes that commas. colons. and carriage returns
signal the end of a data item.

[linenumber] INPUT# filenumber, variable list

filenumber indicates the file from which INPUT# is reading data.
variable list is one or more variables whose values you are
INPUTting.

Example:

10 INPUT#H3,AS A Reads values for AS and A from
file 3

LET

LET assigns a value to a variable. The word LET. however. is
always optional. In other words. LET A = 3is thesameas A = 3.
The presence of the equal sign is sufficient when you are assign-
ing an expression to a variable.

[linenumber| [LET] variable = expression
Examples
10 LET A$ = "STRING"

20 A = 32-28
30 BS = "STRING"

NEXT

NEXT is the statement that does the [ollowing:

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 79

CHAPTER 6

e indicates where a FOR /NEXT loop ends

® increments the value of the FOR value by the amount declared
in the STEP argument (default = 1) when the loop is not
finished

® sends execution out of the FOR loop when the loop is finished.
NEXT only appears as the complement of a FOR loop. and every

FOR loop must have a NEXT statement. These loops may be
nested.

[linenumber] NEXT [variable, . . . ,variable]
variable is optional: when loops are nested the first NEXT is
assumed to go with the last FOR statement. When the NEXT

variable is included. it must match the FOR variable.

Example:

10 FORA = 1TO 2: PRINT A Loop A executes twice.
20 FORF = 99TO 97

STEP-1:PRINT F Loop F. executes 3 times.
30 NEXT F,A Loop F. the last named. is
RUN the first finished.
] Loop A runs once.
79 Loop F runs all three times
98 because it finishes before A
97 can execute a second time.
2 Loop A runs another time.
99 Loop F runs three times again
98 because it is inside A.
97
ON/GOSUB

This compound statement branches the program to one of sev-
eral subroutines specified by the line numbers listed as GOSUB
arguments. The destination depends on the value returned when
the ON expression is evaluated. If the value is 1. control branches
to the first subroutine: if it's 2, control goes to the second. etc. If

80 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

the value of the expression is negative, you receive an error mes-
sage. If the expression is zero or greater than the number of items
in the list. control passes to the line following the ON/GOSUB
statement.

[linenumber] ON expression GOSUB list of linenumbers
expression determines which subroutine receives control when
the expression is evaluated.

list of linenumbers corresponds to the subroutine to which the
program might branch.

Example:

10 FORA =1T03 The first time the FOR loop
20 ON A GOSUB 75,295,115 executes. control passes to
30 NEXT the first subroutine (at line 75)

because A = 1. etc.

ON/GOTO

ON /GOTO resembles ON /GOSUB. except that ON /GOTO sends
control to one of several specified line numbers rather than to
subroutines. All other conditions are the same.

[linenumber] ON expression GOTO list of linenumbers

expression determines which lines receives control when the
expression is evaluated.

list of linenumbers corresponds to the line numbers to which
the program might branch.

CHAPTER 6

Example:

50 ON X-1 GOTO 125,150,200 When X-1 = 1.control goes to line
125: when X-1 = 2, control goes
to 150. etc.

EXTENDED BASIC 40+ COMMANDS AND STATEMENTS 81

OPEN

This statement establishes an Input /Output (1/0) channel to
the screen or to an external device such as a disk drive. a printer.
or the IEEE bus.

[linenumber] OPEN filenumber [,devicenumber [,secondary
address [, filename"]]]

filenumber of the logical number of the file you want to OPEN.
This number must be between 0 and 255.

devicenumber designates the external device to which you
want to OPEN a channel. The device numbers for external
devices are: disk = 8 through 15 (default 8): printer = 4:
screen = 3.

secondary address (0 through 15) is required in some cases.
The addresses are: O through 1 = commands other than
OPEN: 2 through 14 = data files: 15 = command channel.
“filename” is the name of the file referred to in the secondary
address.

Examples:
10 OPEN 1,3 OPENSs the screen as a device.
20 OPEN 2,4 OPENSs a channel to the printer.
30 OPEN 428,15 OPENs a command channel on
the disk.
PEEK

PEEK" lets you read the information at a specific memory loca-
tion. PEEK returns the value (0 - 255) of a single byte.

[linenumber] PEEK (memorylocation)

memory location gives the memory address of the byte whose
value you want to read.

* PEEK and POKE default to the BASIC text bank. If you want to
actess another bank, you must issue the BANK commond first.

82 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

(

(

Example:

10 A = PEEK(59468): PRINT A PRINTs the value of the byte
located in memory at 59468.

POKE

POKE™ lets you write a byte into a specific memory location.
POKE is complemented by the function PEEK. Use PEEK and
POKE for efficient and specific data storage. and for assembly
language subroutine operations such as loading and passinﬁ
arguments.

You can only POKE to RAM (Random Access Memory). though
no error is flagged if you POKE to ROM (Read Only Merﬁor‘y].

[linenumber] POKE location, value
location is the place in memory where you want to place a

value.
value is what you want to place in a specific memory location.

Example:
10 POKE 59468,14 Sets the character set to
upper /lower case mode.
20 A = PEEK(59468):PRINT A PRINTSs 14 as the value for A
since you previously POKEd
14 into location 59468.
PRINT

PRINT displays on the screen any information you specify. The
punctuation you use in the PRINT statement determines the
position of PRINTed items. BASIC divides'each line into print
zones of ten spaces each. When you separate PRINT items with a
comma. each item is PRINTed in a new print zone. A semicolon
PRINTs items right next to each other (however. PRINTed num-
bers are always followed by a space).

If you end a PRINT statement with either a comma or a
semicolon. the next PRINT statement begins on the same line. If
there is no punctuation at the end of the statement. a carriage

* PEEK and POKE default to the BASIC text bank. If you want to
access another bank, you must issue the BANK command first.

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 83

CHAPTER 6

return is assumed. and the next PRINT statement begins on the
next line.

[linenumber] PRINT [printlist]

printlist can include any of the following;:

1. Text. which must always be enclosed in quotation marks.

2. Variable names: if enclosed in quotation marks, the value of
the variable PRINTs: if not enclosed. the variable name
PRINTS.

3. Functions.

4. Punctuation marks (used for formatting output.

Examples:

Statement Prints

10 A = 3'4: PRINT "A = A A=12

20 PRINT "REPORT TITLE" REPORT TITLE

30 A = 3:PRINT"A = "SA"B = "SA*2 A =3 B =26

40 PRINT 1,2,3 1 2 3
50 PRINT 1,2.3 1 2 3

PRINT #

PRINT¥ resembles PRINT. but PRINT# writes the values listed to
the file associated with the file number in the PRINT# statement.
Recall that the file must have been previously OPENed with the
same file number.

[filenumber] PRINT# filenumber, printlist
JSilenumber identifies the logical file into which you want to write
data.
printlist contains the data you want to write to the file.

Example:

B4 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

10 PRINT#3, TEST DATA " Writes this information to file
number 3.

PRINT USING
PRINT# USING

These statements let you define the format of the string and
numeric output you want to print.

[linenumber] PRINT [#filenumber,] USING “formatlist”; printlist
[:]

Jilenumber names the file into which you wish to write format-
ted data. The file must have been previously OPENed.
“formatlist” defines the format of your output.
printlist is the data you want to PRINT in the defined format.
The format symbols are:

CHARACTER NUMERIC STRING

Pound Sign (#)
Plus (+)

Minus (-)
Decimal Point (.)
Comma (,)

Dollar Sign ($)
Four Carets (1111)
Equal Sign (=) X
Greater Than Sign (>) X

X

XXX X X X X

The pound sign (¥) reserves room for a single char-
acter in the output field. If the data item contains more
characters than you have # in your format field, the
following occurs:

CHAPTER 6

® For a numeric item. the entire field is filled with
asterisks (*). No numbers are printed.
For example:

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 85

10 PRINT USING "####" X

For these values for x. this format displays:

A = 1234 12
A = 567.89 568
A = 123456 kR

® For a string item. the string data is truncated at the bounds of
the field. Only as many characters are printed as there are
pound signs (#) in the format item. Truncation occurs on the
right.

For example. if you want a field to contain a maximum of seven
characters. you can use this PRINT USING statement to print a
string variable:

PRINT USING "#a#####" ; NAMES

If the string NAMES contained more than seven characters. the
characters after the seventh character will be truncated when the
string is printed. For example. if NAMES = "SHABINGER". this
format will print SHABING.

The plus (+) and minus (-) signs can be used in either the first
or last position of a format field but not both. The plus sign is
printed if the number is positive. The minus sign is printed if the
number is negative.

If you use a minus sign and the number is positive, a blank is
printed in the character position indicated by the minus sign.

Ifyou don't use either a plus or minus sign in your format field
for a numeric data item. a minus sign is printed before the first
digit or dollar symbol if the number is negative and no sign is
printed if the number is positive. This means that vou can print
one character more if the number is positive. If there are too many
digits to fit into the field specified by the # and + /- signs. then an
overflow occurs and the field is filled with asterisks (*).

A decimal point () symbol designates the position of the
decimal point in the number. You can only have one decimal
point in any format field. If you don’t specify a decimal point in
your_format field. the value is rounded to the nearest integer and
printed without any decimal places.

86 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

When you specify a decimal point. the number of digits preced-
ing the decimal point (including the minus sign, if the value is
negative) must not exceed the number of # before the decimal
point. If there are too many digits, an overflow occurs and the field
is filled with asterisks (*).

A comma (.) lets you place commas in numeric fields. The posi-
tion of the comma in the format list indicates where the comma
appears in a printed number. Only commas within a number are
printed. Unused commas to the left of the first digit appear as the
filler character. At least one # must precede the first comma in a
field.

If you specify commas in a field and the number is negative,
then a minus sign will be printed as the first character even if the
character position is specified as a comma.

A dollar sign (8) symbol shows that a dollar sign will be printed
in the number. You must specify at least one # before the dollar
sign or else the dollar sign will not float. If you specify a dollar sign
without a leading #. the dollar sign is printed in the position
shown in the format field. If you specify at least one # before the
dollar sign. the dollar sign floats to be placed just before the
number.

If you specify commas and /or a plus or minus sign in a_format
field with a dollar sign. your program will print a comma or sign
before the dollar sign.

The four carets (1111) symbol is used to specify that the number
is to be printed in E+format. You must use # in addition to the
1111 to specify the field width. The 1111 can appear either before or
after the # in the_format field.

You must specify four carets (1111) when you want to print a
number in E-format (scientific notation). If you specify more than
one but fewer than four carets, you will get a syntax error. If you
specify more than four carrets. only the first four are used. The
fifth caret is interpreted as a no text symbol.

An equal sign (=) is used to center a string in the field. You
specify the field width by the number of characters (¥ and =) in
the format field. If the string contains fewer characters than the
field width. the string is centered in the field. If the string contains
more characters than can be fit into the field. the rightmost char-
acters are truncated and the string fills the entire field.

A greater than sign (>) is used to right justify a string in a field.
You specily the field width by the number of characters (# and =)

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 87

CHAPTER 6

in the format field. If the string contains fewer characters than
the field width. the string is right justified in the field. If the string
contains more characters than can be fit into the field. the right-
most characters are truncated and the string fills the entire field.

Examples:

Field Expression Result Comment

+H#] + 1 Fill character between sign and
number.

#8445+ -.01 0.01- Leading zero added.

— #4 =l -.10 Leading zero suppressed by
minus sign.

HH H- 1 1.0 Trailing zero added.

+HHE+ 1 ERROR Two plus symbols.

+HEH- | ERROR Plus and minus symbols.

B -100.5 -101 Rounded to no decimal places.

adida34 -1000 Overflow because four digits
and minus sign cannot fit in
field.

B.8H —4E-03 —-.00 Rounded to —0

:3:3:3 10 10. Decimal point added.

B 1 ERROR Two decimal points.

HH ##t 100 1,00

#e g 10.4 10 Comma suppressed and value
rounded.

##H8 48 1000.009 1,00001 Rounded.

HH HH -1 -1 Comma suppressed.

#i ttt -10 -10 Minus overrules comma. No
leading digit before the comma.

#i=>> 1000 1000.0 > and = treated as # since in
numeric field.

+>==4# 1 +>==] At least one # must precede the
comma. >, =, and comma are
treated as symbols to print, not
as format field items.

+>=H## 1 + 1 > and = treated as # since in
numeric field.

#5854 1 $1 Leading $ sign.

88 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

Field Expression Result Comment

#H#4S —1 —S$1 Sign precedes 5.

R#HS# —1 —$1 Sign precedes $.

HHHS - -1 S1 Sign in last position.

+SHHEA —1 +$ -1 At least one # must precede $. +
and $ treated as symbols to
print, not as format field items.

+HSHH = —S1

+H#. 211] +1.0E+00 E-format output

g gt —100000 —1.00E+05

#H#111 1 ERROR Only three carets.

BH1t1 34 34E+00t Fifth caret seen as text char—
acter and is always printed.

B #H11T cbm cbm String data item, printed left
justified in nine character
field.

HAEE>H cbm cbm Printed right justified in five
character field.

=Hif# cbm cbm Centered in eight character
field.

HOR=+ cbm cbm Only + affects centering in six
character field. Other symbols
are translated to #.

PUDEF

PUDEF lets you use characters in a PRINT USING statement
that are not permitted in the PRINT USING format list. PUDEF let
vou redefine up to 4 symbols in the PRINT USING statement. You
can change blanks, commas. decimals points. and dollar signs
into some other character by placing the new character in the
correct position in the PUDEF control string.

[linenumber] PUDEF " controlstring”

controlstring is a list of new characters you want to place in your
PRINT USING format. The control string can contain up to four
new characters:

® Character position 1 is the filler character. The default is a
blank. Place a new character here when you want another
character to appear in place of blanks.

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 89

CHAPTER 6

® Character position 2 is the comma character. Default is a
comma.

® Character position 3 is the decimal point.

® Character position 4 is the dollar sign.

Examples:

10 PUDEF "=~ PRINTs * in the place of blanks.

20 PUDEF "~ @~ PRINTs @ in place of commas.

30 PUDEF ™ .~ PRINTs decimal points in place of
commas., and commas in place of
decimal points.

READ

This statement assigns values from DATA statements to varia-
bles listed as READ arguments. The data types must be the same
in both statements. A single READ statement may read data from
several DATA statements. and several READ statements may read
from one DATA statement. DATA lists must contain enough
values to assign one value to each READ variable, but any extra
DATA values are ignored.

You can reREAD data by using the RESTORE statement.

[linenumber] READ variable list

variable list is the list of variables whose values are assigned
from DATA statement constants.

Examples:
10 DATA 1,23 Assigns 1 to A. 2 to B,
20 READ A,B,C and 3 to C.
10 DATA 1,234
20 READ A,B:PRINT A:B Assigns 1 to A: 2 to B.
30 RESTORE Moves pointer reading data
40 READ C,D:PRINT C;D back to beginning, so 1 is
RUN assigned to C: 2 to D.
1, 2
1 2

90 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

—_—

RECORD

RECORD adjusts a relative file pointer to select any byte (char-
acter) of any record in the relative file. The file must have been
previously OPENed.

[linenumber] RECORD# filenumber,recordnumber,bytenumber]

filenumber is the logical number of the relative file.
recordnumber is the number of the relative file record in which
the byte vou want to select is located (must be between 0 and
65535). 0 and 1 both index the first relative file record.
bytenumber indicates at which byte (1 through 254) you want
to select.

Examples:

10 DOPEN#2,"RELFILE",L50 OPENS a relative file with a record
length of 50.

20 RECORD#2,10,50 Allocates space for 10

25 PRINT#2,CHR$(255) records and moves the
30 DCLOSE#? pointer to the end.
10FORJ =1T0O10 Writes ten records to

20 RECORD#2 (1)1 position 1 in each record.
30 PRINT#2,"RECORD ;)

40 NEXT

REM

The REMark statement lets you insert explanatory remarks in
your programs. These remarks are not executable and do not
affect the program.

[linenumber] REM [text]

text can be any commentary that clarifies your program.
REMarks do not need to be enclosed in parentheses.

EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS 91

CHAPTER 6

Examples:

10 PRINT X: REM X IS TAXABLE TOTAL All text following REM
20 REM REMARKS MAKE PROGRAMS does not execute.
EASY TO READ

RESTORE

RESTore lets you reREAD the values in a DATA statement from
the beginning.

[linenumber] RESTORE [linenumber?2)

linenumber2 is the line number where the pointer is moved
back for DATA to be reREAD.

Examples:

10 DATA1,2
15 DATA8,9,10
20 READ A,B,C,D:PRINT A;B;C;D Asigns first 4 DATA values.

30 RESTORE 15 Moves pointer to start of 15.
40 READ E,F,G: PRINT E;F,G Assigns data from start of 15.
50 RESTORE Moves pointer to start of first

DATA statement.
60 READ A,B,C:PRINT A;B;C Assigns first 3 DATA values.
RUN

12 8 9

8 9 10

1 2 8
RESUME

This statement lets you continue with program execution after
an error has been trapped and processed by your error handling
routine. If you do not name a specific line at which execution is to
RESUME. the program will attempt to re-execute the statement in
error. If you select the NEXT argument. execution resumes at the
line following the error. If you select some other line number. exe-
cution continues there.

92 EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS

[linenumber] RESUME [NEXT | linenumber?2]
linenumber2 is any line you select for execution to resume.
Example:

70 TRAP 100: REM IF AN ERROR Sends program to line 100
OCCURS GOTO LINE 100 if there is any error in
75 PRINT VAL (L): REM THIS IS the program.
AN ERROR BECAUSEL = 0
120 RESUME NEXT Restarts program at line
after error.

RETURN

RETURN ends a subroutine and branches the program back to
the statement following the GOSUB statement that started the
subroutine.

[linenumber] RETURN

Example:

50 GOSUB70 Passes control to subroutine
60 PRINT "~ SUBROUTINE OVER *"" at line 70.

65 END

70 PRINT “"SUBROUTINE STARTS" Subroutine begins.
80 PRINT "MORE SUBROUTINE"
90 PRINT "ENDING SUBROUTINE"

100 RETURN Ends subroutine and passes :
RUN control back to the line w
SUBROUTINE STARTS following GOSUB. line 60. E
MORE SUBROUTINE which executes only after <L
ENDING SUBROUTINE the subroutine is over. =

* SUBROUTINE OVER *

STOP

This statement terminates program execution and returns con-
trol to command level. also called direct mode. You can resume

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 93

execution with the CONT statement if you follow the restrictions
detailed in the description of CONT.

[linenumber] STOP

SYS

Use this statement to call a machine language subroutine. This
subroutine is located at the jumpaddress named as the SYS
argument. This address is decimal, not hexidecimal.

SYS jumps to the last bank named in the program. If no bank
has been named. SYS jumps to bank 15. If SYS jumps to any bank
other than 15, RAM-loaded transfer of execution routines must be
present in the bank.

NOTE: All machine language programs must end with an RTS
(ReTurn from Subroutine) statement. which returns to the BASIC
program.

[linenumber] SYS jumpaddress

Jumpaddress is the decimal address of the machine language
subroutine being called by the program.

Example:
40 SYS 512 Calls the machine language sub-
routine at decimal address 512.
TRAP

This statement prevents BASIC's normal error handling func-
tions from taking control. When an error occurs. TRAP lets your
program perform its own error handling routines that you've writ-
ten into the program. Three error-handling functions. EL. ER. and
ERRS. are explained in Appendix A.

[linenumber] TRAP [linenumber2)

linenumber2 is the line where your error handling procedures
begin.

94 EXTENDED BASIC 4 0+ COMMANDS AND STATEMENTS

Example:

360 INPUT B

370 IF B = 0 THEN TRAP 550 If B = 0. an error occurs because

380 X = A/B: PRINT X BASIC won't divide by 0. TRAP
passes to line 550 where this error
is fixed without the program being
stopped because of the error.

WAIT

WAIT suspends program execution while monitoring the status
of data input from the specified location. The values of selected
bits at the specified location determine whether the WAIT state-
ment is re-executed, or control passes to the next executable
statement.

When you use the WAIT statement. the program is on hold.
waiting until a machine address you name develops a specific bit
pattern. The data read at the address is exclusive Ored with
mask2. whose default is 0. Then the data is ANDed with mask]1. If
the result is zero. BASIC loops back to reread the data. making
execution WAIT. If the result of the OR and AND operations is not
zero, execution continues with the next executable statement.

NOTE: If you enter an indefinite loop with a WAIT statement.
you must manually reset the machine.

[linenumber]| WAIT location, maskl [,mask2]
mask]1 is the value with which the specified data is ANDed.
mask?2 is the value with which the specified data is exclusive
ORed.

Example:

55 PRINT "PROGRAM WAITS TIL ANY
KEY IS PRESSED"

60 POKE 209,0 Puts 0 in memory location
2009.
70 WAIT 209 1 Makes program wait until

any key is pressed before
80 PRINT "SOME KEY WAS PRESSED ' resuming.

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS 95

CHAPTER 6

Owner's Registration Card

INDEX

APPENDICES

BASIC 4.0 Functions
BASIC 4.0 Abbreviations
Screen Display Codes
CHRS Codes

Screen Memory Map
Memory Map

. Mathematical Functions Table

Pinouts for Input /Output Devices
Converting from Standard BASIC
to Extended BASIC 4.0

Error Messages

Non-error Messages

6581 (SID) Chip Register Map

. Printer Commands

Using the RS-232C Channel

. Machine Language Monitor

Bibliography
User's Clubs. Magazines. and Lhe
Commodore Information Network

APPENDIX A

BASIC 4.0
FUNCTIONS

ABS
ABS (expression)

Returns the absolute value of (expression).
Example.

PRINT ABS (7°(-5))
35

ASC
ASC (expression)

Returns the numeric value that represents the ASCII code of the
first character of (expression). which is a string value. The CHRS
function performs ASCII-to-string conversion.

Example.
10 X$ = "TEST"
20 PRINT ASC (X$)
RUN
84 T is ASCII code 84.
ATN

ATN (expression)

Returns the arctangent of the (expression) in radians. The
result is in the range -pi /2 to pi/2. The expression can be any

98 APPENDIX A

S0

(

(

numeric type, but the evaluation of ATN is always performed in
floating point binary.

Example.

10 INPUT X
20 PRINT ATN (X)
RUN
¢ 3
1.24904577

CHRS
CHRS (expression)

Returns a string containing a single character whose value is
the character with the ASCII code represented by (expression).
These codes are listed in Appendix D. The expression can be any
integer between 0 and 255.

CHRS is often used to send a special character to the terminal.
For example. CHRS(14) switches the screen to upper /lower case
(normal) mode.

The ASC function performs ASCII-to-numeric conversion.

Examples:

10 ES + CHRS (147) + "ERROR MESSAGE"
20 PRINT ES: REM CLEARS SCREEN AND PRINTS MESSAGE

10 N$ = CHRS(83) + CHRS(77)
20 PRINT NS

RUN

SM

Cos
COS (expression)
Returns the cosine of (expression) in radians. Expression is any

valid numeric expression. The evaluation of COS is always per-
formed in floating point binary.

APPENDICES

APPENDIX A 99

Example:

PRINT COS(5-1)
-.65364362

10 X

= 2°CO5(.4)

20 PRINT X

RUN

1.84212199

ERRS

ERRS (expression)

Returns a character string which contains the text of the error

message

represented by (expression). The value of expression

must be between 0 and 127.
When used with the TRAP statement. ERRS helps you process
error messages within your program.

Example:

35
50
70
80
90

100
110

120

130

EXP

REM IF USED WITH TRAP EL HOLDS THE ERROR LINE
WHILE ER HOLDS THE ERROR #

PRINT ERRS(1):REM THIS WILL PRINT AN ERROR
MESSAGE

TRAP 110:REM GO TO LINE 110 IF AN ERROR OCCURS
PRINT VAL(K):REM THIS IS AN ERROR

PRINT “WE HAVE RETURNED FROM OUR TRAP
ROUTINE"

END

PRINT “ERROR IN LINE"EL: REM PRINT THE LINE WITH
THE ERROR

PRINT “THE ERROR IS "ERRS$(ER) : REM DISPLAY THE
ERROR

RESUME NEXT:REM RESUME EXECUTION AFTER LINE
WITH ERROR IN IT

EXP (expression)
Returns the value of e (approx. 2.71828183) raised to the power
represented by (expression). Expression must be less than or
equal to 88.02969191.

100 APPENDIX A

Examples:

2EXP(1)
271828183

¢EXP(3.5)/2
16.557726

¢EXP(89)

¢OVERFLOW
FRE

FRE (expression)
Returns the number of free bytes in a memory segment or bank
indicated by (expression). If vou have a 128K machine. banks 1
and 2 contain 64K each. and the other banks are empty. If you

have a 256K machine. banks 1. 2. 3. and 4 contain 64K each. and
the other banks are emplty.

Example:
2FRE(T)
63908

¢FRE(1) + FRE(2)
128095

INSTR
INSTR (expression] ,expression?|,expression3])

The INSTR function performs a substring search. The text of
string (expression 1) is searched. beginning at character position
(expression3). for the occurrence of string (expression2). Numeric
expression3 must be a value between 1 and 255. The default for
expression 3is 1.

INSTR returns these values:

e [f expression 2 is NOT found in expressionl. INSTR returns
zero (0).

APPENDICES

APPENDIX A 101

® [expression2 is found. INSTR returns the position in string
expressionl that contains the first character of expression?2.

Example:

10 AS = "TEST TEXT"

20 BS = "TEXT®

30 PRINT BS; TEXT STARTS AT CHAR;INSTR(AS ,BS)
RUN

TEXT STARTS AT CHAR 6

INT
INT (expression)

Returns the largest integer which is less than or equal to the
value ol (expression).

Example:

PRINT INT (99.89)
99
PRINT INT (-28.8)
29

LEFTS
LEFTS (expressionl, expression?)

Returns a string that consists of a number (expression2) of
characters from a string (expression 1) starting from the leftmost
character in (expressionl). Expression2 must be an integer be-
tween 1 and 255.

Il expression2 is greater than the length ol expressionl. then
the LEFTS function returns the entire string. Use the LEN func-
tion to find the length of expression .

Example:

10 AS = "COMMODORE COMPUTERS "
20 BS = LEFTS(AS,9)

30 PRINT BS

RUN

COMMODORE

102 APPENDIX A

LEN

LEN (expression)

Returns the number of characters in (expression). Non-printing
characters and blanks are counted.

Example:

10 XS = "COMMODORE COMPUTERS"
20 PRINT LEN(XS)

RUN

18

LOG

LOG (expression)

Returns the natural logarithm of (expression). Expression must
be greater than zero.

Example:

PRINT LOG (45/7)
1.86075234

MIDS

MIDS (expressionl, expression2 [,expression3))

Returns a string that contains a number (expression3) ol char-
acters from string (expressionl). starting at the character posi-
tion. named in (expressionZ2). Expression2 and expression3 must
be between 1 and 255.

II'you do not supply a value for expression3 or if there are fewer
than expression3 characters in the string expressionl. then the
MIDS function returns all ol the rightmost characters of expres-
sionl. beginning with the expression2 character.

Il vou specify a value for expression2 that is greater than the
length ol the string expression 1. then the MIDS function returns
a null string.

APPENDICES

APPENDIX A 103

Example:

10 AF = "GOOD"

20 BS = "MORNING EVENING, FRIENDS"
30 PRINT A$;MID$(B$,9)

40 PRINT AS$;MID$(B$,%,7)

RUN

GOOD EVENING, FRIENDS

GOOD EVENING

PEEK
PEEK (expression)

Returns the byte read from memory location (expression) in the
bank selected by a previously executed BANK instruction. Expres-
sion must be between 0 and 65535.

PEEK is the complementary function to the POKE statement.
See the POKE statement for more information.

Example:

20 PRINT PEEK (36879)
RUN
46

POS
POS (expression)

Returns the column number of the current cursor position. The
leftmost position is O: the rightmost position is 80. Expression is
a dummy argument. which means that you can give it any value
because it doesn’t affect the function evaluation.

Example:

50 IFPOS(X) = 60 THEN PRINT CHR$(13)
60 REM CHRS$(13) IS THE RETURN KEY

RIGHTS
RIGHTS (expressionl,expression?)

Returns a string that consists of a number (expression2) of
characters from a string (expressionl) starting from the right-

104 APPENDIX A

most character in expressionl. Expression2 must be an integer
between 1 and 255.

Il expression2 is greater than the length of expressionl. the
RIGHTS function will return the entire string. You can use the
LEN function to see how long expression1 is.

If expression2 is zero. then RIGHTS returns the null string, A
null string is a string with a length of zero.

The LEFTS. MIDS. and RIGHTS string handling functions and
the INSTR function can be used to perform complicated string
handling operations.

Example:

10 TS = “BEGINNING,MIDDLE, AND END OF TEXT"

20 ES = RIGHTS(TS,3):REM ES = 3 RIGHTMOST CHARS OF
TS,

30 IFE$ < >"END" THEN PRINT RIGHTS(AS$ 8)

40 REM CHECKS IF 3 RIGHTMOST CHARS = END;
IF NOT, PRINTS 8 RIGHTMOST

RUN

OF TEXT.

RND
RND (expression)

Returns a random number between 0 and 1. Expression is the
seed value.
Example:

10 FORA = 1to5

20 PRINT INT (RND(X)*100)
30 NEXT A

RUN

24 30 31 51 5

SGN
SGN (expression)

Returns a value that indicates whether the value of (expression)
is positive. negative. or zero. The SGN function values are:

APPENDICES

APPENDIX A 105

e For X > 0.SGN returns +1
e For X = 0. SGN returns 0
e For X << 0. SGN returns -1

Example:

10 ONSGN(X) + 2GOTO 75,125,180
20 REMIFX< 0GOESTO75;IFX = 0 GOESTO 125
30 REMIFX >0 GOESTO 180

SIN
SIN (expression)
Returns the sine of (expression) in radians.

Example:

PRINT SIN(1.5)
997494987
SPC
SPC (expression)

Prints the number of blank spaces on the screen (or printer. if
opened) indicated by the number in (expression). SPC can only be
used with PRINT. Expression must be between 0 and 155.

Example:

PRINT “TOTAL SALES™; SPC(15):X
TOTAL SALES 1234567
SGQR
SQR (expression)
Returns the square root ol (expression). Expression must be
greater than or equal (o zero.

Example:

PRINT 10, SQR(10)
10 3.16227766

STATUS
Status

Returns a completion STATUS for the last input /output opera-
tion which was performed on an open file. The STATUS can be
read from any peripheral device.

The value of the status function depends on the operation and
device checked.

Use the STATUS function to:

® check for errors during the processing of a program on disk
® see if you are at the end of a file during the read processing
® check on a verify operation

A lable of STATUS code values for printer. disk (IEEE peripher-
als) and RS-232 file operations is shown below:

ST Bit ST Numeric | IEEE RS-232C
Position Value | Bus Channel*
0 | 1 . time out parity error
| write (receive only)
| 7 time out framing error
read (receive only)
2 4 i overrun
(receive on|y)
3 8 |
4 16 I input buffer
empty
5 ‘ 32 DCD error
6 1 64 ‘ EO! DSR error
T = __‘_ | T
7 | 128 | device not

present

"Meaning when bitisset to 1.

STRS

STRS (expression)
Returns a string representation of the value of (expression).

Example:
PRINT “$" + STR$(2.77) Prints 82.77

APPENDIX A 107

APPENDICES

or

PRINT"$"".STR$(2.77) Prints $2.77
PRINT STRS(150) + ~.00" Prints 150.00
TAB

TAB (expression)
Positions the cursor in the column represented by (expression).
You can only use TAB with a PRINT statement. Expression must
be between 0 and 155. The first column on the screen is column 0.

Example:

PRINT "TOTAL"; TAB(29); 123456"
TOTAL 123456

TAN
TAN (expression)

Returns the tangent of (expression) in radians.

Example:
10 X = 785398163
20 Y = TAN(X)
30 PRINTY
RUN
1
TIS
TIS

Returns the internal interval timer as a character string. The
string contains seven characters showing hours. minutes. sec-
onds. and tenths of seconds (hhmmsst). Set the timer with this
statement:

10 TIS = 0000000

108 APPENDIX A

USR
USR (expression)

Calls the user written machine language subroutine which has
starting address stored in locations 3 and 4 of bank 15. The
argument (expression) is stored in the floating point accumulator
prior to entering the subroutine.

VAL
VAL (expression)

Returns the numeric value of the string (expression). The STRS
function performs the complementary task. numeric to string
conversion.

Example:

30 IF VAL(ZIPS) << 90000 OR VAL(ZIPS) > 96699 THEN
40 PRINT "OUT OF STATE"

RESERVED SYSTEM VARIABLES

AND Logical operator.

DSs Disk status reserved word.

EL Line number last error occurred.
ER Error# of last error occurrence.
OR Logical operator.

NOT Logical operator.

STatus The system status for the last Input /Output
operation.
TISme The character string representation of the cur-

rent time-of-day registers.

RESERVED SYSTEM SYMBOLS

+ Plus sign arithmetic addition or string concatenation @
- Minus sign arithmetic subtraction and unary minus o
* Asterisk: arithmetic multiplication é
/ Slash: arithmetic division %

APPENDIX A 109

(blank) Blank:

= Equal sign:

< Less than

= Greater than:

I Up arrow:

.Comma:

. Period:
: Semicolon:

: Colon:

" Quoltation
mark:

separates kevwords and variable names
value assignment and relationship testing
used in relationship testing

used in relationship testing

arithmetic exponentiation

used in variable lists to format output: also
separates command parameters

decimal point in floating point constants
used in variable lists to format output

separates multiple BASIC statements on a pro-
gram line

encloses string constants

? Question mark:abbreviation for the kevword PRINT

(Left
parenthesis:

) Right
parenthesis:

% Percent:

Number:

S Dollar sign:

mPi:

110 APPENDIX A

expression evaluation and functions

expression evaluation and [unctions

declares a variable name as an integer

comes before the logical file number in input/

output statements
declares a variable name as a string

the numeric constant 3.14 159265

KEYWORD

ABS
APPEND
ASC
ATN
BACKUP
BANK
BLOAD
BSAVE
CHRS
CATALOG
CLOSE
CLR
CMD
COLLECT
CONCAT
CONT
COPY
COs
DATA
DCLEAR
DCLOSE
DEF FN
DELETE
DIM

DIRECTORY

APPENDIX B

BASIC 4.0

ABBREVIATIONS

ABBREVIATION

a EilE# B
a Eil&d P
a EilEd S
a EIEd T
b ElEd A
ba EZIEE N
b Eil&d L
b EiEd S
c EEA H
c EiEE A
c EiIE# O
c EEE L
c ElEE M
co EiEd L
con EiEA C
c EIEd O
co EElEA P
none
d E=Ed A
none

d E3ES
d EIES
SHIFT

d EHiI&ES
di B

o}
o
> Rl e e [l

IYPE

function—numeric
statement
function—numeric
function—numeric
command
statement
command
command
function—string
command
statement
statement
statement
command
statement
command
command
function—numeric
statement
command
statement
statement
command
statement
command

APPENDICES

APPENDIXB 111

DISPOSE
DLOAD
DOPEN
DSAVE
END

EXP

FOR

FRE

GET
GET#
GOSUB
GOTO
HEADER
IF..GOTO

IF. THEN..ELSE

INPUT
INPUT#
INSTR

INT

KEY
LEFTS
LEN

LET

LIST
LOAD

LOG

MIDS
NEW
NEXT
ON..GOSUB
ON..GOTO
OPEN
PEEK
POKE

POS
PRINT
PRINT#
PRINT USING
PUDEF
READ

112 APPENDIX B

n oo 2

—_- -0

1=

__Ua
7o O

—_
—

i
in

le

m

1

us

r

o]

statement
command
statement
command
statement
function—string
function—numeric
statement
function—numeric
statement
statement
statement
statement
command
statement
statement
statement
statement
function—numeric
function—numeric
command
function—string
function—numeric
statement
command
command
function—numeric
function—string
command
statement
statement
statement
statement
function—numeric
statement
function—numeric
statement
statement
statement
statement
statement

RECORD re (& statement

REM none statement
RENAME re N command
RESTORE re S statement
RESUME res U statement
RETURN re T statement
RIGHTS r I function—string
RND I N function—numeric
RUN r U command

SAVE s A command
SCRATCH s C command

SGN s G function—numeric
SIN S I function—numeric
SpPC s P function—special
SQR s Q function—numeric
STATUS st function—numeric
STOP s T statement

STRS st R function—string
SYS S Y statement

TAB t A function—special
TAN none function—numeric
TIS none function—string
TRAP t R statement

USR u S function—special
VAL none function—numeric
VERIFY v E command

WAIT w A statement

NOTE:The character printed is the saume in normal (text) mode and graphics mode
unless otherwise indicated.

o
w
2
o
<
m
o
a
<

APPENDIXB 113

APPENDIX C

SCREEN DISPLAY
CODES
SET 1 SET2 POKE | SETI SET2 POKE | SET1 SET2 POKE
@ 0 u U 21 % 42
A a 1 \ v 22 + 43
B b 2 %% w 23 , 44
G c 3 X X 24 - 45
D d 4 Y y 25 . 46
E e 5 Z 26 / 47
F f 6 [27 0 48
G g 7 £ 28 1 49
H h 8 | 29 2 50
| i 9 t 30 3 51
J i 10 - 31 4 52
K k 11 32 5 53
L | 12 ! 33 6 54
M m 13 " 34 Y4 55
N n 14 # 35 8 56
O o 15 $ 36 9 57
P p 16 % 37 : 58
Q q 17 & 38 ; 59
R r 18 ‘ 39 < 60
S s 19 (40 = 61
T t 20) 4] > 62

114 APPENDIX C

SET1 SET 2 POKE SET1 SET 2 POKE SET1 SET2 POKE

? 63 | [4 U 85 | [H 107
= 64 |4 v 8 |[d 108
A A s |0 w8 |[H 109
0 8 6 |% x 8 |H] 110
H c 67 | [Y 89 | 117
= D 68 | [7 % | [112
= e 69 | HH 91 | 113
Q0 r 70 |E] 92 | M 114
O o 71| 93 | H] 115
(I w72 w94 | L 116
N | 73 95 | I 117
K J 74 9% | [N 118
I x 75 | I0 97 | & 119
] L 76 | o 98 | ™ 120
N M 77 |) 99 | | 121
A N 78 | [100 | 122
0 o 7 | L] 101 | gl 123
1 e s | BB 102 | (™ 124
® o = |0 103 | [125
O R 8 |k 104 | M) 126
v s 83 | P B 105 | Mg 127
O 71 8 | 106

Codes form 128-255 are reversed images of codes 0-127.

»
w
O
O
Z
w
o
o
<

APPENDIXC 115

APPENDIX D

CHRS CODE
PRINTS PRINTS

PRINTS CHRS PRINTS CHRS TEXT GRAPHICS CHRS TEXT GRAPHICS CHRS
0 23 . . 46 e E 69
] 2 | / / 47 | f 3 70
2 25| 0 0 48 | g G 7
3 2 | 1] 49 | h H 72
4 27 | 2 2 50 | i | 73
5 28 | 3 3 51 | J 74
6 29 | 4 4 52 | k K 75
7 30 | 5 5 = L 76
8 31| 6 6 54 | m M 77
TAB CHlISPACERVIIN 7 55 | n N 78
0] ' 33|38 8 5 | o o 79
Mn| » 34|09 9 57 | p P 80
121 # 35 - ; 58 | q Q 8l
130 s 36| ; .59 | R 82
OCERel 14 | % 37 | < < 60| s S 83
g 15 | & 38 | = = 61|t T 84
6l 0 3| > > 62| u U 85
171 (40| ? ? 63 | v v 86
18l) 4 |e@e @ é4|w W 87
| HOME b * 42 a A 65 X X 88
20| + 43| b B 66 | vy Y 89
21| , 44 cC 67| z z 90
2| - 45| d D 68| | [91

NOTE: The character printed is the same in normal (text) mode and graphics mode

unless otherwise indicated.

116 APPENDIXD

PRINTS PRINTS
PRINTS CHRS| PRINTS CHRS|TEXT GRAPHICS CHRS$|TEXT GRAPHICS CHRS|
£ 92 148 ‘w1726 [199
] 93 149 ‘T oaz3jH [T 200
- 94 150 A 1741 N1 201
- 95 151 w75l [N 202
Py — 152 = 176l k7] 203
BOTTOM 153 a7zl L 204
OF PAGE 154 = o7slm N 205
128 155 1 179|N L 206
129 156 [] 1800 [207
130| P 157 I ws1p] 208
[RUN | 131 158 B 82l @ 209
132 159 ™ e3jr [210
k]| SPACE RPN ™ 1845 (¥ 21
134) I 161 s 185(T [] 212
135| 162 O 1sslu [213
136] 163 ml 187|v X 214
TAB k7 164 ™ 88w O 215
138 [165 H] 189l x [# 216
139 BB 166] oae0ly [I 217
140 o ooz & 218
141 TEXT GRAPHICS CHRS E 192 EE 219
142 A [#] 193 Bl 220
DO SoTTON R L] 1678 [T 194 1 221
144 e 168/ C = 195|« 222
145\ @ P 1e9lp 3 196N N 223
146 1 170l 5 197 SEENOTE
147 B 7|F 3 19s| BLTOM

CODES 96-127 ARE THE SAME AS 32-63
CODES 224254 ARE THE SAME AS 160-190
CODE 255 IS THE SAME AS 222

APPENDICES

APPENDIXD 117

Your computer's memory
stores the characters currently
displayed on the screen and
automatically updates changes.
Your ‘B’ Series computer screen
has 25 lines by 80 columns. so
it has positions for 2000 char-
acters. Each of these positions
has its own screen memory
address by which vou can refer
to the screen position and the
character currently located
there. You can access aspecific
location by supplying the
address in PEEK and POKE
statements. PEEKSs let you see
what is in a screen memory
location. and POKEs let you
put a value into a screen
memory location.

Each character position is
represented by one byte. start-
ing at hexadecimal address
D000 (decimal 53248) and
ending at hexadecimal address
D7CF (decimal 55247).

118 APPENDIX E

53327

APPENDIX E
SCREEN MEMORY MAP

53748

(

(

APPENDIX F

B SERIES MEMORY MAP

B Series Memory Map

B Series Memory Map

B Series Memory Map

Segments 01 to 04 Segment OF I/O Address Block
SFFFF S S— SFFFF E—
USER PORT
§ ADO0 — -
BASIC RO
$0000
CARTRIDGE ROM/RAM | |
|
|
4K DISK ROM NOT USED
$1000— [
2K EXT BUFFER RAM |
30800 |
2K RAM |
<0 1 $0002 |
NDIRECT SEGMENT BANK | INDIRECT SEGMENT BANK
£0001 30001
| EXEC SEGMENT BANK EXEC SEGMENT BANK $Cooo|
$0000 —— $0000 — L

APPENDIXF 119

APPENDICES

FUNCTION

secant
cosecant
colangent
inverse sine

inverse cosine

inverse secant

inverse cosecant

inverse cotangent
hyperbolic sine
hyperbolic cosine

hvperbolic tangent

hyperbolic secant
hyperbolic cosecant

hvperbolic cotangent
inverse hyperbolic sine
inverse hyperbolic cosine
inverse hyperbolic tangent
inverse hyperbolic secant

inverse hyperbolic cosecant

inverse hvperbolic contangent

120 APPENDIX G

APPENDIX G

MATHEMATICAL
FUNCTIONS TABLE

BASIC EQUIVALENT

sec(x) = 1 /cos(x)
cse(x) = 1/sin(x)
cot(x) = 1 /tan(x)
arcsin(x) = atn(x /sqrl - x*x + 1))

arccos(x) = -atnlx /sqr(-x*x + 1))
+ 7 /2
arcsec(x) = atnlx /sqrix*x - 1))
atnix /sqrix*s - 1))

+ (sgnlx) -1)*7 /2
amn(x) + 7/2

sinh(x) = (exp(x) - expl(-x))/2

arcesc(x) =
arcot(x]) =
cosh(x) = lexplx) + expl(-x)}/2
tanh(x) = exp(-x)/

(explx) + expl(-x))*2 + 1
sech(x) = 2 /(exp(x] + exp(x))
csch(x) = 2 /(exp(x) - expl(-x))
cothlx]) = expl-x)/

lexplx) - expl-x1*2 + 1
arcsinh(x) = log(x + sqrix®x + 1]
arccosh(x) = loglx + sqr(x*x - 1))
arctanhi(x) = log({1 + x)/(1 - x))/2
arcsech(x) = log((sqri-x*x + 1)

+ 1R)
arceschi(x) = logl(sgn(x)*
sqrix*s + 1/x)

arccoth(x) = logl(x + 1)/(x - 1)) /2

(

(

(

€ (

APPENDIX H

PINOUTS FOR
INPUT /OUTPUT
DEVICES

Your computer is equipped with several specialized chips all in
BANK 15. The 6526 Complex Interface Adapter is located at 56320
(8DCO0). The 6551 Asynchronous Communications Interface
Adapter is located at 56576 (SDDO0O0). Your computer has two
6525 Tri-port Interface chips located at 56832 (SDE00) and
57088 (SDFO00). For more information. consult your Programmer’s
Reference Guide.

Connector Pin—Outs

| A T
g ‘C‘- Pin Type Pin Type
4 D 1| goO A BDO
5 £ 2 Al 8 8D1
: F 3 A2 c 8D2
7 H 4 A3 D D3
8] 5 Ad E BD4
9 « 6 A5 F 805
10 L 7 a6 H 806
" M B | A7 J BD7
12 N 9 ‘ A8 K GND
13 4 10 A9 L | GND
14 R 1 | a0 M| SRw
15 5 12 I an N 502
13 A2 P NOT CSBank 1
14 +5VDC R NOT CSBank 2
15 | +5vDC 5 NOT CSBank 3
Keyboard Connector RS$232CConnector
|
V4 o : ; Pin Type Pin | Type 14 "/E; Pin Type
150e I 1 PAO 2 | a2 Sle O3 | [sHELD
16 o Jall 15 3 PA4 4 | Pas 16 | o r 5 2 TxD
1710 1. 5 P8O 6 | PBI 17 1o E 3 | RxD (7))
18lo °|° 7 pa2 8 PB3 18le °|° 4 | RIS W
19 lo °] & 9 PB4 10 PBS wlo e]s 5 crs
2wle °l7 PR& 12 PB7 0o ° 7 6 DSR U
of 8 3 pCs 14 | pal e E: 7 GND ~
3 L 15 | Pa3 16 PAS 1o g 8 DCD (@]
210 17 A7 18 PCO 2 I R 1 15VDC 2
23 fo °f 19 PCI 20 | PpC2 2o °|] 18 12 vDC [T
24 o 12 21 PC3 22 | GND 24 o l' 20 [DR o
25 la @] 4 23 GND 24 GND 25| ©f 2 4 | RxC a
o) 13 25 PC4 @) 3 -
All others N.C. <

APPENDIXH 121

User Connector

IEEE Connector

2 ! Pin Type Pin Type
4 3 A 1 Pin Type Pin Type
6 5 1. GND 2-PB2 B 2
8 7 3. GND 4 . PB3 E 3 1 D1 A DS
10 9 5-NOTPC 6 - NOTFLAG D 4 2 D2 B | D6
12 n 7-.2D7 8-206 E 5 3 D3 C | D7
14 13 9-2D5 10 - 2D4 F 6 4 Da D D8
16 15 11-2D3 12..2D2 H 7 5 EQI E REN
18 17 |13-201 14.20D0 J 8 6 DAV F GND
20 19 |15-107 16 - 106 3 9 7 NRFD H GND
2 21 17 -105 18 - 1D4 L 10 8 NDAC J ‘ GND
24 23 |e-103 20-1D2 M Al 9 IFC K GND
26 25 |21-101 22 .1D0 N 12 10 SRQ@Q L GND
23 - NOT CNT |24 . +5vDC 1" ATN M GND
25-NOTIRQ |26 -SP 12 SHIELD N GND
Co-Processor Connector
T
Pin Type Pin | Type
1o o]2
3lo o4 1 EXTMA3 2 | DRAMOD
5lc ot 3 EXTMAZ 4 | DRAMOI
7]lo of8 5 EXTMAZ 6 | DRAMO?Z2
9lo o]0 7 EXTMAS 8 ‘ DRAMO3
M]lo o2 9 EXTMAS 10 | DRAMO4
130 of14 11 | EXTMAL 12 ; DRAMOS
15l o]lé 13 EXTMAI 14 | DRAMOE
170 o188 15 EXTMAD 16 | DRAMO7
190 o]20 17 GND 18 GND
21l o o022 19 GND 20 GND
23] o0 o|24 21 GND 22 | NQOT BUSY1
250 o|26 23 GND 24 NOT P2REFREQ
27]o o|28 25 GND 26 NOT P2REFGRNT
290 o030 27 GND 28 B8P0
31lo o]32 29 GND 30 8P1
33lo o34 31 GND 32 | BP2
350 o3 33 N.C 34 | BP3
37|o of38 35 NOT-PROCRES 36 | NOT BUSY?2
39 o | 40 37 EXTBUFR/W 38 NOT ERAS
39 DRAM R/W 40 NOT ECAS

122 APPENDIX H

(

(

St

Expansion Connector

Pin Type Pin Type
lle of2 !
3o o4 1 +5VDC 2 +5vDC
5lo olé 3 +5vDC 4 +5VDC
7lo ols8 5 GND 6 GND
9o o]10 7 GND 8 GND
Nlo of12 9 GND 10 GND
13]o of14 1 NOT BRAS 12 IRQ3
15| 0 of16 13 ‘ 12 VDC 14 NOT EXTRES
17l e o 15 ‘ L12vDC 16 NOTS.0
19l of20 17 ‘ NOT RES 18 LPEN
2|0 of22 19 SR/W 20 NOT EXTBUFCS
2o of24 21 ‘ TODCLK 22 NOT DISKROMCS
250 of26 23 | BOOTCLK 4 | NC
7]o o]28 25 | 502 2% NOT BCAS
29|o of30 27 501 28 NOT €51
31|o of32 29 | BD3 30 NOT EXTPRTCS
33|o o34 | BD4 32 8D2
3500 of3 33 | BDS 34 BDI
7o of38 35 DB7 36 800
9o of40 37 8A13 38 BD7
41 lo o4z 39 BAl4 40 BA15
43| o0 o |44 41 BAI 42 BAOD
45| o0 o |46 4 BA2 44 BAl]
7|0 ols 45 8A3 46 BA10
49]loc o]50 47 ‘ BA12 4 | BA4
1lo o]52 4 | BAY 50 BAS
53] o o5 51 BAB 52 ‘ BAS
550 o356 53 | BPO 54 BA7
570 o538 55 | CE 56 | BP2
590 o|60 57 NOT NMI 58 | B8P3
59 | ROY 60 | nNOTRG
Audio Jack Video Connector
Pin Type Pin Type
ol o]l
o2 1 TO SPEAKER o2 1 VIDEO
o3 2 N.C o3 2 GND
3 10 SPEAKER o4 3 VERTICAL SYNC
ols 4 GND
5 HORIZONTAL SYNC
o7 6 KEY
7 ‘ GND
Power Connector (7))
T w
Pin Type 0
1 50/60 Hz Reset Connector 0
2 12 vDC Z
4lo o]l 3 ~12VDC Pin Type w
5lo o2 4 GND ol! o
6o of3 5 GND o2 1 TO RESET SWITCH o
é -5 VDC 2 TO RESET SWITCH <

APPENDIXH 123

APPENDIX I

CONVERTING FROM
STANDARD BASIC TO
EXTENDED BASIC 4.0

If vou have programs written in a BASIC other than Commodore
BASIC. some minor adjustments may be necessary before run-
ning them with Commodore BASIC. Here are some specific things
to look for when converting BASIC programs.

String Dimensions

Delete all statements that are used to declare the length of
strings. A statement such as DIM AS(I. J). which dimensions a
string array for J elements of length I. should be converted to the
Commodore BASIC statement DIM AS(J).

Some BASICs use a comma or ampersand for string concatena-
tion. Each of these must be changed to a plus sign. which is the
operator for Commodore BASIC string concatenation.

In Commodore BASIC. the MIDS. RIGHTS. and LEFTS functions
are used to take substrings of strings. Forms such as AS(I) to
access the "Ith” character in AS. or AS(L. J) to take a substring of
AS from position I to position J. must be changed as follows:

Other BASIC Commodore BASIC

AS(l) = X$ A$ = LEFTS(AS, 1 - 1) + X$ + MIDS(AS, 1 + 1)
AS(1)) = X8 AS = LEFT$(AS, | - 1) + X5 + MIDS(AS,) + 1)

Multiple Assignments

Some BASICs allow statements of the form:
IOLETB =C =0

124 APPENDIX |

to set B and C equal to zero. Commodore BASIC would interpret
the second equal sign as a logical operator and set B equal to -1 if
C equaled 0. Instead. convert this statement to two assignment
statements:

100C=0B=0

Multiple Statements

Some BASICs use a backslash to separate multiple statements
on aline. With Commodore BASIC. be sure all statements on a line
are separated by a colon.

MAT Functions

Programs using the MAT functions available in some BASICs
must be rewritten using FOR ... NEXT loops to execute properly.

Differences From Older Commodore BASIC

TI references must be changed. The current smallest unit of
timeis 1 /10 sec. rather than 1 /60 sec. TIS now has seven charac-
ters instead of six. The seventh character is tenths of seconds. ER
is now a reserved variable. All references must be changed touse a
new variable name. ER returns the error number (127 is no error).

EL is now a reserved variable. All references must be changed to
use a new variable name. EL returns the line number of the last
error (65535 is no error).

APPENDIX | 125

APPENDICES

APPENDIX J

ERROR MESSAGES

MESSAGE EXPLANATION

0. 2stop key detected Occurs when doing a KERNAL 1/0
function and the STOP Kkey is
pressed. May occur during LOAD
or SAVE (or OPEN. CLOSE. GET*.
INPUT#. PRINT#). Disk files are not
damaged.

1. 2too many files You are trying to OPEN more than
10 files at a time. Decrease the
number of OPEN or DOPEN files by
CLOSING them.

2. 2file open An attempt was made to redefine
file parameter information by
repeating an OPEN command on
the same file twice.

3. 2file not open The operating system must have
information provided by the OPEN
statement. If an attempt is made to
read or write a file without having
done this previously. then this
message appears.

4. 2file not found The named file specified in OPEN
or LOAD was not found on the

device specified.

126 APPENDIX J

5. Zdevice not present

8. ¢missing filename

9. 2illegal

14.

15,

device number

. are you sure ¢

. ¢bad disk

break

extra ignored

. redo from start

No device on the IEEE was present
to handshake an attention
sequence. May happen on OPEN.,
CLOSE. CMD. INPUT#. GET~.
PRINT#.If filename is not specified
with OPEN. this error will not
occur.

LOADs and SAVEs from the IEEE
port (e.g.. the disk) require a file-
name to be specified. Supply the
filename.

Occurs if you try to access a device
in an illegal manner. For example.
LOADing or SAVING on the key-
board. screen. or RS-232.

This is a prompt for BACKUP.
SCRATCH. and HEADER. It is not
an error message and should not
occur during BASIC program
execution.

Media failure on HEADER
command.

This occurs when the STOP key is
pressed during normal BASIC exe-
cution. The CONTinue command
can be used to restart the program.

Too many items of data or separa-
tors (.) were typed in response to an
INPUT statement. Only the first few
items were accepted.

[s not actually a fatal error printed
in the standard format but is a

diagnostic which is printed when

APPENDIX J 127

APPENDICES

20. 2next without for

21. 2syntax error

22. 2return
without gosub

23. 2out of data

24. illegal quantity

128 APPENDIX J

data in response to INPUT is non-
numeric where a numeric quantity
is required. The INPUT continues
{o function until acceptable data
has been received.

Either a NEXT is improperly nested
or the variable in a NEXT slate-
ment corresponds to no previously
executed FOR statement.

BASIC cannot recognize the state-
ment you have typed. Caused by
such things as missing parenthe-
ses. illegal characters. incorrect
punctuation. misspelled keyword.

A RETURN statement was encoun-
tered without a previous GOSUB
statement being executed.

A READ statement was executed
but all of the data statements in
the program have been read. The
program tried to read too much
data. or insufficient data was in-
cluded in the program. Carriage
returning through a line READY
on the B Series video display yields
this error because the message is
interpreted as READ Y.

Occurs when a function is accessed
with a parameter oul of range
caused by:

1. A matrix subscript out of

range (0 << X << 32767)

25. overflow

26. 2out of memory

2. LOG (negative or zero argu-
ment)

3. SQR (negative argument)

4. AtB where A < 0 and B not
integer.

5. Call of USR before machine
language subroutine has been
patched in.

6. Use of string functions MIDS,
LEFTS. RIGHTS. with length
parameters out of range (1 < X
< 255).

7. Index ON . . . GOTO out of

range.
8. Addresses specified for PEEK.

POKE. WAIT. and SYS out of

range (1 < X < 255).

9. Byte parameters of WAIT.
POKE. TAB and SPC out of
range (0 < X < 255).

Numbers resulting from computa-
tions or input that are larger than
binary 1.70141184E + 38 cannot
be represented in BASIC's number
format. Underflow is not a detecta-
ble error but numbers less than
binary 2.93873587E-39 are indis-
tinguishable from zero.

May appear while entering or edit-
ing a program as the text completely
fills memory. At run time. assign-
ment and creation of variables may
also fill all variable memory. Array
available declarations consume large
areas of memary even though a pro-
gram may be rather short. The
maximum number of FOR loops

APPENDIX J 129

APPENDICES

27 2undefined

28. ?bad subscript

29. ¢redim'd array

30. 2division by zero

130

statement

APPENDIX J

and simultaneous GOSUBs are
dependent on each other. This con-
text is stored on the microproces-
sor hardware stack whose capacity
may be exceeded. To determine the
type of memory error. examine the
results of FRE. If there is a large
number of bytes available. it is most
likely a FOR-NEXT or GOSUB prob-
lem. A subroutine which termin-
ates in GOTO rather than RETURN
will eventually cause an out of
memory error as stack pointers
build up.

An attempt was made to GOTO.
GOSUB. or THEN to a statement
which does not exist.

An attempt was made to reference
a matrix element which is outside
the dimensions of the matrix. This
may happen by specilving the
wrong number of dimensions or a
subscript larger than specified in
the original dimension.

After an array was dimensioned.
another dimension statement for
the same array was encountered.
For example. an array variable is
defined by default when it is first
used. and later a DIM statement is
encountered.

Zero as a divisor would resull in
numeric overflow-thus it is not
allowed. When this message
appears. it is most expedient Lo list

31. gillegal direct

32. 2type mismatch

33. 2string too long

34. 2file data

35. 2formula
too complex

the statement and look for division
operators.

A single buffer area is used by
BASIC to process incoming char-
acters. This same buffer is used to
hold a statement that is being
interpreted in direct mode. INPUT
will not work because incoming
characters would overwrite the var-
iable list following INPUT to be pro-
cessed. DEF cannot be used in
direct mode for a different but sim-
ilar reason. The name of a function
is stored in the BASIC variable area
with pointers to the string of char-
acters which define the function.
Since the function exists only in
the input buffer. it is wiped out the
first time a NEW command is tvped
in.

The left-hand side of an assignment
statement was a numeric variable
and the right-hand side was a
string. or vice versa; or a function
which expected a string argument
was given a numeric one. or vice
versa.

Attempt by use of the concatena-
tion operator to create a string
more than 255 characters long.

Occurs when an INPUT# statement

finds a string while attempting to
read a numeric value.

This indicates that BASIC has run

APPENDIX J 131

APPENDICES

37.

39,

40.

41,

42.

43.

44,

132

2undefined
function

¢verify error

2out of stack

2unable to resume

2unable to dispose

2out of text

2cannot continue

APPENDIX J

out of string temporary pointers to
keep track of substrings in evaluat-
ing a string expression. Break the
string expression into two smaller

~ parts to cure the problem.

Reference was made to a user
defined function which had never
been defined.

The contents of memory and a
specified file do not compare.

Too many levels of FOR... NEXT or
GOSUBs have been executed. No
recovery possible.

A fatal error has occurred. such as
running out of stack.

All of the DISPOSE type items have
been disposed of or none exist.

If any LOAD or DLOAD exceeds the
end of the text bank of (64K) this
error will result. This error will not
occur when using the BLOAD
command.

The CONT command will not work
because the program was never
RUN. there has been an error. or a
line has been edited.

APPENDIX K

NONERROR
MESSAGES

The messages listed below are available through the ERROR
MESSAGE code numbers by using the ERRS calling codes listed
next to each message. However. these messages are not Error
Messages so they will not appearon the screen unless vou specif-
ically call for them in your programming or call for them as a
standard operating procedure.

MESSAGE EXPLANATION

12. (carriage return) ready This message lets you know that
(carriage return) your system is ready to use.

13. (space) in (space) This message is similar to ready.

17. your last “evaluated” This is the last number that has
number been evaluated through the num-

erical output buffer. (e.g.. print
10*10: if vou use an ERS code 17.
the number on your screen will
equal the last evaluation—in this
case, 100.)

18. more (carriage return)

19. power on message [Cc |

COMMODORE BASIC 128, V4.0

FCOMMODORE BASIC 256, V4.0*

APPENDICES

APPENDIX K 133

N
—

APPENDIX L
6581 (SID) CHIP _
REGISTER MAP _

—
p—
S
—
|
S
—
| _—
—
—
R

) 38858880

R
N—
—
)
p—

5o
c o
el
£ - 5
O A0 O 1Y CAN 2 o 0 |] 1 4
o T AIND OV 13 WOUNYY/A IS0 1 I L0 i
— v AINO Q¥ 1y L 10d Vi [| 1 G
SRt AINO OV 1 X104 | sl o B 1 A
— 9
on v 118 ardaow [9 y) v
9 g KINO 1118M 10A/100W 81 | 1
polNIE AINO 1118M IRTEST] 21) !
] ATNO 1113M IH D4 91 l i
3w F......”.u_ AINO H1IEM st L g
[75) .
ol w. 1) 35 "NIS. | _H_m:‘:‘ .z‘_.,‘_ TNLS v 0 0 | o | e
w m m 17OV | 7 WLV | PHIY NIV | WY £1 | | n 0 | &l
% Y] 014 108INOD Vg ._.:._ 1SI0N ol] l 0 a 1 81
~ 4 A
c VY g { =1 b 1 o 1 il 1 |
- 4 r&.,. o T R T 91
0 = 0
— o X | 1(| |
©) o AINO HIEM i 10 0 1 1)
Q r_u.. b gaxnop R
2o Y AINO F1M 3SY 1INV ISOS NIS | *NIS | 10 |) \
LT E ATNO LM v | av | 50 |) |
- e £ AINO 11H13M Qi 104INOD o 4o il | |
m © m AINO 1M 1H Ad Vo) oo | 0 ol
K DS Ao s o1 md md | *md | M 60 0o .
e o] AINO THIEA I 484 | "y I 80)) 0 0 L]
v W H AIND JLIM 010 | 9 1 | | 0)
= = i
st & ..m Tonas |ornas [mas | NS 90 (| | 00
] - NIRRT 50) | 00
m m “l W S_ _ J | asion 0 ()
=2 — - =
c Q 0 I £0 1 t
<L o ¢ *Md “ Mmd | "mg Md 2]
— B m I#4 O 4 “y £y nd | "y 10)0 00 I
w &~ 0101 | Z W GO g] m o0 0 0 0
el o0 = L 2op a ‘a ‘a ‘a ‘a ‘a ‘a a (XIHI v ‘v N Y v (23a)
© o =] IWYN 938 viva & 93 ssiyaav #9031y
—
LW =
Lm &
Fw18 E

APPENDIX L

134

APPENDIX M

PRINTER COMMANDS

6400 Word Processor Printer/
S8023P CBM Bi-Directional Printer

COMMAND SYNTAX

OPEN

CMD

PRINT#

OPEN Ifn,dn,(sa)

CMD Ifn

PRINT# Ifn, data

FUNCTION

sets correspondence belween
file number and physical de-
vice. The I or logical file
number may be anv number
from 1 to 255. The dn or device
number refers to the device
vou wish to send the file to.
The sa or secondary address
alerts the printer's micropro-
cessor system that formatting
is to occur.

transfers control from compu-
ter to printer. The lfn must be
the same as that in the OPEN
statement. When you give the
CMD command. the printer
prints READY and is awaiting
further commands. The CMD
command followed by a PRINT
or LIST command directs the
output to the printer.

PRINT# works like PRINT ex-
cept that output is directed to
the printer instead of video.
Using the CMD command
opens a “listening” channel to

APPENDIX M 135

APPENDICES

CLOSE

136

APPENDIX M

CLOSE lIin

the printer. and when followed
by a PRINT# command. the con-
nection between the printer
and computer is shut down or
is said to be "unlistening”.

You should always close a file
after printing from it. You may
not exceed ten open files so
you should close files when
vou are finished with them.

APPENDIX N

USING THE
RS-232C CHANNEL

The OPEN statement for an RS-232C channel has some special
arguments that you must understand before you can use it. You
must match the operating parameters of the RS-232C interface to
those of the device you're connecting to the computer.

When you open the RS-232C channel. your OPEN statement
must look like this:

OPEN filenumber,?,secondorynaddress,opensrring

Where:

Jilenumber is the logical file number to be associated with the
RS-232C channel.

secondary-address determines the direction of the RS-232C
channel. It can be input. output. or bidirectional and may or
may not convert between CBM and ASCII character codes.

openstring is a_four-byte command string that establishes the
operating parameters for the RS-232C channel.

The secondary-address may take any of the values shown in
Table 8.1.

TABLE 8.1 RS-232C DIRECTIONAL
SECONDARY ADDRESSES

VALUE MEANING

1 open an output channel
2 open an input channel
3 open an input /output channel

APPENDIX N 137

APPENDICES

129 open an output channel and convert CBM and ASCII
character codes

130 open an input channel and convert ASCII to CBM
character codes

131 open an input /output channel and convert between

CBM and ASCII character codes

The secondary-address values 1. 2. and 3 do not perform char-
acter conversions. If you're getting ASCII character codes through
the RS-232C channel. they are delivered as-is (o your program. If
vou want CBM /ASCII conversion you must select a secondary-
address value of 129, 130. Or 131.

NOTE: If you are transmitting or receiving non-character data through your
RS-232C interface, do NOT request CBM/ASCII character conversion. This
will completely scramble your data.

The openstring for the RS-232C interface is four bytes long. The
first two bytes contain detailed control information. The last two
aren’t used. but you must include them.

138 APPENDIX N

(

(

@ ? @
STOP BITS BAUD RATE
ool
O — 0000 1/16EXTERNAL
1.1 STOP BITS BERERE 50 BAUD
8 BIT PARITY I
1-1.5STOP BITS 0j01]9 75
5 8IT NO PARITY o}oirlx 110
1-2 STOP BITS i =
N o1]ofo] 1345
PAGES o101 150
T Tol 200
ERER 0
WORD LENGTH il K R LSS
o111] e00
BIT | DATA ——1 :
6| 5 | WORD LENGTH Iioip'm 240
1o 1 (1800
0o 8 BITS 4 Sl
. 1 1o 24
0|1 7 BITS s ! ! L
:] 111 3600
1] o 6 BITS | 817 |
111 (0]0] 4800
e 5 BITS ; i
1ol 1] 7200
RECEIVE CLOCK —————— o1 [T 0] 9600
V[| 19200
0 = EXTERNAL
1 = INTERNAL

First Byte Open String
RS-232C

APPENDIX N 139

APPENDICES

PARITY OPTIONS

BIT | BIT | BIT |
7|6 |5 |

OPERATIONS

PARITY DISABLED, NONE
GENERATED/RECEIVED

ODD PARITY o
| RECEIVER/TRANSMITTER

EVEN PARITY
RECEIVER/TRANSMITTER

MARK TRANSMITTED
PARITY CHECK DISABLED

SPACE TRANSMITTED
PARITY CHECK DISABLED

ECHO

NORMAL
ECHO

UNUSED

UNUSED

UNUSED

UNUSED

Second Byte Open String

140 APPENDIX N

APPENDIX 0

MACHINE LANGUAGE
MONITOR

TIM is the Terminal Interface Monitor program for MOS Technol-
ogy's 6500 Series microprocessors. It has been expanded and
adapted to function on the B Series computers. Execution is
transferred from the CBM BASIC interpreter to TIM by the SYS
command. The monitor is incorporated as part of the Kernal,

Commands typed on the CBM keyboard can direct the TIM to
start executing a program. displav or modify registers and mem-
ory locations. load or save binarv data. view other segments. send
disk commands or read status. set default disk unit and load and
execute programs by entering the program name (Segment 15
only). On modifying memory. TIM NO LONGER performs auto-
matic read after write verification to insure that the addressed
memory exists, and is R /W type.

TIM COMMANDS

M Display memory

: Alter memory

R Display registers

: Alter registers

G Begin execution

L Load

S Save

v View Segment

U Set default disk unit

@ Send disk command or get disk status
X Exit to basic

Z Transfer to second microprocessor

<file name>> load and execute

APPENDIX O 141

APPENDICES

EXAMPLES

M DISPLAY MEMORY

M 0000 0010
. 0000 Of 0f 4c d9 90 00 00 00 00 00 00 00 22 22 9e 00
. 0010 00 00 00 00 00 00 00 d4 fb 04 00 04 00 00 c4 fb

In a display memory command. the start and ending addresses
must be completely specified as 4 digit hex numbers. To alter a
memory location. move the cursor up in the display. type the cor-
rection and press to enter the change. When vou move
the cursor to a line and press IGEIEIA. the colon tells the monitor
that you are re-entering data.

R DISPLAY REGISTERS
R

PC IRQ SR AC XR YR SP
;0007 FBF8 BO DD 71 04 71

The registers are saved and restored upon each entry or exit
from the TIM. They mayv be modified or preloaded as in the display
memory example above. The semicolon tells the monitor you are
modifying the registers.

G BEGIN EXECUTION
G 0200

The GO command may have an optional address for the target.
If none is specified. the PC from the R command is taken as the
target.

L LOAD
L “filename" 08

No defaults are allowed on a load command. The device number
and the [ile name must be completely specified. Operating system
prompts for operator intervention are the same as for BASIC.
Memory addresses are loaded as specified in the file header which
is set up by the SAVE command. Machine language subroutines
may be loaded from BASIC but care must be taken not to use
BASIC variables as the variable pointer is set to the last byte loa-
ded + 1. The machine language subroutine will be loaded into

142 APPENDIX O

the segment that you are currently in as determined by the V
command. After the load. the system will be initialized back to
segment 15.

S SAVE
S “filename’’,08,010200,010300

As in the load command. no defaults are allowed in the SAVE
command. The device number. file name and a six byte start and
end address must be given. The above example will save a program
to device 8 from segment #1 starting at 0200 hex and ending at
0300 hex. The first two bytes are the segment number followed by
the address. Valid segment bytes may be 0 and OF depending on
your memory. After a save. the system will be initialized back to
segment 15.

V VIEW
V01

This will change the segment to the one that yvou wish to view,
save. load or change memory from. The valid segments are 00 to
OF

U UNIT ADDRESS
U 09

This command will allow you to set the disk unit default
address while you are in the monitor. When leaving, the original
address is reset. Valid unit addresses are 8 to 1F. These must be
entered in HEX.

@ READ ERROR CHANNEL AND PROCESS DISK COMMANDS

@ :Display error message and clear
channel

@ Sl:filename :Scratch specific file from drive 1

@10 Initialize disk in drive O

@ RO:newname = oldname :Rename file on drive O

@ Cl:filename = oldname :Copy file from drive O to drive 1

@ V0 :Validate or collect disk in drive 0

@ N1:filename,id :New or Header disk in drive 1

APPENDIX O 143

APPENDICES

The above examples use the same syntax as the wedge program
supplied with the disk drives.

<file name> LOAD AND EXECUTE FILE IN SEGMENT 15

This will load a machine language program from the disk and
execute it. [ts use is restricted to segment 15.

z TRANSFER TO SECOND MICROPROCESSOR

This command will allow vou to utilize the 8088 when applicable.

X EXIT TO BASIC
X

This will cause a warm start to BASIC. In a warm start. memory
is not altered in any way and BASIC resumes operation the way it
was before the call to the monitor was made.

144 APPENDIX O

PUBLISHER

Addison Wesley

Compute

Cowbay Computing

Creative Computing

Dilithium Press

Faulk Baker Associates

Hayden Book Co.

APPENDIX P

BIBLIOGRAPHY

TITLE /AUTHOR

BASIC and the Personal Compu-
ter, Dwyer and Critchfield

Compute’s First Book of PET/CBM

Teacher's PET—Plans. Quizzes
and Answers

Feed Me, I'm Your PET Computer,
Carol Alexander

Looking Good With Your PET.
Carol Alexander

Getting Acquainted With Your
VIC-20. T. Hartnell

BASIC Basic-English Dictionary

for the Pet, Larry Noonan

MOS Programming Manual,
MOS Technology

BASIC Conversions Handbook:
Apple. TRS 80. and PET, Brain,
Oviatt. Paquin, and Stone

Library of PET Subroutines.
Nick Hampshire

»
i
o
(a]
z
W
o
a
<

APPENDIX P 145

PUBLISHER TITLE /AUTHOR

PET Graphics. Nick Hampshire

I Speak BASIC to my PET.
Aubrey Jones, Jr.

BASIC from the Ground Up.
David E. Simon

Howard W. Sams Mostly BASIC Applications_for
Your PET, Howard Berenbon

PET Interfacing. J. Downey and S.
Rogers

Crash Course in Microcomputers.
Louise Frenzol

Little, Brown and Co. Computer Games_for Businesses.
Schools and Homes. J. Victor Nag-
igian and William S. Hodges

The Computer Tutor: Learning
Activities for Homes and Schools,
Gary W. Orwig and William S.
Hodges

McGraw Hill Home and Office Use of VisiCalc.
D. Castlewitz and L. Chisauki

Hands-On BASIC with a PET.
Herbert D. Peckman

Osborne /McGraw Hill Pet/CBM Personal Compiiter
Guide. Carroll S. Donahue

Osborne CP/M User Guide.
Thom Hogan

146 APPENDIX P

PUBLISHER

P.C. Publications

Prentice-Hall. Inc.

Reston Publishing Co.

Total Information Services

TITLE /AUTHOR

PET FUN AND GAMES. R. Jeffries
and G. Fisher

PET and the IEEE. A. Osborne
and C. Donahue

Some Common Basic Programs.
Lon Poole and Mary Borchers

The 8086 Book, Russell Rector
and George Alexy

Beginning Self-Teaching Compu-
ter Lessons

The PET Personal Computer for
Beginners. S. Dunn and V. Morgan

Pet and the IEEE 488 Bus (GPIB).
Eugene Fisher and C.W. Jensen

PET BASIC. Richard Huskell.

PET Games and Recreation,
Ogelsvy. Lindsey. and Kunkin

PET BASIC—Training Your PET
Computer, Zamora, Carvie,
and Albrecht

Understanding Your PET/CBM:
Vol. I BASIC Programming

Understanding Your VIC,
David Schultz

APPENDICES

AFPENDIX P 147

APPENDIX Q

USER'’S CLUBS,
MAGAZINES,

AND THE COMMODORE
INFORMATION
NETWORK

Commodore wants you to know that our support for users is just
beginning with your purchase of a Commodore computer. That's
why we've created two publications with Commodore information
from around the world, and a “two-way” computer information
network full of valuable input by and for Commodore computer
users in the U.S. and Canada from coast to coast.

In addition. we wholeheartedly encourage and support the
growth of Commodore User's Clubs all over the globe. They are an
excellent source of information for every Commodore computer
user. from the beginner to the most experienced.

The magazines and network, which are described below. have
the most up-to-date information on how to get involved with the
User's Club in your area.

Furthermore, your local Commodore dealer is an excellent
source of Commodore support and information. Your dealer can
always provide literature and hardware support to fill your chang-
ing computing needs.

Power /Play: The Home Computer Magazine

When it comes to entertainment. learning at home, and practi-
cal home applications. Power/Play is the prime source of infor-
mation for Commodore computer owners. It directs you to the
User's Club nearest you and tells you about its activities. It des-
cribes software, games, programming techniques, telecommuni-

148 APPENDIX Q

(

(

cations, and new products. Power/Play is vour personal connec-
tion to other Commodore users. outside software and hardware
developers. and to Commodore itself. Published quarterly. it's only
$10.00 for a whole year of home computing excitement.

Commodore:The Microcomputer Magazine

Widely read by educators. business people. and students, as well
as home computerists. Commodore is our main vehicle for shar-
ing exclusive information on the more technical uses of Commo-
dore systems. Regular departments cover the business. science.,
and education fields. programming tips. technical tips. and many
other features of interest to anyone who uses, or is thinking about
purchasing, Commodore equipment. Commodore is the ideal
complement to Power/Play. It is published bi-monthly. and a sub-
scription costs only $15.00 per year.

Commodore Information Network

The magazine of the future is here today. To supplement your
subscriptions to Power/Play and Commodore magazines. the
Commodore Information Network—our “paperless magazine” —is
available now. All you need is a Commodore computer. a telecom-
munications device called a modem. and your home or business
telephone.

Join our computer club. get help with a computing problem.
“talk” to other Commodore friends. or get up-to-the-minute in-
formation on new products. software, and educational resources.
Soon you will even be able to save yourself the trouble of typing in
the program listings you find in Power/Play and Commodore by
"downloading” directly from the Information Network. The best
part of the network is that most of the answers to your questions
are there before you even ask them. How's that for service?

To “call” our electronic magazine you only need a modem and
subscription to CompuServe™. one of the nation’s largest tele-
communications networks.

Just dial your local number for the CompuServe™ data bank
nearest you and then connect your phone to the modem. When
the CompuServe™ video text appears on your screen. type “G
CBM" on your keyboard. When the Commodore Information Net-
worlk’s table of contents. or "menu.” appears on the screen. it's
your turn to choose from one of our 16 departments. So make

APPENDIX Q 149

APPENDICES

voursell comfortable. and enjoyv the “paperless magazine” that all
the other magazines are writing aboul.

For more information about the Commodore Information Net-
work or about CompuServe™, visit your local Commodore dealer
or contact CompuServe™ customer service at 1-800-848-8990 (in

Ohio. 614-457-8600).

COMMODORE INFORMATION NETWORK

Main Menu Description
Direct Access Codes

Special Commands

User Questions

Public Bulletin Board
Magazines and Newsletters
New Product Announcements
Commodore New Direct

Commodore Dealers
Educational Resources
User Groups
Descriptions

Questions and Answers
Software Tips
Technical Tips
Directory Descriptions

150 APPENDIX Q

INDEX

ABS function 98

APPEND 66

Arrays
Dimensioning (DIM

statement) 72, 124-125

ASC function 98

Assigning data
DATA/READ statements 70-71, 90
INPUT statement 78-79
GET statement 75
LET statement 79

ATN function 98-99

BACKUP command 47-48, 52
Duplicating diskettes 47-48
Disk status errors 47

BANK statement 66-67

BASIC 4.0 commands (See
Extended BASIC 4.0)

BASIC 4.0 statements
(See Extended BASIC 4.0)

BLOAD 67

Branching programs
GOSUB 76
GOTO 76-77
ON/GOSUB 80-81
ON/GOTO 81
RETURN 93

BSAVE 68

Index

Calculations
Arithmetic operators
32-35
Calculator keypad 32-34
Execution order in
calculations 34-35
Parentheses in
calculations 35
Calculator keypad 32-34
CATALOG 52-53
CE (clear entry) key
33-34
CHRS codes 116-117
CHRS function 99
Clearing the screen 28
Closing files
CLOSE command 68, 136
DCLOSE command 71
CLR statement 68-69
CMD statement 69-70, 135
COLLECT 53
Commands, BASIC
format conventions 50-51
formats 52-65
CONCAT 54
Concurrent CP/M 9, 20-22,
38-39
CONT command 54-55
COPY statement 55-56
Copying Diskettes 47-48,
52,55-56

INDEX 153

COS functions 992-100

CP/M Operating System
20-22, 38-39

Cursor control keys 27

D

Daisy-chaining peripherals
42
DATA statement 70-71, 92
DCLEAR 56-57
DCLOSE 71
Debugging
CONT 54-55
DISPOSE 73
RESUME 92-93
STOP 93-94
TRAP 94-95
DEF FN statement 71-72
Defining function in
programs 71-72
Defining function keys
2829, 60-61
DELETE statement 57
Deleting data
DElLete key 27-28
Deleting a line (ESC D)
31
De|ehng files from
diskettes (SCRATCH) 64-65
Erasing current program
(NEW command) 62-63
DIM statement 72
Dimensioning arrays

72
DIRECTORY 57-58
Disk drives
Initializing (DCLEAR)
56-57
Installing 42
Models compatible with
"B Series 19
Diskettes
Duplicating diskettes
47-48
154 INDEX

Diskettes—cont.
Headering diskettes
44-45
Listing directory/catalog
52-53,57-58
Loading programs 43-44,
45-46, 58-59, 62, 67
S(wmg programs 46-47,
59, 64,68
DISPOSE statement 73
DLOAD 58-59
DOPEN 73-74
DSAVE 59
DSS$ 47,109
Dual microprocessor 9,
20-22,38-39,122
Duplicating Diskettes
47-48, 52, 55-56

E
Editing keys 27-28

8088 microprocessor 9, 20-22, 38-39, 122

END statement 74
ERRS function 94, 100
Error messages 126-132
Error trapping
CONT 54-55
DISPOSE 73
EL 94,109
ER 94,109
ERRS 94,100
RESUME 92-93
STOP 93-94
TRAP 94.95
ESCape functions 30-31
EXP function 100-101
Extended BASIC 4.0
Abbreviations 111-113
Commands 52-65
Conventions in formats
50-51
Converting from
standard BASIC 124-125
Functions 98-109
Statements 65-95

pooosooessossscossssossosssonsansen

—

F

FOR/TO/STEP 74-75
Format keys 26-27
Formatting diskettes

(See HEADER command)
Formatting output

PRINT USING statement

85-89

PUDEF statement 82-20

Punctuation marks 110
FRE function 101
Function keys 28-29,

60-61
Functions in programs

7172
G

GET statement 75
GET# statement 76
GOSUB 76

GOTO 76-77
Graphics mode 26-27

H

HEADER command 44-45,
59-60

IEEE port, 20,122
IF/GOTO 7778
IF/THEN/ELSE 77-78
Improperly closed files
138
INPUT 78-79
INPUTH 79
Insert mode 31
Inserting data
INSert key 27-28
Inserting a line (ESC I)
31

Installation
additional
microprocessors 21-22
"B Series computers
14-18
INSTR function 101-102
INT function 102

K

KEY statement 28-29,
60-61

Key defining 28-29, 60-61

Keyboard, 26-34, 121

Keypad 32-34

LEFT function 102
LEN function 103
LET statement 79
LIST command 61-62
Loading programs
BLOAD 67
DLOAD 58-59
LOAD 62
Prepackaged software 43-44
Programs 43-44,45-46
LOG function 103
Loops
FOR/TO/STEP/NEXT 74-75,
79-80
GOTO 76-77
IF/GOTO 77-78
IF/THEN/ELSE 77-78
ON/GOTO 81

M

Machine language menitor
141-144

Machine language programs
Loading (BLOAD) 67
Saving (BSAVE) 68
SYS command 94

INDEX 155

Mathematical functions
table 120
Memory maps
"B" Series memory map
119
Screen memory map 118
Merging files 54
MIDS function 103-104
MS-DOS 9,20-22, 38-39

N

NEW command 62763

NEXT statement 79-80

Nonerror messages 133

Normal (text) mode
26-27

O

ON/GQOSUB statement 80-81
ON/GOTO statement 81
OPEN cemmand 82, 138

P

PEEK 82-83, 104

Peripherals 18-21

Pinouts for Input/Qutput
devices 121-123

POKE 83

POS function 104

PRINT statement (2 on
calc keypad) 32, 83-84

PRINT USING statement
85-89

PRINT# statement 84-85, 135-136

Printers 18
Programmable function

keys 28-29, 60-61
PUDEF statement 89-90
Q

Quote mode 31

156 INDEX

READ statement 90
RECORD statement 91
Redirecting output (CMD
statement) 69-70, 135
REM statement 91-92
Renaming programs
(RENAME command) 63
Reserved system symbols
109-110
Reserved system
variables 109
Restarting program
execution 54-55
RESTORE statement 92
RESUME statement 92-93
RETURN statement 93
Reverse mode 27, 31
RIGHTS function
104-105
RND function 105
RS-232 port 19-20, 121,
137-140
RUN command 32, 63-64

S

Saving programs
BSAVE command 68
DSAVE command 59
Replacing programs 47
SAVE command 46-47, 64
SCRATCH command 64-65
Screen display
Disabling Scroll (ESC M) 31
LIST command 61-62
PRINT statement 83-84
Screen display codes
114-115
Screen memory map 118
Scrolling 30-32
Scrolling (ESC and
;) 3031, 32
SGN function 105-106

(

(

SID chip register map
134
SIN function 106
Software 9, 38-39
SPC function 106
SQR function 106
STATUS function
107
STOP statement 93-94
Storing programs (see
Saving programs)
STRS function 107-108
Subroutines 76-77,
80-81
SYS Statement 94

TAB function 108
TAN function 108
TIS function 108, 125

TRAP statement 94-95
U

USR function 109

VAL function 109
Variables (See Assigning
data)
VERIFY command 65
W
WAIT statement 95

Z

2-80 microprocessor 2,
20-22, 38-39,122

INDEX

INDEX 157

;2333333033333 %29%23%32%03%30%3%%09%22%223 000

“B" SERIES QUICK REFERENCE CARD

SIMPLE VARIABLES
Type Nome Range
Reol Xy + 1.70141183E + 38

+ 293873588E - 39
Integer XY% + 32767
Strng XYS 010255 characters
X s @ letter (A-Z] ¥ 15 a letter or number (0-9) Varnable
names can be more than 2 characters, but only the first
two ere recognized

ARRAY VARIABLES

Type Name
Single Dimension XY(5:
Two Dimension XY{5.5)
Three Dimension XY(55.5)

Arcays of up to eleven elements (subscripts 0-10) can be
used where needed. Arrays with more than eleven ele-
ments need 1o be DIMensioned

ALGEBRAIC OPERATORS

- Assigns value o variable
- Negation

1 Exponentiation

* Multiplication

/ Diasion

+ Addition

- Subtraction

RELATIONAL AND LOGICAL OPERATORS

= Equcl
o Not Equal To
< Less Than
Greater Than
Less Than or Equel To
= Greoter Than or Equal To
NOT Logical Not
AND Logical And
Or Logical Or
Expression equals 1 i true, 0 if folse
SYSTEM COMMANDS

DLOAD NAME Loads a progrom from disk
DSAVE NAME Soves o progrom on disk
LOAD NAME .8 Loods o progrom from disk
SAVE NAME .8 Soves o progrom 1o disk

VERIFY NAME Venfies that progrom was SAVED
without errors

RUN Executes a program

RUN xxx Executes progrom starting at line
xnx

STOP Halts execution

END Ends execution

CONT Continues progrom execution from
line where program was halted

PEEK(X) Returns contents of memary loca
ton X

POKE XY Chonges contents of location X to
value ¥

S5YS xrnxx Jumps to execute a mochine lon-
guoge progrom, starling at XK

WAIT X, ¥, 2 Program waits until contents of

location X, when EORed with 2 and
ANDed with Y, s nonzero

USR(X) Passes value of X to o machine lan
quage subroutine

EDITING AND FORMATTING COMMANDS

LIST Lists entire progrom

LIST A-B Lists from line A to line B

REM Message Comment message can be listed but
s ignored during program execu-
tion

TARBX) Used in PRINT stotements. Spoces X

positions on screen

SPCX)

POS{X)
CLR/HOME

SHIFT CLR/HOME
SHIFT INS/DEL
INS/DEL

CTRL

CRSR Keys

Commodore Key

PRINTs X blanks an line

Returns current cursor pasition

Positions cursor 1o left corner of

screen

Clears screen ond ploces cursor in
Home poution

Inserty space at current cursor

position

Deletes character al current cursor

position

Prints graphics on non-alphabetic

keys and cccesses control functions

Moves cursor up, down, left, right

on screen

Stops the program Hrom scrolling

Press any key to restart

ARRAYS AND STRINGS

DIMAX, Y, 2} Sets moximum subscripts for A; re
serves space for (X + 177(Y + 1)
{2 = 1) elements starting at A
0.00)

LEN (X§) Returns number of characters in X§

STRS(X) Returns numeric velue of X, con
verted to a string

VALIXS) Returns numeric value of AS, up to
first nonnumeric character

CHRS(X) Returns ASCIl chorocter whose
code 15 X

ASCIXS Returns ASCIl code for first charcc-
ter of X§

LEFTS|AS X) Returns leftmost X choracters of A$

RIGHTS{AS X] Returns nghtmast X characters of
AS

MIDS{AS XY Returms Y characters of A% starting
at charocter X

INPUT/OQUTPUT COMMANDS

INFUI ASOR A PRINTs 7 on screen and woits for

INPUT ABC ©A

GET AS ar A

DATAA B C

READ AS or A
RESTORE

PRINT A A

PROGRAM FLOW

GOTO X
IFA=3THEN 10
FORA=1TOQI0
STEP2 - NEXT
NEXT A

GOS5UB 2000

RETURN

ONXGOTO &8

ONX GOSUB AB

user 1o enter a string or value
PRINTs message and wails for user
to enter value. Can alio INPUT AS
Wails for user 10 type one-charoc
ter value; no RETURN needed
Ininalizes o set of values that con be
used by READ statement

Assigns next DATA value AS or A
Resets data ponter 1o start READ-
ing the DATA list agan

PRINTs string A = and volue of A
: suppressesspaces: . tabsdata to
next field

Branches to line X

IF assernon is true THEN execute
tollowing part of statement. IF
false, execute next line number
Executes oll statements between
FOR

and correspoanding NEXT, with A
going from 110 10 by 2. Step size is
T unless specified

Defines end of loop. A is optional
Branches ta subroutine starting ot
line 2000

Maorks end of subroutine. Returns to
statement following most recent
GOsuB

Branches to Xth line number on list
X =1 branches 1o A, etc
Bronches to subroutine at Xth hine
number in list

) 3333333°%

)

) 393333

J

5. Number of Children?
6. What's your educational background?

OWNER’S REGISTRATION CARD

Please mail this card to Commodore to register
your computer with us.

Name:
Address:
City:
Zip Code:
1. What-is your family’s 2. Purchaser’s age?
present income bracket? O Under 18
O less than $14,999 O 18 - 24
O $15,000 - $24,999 O 25 - 34
O $25,000 - $39,999 0O 35-49
O $40,000 - $59,999 O over 50
O $60,000 and above
3. Are you male or female? 4. Are you married?
O Male O Female O Yes O No

O Did not finish high school
O High School graduate

O Some College

O College Graduate

O Some Graduate School

O Graduate Degree

7. What is your primary area of computing interest?

Self teaching

Education

Recreation and Hobby

Small business
Telecommunications/Timesharing
Engineering

Productivity

Other

ODO000o0oooo

uuuuuuuuuuuuuwuuuuuuuuuuuuuuuuuuu

Get the most out of your Commodore computer with a subscription to
Commodore’s user magazines

é PLAY Gcommodore

Fun, Games and Beyond with Commodore The Microcomputer Magazine
Home Computers

Published quarterly in March, June, September and December, POWER/ Widely read by educators, businessmen, students and home computerists,
PLAY is devoted solely to the exciting and rapidly expanding world of this bi-monthly publication provides a vehicle for sharing exclusive product
Commodore home computing. It provides valuable intormation on new information on Commodore systems, programming techniques, hardware
products, applications, games, programming techriques, learning-at- interfacing, and applications for the wide range ot Commodore’s products.
heme, telecommunications and just about anything else Commodore home Each issue contains features of interest to anyone that uses, or is thinking
computer users need to know to get maximum enjoyment out of their about purchasing Commodore equipment. Get the most out of your micro-
home computing experience. Subscription price: $10.00/year. computer with Commodore Magazine. Subscription price: $15.00/year.
FILL OUT AND MAIL TODAY GET MORE INFORMATION FOR YOUR MONEY
Nl Phaie Please sign me up for:

___vyear(s) of POWER/PLAY at $10.00/year
Address

—year(s) of COMMODORE at $15.00/year
Ci State Zi . .

Y P Canadian and Foreign: POWER/PLAY $15.00/year; COM-

Computer model: MODORE $25.00/year

Enclosed is my check or money order for $
[Address Change. Enter new address above & enclose

present mailing label Make check or money order payable to:
(] Renewal subscription COMMODORE BUSINESS MACHINES, INC.
[J New subscription The Meadows, 487 Devon Park Drive, Wayne, PA 19087

ccceccececccccccccccccecccececccccccccco

33392339323333333233333333333333337

)

STrFERESREEEERESRNRRERERRRERERRER.

)

i)

LIMITED 90-DAY WARRANTY
COMMODORE PERSONAL COMPUTER SYSTEMS

Commodore Business Machines, Inc. ("Commodore’’) warrants to the original consumer
purchaser that its Personal computer products ("UNIT) (*) (Not including computer programs
on cassettes or disks) shall be free from any defect in material and workmanship for a period of
90 days from the date of purchase. If a defect covered by this warranty occurs during this 90
day warranty period, you should return the UNIT within such 90 days to:

Your original dealer or any Full Service Commodore dealer together with a
copy of your sales slip or similar proof-of-purchase. The dealer will repair the
defective UNIT under this warranty.

In the unlikely event that your dealer is unable to repair UNIT or you need assistance in
locating a Full Service Dealer you may, if necessary, contact the Commodore Customer
Support Group at (215) 436-4200.

This warranty does not cover damage or malfunctions resulting from improper handling,
accident, misuse, abuse, failure of electrical power, use with other products not manufac-
tured or approved by Commodore, damage while in transit for repairs, repairs attempted by
any unauthorized person or agency, or any other reason not due to defects in materials or
workmanship. This warranty is also void if the serial number has been altered, defaced, or
removed.

ANY IMPLIED WARRANTIES ARISING OUT OF THE SALE OF THIS UNIT INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE NINETY (90) DAY
PERIOD. COMMODORE'S LIABILITY IS LIMITED SOLELY TO THE REPAIR OR REPLACE-
MENT OF THE DEFECTIVE UNIT IN ITS SOLE DISCRETION, AND IN NO EVENT SHALL
INCLUDE DAMAGES FOR LOSS OF USE OR OTHER INCIDENTAL OR CONSEQUENTIAL
COSTS, EXPENSES, OR DAMAGES INCURRED BY THE PURCHASER, INCLUDING WITHOUT
LIMITATION ANY DATA OR INFORMATION WHICH MAY BE LOST OR RENDERED INACCU-
RATE, EVEN IF COMMODORE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

All computer programs, whether sold by Commodore or others, are distributed on an "AS
IS" basis without warranty of any kind. The entire risk as to the performance and suitability of
such programs is with the purchaser.

Should the programs (on cassettes or disks) prove defective following their purchase, the
purchaser and not the manufacturer, distributor, or retailer assumes the full responsibility for
service or replacement.

Commodore shall have no liability or responsibility to a purchaser, customer, or any other
person or entity with respect to any liability, loss or damage caused or alleged to be caused
directly or indirectly by any computer programs (on any media) sold by Commodore or others.
This includes but is not limited to any interruption of service, loss of business or anticipatory
profits or consequential damages resulting from the use or operation of such computer
programs.

Commodore shall have no obligation to enhance or update any UNIT once manufactured.

Some states do not allow limitations on how long any implied warranty lasts or exclustion of
consequential damages, so the above limitation or exclustion may not apply to you. This
warranty gives you specific legal rights, and you may also have other rights which vary from
state to state.

{*) UNITS COVERED UNDER THIS WARRANTY ARE:
ALL SERIES- 2000, 4000, 8000, 9000 UNITS Peripherals and their Accessories.
ALL SERIES -°C’, 'P’, ‘B, 'BX’ UNITS Peripherals and their Accessories.

r commodore

COMPUTER

COMMODORE ‘B’ SERIES
ADVANCED BUSINESS
MACHINES

THE PRACTICAL, VERSATILE BUSINESS SYSTEM

Commodore’s versatile ‘B’ Series business microcomputers provide

processing, reoor'dkeepng accounting, database management, aﬂavanety
of other applications. The microcomputers in this series offer state-of-the-art
technology and superior features:

» 128K or 256K RAM

» 8-bit or 16-bit microprocessor

* Optional titt and swivel monitor

* 94 -key keyboard

» 20 programmable function keys

» Separate 19-key calculator keypad

* Expandable memory

B0 column by 25 line screen display

e Extended BASIC version 4.0 + [66 commeands)]

» Compatible with Commodore business peripherals

technical and BASIC programming information. Your Commeodore dealer can
g‘tgvﬁeadrﬁtww-w-datehfonnaﬁmm'B‘Sa*bscm'patbbpaﬂ\ereis

r commodore

COMPUTERS

Commeodore Business Machines, Inc.
1200 Wison Drive ® West Chester, PA 19380
Commodore Business Machines, Limited
3370 Pharmacy Avenue ® Agincourt, Ontario, MTW 2K4

