VIC1540

USER'S MANUAL

IIIIIIIIIII

ooooooooooo




VIG-1540

SINGLE DRIVE FLOPPY DISK

USER’S MANUAL

Czx commodore



The information in this manual has been reviewed and is believed to be entirely
reliable. No responsibility, however, is assumed for inaccuracies. The material in
this manual is for information purposes only, and is subject to change without
notice.

© Commodore Business Machines, Inc., September 1981
“All rights reserved.”

‘Commodore Business Machines
3330 Scott Boulevard
Santa Clara, California 95050



TABLE OF CONTENTS

Page
Chapter 1
Introduction............ ... ... i, 1
General Information. ... .......................... 1
Description........................... e vereaae 1
FrontPanel .................................. 4
BackPanel .............. R I PN 4
Interior Configuration .......................... 4
TheDiskette . ..............ocoiiiiiiiiiina.... 4
Specifications . ....................... S 4
Care Of The VIC-1540 . ....... e 7
Care Of The Diskettes ............................ 7
Unpacking The Disk Drive ......................... 7
Chapter 2 ,
Preparing To Use Your Disk Drive ...................... 9
Connecting The Disk Drive To The Computer .......... 9
Performing The Power-On Test ..................... 10
Inserting The Diskette ............................ 11
Disk Drive Performance Test ....................... 12
Chapter 3
Learning How To Use Your Floppy Disk Drive ............ 15
The Block Availability Map (BAM).................. -16
The Disk Operating System (DOS) ................... 16
Disk Maintenance Commands . ............... e 16
NEW . .. 17
Initialization..................... e 19
The Directory . ...................... P 20
LOADS ...... .. i it i 20
Printing The Directory ........ e 21
VALIDATE ................ ... fee e 21
(000 ) (I 22
RENAME ......cciiiiiiiiinnnenaansncnns 23



Chapter 4

BASIC Commands For DataHandling ................... 25
BASIC Commands Ascociated
with Floppy Disk Drives . ........................ 25
SAVE (Writing a Program to a Diskette) ............ 26
VERIFY ...ttt ittt tiinieinnnan 27
LOAD (Reading a Program from a Diskette) ......... 27
OPEN . ..ottt ittt ittt enennnaenans 28
CLOSE ... ittt it ittt inaennnenns 29
Closing The Command Channel ................... 30
Closing The Data Channel ....................... 30
PRINT # ...iiiiiiiiiiiiiiiiniiinnnennnnenenn 31
INPUT # iiiiiit ittt iieiieieeannnennnnns 32
GET # .oiiiii ittt it ie it iininanenann 33
Moving a Tape Programto Disk ..................... 34
Chapter S
Advanced Disk Programming ...................coiiann 35
Commodore Disk Operating System (DOS) ............ 35
Special OPEN and CLOSE Statements for Direct Access . . 3¢
Disk Utility Command Set ......................... 36
BLOCK-READ .....coiiiiiiiiiiiniinnnennnn. 38
BLOCKWRITE .................cciiiiiiinne, 39
BLOCK-EXECUTE ...............ccvinnnnnnn. 39
BUFFERPOINTER ................cooiiiane.. 39
BLOCK-ALLOCATE ...........c0iiiiiinennnnnn 40
BLOCKFREE .........ciiiiiiiiiiiiiiinnenn, 40
MEMORY ........ ..ttt 41
MEMORY-WRITE .......................0 41
MEMORY-READ ...............coiiinn, 41
MEMORY-EXECUTE ...................... 42
USER ...t i ittt e ciiiiean 42



Chapter 6

Sequential File .................... ... ... ..., 49
To Create a Sequential File and Accessing ............. 49
Example of a Sequential File Program ................ 50

Chapter 7

RandomFile ............. ... . .. oL, 53
DataFlowin RandomFile ......................... 53
Example of Using Record Number . .................. 55
Example of a Random File Program . ................. 57

Chapter 8

Error Messages — Pattern Matching File Names ............ 61
Requesting ErrorMessages ......................... 61
Summary of DOS Error Messages . . .................. 61
Description of DOS Error Messages .................. 62
Pattern Matching ...................... e 66

Appendix ...... ... i i e 69

List of Illustrations

Figure Title Page
1 FrontPanel ................c. ... i, 5
2 BackPamel ............... ... ... ool 5
3 FloppyDiskHookup .....................uun... 10
4  Position For Diskette Insertion .................. .11
S 1540 Format. Expanded View of A Single Sector ....... 47
6  Data Flow between Computer,

Buffer and Disk Drive .......................... 53



List of Tables

Table Title Page
1  Suggested Reading List............................ 2
2 Specifications: Model 1540

- Single Drive Floppy Disk ........................ 6
3 StandardJumpTable ............................. 43
4 Block Distributionby Table ........................ 43
5 1540BAMFormat....................ciiinnnnnn. 44
6 1540 DirectoryHeader ....................couuu.. 44
7 Directory Format ............................ e 45
8 Sequential Format ............................... 46
9 ProgramFileFormat ............................. 46

10 Allocationof Record Number ...................... 57



e
Chapter 1

INTRODUCTION

GENERAL INFORMATION

With the purchase of your Commodore VIC-1540 Single Drive Floppy Disk you
have greatly enhanced the computing power of your Commodore VIC system.
To get the most out of your system you should study your computer’s user
guide, and if necessary the BASIC manuals listed in Table 1. You will benefit
most if you first read through this entire manual, taking note of those features
that relate to your particular floppy as well as those which are common to all
Commodore Floppys.

The information presented in this manual is extensive and may, in some cases,
present information that is currently beyond your particular level of expertise.
However, by carefully and thoughtfully studying its contents you will gain the
confidence necessary to progressively upgrade your programming skills and
expertise.

This manual presents discussions, descriptions, practices and procedurés relat-
ing to the use and operation of the VIC-1540 Single Floppy Disk Drive.

DESCRIPTION

The VIC-1540 described in this manual is an intelligent single drive diskette
storage device. Its individual primary components consists of read/write
controls, drive motor electronics, drive mechanism, read/write head, and track
positioning mechanism. The disk drive discussed in this manual uses Serial
interface same as The VIC-1515 graphic printer. Because the device is an
“intelligent™ peripheral, its operation requires no space in the computer’s
memory. This means you have just as much computer memory available to you
as when you do not have the disk attached.

fam—y



Table 1. Suggested Reading List

Pet/CBM Personal Computer Guide.
-C.S. Donahue and J K. Enger, Osborne/McGraw-Hill, 630 Brancroft
Way, Berkeley, CA 94710
Hands-On Basic with a Pet.
H.D. Peckham, McGraw-Hill, 1979
Entering BASIC.
J. Sack and J. Meadows, Science Research Associates, 1973
BASIC: A Computer Programming Language.
C. Pegels, Holden-Day, Inc., 1973
BASIC Programming.
J. Kemeny and T. Kurtz, Peoples Computer Co., 1010 Doyle (P.O. Box
3100), Menlo Park, CA 94025, 1967
BASIC FOR HOME COMPUTERS.
Albrecht, Finkle and Brown, People Computer Co., 1010 Doyle (P.O.
Box 3100), Menlo Park, CA 94025, 1973
A Guided Tour of Computer Programming in BASIC.
T. Dwyer, Houghton Mifflin Co., 1973
Programing Time Shared Computer in BASIC.
Eugene H. Barnet, Wiley-Interscience, L/C 72-175789
Programing Time Shared Computer in BASIC.
Eugene H. Barnett, Wiley-Interscience, L/C 72-175789
Programming Language #2.
Digital Equipment Corp., Maynard, MA 01754
101 BASIC Computer Games.
Software Distribution Center, Digital Equipment Corp., Maynard, MA
01754
What do To After You Hit Return.
Peoples Computer Co., 1010 Doyle (P.0.Box 3100), Menlo Park, CA
94025 '
Basic BASIC.
James S. Coan, Hayden Book Co., Rochelle Park, NJ
WORKBOOKS 1-5.
T.1S., P.O.Box 921, Los Alamos, NM 87544
Programming the 6502.
R. Zaks, Sybex, 1978




24 Tested, Ready-to-Run Game Programs in Basic.

K. Tracton, Tab Books, 1978
Some Basic Programs.

M. Borchers and R. Poole, Osborne & Assoc. Inc., 1978
Basic Programming for Business.

1. H. Forkner, Prentice-Hall, 1977
The Channel Data Book.

B. Lewis, 5960 Mandarin Ave., Goleta, CA 93017, 1978
PET and the IEEE 488 Bus (GPIP).

Osborne/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710
Personal Computing on the VIC 20

Commodore International, Ltd. Norristown,

PA 19403, 1981
VIC-20 Programmer’s Reference Guide

Commodore Business Machines Inc,

3330 Scott Blvc. Santa Clara, CA95050, 1981




Front Panel

The front panel of the disk drive consists of an identification panel across the
top; slot in which to insert a diskette; and a door to close after inserting the
diskette. When the door is closed, the diskette is clamped onto the diskette
"spindle hub. Also on the front panel are two LED indicator lights. The red
LED on the slot side lights when drive is active and flashes whenever a disk
€ITOor OCCurs.

The green LED on the lower left side is a power indicator which lights when
power is ON. ‘
Back Panel
The Back of the disk drive contains two serial interface connectors. Near the
panel’s lower edge is the power connector. There is also a “slow blow” fuse.
Interior Configuration
The interior of your floppy contains a disk drive. All the logic for the disk

drive is contained within the unit. The mechanical devices are, for the most
part, located beneath the disk spindle.

The Diskette

The diskette (also known as a minifloppy, floppy diskette, minidiskette, etc.) is

similar to the standard flexible disk. There are several reputable manufacturers

of the 5%-inch diskettes. You should make sure that you buy diskettes for
SOFT SECTORED FORMAT. Your Commodore dealer can supply your needs.

Specifications

Table 2 presents the specifications for the VIC-1540.



single drive

%Cx commodore . floppy disk va'lm%

=

===
\ DRIVE INDICATER(RED LED)
LIGHT : ACTIVE
FLASH: ERROR

POWER INDICATER

(GREEN LED)
LIGHT : POWER ON

Fig1. Front Panel

POWER SWITCH SERIAL BUS

ON

OFF

pe—
/ AC INPUT FUSE/HOLDER

Fig 2. Back Panel




Table 2. Specifications VIC-1540 Single Drive Floppy Disk

STORAGE

Total capacity
Sequential
Relative *

Directory entries
Sectors per track
Bytes per sector
Tracks

~ Blocks

IC’s:
6502
6522 (2)
Buffer
2114 (4)
PHYSICAL:
Dimensions
Height
Width
Depth
Electrical:

Power requirements
Voltage
Frequency
Power

MEDIA:
Diskettes

174848 bytes per diskette

~ 168656 bytes per diskette

167132 bytes per diskette
65535 records per file
144 per diskette

17to0 21

256

35

683 (664 blocks free)

microprocessor
1/0, interval timers

2K RAM

97 mm
200 mm
374 mm

100, 120, 220, or 240 VAC
50 or 60 Herts
25 Watts

Standard mini 5%", single sided,
single density

* Although VIC-1540 is designed with a capability to handle relative files, it

can not be used with the current version of VIC-1001 personal computer.




CARE OF THE VIC-1540

The disk drive should be placed on a flat surface free of vibration. It is important
that dust particles be kept at a minimum since a particle buildup will interfere
with optimum operation. If you should experience a hardware failure contact
your Commodore dealer. Any attempt to correct the problem yourself could
result in voiding the warranty.

CARE OF THE DISKETTES

Handle diskettes with care. Follow these instructions to maintain the quality of
the diskette and to protect the integrity of the data:

1. Return the diskette to its storage envelop whenever it is removed from the
drive.

2. Keep the diskettes away from magnetic fields. Exposure to a magnetic
field can distort the data.

3. Never leave a diskette on top of your computer or disk drive.

4. Do not write on the plastic jacket with a lead pencil or ball-point pen. Use a
felt tip pen or fill out the label before attaching it to the jacket.

5. Do not expose diskettes to heat or sunlight.

6. Do not touch or attempt to clean the diskette surface. Abrasions will cause
loss of stored data.

7. Before applying power to the VIC-1540 open the drive door and remove the
diskette.

UNPACKING THE DISK DRIVE

Before unpacking the disk drive, inspect the shipping carton for signs of ex-
ternal damage. If the carton is damaged, be especially careful when inspecting
its contents. Carefully remove all packing material and the contents of the
carton. DO NOT discard any packing material should contain:

1. VIC-1540 Single Floppy Disk Drive
2. User Mannual, Number 1540018-02
3. TEST/DEMO diskette:
4. WARRANTY CARD
If any items are missing, please contact your Commodore dealer immediately.



NOTES



]
Chapter 2

PREPARING TO USE
YOUR DISK DRIVE

Before starting to use your disk drive, make sure it is in good working condition.
This includes properly connecting it to your computer, giving it a powr-on and
initial checkout test, and finally the performance test using the appropriate
TEST/DEMO diskette.

CONNECTING THE DISK DRIVE TO THE COMPUTER

The connector cable is required to interface the floppy to the computer. This
cable is be supplied with yourdisk drive.

NOTE: The disk drive should be the first peripheral attached to the computer if
other devices are to be “daisy-chained”.

Follow these steps to connect the disk drive to your computer:

STEP 1: Turn power OFF to the computer and the expansion module,

STEP 2: Place the disk drive in a convenient location as close as possible to the
computer. DO NOT connect the disk drive to a power outlet at this

time.

STEP 3: Connect the serial cable between the serial interface connector on the
computer and the connector on the disk drive.

STEP 4: Connect the disk drive power cable to an AC outlet. DO NOT turn on
power at this time.

O



VIC-1540
VIC—-20 Single Drive
Personal Computer Floppy Disk

 Graphic Printer

Fig 3. Floppy Disk Hookup

PERFORMING THE POWER-ON TEST

You are now ready to proceed with the power-on part of the checkout:

STEP 1: Open the disk drive door. Ensure that no diskette is present in the
drive. :

STEP 2: Turn Power ON to the expansion module (have the optional cartridge
inserted before turning power on.)

STEP 3: Turn power ON to the COMPUTER and verify that is working
properly.

STEP 4: Apply power to the disk drive. All two indicator lights (LED) on the
front panel will light. After about 1 second the red drive indicator
will go out and the green power indicator will remain on. If the red

drive indicator keeps on flashing, turn the power OFF. Wait one
minute and try again. If the above condition continues, contact

your Commodore dealer.

10



Note: If the problem persists, try disconnecting the other devices attached to the
sesial interface. This should assure that a problem related to another device does

not affect the disk drive.
/\ z
' »
m
T
=
WRITE 3
PROTECT o
NOTCH — O
WHEN COVERED, DISKETTE == =
CONTENTS CANNOT 3HOQOWNOD m
BE AL TERED
Fig 4. Position for Diskette Insertion
INSERTING THE DISKETTE

CAUTION: NEVER APPLY POWER TO THE DISK DRIVE IF DISKETTE IS
PRESENT (LOCKED AND SEATED) IN THE DRIVE.

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Ensure that the power to the disk drive is OFF and DO NOT apply
power until you complete this step. Open the disk drive door and
make sure that no diskette is present in the drive.

If the preceeding conditions have been met, you may apply power to
the disk drive.

Insert the diskette into the slot and with the write protect tab
oriented to the left.

Once the diskette is in the slot, gently push on it until it is fully
seated.

" Press DOWN firmly on the spring-loaded door of the drive until you

hear a distinct “click”. The diskette is now locked and seated in the
drive, ready for processing by the computer.

To remove the diskette, insert your index finger under the lip of the
spring-loaded door and gently PULL. This will release the door and
permit access to the diskette. The diskette is now free to be removed
from the drive

11



DISK DRIVE PERFORMANCE TEST

When you have successfully completed the Power-On test, proceed with the
Performance Test. Don’t worry if you don’t fully understand exactly what is
happening in this test. At this point, enter the commands just to get a feel for
what you can do with your disk. If UNEXPECTED results are obtained during
any step of the test, stop and start over again. The most likely cause of a
problem is an improperly entered command. This is to be expected until you
become familiar with your disk unit.

All commands are entered via the keyboard and must be followed by a carriage
return: press the RETURN key on your keyboard.

NOTE: Commands must be entered exactly as shown. DO NOT insert any
spaces unless shown in the example. If the error indicator lights, you may be
able to continue the example anyway. Re-enter your last command. If the light
goes out, your correction was successful and you may continue.

STEP 1: Insert the DEMO diskette into the drive as previously instructed.

STEP 2: Type: OPEN 1, 8, 15,«10” and press return. This pocedure initializes
the diskette and makes it ready for use. A

STEP 3: Type LOAD “PERFORMANCE TEST”, 8

The screen will display:

SEARCHING FOR PERFORMA
NCE TEST
LOADING

READY.
[

STEP 4: Type: RUN and press RETURN, the following will display:

PERFORMANCE TEST

INSERT SCRATCH
DISKETTE IN DRIVE

12



Fl"ﬁ
PRESS A cany

DI5K HEW COMMAND
WARIT AROUT 3@ SECONDS

Do not use diskettes containing any valuable information since the
Performance Test Program will re-format it and any data will be lost.
The test program will label this diskette ““Test Disk”. This diskette is
ready for further use when the test program is completed and the
performance test has been satisfied.

The computer will first format the diskette in the drive. At the end
of the operation the screen displays:

G0K06 8

IRIVE PHSE
MECANICAL TEST

The computer conducts the remainder of the Performance Test and
displays:

OPEM WRITE FIlﬁE

Ke 8
WRITING DATA
@ oK 6
CLOZE WRITE DRTA
g0k 8 0
0 £
IPEN READ FILg Ko g
READING DAT
EATIING DATA Ao @
SCRATCH FILE
L FILE 8

CRATCHED 1 8

13



STEP 5:

STEP 6:

14

WRITE TRACK 38 a

X

2

URITE T"ACK 1
anoK e

READ TRACK 35

=

60OKe 4
RERD TRACK 1
03 B

UNIT M3 BRRER resr)

PULL DISKETTE FROM
DRIVE BEFORE TURMIMG
POLIER OFF.

Remove the diskettes and return them to their protective jackets.
The floppy has passed the Performance Test.

If any problems have been encountered during this phase of the test,
return to Step 1 and repeat the entire procedure. If problems persist
and you do not reach a satisfactory conclusion to the Performance
Test, contact your Commodore dealer.



Chapter 3

LEARNING HOW TO USE
YOUR FLOPPY DISK DRIVE

Your Floppy Disk Drive adds and enhances your computing power with added
storage and file handling capability and is controlled directly with:

® BASIC commands entered via the keyboard,

® BASIC statements within programs, and

® special disk commands.

In this chapter you will learn how to apply those commands and statements.
This chapter is organized in such a way that the functions and format of disk
commands are described in a manner which permits the user to perform disk-
related tasks.

Before using your floppy disk make sure you know how to:
1. operate ybur Commandore VIC Computer,
2. do elementary programming in BASIC, and
3. open and close files.

This chapter will first acquaint the user with those fundamental disk commands
that perform disk maintenance and file manipulation and will then progressively
advance toward an understanding of those BASIC commands used for data
handling. Approached in this manner, the user will then have developed the
necessary confidence and programming skills to proceed to advanced disk
programming techniques. Practice the disk commands, read the examples, and
follow the step-by-step illustrations of their usage. The understanding of the
more advanced disk programming techniques will depend to a large degree upon
how well the fundamentals have been mastered.

To facilitate your understanding and mastery of Commodore BASIC, two
computer terms are stressed in this Chapter: Block Availability Map (BAM) and
Disk Operating System (DOS). Although these are conventional terms, they will
be riefly discussed as they relate to Commodore Floppy Disk Usage.



THE BLOCK AVAILABILITY MAP (BAM)

The BAM is a disk memory representation of available and allocated space on
a disk. When the system stores information on a disk, the BAM will be auto-
matically referenced by the DOS to determine what space is available and how
many blocks can be allocated. Iff sufficient space is available to store a given file,
it will be stored on the disk and the BAM updated to account for the space
allocated. However, if the DOS detects that a file will occupy more space than
available, an error message will be generated.

Formatting a disk creates the BAM which is then loaded into DOS memory upon
initialization. The BAM is stored on diskette in varying locations depending
upon the drive used:

BAM Location and Memory Required
Track 18, Sector O 128 bytes
As changes occur to the BAM in DOS memory, the BAM on disk will be updated

to reflect these changes. Updates to the BAM occur when a program is saved or
a CLOSE is performed on a new SEQuential data file.

THE DISK OPERATING SYSTEM (DOS)

The DOS is responsible for managing information exchange between the disk
controller and the computer.

The DOS performs many functions which are transparent to the user but which
are vital to the operation of the system. For example, the DOS monitors the
input/output (I/O) of the disk so that channels are properly assigned and that
no lengthy waits for an open channel occur. In addition to monitoring of disk
1/0, the DOS also uses the channel structure to search the directory and to
delete and copy files.

DISK MAINTENANCE COMMANDS

The following disk commands permit the user to perform file mainpulation and
disk maintenance.

16



BASIC

NEW Formats a disk
INITIALIZE Prepare diskette for use
Diskette Level .
LOAD “$” Read disk directory
VALIDATE Reconstruct Block Availability
Map (BAM)
COPY Copies files (optional con-
catenation)
File Level RENAME Renames a file
SCRATCH Erases a file

N\

NOTE: Diskette commands can be transmitted to the disk by PRINT# com-
mands. The examples in this chapter assume that a file has been opened with
the OPEN 15, 8, 15 command. If the error message ? FILE OPEN ERROR ap-
pears upon typing the OPEN command, it means that the logical file was
opened but had not been properly closed. When this error appears such logical
file must be properly closed by typing CLOSE 15.

NEW
Each time a diskette is placed in one of the drives, both the diskette and the
drive must be prepared for use. A previously unused diskette must first be
formatted in the soft-sector format recognized by your particular disk drive.
This may be accomplished by use of the NEW disk command.

To use the NEW command, to format the diskette and initialize the disk drive,
enter the command:

PRINT#15, “commandstring”

where 15 is the logical file number of a file which has been opened to the disk
command channel (primary address 8, secondary address 15).

The format of NEW is:

17



“NEWdr:fn, xx”
or
“Ndr:fnxx”
Where  d=the drive number 0 (0 may be omitted)

fn=the file name you wish to assign to the disk. It may be up to
16 characters long.

xx=a unique two-character, alphanumeric identifier supplied by
the user.

The NEW command (with ID specified) is used on an unformatted diskette or
one which the user wishes to reformat. NEW creates the block headers, writing
the sync characters, disk ID, and track and sector numbers at the beginning of
each block. The directory header and the BAM are created and the diskette is
made ready to accept data. The command may be used on an already formatted
diskette (with no ID specified) to clear the disk directory and reinitialize the
BAM, deallocating all blocks on the diskette. The time involved in reformatting
without an ID is much less than formatting with an ID.

Example 1: OPEN 15,8, 15
PRINT#15, “NO:TESTDISK, 88”

These commands will open the command and error channel to the disk drive
and format a disk in the drive, giving it a disk identifer of 88.

The following simplified form may be used for this purpose:
Example 2: OPEN 15, 8, 15, “NO:TESTDISK, 88”

Here’s an example of reformatting a diskette using the NEW command and no
disk ID.

Example 3: OPEN 1, 8, 15, “NO:NEWNAME”
The diskette will be assigned the name “NEWNAME” and the directory and
-BAM will be cleared. This procedure will work only if the diskette has been

formatted.

The NEW disk command SHOULD NOT be confused with the NEW command

18



in BASIC. The latter will delete the program currently in memory and clear all
variables before entering a new program.

INITIALIZATION -

Whenever a diskette is inserted into the drive, for any reason, it MUST be
initialized to ensure that the information on the BAM (in the disk memory) is
the proper information for the diskette currently in the drive. Failure to proper-
ly initialize a diskette each time it is inserted or reinserted into the drive will
result in a DISK ID MISMATCH ERROR and/or loss of data.

The VIC-1540 utilizes a DOS 2.6 software routine each time the disk is ad-
dresed to determine if initialization is required. If a different ID is detected, the
VIC-1540 will automatically initialize the new disk. Operator initialization is
not required if unique IDs are assigned each diskette.

The format of INITIALIZE command is:
PRINT#15, “INITIALIZEdr”

Where: dr=drive number 0 (0 may be ommitted).

Note: You may abbreviate INITIALIZE to I.

Example 1: OPEN 15,8, 15
PRINT#15, “10”

Example 2: OPEN 15, 8, 15“I”
(You may omit the closing double quotation)

NOTE: FILE OPEN ERROR could occur if a previously opened file was ad-
dressed with a second OPEN command. When this error appears such logical
file must be properly closed by typing CLOSE lfn.

The diskette in the drive is now initialized. Do not confuse formatting and
initialization. Remember that formatting is usually a one-time operation and
that re-formatting a disk will destroy previously stored data.

Since the VIC-1540 initialization function depends upon a change of ID to
detect a change of diskette, inserting a diskette with an ID identical to one
previously used may lead to a loss of data. This happens because the computer
will reference the BAM left over from the previous diskette. Since the IDs are

19



identical the DOS assumes there have been no change of diskette, A SAVE
command may now cause new data to be written over good data already
present on the disk because the DOS will use the old map of available storage
area, instead of the current one. The results are unpredicable, and the diskette
may become totally useless. For this reason, unique disk IDs must be used when-
ever possible for each diskette.

THE DIRECTORY

Confirm that the newly formatted disk has the correct ID and disk name by
using one of the following methods to list the directory. The directory display
includes the following information:

® Disk name

DiskID

DOS version number

File name

File type

Number of blocks used

Number of available (free) blocks

To list the directory, at first type LOAD “$0”, 8. (LOAD “$”, 8)

LOADS$

This procedure will destroy any program currently in computer memory when
the directory is LOADed.

STEP 1: Place a formatted disk in the drive.
STEP 2: Type: LOAD“$”,8  then press RETURN.
The screen displays:

LOAD"$”, 8
SEARCHING FOR $
LOADING

READY’

STEP 3: Type: LIST
The directory for the drive will be displayed.

|
|
| 20
|



Printing The Directory

Quite ‘often, it becomes convenient to affix a diskette directory listing directly
on the protective jacket. This permits the user to scan the printed directory
listing without having to insert the diskette into the drive to obtain this in-
formation. Should you desire to print the directory, place the diskette in the
drive and enter the following commands:

LOAD “$, 8 Loads the directory.
OPEN 4, 4.CMD4 Opens device 4 (printer) and changes
the primary output device to 4.
LIST Prints the directory.
PRINT#4:CLOSE4 Returns output to the screen and closes the file.

VALIDATE

The VALIDATE command traces through each block of data contained in
all files on the diskette. If this trace is successful, a new BAM is generated
in the disk memory and written to the diskette. Any blocks which have been
allocated but are not associated with a file name, as in the case of direct access
files will be freed for use.

In addition to reconstructing the BAM, VALIDATE deletes files from the
directory that were never properly closed. If a READ error is encountered
during a VALIDATE, the operation aborts and leaves the diskette in its pre-
vious state. If a VALIDATE error does occue, you must re-initialize before
proceeding.
The format of VALIDATE is:
PRINT#15, “VALIDATEdr”
Where: dr=drive number 0 (0 may be ommited)

NOTE: You may abbreviate VALIDATE to V.

Example: OPEN 1, 8, 15
PRINT#1, “V0”

21



or
OPEN 1, 8,15 “V”
cory
The COPY command allows you to create multiple copies (under different
names) of files on the same diskette. This command can also be used to con-
catenate data files. Up to four source files can be concatenated into the destina-
tion file. The COPY command may be abbreviated with a C.
COPY disk command can be formatted two ways depending upon application:
To copy a single file: PRINT#1fn, “COPYddr:dfn=sfn”
or
PRINT#1fn, “Cddr:dfn=sdr:sfn”
To concatenate and copy: PRINT#1fn, “COPYddr:dfn=sfn, sdr:sfn . ..
or
PRINT#1fn, “Cddr: dfn=sdr;sfn, sdr:sfn .....
Where: ddr=is the destination drive 0 (0 may be ommitted)

dfn=is the destination file name. This name must be a new name.

sdr=is the source drive 0 (0 may be omitted)
sfn=is the source file name.

Example 1: PRINT#1, “CO:ACCT1=0:ACCT”
A file named ACCT, is copied under a new name ACCT1
Example 2: PRINT#1,“CO:JDATA=0: ACCT1, O: ADATA, O:BDATA”

Files are concatenated into a file. Note that file names should be short, as
the maximum length of a disk command string is 40 characters.

NOTE: The COPY command is normally used in the Dual Drive Floppy disk to

copy files from one diskette to another. But this function can not be used in
the VIC-1540 which is a Single Drive Floppy Disk.

22



RENAME
The RENAME command renames an existing file. A file can not already exist
with the file name specified in the command or the FILE EXISTS error message
will be generated.
The format of RENAME is:
PRINT#1fn, “RENAMEdr:nfn=ofn”
Where: dr=the drive number O (0 may be ommitted)
nfn=the new name of the file.

ofn=the old name of the file.

Ifn=a logical file number. You assign this number arbitrarily and it
may be any whole number between 1 and 255.

NOTE: The letter R is a legal abbreviation for RENAME.
NOTE: Close any open files before using the RENAME command since the disk
will not execute this command on any active files.

SCRATCH

The SCRATCH command erases unwanted files from the specified diskette and
its directory. You can erase on file, several files, or all the files on a diskette.

The format of SCRATCH IS:
PRINT# 1fn, “sdr:fn, dr:fn . . . :dr:fn”

Where: dr is the drive number 0. (0 may be omitted)
fn is the name of the file to be erased.

To erase one file enter, the entire name of the file:
Example: PRINT#1, “SO:ACCT”

To erase several files with unrelated names, enter the entire name of each file to
be deleted:

23



Example: PRINT#1, “SO:ACCT, CUSTOMER, INV”

To erase several files at one time when names have something in common,
refer to the rules in clapter 8 concerning pattern matching.

You may erase all files on a diskette using pattern matching as in the following
example:

Example: PRINT#1, “S0:*”

NOTE

24



Chapter 4

BASIC COMMANDS
FOR DATA HANDLING

BASIC COMMANDS ASSOCIATED WITH FLOPPY DISK DRIVES

The BASIC commands described in this chapter, allow the user to communicate
with and transfer data to and from the disk drive.

These commands are available for ALL versions of Commodore BASIC:

OPENI1fn, 8, sa, “dr:fn, ft, mode” VERIFY “dr:fn”, 8
CLOSElfn PRINT#1fn

LOAD “dr:fn” 8 GET#l1fn

SAVE “dr:fn”, 8 INPUT#1fn

Where: 1fn=logical file number (any number between 1 and 255)
fn=file name supplied by user
dr=disk drive number O : (0 may be onntted)
" 8=device number (8 for disk, 2 for second cassette, 4 for printer)
sa=secondary address
ft=the file type. It may be SEQ (for sequential), USR (for user),
or PRG (for program)
mode=either READ(R) or WRITE(W).

All upper-case characters shown in format are essential for the proper execution
of a command and must be typed by use. These commands are entered via the
keyboard using unshifted characters only.

NOTE: The device number of the disk drive is set at 8 at the factory prior to
shipment. If you wish to change the device number to use multiple number of
VIC-1540 etc. Please consult your Commodore dealer (the device number may
be any number from 8 to 11)



SAVE (Writing a Program to a Diskette)

If a program is in computer memory, it can be moved to a diskette for storage.
This is accomplished with the SAVE commands.

Any data transferred with the SAVE command are automaticaly designated by
the DOS as a program (PRG) file. Command transfers PRG files from the
computer’s memory to the specified diskette. You must specify the drive
number, the program name, and the device number. The device number will
default to device 1 which is the tape unit if it is not specified.

The format of SAVE is:
SAVE“dr:fn”, dn

Where:  dr=is the drive number 0 (0: may be omitted)
fn=is any file name of 16 characters or less you wish to assign to
the file to be transferred to the diskette. Blanks are counted
as characters.
dn=is the device number and it must be 8.

This following example illustrates creating a one line program, SAVEing it on
the diskette in the drive under the name TESTPROG.

Example:  10?“THIS IS A TEST”
SAVE“0:TESTROG”, 8

Another format of SAVE is
SAVE“@dr:fn”, dn
Where  @=means to replace the contents of an existing diskette file.
fn=is the name of the diskette file whose contents is to be replaced.
Example: SAVE “@0: TESPROF;”, 8
In this case a program named TESTPROG will be replaced, but if the
specified program does not exist, then normal SAVE procedures are
executed.
NOTE: In case @ is used in the SAVE command, avoid its repeated use. If @

must be repeatedly used, execute the VALIDATE command before the SAVE
command.

26



VERIFY

The VERIFY command performs a byte-by-byte comparison of the file just
written to the diskette against the file in the computer’s memory.

The format of the VERIFY command is:
VERIFY “dr:fn”, dn

Where:  dr=the drive number 0 (0: may be omitted)

fn=the same file name as used in the immediately proceding SAVE
command.

dn=the device number, in this case 8.
Another format of VERIFY is:
VERIFY “#*”, dn
Where:  * causes the program just saved to be verified.

You should give the VERIFY command everytime you use the SAVE command
to place a file on a diskette. If you do this, you w1]1 always know whether or not
the file was copied correctly.

LOAD (Reading a Program from a Diskette)

A program stored on diskette may be loaded into memory using the LOAD
command.

The LOAD command transfers PRG files from the specified diskette to the
computer’s memory. You must specify the drive number, the program name,
and the device number. The device number will default to unit 1 which is the
cassette unit. The format of LOAD is:
LOAD*dr:fn”, dn
Where:  dr=is the drive number 0. (0: may be omitted)

fn=is the file name previously specified in the SAVE command
and/or stored in the disk directory.

27



dn=is the device number and it must be 8.

The following example illustrates how a program is loaded from the diskette
into the computer memory, then executed. To do this example, first type NEW
and depress RETURN key to clear your computer’s memory so that you can see
that it really works. Don’t confuse the NEW command in BASIC with the NEW
disk command used to format your disk.

Example 1: LOAD*“0:TESTPROG”, 8

READY.

RUN

THIS IS A TEST
A successful LOAD closes all open files. Therefore you must give a new OPEN
command in order to continue communicating with the disk drive command and
error channel.

OPEN
This command sets up a corresponidence between a logical file number and a
file which exists on disk. It also reserves the buffer space within the disk unit
for operations on the file being opened.
The format of the complete OPEN command is:
OPENIfn, dn, sa, “dr:fn, ft, mode”
Where: 1fn=the logical file number
dn=the device number, in this case 8.
sa=the secondary address. It may be any number from 2 to 14 and
may be used either for input or output as specified in mode.

- See note below

dr=the drive number 0. (0: may be omitted)

fn=the name of the file.

ft=the file type. It may be SEQ (for sequential), USR (for user), or
PRG (for program).

mode describes how the channel is to be used. It may be either
READ (R) or WRITE (W).

28



NOTE: Secondary address 15 is the command and error channel and has special
uses which are discussed in subsequent chapters. Secondary addressed O and 1
are reserved by the operating systems (BASIC and DOS) for LOADing and
SAVEing programs. ‘

Examples: OPEN 2, 8, 2, “0:FILE1, SEQ, WRITE”
OPEN 3, 8,9, “0:TESTDATA, PRG, WRITE”
OPEN 8, 8, 8, ,,0:.NUM,USR, READ”

The contents of an existing file may be replaced by preceding the drive number
with an at sign (@) in the OPEN command.

OPEN 3, 8, 5, “@0:JDATA, USR, WRITE”

If the spefified file does not exist, then normal OPENing procedures are exe-
cuted.

You can also assign some of the OPEN parameters to a variable name as il-
lustrated in these examples:

Example 1: FL$=“0:FILEA, SEQ, READ”
OPEN 1, 8,14, FL$

Example 2: FL$=“0:FILEA”
OPEN 1, 8, 14, FL$+*“, SEQ, WRITE”

The preceding methods are convenient when it is necessary to open several
channels to the same file name.

CLOSE

The CLOSE command closes a file opened by the OPEN command. Its format
is: .

CLOSE ifn
Where: 1fn=the logical file number of a file opened by the OPEN command.
Always close a file after working with it. You are not allowed to have more than

ten open files in the computer and five in the disk drive, so it is prudent to make
a habit of closing files as soon as possible. This way you will always have the

29



maximum number of files available for use.

CLOSING THE COMMAND CHANNEL

Closing the command channel closes all channels associated with the disk drive.
No other part of the logical file environment is affected. That is, the computer
does not recognize that the files have been closed.

The following example illustrates a situation in which several channels are closed
down by a single CLOSE command.

Example:

OPEN 1,8, 15 The command channel is opened.

OPENS3, 8, 2, “0:FILE1, SEQ, WRITE” Data Channels are opened for
OPEN4, 8, 5, “0:FILE2, SEQWRITE"”  writing.

PRINT#3, “IMPORTANT DATA"
PRINT#4, “"MORE DATA"

OPENS3, 4 A channel is opened to the printer
by mistake. .

?FILE OPEN ERROR? An error message is displayed on

READY. the screen.

a

Since there was an error, all logical files in the computer are closed, but the
channels in the disk drive are still open. To close the disk channels, type:

OPEN], 8,15
CLOSE1

Now all data channels in the disk drive are properly closed.

CLOSING THE DATA CHANNEL

The CLOSE command closes a file and the data or command channel associated
with it. Whenever you close a file opened with a write channel, the closing of
that file writes the final block of data to the disk and updates the disk directory.
When you close a file opened with a read channel, that channel is simply closed
down.

NOTE: When a drive is initialized with INITIALIZE, NEW, or VALIDATE, all

30



channels associated with that drive are deleted. These commands should not be
executed when there are any files open since the files will be disrupted.

PRINT#
The PRINT# command transmits a disk command string to the drive.
The format of PRINT# is:
PRINT#lfn, “commandstring”
Where: Ifn =a file previously opened using secondary address 15

“commandstring”=disk handling or disk file handling commands. These
. disk commands are discussed in detail in Chapter 3 of
this manual.

PRINT# may also be used to transmit data to a previously-opened sequential or
user file. In CBM BASIC V2 the logical file number 1 to 127 send carriage return
alone and the logical file number 128 to 255 send CRLF. A semicolon (;) must
be used as a terminator for each PRINT# statement when using the logical file
number 128 to 255 to avoid sending extraneous line feeds to the diskette.

It is important to be aware of this face because the carriage return alone is seen
as a terminatory by the DOS. The line feed is then stored in the file as the first
character in the next record. To avoid this, use the following format:

Example: PRINT#128, “JONESABC”; CHR$(13);

The CHR$(13) is the carriage return necessary for the proper terminating of the
record on the disk. When that record is input, the result will be JONESABC
which is the desired result.

The following format may that be used:
PRINT#1fn, A$

It will produce the desired value of A$ for the record, and will not interfere with
the next record.

Several variables may be written to the disk at the same time.

31



The format:
PRINT#1fn, AS, B$, C$

will result in a single variable (A$+B$+C$) being retrieved by the input
command.

The format:
PRINT#1fn,ASCHR$(13)B$ CHR$(13)C$
will result in the variables A$, B$, and C$ being separated by carriage retumns,
and they may then be input as separate variables.
INPUT #
The INPUT# command is used to transfer information from a peripheral device
such as the disk drive into computer memory. INPUT# is valied only when used

in a program and only when referencing a logical file that has been OPENed for
input.

The format for INPUT# is:
INPUT#1fn, A$ or INPUT#1fn, A
Where: 1fn=file previously opened using secondary address 15

AS=astring variable which will contain the data transferred.
~ A=a numeric variable which will contain the data transferred.
INPUT may also be used to transfer several strings of data at one time:
INPUT#11n, A$, BS, C$
Where: A$, B$, C$ will contain the data transferred from the disk.
In this format, the data strings must have been separated by carriage returns
( CHR$(13) ) at the time they were written to the disk in order to be retrived

separately. No single string may contain more than 88 characters if it is to be
INPUT.

32



Example 1:
20 INPUT#2, A

Input the next data item which must be in numeric form and
assign the value to aviable A.

Example 2:

10 INPUT#8, A$

input the next data item as a string and assign it to variable AS.
Example 3:

60 INPUT#7, B, C$

Input the next two data items and assign the first to numeric
variable B and the second to string variable C$.

For strings longer than 88 characters, the GET# commmand must be used.

GET #

The GET# command is used to transfer individual bytes of information from an
serial device such as the disk drive into computer memory. GET# is valid only
when used in a program and only when referencing a file that has been OPENed.
The format of GET# is:
GET#11n, A$
Where: 1fn=a file previously opened using secondary address 15
A$=a string variable which will contain the data transferred.

GET# may also be used to transfer several bytes of information, which is useful

for retrieving strings which has been written to the disk in a format which is
unacceptable for the INPUT command (strings longer than 88 characters).

33



For exampel: 10 AA$=*"

20 FORI=I TO 254
30 GET#1{n, A$
40 AAS=AAS+AS

50 NEXT

is a program segment which would result in a string of length 254 being trans-
ferred from the disk (logical file number 1fn) to the computer memory and
stored in the variable AAS.

MOVING A TAPE PROGRAM TO DISK

This example illustrates a session with the computer, a tape cassette and a disk
drive. The purpose is to copy a cassette program to a diskette. The program is
than read from the diskette to the computer’s memory and printed. It is
assumed that the BASIC program was previously stored on the cassette.

Example:

34

LOAD"DEMO"”

PRESS PLAY ON TAPE
OK

SEARCHING FOR DEMO
FOUND DEMO
LOADING

READY.

SAVE “DEMOQO", 8
VERIFY “DEMO”, 8
READY.

NEW

LOAD “DEMO”, 8
SEARCHING FOR DEMO
LOADING

READY.

RUN

Load the file from the cassette tape to
the computer’s memory.

Create a program file containing the
program on diskette.

Erase everything from memory. (The
NEW command in BASIC will clear
memory ; the NEW disk command will
format a disk.)

Load the program back into the com-
putegr’s memory

Run the program to verify it has been
loaded.



Chapter b

ADVANCED
DISK PROGRAMMING

This chapter provides detailed information about DOS structure and disk utility
commands. The utility commands provide the programmer with low-level func-
tions that may be used for special applications such as special disk handling

routines and random access techniques.

COMMODORE DISK OPERATING SYSTEM (DOS)

The DOS file interface controller is responsible for managing all information be-
tween the disk controller and the serial interface. Most disk I/O is performed on
a pipelined basis, resulting.in a faster response to a requested operation. -

The file system is organized by channels which are opened with the BASIC
OPEN statement. When executed with the OPEN statement, the DOS assigns a
workspace to each channel and allocates either one or two disk I/O buffer areas.
If either the workspace or the buffer is not available, a NO CHANNEL error is
generated. The DOS also uses the channel structure to search the directory, and
to delete and copy files. ‘

Three of the eight buffers are used by the DOS for the Block Availability Maps
(BAM), variable space, command channel I/0, and disk controller’s job queue.

The job queue is the vital link between the two controllers. Jobs are initiated on
the file side by providing the disk controller with sector header and type of
operation information. The disk controller seeks the optimum job and attempts
execution. An error condition is then returned in plade of the job command. If
the job is unsuccessful, the file side re-enters the job a given number of times,
depending upon the operation, before generating an error message.

The secondary address given in the OPEN statement is used by DOS as the
channel number. The number the user assigns to a channel is only a reference
number that is used to access the work areas, and is not related to the DOS
ordering of channels. The LOAD and SAVE statements transmit secondary

35



addresses of 0 and 1, respectively. The DOS automatically interprets these
secondary addresses as LOAD and SAVE functions. Unless these functions are
desired when opening files, avoid secondary addresses of 0 and 1. The remaining
numbers, 2 through 14, may be used as secondary addresses to open up to five
channels for data.

Special OPEN and CLOSE Statements for Direct Access

The BASIC statement:
OPEN 2, 8, 4, “#”
or
OPEN 2, 8, 4, “#7”

opens a channel to one buffer, to be used with the block commands. The first
available buffer is allocated to channel 4 in the first example. The second
example is an attempt to allocate buffer 7 to the channel. If the buffers are not
available, a NO CHANNELS error condition is generated. The explicit buffer
allocation can be used to reserve a buffer for position dependent code as in the
case of an execute command.

You can find the number of the allocated buffer by executing a GET# state-
ment. The byte transmitted is the buffer number. The only time you can get a
buffer number is before any write or read operation to that buffer.

The CLOSE statement clears the opened channel and writes the BAM to the
diskette that was last used by that channel. It is recommended that to avoid con-
fusion, you limit yourself to accessing one drive with any direct access channel.

DISK UTILITY COMMAND SET
The disk utility command set consists of the following commands:

Commands Abbreviations General Format
BLOCK-READ B-R “B-R:”ch,dr,ts
BLOCK-WRITE B-W “B-W:”ch,dr,ts
BLOCK-EXECUTE B-E “B-E:”ch,dr,ts
BUFFER-POINTER B-P “B-P:”’ch,p
BLOCK-ALLOCATE B-A “B-A:”dr,ts
BLOCK-FREE B-F “B-F:”dr,ts
memory-write M-W “M-W”adl/adh/nc/data
memory-read M-R “M-Radl/adh
memory-execute M-E “M-E”adl/adh
USER U “Ui:parms”

36



Where: ch = the channel number in DOS: identical to the secondary
address in the associated OPEN statement.

dr = the drive number: 0

t = the track number: 1 through 35.

s =the sector number, O through 20. For each track number,
the sector range is shown in Table 4.

p = the pointer position for the buffer pointer.
adl = the low byte of the address*.
adh = the high byte of the address*.
nc = the number of characters: 1 through 34*,
data = the actual data in hexidecimal. This is transmitted by using
the CHRS$ function, i.e. CHR$(1) would send the binary
equivalent of hexidecimal 01, (decimal 1).
i = the index to the User Table.
parms = the parameters associated with the U command (optional).
The values used in conjunction with the memory commands exist in the VIC-
1540 as hexidecimal values and must be transmitted as CHR$(n), where n is the

decimal equivalent of the desired hexidecimal value.
NOTE: If using variables the format must have only the command in quotes. -

For example:
“B-R:”ch,dr,t,s ~ correct
“B-R:ch,dr,t,s” incorrect

To avoid confusion, it is good practice to use this format when using variables or
constants.

As implied in the preceding format, these commands may be abbreviated to the
first character of each of the key words. Abbreviations only are accepted for
those commands shown in lower case. The parameters associated with each com-
mand are searched for starting at a colon (:), or in the fourth character position
if a colon is not present. The example following shows four ways that the same
block-read command may be given.

37



NOTE: Initialize the disk before the buffer read or write.

Examples: “BLOCK-READ:” 2,0,4,0
“B-R”2,0,4,0
“B-R”2,0:40
“B-READ:”2,0:4:0

Parameters following the key words within quotation marks may be separated
by any combination of the following characters:

Character Name Keyboard Representation
Skip { cursor right )
Space Space bar
Comma

The use of these characters permits sending both ASCII strings and integers.

Parameters not within the confines of quotation marks should be separated by
semi-colons (;). ’

In the following discussions, a PRINT# is assumed in all examples.

BLOCK-READ

This diskette utility command provides direct access to any block on a diskette
in either disk drive. Used in conjunction with other block commands, a random
access file system may be created through BASIC. This command finds the
character pointer in the O-position of the block. When a character in this posi-
tion is accessed with GET# or INPUT#, an End-or-Identify (EOI) is sent. This
terminates an INPUT# and sets the Status Word (ST) to 64 in the computer.

The format “B-R:”ch;dr;t;s is illustrated in the following example.
Example:  “B-R:”5;0;18,0

Reads the block from track 18, sector 0 into channel 5 buffer area.
After using BLOCK READ to transfer the data to the buffer, the data may be

transferred to memory by INPUT# or GET# from the logical file opened to that
disk channel (i.e., using that secondary address).

38



The Ul command described under USER is similar to the BLOCK-READ com-
mand.

BLOCK-WRITE

When this command is initiated, the current buffer pointer is used as the last
character pointer and is placed in the O position of the new buffer. The buffer is
then written to the indicated block on the diskette and the buffer pointer is left
in position 1.

The format “B-W:”ch;dr;t;s is illustrated in the following example.
Example:  “B-W:”7,0;35;10
Writes channel 7 buffer to the block on track 35, sector 10:
The U2 command described under USER is similar to the BLOCK-WRITE com-
mand.
BLOCK-EXECUTE
This command allows part of the DOS or user designed routines to reside on disk
and be loaded into disk drive memory and executed. B-E is really a B-R with an
addition. The File Interface Controller begins execution of the contents after the
block is read into a buffer. Execution must be terminated with a return from the
subroutine (RTS) instruction. Future system extensions or user-created func-
tions may implement this command.
The format “B-E:”ch;dr;t;s is illustrated in the following example.
Example:  “B-E:”6;0;1;10
Reads a block from track 1, sector 10 into channel 6 buffer and
executes its contents beginning at position 0 in the buffer:
BUFFER-POINTER
This command changes the pointer associated with the given channel to a new
value. This is useful when accessing particular fields of a record in a block or, if

the block is divided into records, individual records may be set for transmitting
or receiving data.

39



The format “B-P:”ch,p is illustréted in the following example.

Example:  “B-P:”2;1

Sets channel 2 pointer to the beginning of the data area in the
direct access buffer:

BLOCK-ALLOCATE

The appropriate BAM is updated in the DOS memory to reflect the indicated
block as allocated (used). In future operations, the DOS skips over the allocated
block when saving programs or writing sequential files. The updated BAM is
written to diskette upon the closure of a write file or the closure of a direct
access channel.

If the block requested has been previously allocated, the error channel indicates
the next available block (increasing track and sector numbers) with a NO
BLOCK error. If there are no blocks available that are greater in number than
the one requested, zeroes are displayed as track and sector parameters.

The format “B-A:”dr;t;s is illustrated in the following example.

Example: “B-A:”0;10;0

Requests that block (sector) O of track 10 be flagged as allocated
on the diskette.

NOTE: The error channel should always be check when using BLOCK AL-
LOCATE, so that if the block is already allocated, it will not be overwritten. If
the block is allocated, the error message will also indicate the next available
block.
Example:  INPUT#15,EN ,EM$ ET ES

Reads the next track and sector, respectively, into ET and ES, as-

suming that 1fn =15 has been previously OPENed to the disk error
channel.

BLOCK FREE

The BAM is updated in memory to free the block indicated. The disk is up-
dated on a close as previously mentioned. Neither the B-A nor B-F commands

40



require that a direct access channel be open, since there is no channel relation-
ship associated with the operations. However, if the BAM is to be updated on
disk, these operations should be used in conjunction the other block com-
mands.

The format “B-F:” dr;t;s is illustrated in the following example.

Example: “B.F: 0;9;20
Free up the block (sector) 20 of track 9.

MEMORY

All three MEMORY commands are byte-oriented so that the user may utilize
machine language programs. BASIC statements may be used to access informa-
tion through the MEMORY commands by using the CHR$ function. The system
accepts only M-R, M-W, and M-E: neither verbose spelling or the use of the colon
(%) is permitted.

Memory-Write

This command provides direct access to the DOS memory. Special routines may
be down-loaded to the disk drive through this command and then executed using
the MEMORY-EXECUTE command or one of the USER (U) commands. Up to
34 bytes may be deposited with each use of the command. The low byte of the
address must precede the high byte of the address.

The format ‘“M-W:"adlfadh/nc/data is illustrated in the following example.

Example:  “M-W:”CHR$(00)CHRS(7)CHR$(4)CHR$(32)CHR(0)CHR$(17)-
CHRS$(96)

Writes four bytes to $0700 (decimal 1792):

Memory-Read

The byte pointed to by the address in the command string may be accessed with
this command. Variables from the DOS or the contents of the buffers may also
be read with this command. The M-R command changes the contents of the
error channel since it is used for transmitting information to the computer. The
next GET# from the error channel (secondary address 15) transmits the byte.
An INPUT# should not be executed from the error channel after a MEMORY-

41



READ command until 2 DOS command other than one of the MEMORY com-
mands is executed.

The format “M-R:”adl/adh is illustrated in the following example.
Example:  “M-R”CHR$(128);CHR$(0)
Accesses the byte located at $0080 (decimal 128):

Memory-Execute

Subroutines in the DOS memory may be executed with this command. To
return to the DOS, terminate the subroutine with RTS ($60).

The format “M-E:” adl/adh is illustrated in the following example.
Example:  “M-E”CHR$(128);CHR$(49)

Requests the execution of code beginning at $3180 (decimal

12672).

USER

This command provides a link to 6502 machine code according to a jump table
pointed to by the special USER pointer. Refer to Table 5. The second character
in this command is used as an index to the table. The ASCII character O through
9 or A through 0 may be used. Zero sets the USER pointer to a standard jump
table that contains links to special routines.

The special USER commands U1 (or UA) and U2 (or UB) can be used to replace
the BLOCK-READ and the BLOCK-WRITE commands.

The format of Ul is:
“Ul:” ch;dr;t;s

Ul forces the character count (buffer pointer) to 255 and reads an entire block
into memory. This allows complete access to all bytes in the block.

The format of U2 is:

“U2:” ch;dr;t;s

42



U2 writes a buffer to a block on the disk without changing the contents of posi-
tion 0 as B-W does. This is useful when a block is to be read in (with B-R) and
updated (B-P to the field and PRINT#), then written back to diskette with U2.

Table 3. Standard Jump Table

USER A RER FUNCTION
DESIGNATION DESIGNATION
Ul UA BLOCK-READ replacement
U2 UB BLOCK-WRITE replacement
U3 ucC jump to $0500
U4 UD jump to $0503.
Us UE jump to $0506
83 UF jump to $0509
u7 UG jump to $050C
[8}] UH jump to $050F
U9 Ul jump to $FFFA
U: Ul power up vector

U3 thru U9 commands are user-defined. The locations jumped to are located in
the buffer areas of RAM and routines may be written to reside there and down-
loaded using the M-W command.

STRUCTURE OF DISKETTE

Any block on a diskette may be examined by using the program DISPLAY T&S,
provided on the TEST/DEMO diskette. ‘

Table 4. Block Distribution by Track

’ Block or
Track number Sector Range Total
1to17 0to20 21
18 to 24 0to 18 19
2510 30 0to17 18
31to 35 Oto 16 17

Tables 5 through 11 will assist the user in interpreting information obtained
using the DISPLAY T&S program.

43



Table 5. VIC-1540 BAM Format

Track 18, Sector 0.

BYTE | CONTENTS DEFINITION
0,1 18,01 Track and sector of first directory block.
2 65 ASCII character A indicating 1540 format
(Same as CBM 4040).
3 0 Null flag for future DOS use.
4-143 Bit map of available blocks for tracks 1-35.

*] = available block
0 = block not available
(each bit represents one block)

Table 6. Directory Header

Track 18, Sector 0.

BYTE | CONTENTS DEFINITION
144-161 Disk name padded with shifted spaces.
162-163 Disk ID.
164 160 Shifted space.
165,166 50,65 aAﬂSﬁ% rr;lgrtets;g?tlon for 2A which is DOS version
166-167 160 Shifted spaces.
171255 0 Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some
diskettes.




Table 7. Directory Format

Track 18, Sector 1.

BYTE DEFINITION
0,1 Track and sector of next directory block.
2-31 *File entry 1

34-63 *File entry 2

66-95 *File entry 3

98-127 *File entry 4

130-159 *File entry 5

162-191 *File entry 6

194-223 *File entry 7

226-255 *File entry 8

* Structure of single directory entry

" BYTE

CONTENTS DEFINITION
File type OR’ed with $80 to indicate properly
closed file.
TYPES: 0 =DELeted
0 128 + type 1 = SEQential
2 =PROGram
3 =USER
4 = RELative
1,2 Track and sector of 1st data block.
3-18 File name padded with shifted spaces.
19.20 Relative file only: track and sector for first side
i sector block. :
21 Relative file only: record size. |
22-25 Unused.
2627 Track and sector of replacement file when OPEN@
’ is in effect.
28,29 Number of blocks in file: low byte, high byte.

45




Table 8. Sequential Format

BYTE DEFINITION
0,1 Track and sector of next sequential data block.
2-256 254 bytes of data with carriage returns as record terminators.

Table 9. Program File Format

BYTE DEFINITION
0,1 Track and sector of next block in program file.

2.256 254 bytes of program into stored in VIC memory format (with
key words tokenized). End of file is marked by three zero bytes.

Figure § illustrates an expanded view of a single sector on a diskette formatted
for the 1540. In addition to other information, each sector contains a data block
consisting of 256 stored characters. Blocks within the same file are linked to-
gether by means of a two character block pointer. By pointing to the location of
the next data block, block pointers enable the system to retrieve data from non-
continuous blocks. Retrieving the first data block within a file triggers a search
for the next data block which, in turn, utilizes block pointers to locate related
blocks until the entire file is assembled and made available for display. All PRG,
SEQ, and USR files utilize this format.

A data block is addressed by track and sector. A 1540 diskette contains 35
tracks (or rings) numbered 1 to 35. The number of sectors per track will vary (as
illustrated in Table 4) due to differences in track circumference and recording
frequency. :

The 1540 maintains a system file on track 18 which contains the BAM, diskette
name, ID, and file directory. The BAM, resident in the first 128 bytes of sector
0, monitors available and occupied storage locations on diskette. The last 128
bytes of sector O are used to store the diskette name and ID. The file directory
begins on the next sector, sector 1. '

46



POINTERS TO LINK

NOTE:

TOGETHER ALL BLOCKS

WITHIN A FILE

Not to scale

SYNC

08

254 BYTES

CHECK-
1D1]1D2 | TRACK| SECTOR GAP 1|SYNC|07 OF DATA

Sum

BYTEO
BYTE 1

CHECK-
Sum

GAP
2

Fig. 5. VIC-1540 Format: Expanded View of a Single Sector

47




NOTES



Chapter‘ 6
SEQUENTIAL FILE

A file handling of sequential file which is the most basic form of the date file is
described in this chapter.

A sequential file is a file which may be read only in the sequence it was written
in. For example, a file with records, A, B and C, must be read in the sequence of
A, B and C if they were written in that sequence. The record C and not be
directly read without reading the record A and B. If it is necessary to read the
record C only, then A and B must be read without doing any work.
In the sequential file, no partial re-write of the record can be made. Only change
which can be made to the sequential file is an addition of new record to the end
of the file.

TO CREATE A SEQUENTIAL FILE AND ACCESSING
The following steps are taken to create a sequential file and accessing.
STEP1  Open a file for write in.

OPEN 2, 8,2, “0: DATE, S,W”

A sequential file with a name DATE is opened to be written upon.
Note the designation W for write in at the end of the command.

STEP2  Write in data in the file using PRINT #.
PRINT #2 AS$; BS; C$
In this case the datas are, 3 string variables, A$, B$, and C$.
STEP3  Close the file for the access later
CLOSE 2

49



STEP4  Open the file with a-name DATA to be read out.
The designation R for read out may be omitted.

OPEN #2,8,2,“0: DATA,S,R”

STEPS5  Read in the data from the 'sé'q'\.xentiai file to the prbgram:‘ using
INPUT #.

INPUT #2,X$, Y$,Z$
STEP 6  Check the end of the file by the ST variable.

IF (ST) AND 64 THEN CLOSE 2

EXAMPLE OF A SEQUENTIAL FILE PROGRAM

An example of a simple program to create a sequential file is shown below.
Records consisting of string field and numeric field are written in and the con-
tents of the records is d:splayed at the end by typmg END.

1 REM ##$#56R¥F S EE44

2 RPEM %  EXAMFLE

3 REM % READ & WRITE

4 REM ¥ A SEQUENTIAL

5 REM % DATA FILE '

9 REM skbddkddsaiins

19 PRINT"DBPBINITIALIZE DISK"
20 DIMA$C23)

38 DIMR(23)

48 OFEN15.8.15,"18"

68 GOSUE 1020

78 CR$=CHR$(13)

8@ PRINT

99 PRINT" MEMRITE SEQ TEST FILE®"
95 PRINT

160 FEM d¥kksdissdds

161 REM #

182 REM # WRITE SEQ

183 REM % TEST FILE

184 REM %

50



105 REM #es440454444

118 OPEMZ. 2.2, "R0:SEQ TEST FILE .2.W"
126 INFUT"RE,B";R$.E

128 IFAR$="EML"THEN 1£4

148 FRINTRZ.A$", "STR$CECRE,

145 GOSUE 169a :
S50 GOTO 120

1£68 CLOZE 2

SHB REM Shadeshdhd i

201 FEM #* ,

2062 REM % RERD SEQ

203 REM % TEST FILE

204 REM X
205 REM Rikionionionion

206 PRINT

207 PRINT" MREAD SE@ TEST FILE®"
208 PRINT -

210 OPEN2,8.2,"@'SEQ TEST FILE ,8.R"
215 GOSUB 1000

220 INPUT#2,R$(1),B(I)
224 RS=ST

225 GOSUB 1000

238 PRINTASCI),BCI)
240 IFR Ss64 THEN 380
256 IF RSCOQ THEN 400
260 Iml+i

270 GOTO 220

300 CLOSE 2

310 END:

400 PRINT"WBADMDISKMSTATUSMISIE"RS
410 CLOSE 2

420 END

1000 REM sk i
1681 REM *

1002 REM %  RERD
1883 REM % THE ERROR
1924 REM %  CHANNEL
1005 REM %

51



1006 REM seskakeesisoRskoe

1818 INPUT#13,EN.EMS,ET.ES:
1820 IF EN=@ THEN RETURN:
1039 PRINT"SPBISERROR ON DISK"
1040 PRINT"®"EN,EMS$.ET,.ES"®"
1050 CLOSEZ2

1968 END

52



|
Chapter 7

RANDOM FILE

A random access file is created with the BLOCK and USER commands described
in Chapter 5-Adranced Disk Programming.

DATA FLOW IN RANDOM FILE

In the random access file the data can not be as simply written in or read from as
in the case of a sequential file.

It is necessary to understand the data flow between the computer, buffer and
disk drive in order to transfer the data in the random access file. It can be illust-
rated as Fig. 6.

Channel § Channel 3
~ OPENS, 38,15 OPEN 4, 8, 3, “#7”
PRINT #5, “B-W”; 3;0;6;4 PRINT #4, A$; CHR$(44)I; CHR$(13)
Transfer the data from the buffer to Write in the data from the computer
the computer into the buffer

N

move the buffer pointer
PRINT #5, “B-P” 3;120

Disk Drive Buffer Computer

move the buffer pointer
PRINT #5, “B-P” 3;120

Transfer the data from the disk to Read in the data from the buffer to
the buffer the computer
PRINT #5, “B-R”; 3;0;6;4 INPUT #4, A$,1

Fig. 6. Data Flow between Computer, Buffer and Disk Drive



The above can be more $pecifically described as:

STEP1. Open a file
Disk File © OPEN 5, 8,15 s
Command & Error Channel

Device Number
Logical File Number

(B Buffer File OPEN4,8,3,“#7”
L—Buffer Number
Channel Number
Device Number
Logical File Number

STEP2.  Move the buffer pointer

PRINT #5 “B-P:” 3;120

Logical File Number of @j L Pointer Position
o8te e umper o Channel Number of

etting of Block Pointer
STEP 3.  Place the data in the buffer

PRINT #4, A$; CHR$(44); I, CHR$(13)

Logical File Number of (B) Comma Carriage Return
Variables

STEP 4.  Transfer the data from the buffer to the disk
PRINT #5, “B-W:” 3;0; 6;4|1_

Sect b

Logical File Number of @1 L ector number

; Track number
Write In: '

Drive number
Channel Number of

54



STEP S.

STEP 6.

STEP 7.

Transfer the data from the disk to the buffer

PRINT #5, “B-R:” 3;0; 6; 4

Loieal File Nurth f@ LSector Number
ogical File Number o Track Number

Read Out
cacBu Drive Number

Channel Number of (B)

Move the buffer pointer

PRINT #5, “B-P:” 3; 120
L—Pointer Positi

Logical File Number of ointer Position

Channel Number of
Setting of Block Pointer

Take out the data from the buffer
INPUT #4, A$, 1
Logical File Number of ®J Variables

EXAMPLE OF USING RECORD NUMBER

More practical program which uses variables will be as follows: It assumes OPEN
‘15, 8, 15 and OPEN CH, 8, CH, “#” and uses Ul and U2 instead of B-W and

5100
5158

1 REM $HE$600EEAREEREAERES 44

REM # FDD ELOCK FEAD #

MG R LRI EREEZERE R AR LS B
3 GOIUBTIZE

FRINT#15,"UL: " CHiFL.FTAFS

3 PRINTH#1S, "E~P:";CH.FF

GOSURZZYE
FORFI=1TOFA

- IMPUT#CH. FE$CF T

HEXT
RETURM

55



A REM st sedbbabbbbb ot dis
1 REM #% FILD ELOCK WRITE *
2 REM sddddssbsibbestesbibbrs
8 GOSUBESZ36
G PRINT#1S,"E-P:";CH;FF ,
5] FDRFI=1TOF%:PRIHT#CH,FEi(FIbﬁpHﬁiﬁ13)):HEXT
5240 PRINT#15,"U2: " CH:FDLFTIFS
5250 GOSUBESZTH
52€8 RETURM .
52760 REM ###0AE44$5 05500008 40K
0:75 REM % ERROR CHECK E 3
275 REM #¥ASSEEEFEEafeb4 400444
£280 IMPUTH#1S.EM.EM$.ET,ES
5290 IFEM=0THEMRETURH
52380 PRINT"ERROR STATUS:":EM.EM$,ET,ES
5310 IMPUT"CONTIMUE?",Y$: IFY$="""THENRETURHM
5328 STOP
5322 REM #kdfkhkeibEkepidseesss
5324 REM % SET TRACK & SECTOR #
5326 REM dkkkbksdhbbhhsebpdbeedk
5330 I‘F<35&THEHF1 O:F2=22:F3=1:060T05370
5340 IFF-SS7AMDFC47ITHENF 1=357 :F2=20:F3=13:060T0S5270
=°‘G IFﬁ/4,lﬁNDFuJSBTHEHF1-411 F2=19:F3=25:G0T0S:7@
5360 1FF>SSBTHEMF1=580 :F2=15:F3=31
53?@ FT=IHT(CCF=F1)=13 0 F2-1204F3
5380 FS=F-F1-(FT-FI)#F2+ FT-F3-12
5398 RETLRH

T P e

Where: CH = Channel number
FD = Drive number
FP = Buffer pointer

The line numbers 5270 to 5320 in the above are the error check routine. Also
indicated in above by GOSUB 5330 is a subroutine wh1ch is for allocating a
sector in the disk.

A track and sector must be designated in the random access which is rather
troublesome and, therefore, a concept of record number is used here to reduce
the burden of the programmer. For example, serial numbers as shown in Table
below are assigned to the sector ( in the track 1 to the sector 16 of the track 35,
in VIC-1540. These serial numbers are called as the record number, which is in-

56



dicated by F in the subroutine starting from the line number 5330 in the above
example. When a F number is designated and this subroutine is called, the corres-
ponding track and sector are allocated automatically. The directory will not be
destructed as the track 18 has been avoided.

Table 10. Allocation of Record Number

Track Number Sector Number of Sector/Track Record No.

1to 17 0to0 20 21 1-357
18to 24 Oto 8 19 358471
25t0 30 O0to17 18 478-579
31to3S Otol6 : 17 586-664

EXAMPLE OF A RANDOM FILE PROGRAM

A simple program has been made using method to create a random access file
described above. This program can be used for the preparation, deletion and
inquiry of an address list.

Line number 50— 76 Job menu.

Line number 100 — 190 Creation of file

Line number 200 — 280 Making deletion to the file
Line number 300 — 390 Search processirig

Line number 5100 — 5190  File input routine

Line number 5200 — 5260 File output routine

12 REM #% RAMDOM FILE EXAMFLE #
14 REM #######H#SMH#*##H'?"H
16 DIMI$(EE4) FI=0:Fx=3:CH=2:FP=1

18 PRIMNT" a0 "
20 PRINT" WINSERT DARTA SHEET""
22 PRINT"

24 PRINT" XN ‘THRT PRESS 3';""“
26 GETP$: IFP$<>"3"THEN26

28 OPEM15.,8,15,"18" :0FENZ, &.2,"#"
28 FRINT"4 "
32 PRINT"INDEX FILE OPERATIOH"

34 PRINT" "

57



INPUT"M BHEL SHEET? NIREI'; D% :PRINT"S"
IFO$="MN"THEN4E
IFO${>"Y"THEN3E
FRINT:PRINT"

PRINT"uDRBRBRDBPIRDIa0ATAIN

WRIT!" FORI=1TDEE4
IREAS'I; - I$(I)=""

45 PRINTIS$CID :MEXT:GOTOSA

46 OPEMS. 8,3, "8 INDES, S, R"

47 FORI=1TOEE4: IMPUTH#3, I$C1)

42 PRINT" Sl AlBBRRBLIAIT ! IRRABI" I I$CI)
49 MEXTI:CLOSES

S8 FRINT"I% "
52 PRIMT" JOE MEMU "

94 PRINT" "
25 PRINT '

98 FPRIMT" 1=CRERTE"

B8 PRINT" 2=DELETE"

€2 PRIMT" I=SERRCH"

&4 PRIMT" @=EMD"

€5 FRINT
IHPUT"L , 2 , 3, B 1IABI";0%
IFD$="6"THENCLOSELS  CLOSES : CLOSEZ END
IFO$="1"THEN 144

IFO$="2"THEM2G5

IF0$<" 2" THE-5@

GOT0266

REM $6EMRESEERREAR RS

REM # MASTER FILE CRERTE #

3 REM PEEEERSEE R b

el it I B B B A
[wa BouRle SRR SN (W sl s Y
2% W]

(]
L2

184 FRINT" IM0— "
185 PRIMT" MASTER FILE CREARTE"
196 FRINT" "
187 INPUT"SRECORD HO. = DIEREG";F
183 IF F=BTHEM17S

118 IHMPUT"HAME = 108" ;FES$C1)
126 IMPUT"ADDRESS =.IR31";FE$(Z)
136 IMPUT"ZIP =, I8 ;FE$(3)
132 IMFUT"TEL =, IB8 FESC4)
134 INPUT"COMMEMT =.INBY' ;FE$(S)
146 GOSUEBSZ209

158 I$cF)H="1"

58



5070164
OPENS, 8,5, "@6: IMDEX, S, 1"

FORI=1TOSEG  PRINTES, T$CT 0, CHRSCL1Z0,

A FRINT" Selslelalnimale bk DaB0LA]T!

HE®T :CLOSES

GOTO7S

REM #dfdddsbibbbbssdsbsitss
FEM # MASTER FILE DELETE #

2 REM 4###*###++++§¥i§++b+4#+

AR IF 10

FRINT" I

12 PRIMT"  MRSTER FILE DELETE"

LAV KRN T SN LR SR RO LU

gt I U S R Bl N 0y
(R 3 I DR o R ORI s )

214

A PRINT"ZIF
e PRINT"TEL
3 PRINT"COMMENT

PRI

TUIPRINT

INFUTBRECORD MO, = QBRI F

IFF=0THEHZER
IF 1$(F 303" 1 " THEN22D

I$'F)“”~"1PEIHT"EQEECDRD HO."F

J‘:'CH-." SR THDES, S WY

FDEI=1TUDE4 PRIMT#S, 14010 CHRES1 2,

PRINT" siaalae Al a e asg/ o1 T!
MHEXT : CLOZEDS

GOTOS5E

REM sdfddhbdasiodibssbpiss
FEM % FILE SERRCH 4
REM #f#f£60R8AE0E00 000 EEHE

maEa'I 15000

PRINT" JtsH
FRINT" SEARCH "

FRIMT"

“PRINT

IMFUT"RRECORD MO, = OIBBER";F

IFF=BTHEMSE
IFI$(F)<>"1"THEN2Z0
GOSURS16a
PRINT"HAME
PRIMT"ADDRESS

"JFBECLD
";FE$C2)
";FE$L3)
";FE$4)
"SFE$C3)
PRINT! === mm o m o m e
GOTOZZ8

g uwun

"LELETEG"

59



A

L IR SO DR RS B R, RO B

Pt pb b b ek fonb b i s

- OO T L P D e T S

n
[ O]
12
[a)

OIS I o I I I G A IR i )

n
—

n
1=t
X

=

rl
K]
=
)
-

N
(8]
bl
a

&)
A
DV s B |

[ e I A

n
(PRI

60

FEM #4445 45 0405404000 40.44

REM % FOLD BLOD

k. FERD

#

FEM #4dbpdsddbibsdd bibpdpb

LIOSUBSZE0

FRINT#15, "I " CHIFLLFT P

FRIMT#1S, "B-F:
GOSURSZTH
FORFI=1TOFR
IMFUT#CH, FESCF
HE T

=i

RETURH

"LCHIFF

1o

REM ##4 3836080000444 404

t REM # FDIL BLOC

PRINT#15, "E-F-

k. WRITE

"SCHFF

2 REM #kebbdtdsdsbsdessbbbads
A GOSUES3Z60

FORFI=1TOF:: PREIMNTHCH. FEECF I CHRE1ED T HERT
PRINT#1S."U2: " CHIFTGFT FS

GOSUBSZTH
FETURH

REM $#4seEs o000 048404504

REM % ERROE C

HECE.

#

REM #3f4efe08 040400000444

INFUTH#1S . EM.ENM
IFEN=BTHEHRETU

5T0P

£.ETLES
FiH

3 FPRINT"ERROR STATUS:".EM:EM$ETIES
A ITHFUT"CONTIHUE?" Y% IFY$="Y"THEMRETURH

REM #¥fkbfdsbfhkthid bbbt
FEM # SET TRACK & SECTOR #
REM #$#edfdbapdfodsdisss

[FFCESETHENF L=

IFFSSeOTHENF 1=

FE=F-F1-(FT-F3
RETLRH

GiF2=22:F

B IFF-S37AMDF <471 THENF 1=
IFF>471RHDF - SEATHEMF 1=471 1 F2=19:F3=2

3=1:00T05570

37 F2=20F3=]

S8R F2=15:Fa=31
FT=IMTCCCF=Fi13~13"CF2-1u )+r‘|

JRFZHFT -

=13

3:
3¢

x
3

a
1]

TOS37H
ITOSE7E



,
Chapter 8
ERROR MESSAGES—
PATTERN MATCHING
FILE NAMES—

R

REQUESTING ERROR MESSAGES

When the drive indicator of the disk drive flashes, it indicates an error occurred
in the disk drive.

The execution of the following program displays the error on the computer '
screen and resets the device error indicator: .

10 OPEN 1,8,15
20 INPUT#1,A,B$,C.D
30 PRINT A,B$,.C.D

where A = error message number
B$ = error message
C =track
D =sector

SUMMARY OF DOS ERROR MESSAGES

0 OK, no error exists.
1  Files scratched response. Not an error condition.
2—19 Unused error messages: should be ignored.
20  Block header not found on disk.
21  Sync character not found.
22  Data block not present.
23 Checksum error in data.
24  Byte decoding error.
25  Write-verify error.



NOTE: Error message numbers less than 20 should be ignored with the excep-
tion of 01 which gives information about the number of files scratched with the

. Attempt to write with write protect on.

Checksum error in header.
Data extends into next block.
Disk id mismatch.

General syntax error. .
Invalid command.

Long line. o

1nvalid filename.

No file given. o
Command. file not found.
Record not present.
Overflow in record.

File too large.

File open for write.

File not open.

File not found.

" File exists.

File type mismatch.

No block.

Illegal track or sector.

Illegal system track or sector.

'No channels available.

Directory error.
Disk full or directory full.

Power up message, or write attexﬁpt with DOS mismatch.

Drive not ready.

DESCRIPTION OF DOS ERROR MESSAGES

SCRATCH command.

20:

21:

62

READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data
block. Caused by an illegal sector number, or the header has been

destroyed.

READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/write head, no diskette is present, or
unformatted or improperly seated diskette. Can also indicate a hardware

failure.



22:

23:

24:

25:

26:

. 27:

28:

29:

30:

READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that
was not properly written. This error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector request.

READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the
data bytes. The data has been read into the DOS memory, but the check-
sum over the data is in error. This message may also indicate grounding
problems.

READ ERROR (byte decoding error)

The data or header has been read into the DOS memory, but a hardware
error has been created due to an invalid bit pattern in the data byte. This
message may also indicate grounding problems.

WRITE ERROR (write-verify error) .
This message is generated if the controller detects a mismatch between the
written data and the data in the DOS memory.

' WRITE PROTECT ON

This message is generated when the controller has been requested to write
a data block while the write protect switch is depressed. Typically, this is

- caused by using a diskette with a write protect tab over the notch.

READ ERROR (checksum error in header)
The controller has detected an error in the header of the requested data

. block. The block has not been read into the DOS memory. This message

may also indicate grounding problems.

WRITE ERROR (long data block)
The controller attempts to detect the sync mark of the next header after
writing a data block. If the sync mark does not appear within a pre-deter-

" mined time, the error message is generated. The error is caused by a bad

diskette format (the data extends into the next block), or by hardware
failure.

DISK ID MISMATCH

" This message is generated when the controller has been requested to ac-

cess a diskette which has not been initialized. The message can also occur
if a diskette has a bad header.

SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel.

63



31:

32:

33:

34

39:

50:

51:

52:

60:

64

Typically, this is caused by an illegal number of file names, or patterns are
illegally used. For example, two file names may appear on the left side of
the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in

the first position.

SYNTAX ERROR (long line)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it
as such. Typically, a colon (:) has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel
(secondary address 15) is unrecognizable by the DOS.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET#
commands. This message will also occur after positioning to a record be-
yond end of file in a relative file. If the intent is to expand the file by
adding the new record (with a PRINT# command), the error message may
be ignored. INPUT or GET should not be attempted after this error is
detected without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is truncated.
Since the carriage return which is sent as a record terminator is counted in
the record size, this message will occur if the total characters in the record
(including the final carriage return) exceeds the defined size. ’

FILE TOO LARGE
Record position within a relative file indicates that disk overflow will
result.

WRITE FILE OPEN
This message is generated when a write file that has not been closed is
being opened for reading.



61:

62:

63:

64:

65:

66:

67:

70:

71:

72:

FILE NOT OPEN

This message is.generated when a file is being accessed that has not been
opened in the DOS. Sometimes, in this case, a message is not generated;
the request is simply ignored.

FILE NOT FOUND
The requested file does not exist on the indicated drive.

FILE EXISTS
The file name of the file being created already exists on the diskette.

FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the
requested file.

NO BLOCK

This message occurs in conjunction with the B-A command. It indicates
that the block to be allocated has been previously allocated. The para-
meters indicate the track and sector available with the next highest
number. If the parameters are zero (0), then all blocks higher in number
are in use.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not exist in
the format being used. This may indicate a problem reading the pointer to
the next block.

ILLEGAL SYSTEM TORS .
This special error message indicates an illegal system track or sector.

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maxi-
mum of five sequential files may be opened at one time to the DOS. Direct
access channels may have six opened files.

DIR ERROR

The BAM does not match the internal count. There is a problem in the
BAM allocation or the BAM has been overwritten in DOS memory. To
correct this problem, reinitialize the diskette to restore the BAM in
memory. Some active files may be terminated by the corrective action.
NOTE: BAM = Block Availability Map

DISK FULL |
Either the blocks on the diskette are used or the directory is at its limit of

65



144 entries.

73:

74:

CBM DOS V2.6 V170 _

The DOS version of the VIC-1540 is 2.6. DOS 2.6 and 1.0 (CBM2040/
3040) are read compatible but not write compatible, that is, the disk
formatted on DOS1.0 may be read but can not be written upon with VIC-
1540, and the disk formatted on D0OS2.6 may be read but can not be
written upon with DOS1.0. D0OS2.6 and 2.0 (CBM4040) are read and
write compatible, that is, the disk formatted on either version may be read
and written upon with the other version. DOS2.6 and 2.5 (CBM8050) are
not read or write compatible, that is, the disk formatted on either version
can not be read or written upon with the other version. This error is dis-
played whenever an attempt is made to write upon a disk which has been
formatted in a non-compatible format. This message may also appear after
power up.

DRIVE NOT READY

An attempt has been made to access the VIC-1540 Single Drive Floppy
Disk without any diskette present in the drive.

PATTERN MATCHING

Pattern matching of file names is available on all Commodore floppys. Pattern
matching uses the question mark (?) and the asterisk (*) to perform operations
on several files with similar names.

The asterisk is used at the end of a string of characters to indicate that the rest
of the name is insignificant. For example:

FIL* could refer to files named
FIL ‘ :

or FILE1l

or  FILEDATA

or FILLER

or any other file name starting with the letters FIL.

The question mark may be used anywhere within the string of characters to in-

dicate that the character in that particular position should be disregarded. For
example: ‘

66



77777.SRC could refer to files named
TSTER.SRC

or DIAGN.SRC

or PROGR.SRC

but not SRC.FILES
Both the characters and the position of the characters are significant.

The question mark and asterisk may be combined in many ways:

does not make sense because the question marks are in an area which is insignifi-
cant (because of the asterisk).

P??7?7FIL* will access files with the names
PET FILE

or PRG FILE-32

or POKEFILES$$

or any other files starting with P and having FIL in positions 5-7.

SCRATCH with pattern matching should be used carefully, since multiple files
will be scratched. LOAD will load the first file which fits the pattern matching.
OPEN with pattern matching may be used to open an existing file, in which case
the first existing file encountered which fits the description will be opened.
However, OPEN should not be used with pattern matching when creating a new
file. Never use RENAME, SAVE, or COPY for pattern matching since an error
condition will result, if attempted.

67



68

NOTES



APPENDIX

The following is a list of the programs contained on the TEST/DEMO diskette.
1 S TEST AHEMG - 2. i 2

4 "DIR" PR
) "WIEW ERMY . FEG
14 “DISPLAY Tas® . FRG
4 "CHECK DIsk" PRG

g "FERFORMAKCE TEST" FREG
2 "CEGQUENTIRL FILE" FRG
13 "RAMDOM FILE" FEG
a2 RLOCKS FREE.

DIR simplifies the commands for the display of the disk directory or the disk
operation. .

VIEW BAM will read the BAM on VIC-1540 diskette and display on the VIC-
1001 personal computer. It is a matrix type map with the sector numbers on the
vertical axis and the track number on the horizontal axis. The empty blocks are
displayed brightly and the used blocks are displayed dark. Because of the
formatting of VIC-1540, sector 19 on is not persent on tracks 18 to 24.The
VIEW BAM program will show these blocks as allocated.

DISPLAY T&S will show the users any block of information from a diskette
(including the directory and BAM) to the screen or printer in both ASCII and
hexidecimal. (Refer to Chapter 5.)

CHECK DISK will perform a validate on a disk then identify blocks that can not
be read by the disk. This is useful for detecting a damaged disk.

PERFORMANCE TEST performs a check out on the performance of VIC-1540.

SEQUENTIAL FILE is an example of how to write and read a sequential file
data. (Refer to Chapter 6.)

RANDOM FILE is an example of direct access file handling using BLOCK and
USER commands. (Refer to Chapter 7.)



1. DIR

4 OPEM2,8,15
. S PRINT"R":GOTO 10009

18 OPEM1,8,0,"$@8"

20 GET#1.A$,E$

38 GET#1,A%$.B3

40 GET#1,A$,E$

59 C=9 - )

ea IF A% THEN C=ASC(AR$)

79 IF B$O"" THEN C=C+ASC{E$)4256

S8 FRINT @E"MID$CSTRS$CC), 27, TREC3), "m3",

99 GET#1,B$:1F ST<>0 THEM 1863

199 IF B$<>CHR$(34)> THEN 58

118 GET#1,B$:IF B$<OCHR$:34)THEM FRINTES$; :50T0L1G

120 GET#1,B$:1IF E$=CHR$(3Z) THEM 1206

133 PRIHT TRB(18);:Cs=""

149 C$=C$+B3:GET#1,B3:IF B$<>"" THEN 148

156 PRIMT"RA"LEFT$(C$,3)

168 GET T#:IF T¢<>"" THEM GOSUB 2860

170 IF ST=8 THEM 30 .

1689 PRINT" ELOCKS FREES"

1919 CLOSE1:GOTO 10000

2000 IF T¢="Q" THEN CLOSE!:EMD

2016 GET T$:IF T#="" THEN 20608

2028 RETURM

4009 REM DISK COMMAMD

4010 C3="":PRINT">";

4011 GETB$:IFB$="" THEMN4811

4812 FRIMTBS; :IF B%$=CHR$(13) THEM 4820

4813 C3=C$+E$:GOTO 4011

4620 PRINT#2,C$

5000 PRINT"@"; :

5916 GET#2,R%:PRIMTAS, : IF ﬂs(/CHP$<lg/PUTD 016

5620 PRINT"®"

16698 PRIMT "D- DIRECTORY"

19315 PRINT ">-DISK COMMAMD" .

10820 FRIMT "Q-QUIT PROGRAM"

19835 PRIMT "5-DISK STATUS "

lﬁlBB GETA%: IFA$=""THEN16816&
IF A$="D" THEM 18 .
IF A¥="." OR A$="2" QR A$=">" THEM 4000
5 IF A$="Q" THEN END '
IF A$="S" THEM S50
GOTO 19168

2. VIEW BAM

180 REM skdokdoiob dolokdoliolol Aok ok
161 REM * VIEW BAM FOR VIC-1548
102 REM Moo Rk ok
183 OPEN1S,8,15
118 PRINT#15,"10" :NU$="N/A N/R N/A N/A N/R":24=1
120 OPENZ,8.2,"#"
138 Yé=" s0mmOD DD DD
140 Xs$="10B0BRRRRRRRRRRRIDRRRDRI"
150 DEF FNS(2) = 21(S-INT(S/8)#8) AND (SBCINT(S/8)))

70



160
176
180
1989
208
218
220
230
240
258
268
2ra
288
298
368
319
328
339
349
3568
368
3768
389
330
400
418
420
430
440
456
460
478
438
438
500
516
520
528
548
559
569
57

539

PRINT#13,"U1:";2;0,18,0

PRINT#15, "B-P";2;1

PRINT")";

¥=22:¥=1:60SUB430 )
FORI=0T028:PRINT:PRINT"TY'RIGHT$(STR$CI)+" ",3); :NEXT
GET#2,R$

GET#2,A$

GET#2, A%

T5=6

FORT=1T017: GOSUB450
¥Y=22:x=T+4:G0SIUB430 : GOSUBS48 : NEXT
FORI=1T02006:NEXT: PRINT" "

=221 4=1:GO3UR430
FORI=0T020:PRINT:FRINT"TI'RIGHT$<(STR$CI)+" ",3); :HEXT
FORT=18T035

GOSUE456

Y=22:1=T-13:G0SUB430: GOSUBS40 : NEXT
FORI=1T01266 : MEXT

PRINT “TIabinat"

PRINT#15, "B-P";2; 144
N$="":FORI=1T7020:CET#2Z, A% :N$=N$+A% : NEXT

PRINT" "N$" "TS-17,"BLOCKS FREE"

FORI=1T04688  NEXT

FRINT""

THPUT " XRIBBEIRNOTHER DISKETTE HINGES"R$
IFA$="Y"THENRUM

IFA$CY"Y" THENEND

PRINTLEFT$CYS, YILEFTSCHS, X0 "0 ;

RETURN

GET#2,5C%: SC=ASC(RIGHT$(CHR$<B)+SC$,1))
T5=T5+5C

GET#2,A%: IFA$=""THENA$=CHR$(D)

SB(DI=ASC(AS)

GET#2,A$: IFA$=""THENA$=CHR$(0)

SB{1,=ASC(AS%)

GET#2,A%: [FA$=""THENA$=CHR$ (D)

SB(2)=RSC(A%$)

RETURM

FRINT"ABI"RIGHT$(STRE(T), 15, ",

REM FRINTT"  "SC" “SE(G>" "SB(1)" "SB(2)=CHR$(6)
IFT>24ANDS=13THEN: PRINTMID$NU$, 24,15 ; :GOTOGED
FOR3=0T020

IFT18THENE2D
IFT38ANDS=17THEM : PRINTMIDS$ (HUS, 24, 1) ; : GOTOEED
IFT>24AMDS=18THEN : PRINTMIDS$ (HUS$, 24, 1 : 50TCEED
IFT>24RNDS=13THENPRINTMID$CHU$, 24, 1) ; : GOTOEED
IFT17AHD5=26THENPRINTHIDSCNUS, 24,1 ; : Z4=Z4+1 : GOTOSERD
PRIMT"&";

IF FHZ:S)=@ THEH PRINT"+";:GOTOEED

FRINT"B4"; :REMRIGHT$(STR$CS), 13,24, 15, :GOTOT2
PRINT" 3M";

NEXT

RETLIRM

71



3.

100
110
120
130
140
159
160
163
179
160
199
200
210
220
248
251
253
254
235
2356
260
265
270
230
299
300
‘318
320
339
349
341
350
360
370
350
499
419
420
428
430
431
432
433
434
436
433
440
442
444
446
448
450
)
454
453

72

DISPLAY T&S

REMioksolsickokloliiciisioliooniosoioioniok
REM# DISPLAY ANY TRACK ¢ SECTOR %

REMM ON THE VIC TO THE SCREEN %
REMK OR THE VIC PRINTER L]
REMt*!**t***tllﬁttititlt&ti*tl#t*
PRINT" N

PRINT"DISPLAY BLOCK CONTENTS"
PRINT"
REM!****m##mt!ttttkit*ttt*t*#tt#t
REMM SET PROGRAM CONSTANT L
REMaoksiskolsiiiorioi ook ok

SPg=" " :NL$=CHR$(@) : HX$="0123456789ABCDEF"
F5¢="":FORI=64 TO 95:FS$=FS$+"§"+CHRECI)+" W' INEXT 1
8S¢=" ":FOR I1=192 TO 223:SS$=5S¢+" 4" +CHRECI)+"W" :NEXT 1
DIM REC15),NBC2)

Dgn Iioll

PRINT" @SECREENUNBEREARIOR MBIZPERINTER"
BETJJS:IF JJ¢="" THEN2T4

IF JJ$="S"THENPRINT" WAISCREEN®S"

1F JJ$="P"THENPRINT" MIPRINTERER"
OPEN15,8,13,"1"+D$:GOSUB 659

OPEN4, 4,7

OPEN 2,8,2,"#":30SUB 650

RE Mok oliololiiolol ool idooliok ok

REM& LOAD TRACK AND SECTOR L)

REM#& INTO DISK BUFFER L]
REMioiiokikicioloioopiocaoiiooek

INPUT"MBITRACK, SECTOR"T.S

IF T=@ OR T>35 THEN PRINT#15,"1"D$:CLOSE2:CLOSE4:CLOSE1S:PRINT"END" :EN
IF JJ$="S" THEN PRINT"XMBITRACK"T" SECTOR"S"N"

IF JJ$="P" THEN PRINT#4:PRINTH#4,"TRACK"T" SECTOR"S:PRINT#4
PRINT#15,"U1:2,"D$, T;5: G0SUBGSA
REMickseiokoldeiiollonooooonii

REM¥ READ BYTE @ OF DISK BUFFER #
REMuakskiideiololoiioisioiobisionooicn
PRINT#13,"B~P:2,1"

PRINT#15, "M-R"CHR$(Q)CHR¥(&)
GET#19,A$C0) : IFA$CA)=""THENRECB)=NLS

IF JJ$="S"THEH439

IF JJ$="P"THEN4€0

RE Moo

REM¥ RERD & CRT DISPLAY L)

REM¥ REST OF THE DISK BUFFER ¥
REMskdokdoksdossioioloiorodook
K=1:NB(1)=RSC(R$(D))

FOR J=@ TO 63:1F J=32 THEN GOSUB 71@:IF 2$="N"THEM J=89:G0TO 4358
FOR I=K TO 3

GET#2,A$CI): IF R$C1Ia"" THEN RECID=NLS

IF K=1 AHD I<2 THEN NB(2)=RSCC(R$CID)

HEXT 1:K=0

Ag="":B$=":" H=Jk4:G0SUB 7950:A$=AE+":"

FOR 1=0 TO 3:M=ASC(A$(1)):GOSUB 730

C$=R$(1):60SUB B850 Be=Be+ ¢

HEXT 1:1F JJ$="S" THEN PRINTA$B$

NEXT J:G0TO571



460
462
464
466
468
470
472
474
476
478
430
432
434
486
433
571
572
973
979
530
930
600
610
620
£30
640
650
K69
670
6308
£90
700
710
720
730
748
750
760
770
780
790
800
810
820
830
840
830
860
870
230
850
910
920

RE Mokl skl ok

REMW RERD & PRINTER DISPLAY L
REMMORROUORNEINN BRI ORI
K=1:NB(1)=ASC(A$(B))

FOR J=@ TO 15 .

FOR I=K T0 15 :
GETH2,R$C1): IF ASCII="" THEN R$C1)=NL$
IF K=1 AND I<2 THEN NB(2)=ASC(A$(I))
NEXT 1:K=0

Ag="" :Be=": " :NuJH16:00SUB 790 As=A$+":"
FOR I=Q TO 15:NoRSC(A$(1>):GOSUB 79@:IF Z¢="N"THEN J=4d:GOTO 371
C$=R¢(1>:G0SUB B85Q:B$=Bs+C$

NEXT I

IF JJ$="P" THEN PRINTR4,A$B$

NEXT J:GOTOS71

REMackssolok ook

REM# NEXT TRACK AND SECTOR *
REMacioiolololorsiof sk isononiioniion
PRINT"NEXT TRACK AND SECTOR"NBC1>NB(2) "¥"
PRINT"DO YOl WANT NEXT TRACK AND SECTOR"
GET Z$:IF Z¢="" THEMS9Q

IF 2¢="Y" THEN T=NB(1):5=NB(2):0G0T0330
IF 2¢="N" THEN 320

GOTO S99
REMickickioioicol ook
REM#¥ SUBROUTINES *

REMAoliokdolold ool
REM# ERROR ROUTIME ¥
REMiskioiok ook
INPUT#1S,EN,EM$,ET,ES: IF EN=0 THEN RETURN
PRINT"#DISK ERRORSEN,EM$,ET,ES

END

REMiskksiosilol etk

REM* SCREEN CONTINUE MSSG L)
REMicdedoldomiciioioobiiioig oo

PRINT" YRBBREICONT THUECY/H)B"

GETZ$:1F 2¢="" THEN 730

IF 2¢="N" THEN RETURN

IF 2¢O"Y" THEN 750

PRINT"TJTRACK" T " SECTOR"S "71":RETURN

RE Mookl kkir ok

REM¥ DISK BYTE TO HEX PRINT *
REMiskoriccooioioooiorololooion
A1=INT(N/16) : AE=AE+MIDS (HXS, R1+1, 1D
A2=INT(N-16¥A1) :At=AL+MIDSCHXS, A2+1, 1)
A$=AL+SP$: RETURN
REMickiokisoooiiooioosoiol ook

REM# DISK BYTE TO ASC DISPLRY %

REM¥ CHARACTER L)
REMsckseciciomoiiolioionio ook

IF ASC(C$)><32 THEN Ce=" ":RETURN

IF ASC(C$>¢128 OR ASC(C$)>159 THEM RETURH
C$=MID$(SSE, 3HCASC(CS)~127),3) *RETURN

73



4.

CHECK DISK

1 REM CHECK DISK -- VER 1.4
2 DH=8:REM FLOPPY DEVICE NUMBER
S DIMT<100>:DIMS(100) :REM BAD TRHCK; uECTOR ARRAY

9 PRINT" ‘M00%-

18 PRINT" CHECK DISK PROGRAM"
12 PRINT"

20 Dg="@"

39 OPEN1S,DN, 15

35 PRINT#15,"V"D$

45 N#=RND(TI>#255

S0 A$="":FORI=1T0255: A$=AS+CHRS C2SSAND CI+NXD ) : NEKT
€3 GOSUB9@E

78 OPEMZ,DM,2,"#"

230 PRINT:PRINT#2,R$;

85 T=1:5=0

58 PRIMNT#15,"B-A:"D$;T,S

169
118
115
129
139
134
135
148
156
158
165
17a
208
210
212
215
217
213
220
239
248
258
260
276
956
919
928
3208

5.

INPUT#15,EM,EMS$,ET,ES

IFEN=8THEMN130

IFET=8THEMN28@:REM EMD

PRIMNT#15,"B-A: "D$,;ET,ES: T=ET: S=ES
PRINT#15,"U2:2,"D$;T:S

HE=MB+1:PRINT" CHECKED BLOCKS"ME

PRINT" TRACK INNRI'T; " SECTOR msRrs M
IMPUT#15,EM.EM$,ES,ET

IF EN=BTHEM23

TC=T 54)0=8:J=J+1

FRINT"WIP4EAD BLOCK: IWI",T,;S"8"

50T0R’S

FRINT#15,"1"D$

5OSUESS8

CLOZER

IF J=ATHEHPRINT " (MlsbBB&0 PAD ELOCKS!":EMD
OFEN2, DM, 2, "#"

PPINT"NN@BHD ELOCKS", "TRACK" , "SECTORE"
FORI=BTOJ-1

PRIMT#15,"B-A:",D$,TC1),8¢I)
PRIMT,,T<1),5¢I)

NEXT

FRINT"A"J"FAD ELOCKS HAYE EEEM.ALLOCATED®
CLOSE2END

IMPUT#15,EM,EM$,ET,ES

IF EN=8 THEN RETURH

PRINT"AUHERROR #"EM,EM$:ET;ES"@"
PRINT#15,"1"D$

PERFORMANCE TEST

1620 REM PERFORMANCE TEST 1.1

1019 :

18§g REM VIC~154@ SINGLE FLOPPY DISK DRIVE
16

1240 :

1079

OPEN 1,8, 15:0PEN1S, 8,19

1068 LT=33
1972 LT$=STR$(LT)

74



1888 NT=30

1898 PRINT"IG "
112@ PRINT"T]  PERFORMANCE TEST"
1110 PRINT"
1128 PRINT
1132 PRINT" #INSERT SCRATCH"

1140 PRINT

1150 PRINT" DISKETTE IN DRIVE"
116@ PRINT

1172 PRINT"M  PRESS @RETURN®"

1180 PRINT

1138 PRINT" WHEM READYM"
1280 FOR I=0 TO S50:GET A$:NEXT

1219 GET R$:1F ASCOCHR$C(13) THEN 1218
122@ :

12309 : )

1240 TI$="000000"

1256 TT=13

1269 PRINT#1,"NQ:TEST DISK,00"

1270 C1$="R DISK HEM COMMAMD
1289 C2¢="3M WAIT ABOUT 8@ SECONDS"
1290 CCe=C1$+C2¢$:GOSUB 1840

139@ IF TICNTTHEW1370

1310 PRINT"MSYSTEM 18"

1320 PRINT"H NOT RESPONDING®
1338 PRINT" CORRECTLY TO COMMANDS"
1349 GOSUB 1839

1359

1368

1372 PRINT"MDRIVE PRSS"

1380 PRINT" MECHANICAL TESTW"

1399 TT=21

1499 OPEN 2,8,2,"@:TEST FILE,S,W"

1412 CC$="0PEN WRITE FILE" :GOSUB 1840
1420 CH=2:CC$="URITE DATA" :GOSUB 1930
1430 CC$="CLOSE "+CC¢ :GOSUB 1840
1440 OPEM 2,8,2,"9Q:TEST FILE,S,R"

1429 CCe="OPEN RERD FILE" *GOSUR 1840
14609 CH=2 :GOSUB 19909

1470 PRINT#1,"50:TEST FILE"

1480 CC$="SCRATCH FILEW":TT=1 :GOSUB 1840
1490

1204

1518 TT=21

1520 OPEN 4,8,4,"#"

1530 NNZ=C1+RNDCTT ) %254 +NNZ)AND2SS : PRINT#1, "B=P"; 4;NN%
1340 NNg="":FOR Ie{ TO 253:NN$=NN$+CHR$CI) :NEXT
1550 PRINT# 4,NN$;

1962 PRINTH 1,"U2:";4,0,LT;0

157@ CC$="WRITE TRACK"+LT$:GOSUB 1840

1580 PRINT#1,"U2:";4,0;1,0

1590 CC$="WRITE TRACK 1" :00SUB 1840
1600 PRINT#1,"U1:";4;0,LT;0

1619 CC$="READ TRACK"+LT$ :GOSUB 1840
1620 PRINT#1,"U1:";4,0:1,8

1632 CC$="READ TRACK 1" :GOSUB 1840
164a CLOSE 4

165a

1664



1672 PRINT"ME UNIT HAS PRSSED"

163@ PRINT" PERFORMANCE TEST!"
1699 PRINT"XM PULL DISKETTE FROM"
1760 PRINT"XM DRIVE BEFORE TURNING"
1714 PRINT"  POWER OFF."

1722 END

173e -

1740

1758 PRINT"  WECONTINUE (Y/ZN)?B";
1768 FOR I=0 TO SO:GET RA$:NEXT

1779 GET A$:IF A$="" THEN 1770

1738 PRTNT As"m"

1790 IF A$="N" THEM END

1809 IF A$s"Y" THEN RETURN

1810 GOTD 1760

1829 :

1838

1848 PRINT CC$

1850 INPUTH# 1,EN,EM$,ET,ES

1866 PRINTTAB(12)"#"EM;EM$,ET,ES, "B"
1872 IF EMC2 THEN RETURN

1880 PRINT"M UNIT IS FAILING"

1890 PRINT"M  PERFORMAMCE TEST"
1508 TM$=TI$:GOSUB 1750:T1$=TM$:RETURN
1310 :

1920

15938 PRINT"WRITING DATA"

1940 FOR I=1029 TO 2000:PRINTHCH, I:NEXT
1339 G0SUB1859

1966 CLOSE CH:RETURN

1379

1980

1999 PRINT"RERDING DATA"

2028 GETRS

2016 FOR 1=1000 TO 2090

2020 INPUTH CH,J

2030 IF JCOT THEN PRINT"@RERD ERROR:®":GOSUB 1850
21349 HEXT

265¢ GOSUR 1350

2068 CLOSE CH:RETURM

76



P12 016

P56, P60

P57

tablel0

P69

P72

—ERRATA—

Wrong

TYPE : OPEN1,8,15,"10”

5340 IFF >357ANDF <471
5360 IFF>580THENF1=580

25t030 0Otol7 18 478—579
31to35 O0tol6 17 586—664

DISPLAY T&S
RANDOM FILE

410 PRINT #15,"M—R"
CHRS$(0) CHRS$(6)

Correct

TYPE : OPEN1,8,15, 10"

5340 IFF >357ANDF <472
5360 IFF>579THENF1=579

25t030 Otol7 18 472—579
31to35 0tol6 17 580—664

These programs require an

expander RAM.

410 PRINT#15,"M—R”
CHRS$(0) CHRS$(5)

—CAUTION—

Attempting to LOAD Disk Progranrs that exceed your VIC’s memory

area will overflow into the screen area. To avoid this problem you

should add sufficient memory to your VIC with an expander RAM

cartridge.

1982—06—02









