
commodore

WiC-Ii
USER'S MANUAL

SINGLE DRIVE

FLOPPY piSK

by commodore

SINGLE DRIVE FLOPPY DISK

USER'S MANUAL

p N154OOO18-OS

commodore

The information in this manual has been reviewed and is believed to be entirely

reliable. No responsibility, however, is assumed for inaccuracies. The material in

this manual is for information purposes only, and is subject to change without

notice.

©Commodore Business Machines, Inc., September 1981

"All rights reserved."

Commodore Business Machines

3330 Scott Boulevard

Santa Clara, California 95050

TABLE OF CONTENTS

Page
Chapter 1

Introduction j

General Information j

Description j

Front Panel 4

Back Panel 4

Interior Configuration 4

The Diskette 4

Specifications 4

Care Of The VIC-1540 7

Care Of The Diskettes 7

Unpacking The Disk Drive 7

Chapter 2

Preparing To Use Your Disk Drive 9

Connecting The Disk Drive To The Computer 9

Performing The Power-On Test 10

Inserting The Diskette ! 1

Disk Drive Performance Test 12

Chapter 3

Learning How To Use Your Floppy Disk Drive 15

The Block Availability Map (BAM) ..-...- jg

The Disk Operating System (DOS) . 16

Disk Maintenance Commands jg

NEW 17

Initialization 19

The Directory 20

LOADS 20

Printing The Directory • • • • • 21

VALIDATE t 21

COPY 22

RENAME 23

SCRATCH 23

Chapter 4

BASIC Commands For Data Handling 25

BASIC Commands Ascociated

with Floppy Disk Drives 25

SAVE (Writing a Program to a Diskette) 26

VERIFY 27

LOAD (Reading a Program from a Diskette) 27

OPEN 28

CLOSE 29

Closing The Command Channel 30

Closing The Data Channel 30

PRINT # 31

INPUT # 32

GET # 33

Moving a Tape Program to Disk 34

Chapter 5

Advanced Disk Programming 35

Commodore Disk Operating System (DOS) 35

Special OPEN and CLOSE Statements for Direct Access .. 3$

Disk Utility Command Set 36

BLOCK-READ 38

BLOCK-WRITE 39

BLOCK-EXECUTE 39

BUFFER-POINTER 39

BLOCK-ALLOCATE 40

BLOCK FREE 40

MEMORY 41

MEMORY-WRITE 41

MEMORY-READ 41

MEMORY-EXECUTE 42

USER 42

Structure of Diskette 43

Chapter 6

Sequential File 49

To Create a Sequential File and Accessing 49

Example of a Sequential File Program 5q

Chapter 7

Random File 53

Data Flow in Random File .. 53

Example of Using Record Number 55

Example of a Random File Program 57

Chapter 8

Error Messages — Pattern Matching File Names 61

Requesting Error Messages .. 61

Summary of DOS Error Messages 61

Description of DOS Error Messages 62

Pattern Matching 66

Appendix 69

List of Illustrations

Figure Title Page

1 Front Panel 5

2 Back Panel 5

3 Floppy Disk Hookup jq

4 Position For Diskette Insertion • • • 11

5 1540 Format. Expanded View of A Single Sector 47

6 Data Flow between Computer,

Buffer and Disk Drive 53

List of Tables

Table Title Page

1 Suggested Reading List 2

2 Specifications: Model 1540

Single Drive Floppy Disk 6

3 Standard Jump Table 43

4 Block Distribution by Table 43

5 1540 BAM Format 44

6 1540 Directory Header 44

7 Directory Format 45

8 Sequential Format 46

9 Program File Format 46

10 Allocation of Record Number 57

Chapter 1

INTRODUCTION

GENERAL INFORMATION

With the purchase of your Commodore VIC-1540 Single Drive Floppy Disk you

have greatly enhanced the computing power of your Commodore VIC system.

To get the most out of your system you should study your computer's user

guide, and if necessary the BASIC manuals listed in Table 1. You will benefit

most if you first read through this entire manual, taking note of those features

that relate to your particular floppy as well as those which are common to all

Commodore Floppys.

The information presented in this manual is extensive and may, in some cases,

present information that is currently beyond your particular level of expertise.

However, by carefully and thoughtfully studying its contents you will gain the

confidence necessary to progressively upgrade your programming skills and

expertise.

This manual presents discussions, descriptions, practices and procedures relat

ing to the use and operation of the VIC-1540 Single Floppy Disk Drive.

DESCRIPTION

The VIC-1540 described in this manual is an intelligent single drive diskette

storage device. Its individual primary components consists of read/write

controls, drive motor electronics, drive mechanism, read/write head, and track

positioning mechanism. The disk drive discussed in this manual uses Serial

interface same as The VIC-1515 graphic printer. Because the device is an

"intelligent" peripheral, its operation requires no space in the computer's

memory. This means you have just as much computer memory available to you

as when you do not have the disk attached.

Table 1. Suggested Reading List

Pet/CBM Personal Computer Guide.

C.S. Donahue and Jit. Enger, Osborne/McGraw-Hill, 630 Brancroft

Way, Berkeley, CA 94710

Hands-On Basic with a Pet.

H.D. Peckham, McGraw-Hill 1979

Entering BASIC.

J. Sack and J. Meadows, Science Research Associates, 1973

BASIC: A Computer Programming Language.

C. ?Qgeh,Holden-Day, Inc., 1973

BASIC Programming.

J. Kemeny and T. Kurtz, Peoples Computer Co., 1010 Doyle (P.O. Box

3100), Menlo Park, CA 94025,1967

BASIC FOR HOME COMPUTERS.

Albrecht, Finkle and Brown, People Computer Co., 1010 Doyle (P.O.

Box 3100), Menlo Park, CA 94025,1973

A Guided Tour of Computer Programming in BASIC.

T. Dwyer, Houghton Mifflin Co., 1973

Programing Time Shared Computer in BASIC.

Eugene H. Barnet, Wiley-Interscience, L/C 72-175789

Programing Time Shared Computer in BASIC.

Eugene H. Barnett, Wiley-Interscience, L/C 72-175789

Programming Language #2.

Digital Equipment Corp., Maynard, MA 01754

101 BASIC Computer Games.

Software Distribution Center, Digital Equipment Corp., Maynard, MA

01754

What do To After You Hit Return.

Peoples Computer Co., 1010 Doyle (P.O.Box 3100), Menlo Park, CA

94025

Basic BASIC.

James S. Coan, Hayden Book Co., Rochelle Park, NJ

WORKBOOKS 1-5.

T.I.S., P.OJBox 921, Los Alamos, NM 87544

Programming the 6502.

R. Zaks, Sybex, 1978

24 Tested, Ready-to-Run Game Programs in Basic.

K. Tracton, Tab Books, 1978

Some Basic Programs.

M. Borchers and R. Poole, Osborne & Assoc. Inc., 1978

Basic Programming for Business.

I. H. Forkner, Prentice-Hall 1977

The Channel Data Book.

B. Lewis, 5960 Mandarin Ave., Goleta, CA 93017,1978

PET and the IEEE 488 Bus (GPIP).

Osborne/McGraw-HW, 630 Bancroft Way, Berkeley, CA 94710

Personal Computing on the VIC 20

Commodore International, Ltd Norristown,

PA 19403, 1981

VIC-20 Programmer's Reference Guide

Commodore Business Machines Inc.

3330 Scott Blvc. Santa Clara, CA95050,1981

Front Panel

The front panel of the disk drive consists of an identification panel across the

top; slot in which to insert a diskette; and a door to close after inserting the

diskette. When the door is closed, the diskette is clamped onto the diskette

spindle hub. Also on the front panel are two LED indicator lights. The red

LED on the slot side lights when drive is active and flashes whenever a disk

error occurs.

The green LED on the lower left side is a power indicator which lights when

power is ON.

Back Panel

The Back of the disk drive contains two serial interface connectors. Near the

panel's lower edge is the power connector. There is also a "slow blow" fuse.

Interior Configuration

The interior of your floppy contains a disk drive. All the logic for the disk

drive is contained within the unit. The mechanical devices are, for the most

part, located beneath the disk spindle.

The Diskette

The diskette (also known as a minifloppy, floppy diskette, minidiskette, etc.) is

similar to the standard flexible disk. There are several reputable manufacturers

of the 5&-inch diskettes. You should make sure that you buy diskettes for

SOFT SECTORED FORMAT. Your Commodore dealer can supply your needs.

Specifications

Table 2 presents the specifications for the VIC-1540.

iVIC-1540!

\

\ DRIVE INDICATER(RED LED)
LIGHT : ACTIVE

FLASH: ERROR
POWER INDICATER

(GREEN LED)

LIGHT : POWER ON

Figl. Front Panel

POWER SWITCH SERIAL BUS

FUSE/HOLDER

Fig 2. Back Panel

Table 2. Specifications VIC-1540 Single Drive Floppy Disk

STORAGE

Total capacity

Sequential

Relative *

Directory entries

Sectors per track

Bytes per sector

Tracks

Blocks

IC's:

6502

6522(2)

Buffer

2114(4)

PHYSICAL:

Dimensions

Height

Width

Depth

Electrical:

Power requirements

Voltage

Frequency

Power

MEDIA:

Diskettes

174848 bytes per diskette

168656 bytes per diskette

167132 bytes per diskette

65535 records per file

144 per diskette

17 to 21

256

35

683 (664 blocks free)

microprocessor

I/O, interval timers

2KRAM

97 mm

200 mm

374 mm

100,120,220, or 240 VAC

50 or 60 Herts

25 Watts

Standard mini 5%", single sided,

single density

* Although VIC-1540 is designed with a capability to handle relative files, it

can not be used with the current version of VIC-1001 personal computer.

CAREOFTHEVIC-1540

The disk drive should be placed on a flat surface free of vibration. It is important

that dust particles be kept at a minimum since a particle buildup will interfere

with optimum operation. If you should experience a hardware failure contact

your Commodore dealer. Any attempt to correct the problem yourself could

result in voiding the warranty.

CARE OF THE DISKETTES

Handle diskettes with care. Follow these instructions to maintain the quality of

the diskette and to protect the integrity of the data:

1. Return the diskette to its storage envelop whenever it is removed from the

drive.

2. Keep the diskettes away from magnetic fields. Exposure to a magnetic

field can distort the data.

3. Never leave a diskette on top of your computer or disk drive.

4. Do not write on the plastic jacket with a lead pencil or ball-point pen. Use a

felt tip pen or fill out the label before attaching it to the jacket.

5. Do not expose diskettes to heat or sunlight.

6. Do not touch or attempt to clean the diskette surface. Abrasions will cause

loss of stored data.

7. Before applying power to the VIC-1540 open the drive door and remove the

diskette.

UNPACKING THE DISK DRIVE

Before unpacking the disk drive, inspect the shipping carton for signs of ex

ternal damage. If the carton is damaged, be especially careful when inspecting

its contents. Carefully remove all packing material and the contents of the

carton. DO NOT discard any packing material should contain:

1. VIC-1540 Single Floppy Disk Drive

2. UserMannual, Number 1540018-02

3. TEST/DEMO diskette:

4. WARRANTY CARD

If any items are missing, please contact your Commodore dealer immediately.

NOTES

Chapter 2

PREPARING TO USE

YOUR DISK DRIVE

Before starting to use your disk drive, make sure it is in good working condition.

This includes properly connecting it to your computer, giving it a powr-on and

initial checkout test, and finally the performance test using the appropriate

TEST/DEMO diskette.

CONNECTING THE DISK DRIVE TO THE COMPUTER

The connector cable is required to interface the floppy to the computer. This

cable is be supplied with your disk drive.

NOTE: The disk drive should be the first peripheral attached to the computer if

other devices are to be "daisy-chained".

Follow these steps to connect the disk drive to your computer:

STEP 1: Turn power OFF to the computer and the expansion module,

STEP 2: Place the disk drive in a convenient location as close as possible to the

computer. DO NOT connect the disk drive to a power outlet at this

time.

STEP 3: Connect the serial cable between the serial interface connector on the

computer and the connector on the disk drive.

STEP 4: Connect the disk drive power cable to an AC outlet. DO NOT turn on

power at this time.

VIC-20

Personal Computer

VIC-1540
Single Drive

Floppy Disk

VIC-1515
Graphic Printer

Fig 3. Floppy Disk Hookup

PERFORMING THE POWER-ON TEST

You are now ready to proceed with the power-on part of the checkout:

STEP 1: Open the disk drive door. Ensure that no diskette is present in the

drive.

STEP 2: Turn Power ON to the expansion module (have the optional cartridge

inserted before turning power on.)

STEP 3: Turn power ON to the COMPUTER and verify that is working

properly.

STEP 4: Apply power to the disk drive. All two indicator lights (LED) on the

front panel will light. After about 1 second the red drive indicator

will go out and the green power indicator will remain on. If the red

drive indicator keeps on flashing, turn the power OFF. Wait one

minute and try again. If the above condition continues, contact

your Commodore dealer.

10

Note: If the problem persists, try disconnecting the other devices attached to the

sesial interface. This should assure that a problem related to another device does

not affect the disk drive.

WRITE

PROTECT

NOTCH

WHEN COVERED, DISKETTE

CONTENTS CANNOT

BE AL TERED

Fig 4. Position for Diskette Insertion

INSERTING THE DISKETTE

CAUTION: NEVER APPLY POWER TO THE DISK DRIVE IF DISKETTE IS

PRESENT (LOCKED AND SEATED) IN THE DRIVE.

STEP 1: Ensure that the power to the disk drive is OFF and DO NOT apply

power until you complete this step. Open the disk drive door and

make sure that no diskette is present in the drive.

STEP 2:

STEP 3:

STEP 4:

STEP 5:

If the preceeding conditions have been met, you may apply power to

the disk drive.

Insert the diskette into the slot and with the write protect tab

oriented to the left.

Once the diskette is in the slot, gently push on it until it is fully

seated.

Press DOWN firmly on the spring-loaded door of the drive until you

hear a distinct "click". The diskette is now locked and seated in the

drive, ready for processing by the computer.

STEP 6: To remove the diskette, insert your index finger under the lip of the

spring-loaded door and gently PULL. This will release the door and

permit access to the diskette. The diskette is now free to be removed

from the drive

11

DISK DRIVE PERFORMANCE TEST

When you have successfully completed the Power-On test, proceed with the

Performance Test. Don't worry if you don't fully understand exactly what is

happening in this test. At this point, enter the commands just to get a feel for

what you can do with your disk. If UNEXPECTED results are obtained during

any step of the test, stop and start over again. The most likely cause of a

problem is an improperly entered command. This is to be expected until you

become familiar with your disk unit.

All commands are entered via the keyboard and must be followed by a carriage

return: press the RETURN key on your keyboard.

NOTE: Commands must be entered exactly as shown. DO NOT insert any

spaces unless shown in the example. If the error indicator lights, you may be

able to continue the example anyway. Re-enter your last command. If the light

goes out, your correction was successful and you may continue.

STEP1: Insert the DEMO diskette into the drive as previously instructed.

STEP 2: Type: OPEN 1, 8,15, "10" and press return. This pocedure initializes

the diskette and makes it ready for use.

STEP 3: Type LOAD "PERFORMANCE TEST", 8

The screen will display:

SEARCHING FOR PERFORMA

NCE TEST

LOADING

READY.

STEP 4: Type: RUN and press RETURN, the following will display:

FERFQRMflNCE TEST

INSERT SCRflTCH

DISKETTE IN DRIVE

12

B:SK NEW CCMMRNB

WRIT flBOUT 30 SECONDS

Do not use diskettes containing any valuable information since the

Performance Test Program will re-format it and any data will be lost.

The test program will label this diskette "Test Disk". This diskette is

ready for further use when the test program is completed and the

performance test has been satisfied.

The computer will first format the diskette in the drive. At the end

of the operation the screen displays:

9 OK 0 9

DRIVE PflSS
MECflNICRL TEST

The computer conducts the remainder of the Performance Test and

displays:

OPEN URITE FILE
0 OK 0 0

WRITING DRTfl
0 OK 6 0

CLOSE WRITE DflTfl
9 OK 0 0

0^ RERD g 0K 0 e

RERDING DflTR 0 ok ^ @

SCRRTCH FILE

CRflTCHED 10

13

WRITE TRRCK 35
8 OK 0 9

WRITE T'?flCK 1
0 OK 0 9

REflD TRRCK 35
8 OK 0 0

REflD TRflCK 1
0 OK 0 0

HBS PfiSSEB
PERFORMfiRCE TEST!

PULL DISKETTE FROM

DRIVE BEFORE TURNING

POWER OFF.

STEPS: Remove the diskettes and return them to their protective jackets.

The floppy has passed the Performance Test.

STEP 6: If any problems have been encountered during this phase of the test,

return to Step 1 and repeat the entire procedure. If problems persist

and you do not reach a satisfactory conclusion to the Performance

Test, contact your Commodore dealer.

14

Chapter 3

LEARNING HOW TO USE

YOUR FLOPPY DISK DRIVE

Your Floppy Disk Drive adds and enhances your computing power with added

storage and file handling capability and is controlled directly with:

• BASIC commands entered via the keyboard,

• BASIC statements within programs, and

• special disk commands.

In this chapter you will learn how to apply those commands and statements.

This chapter is organized in such a way that the functions and format of disk

commands are described in a manner which permits the user to perform disk-

related tasks.

Before using your floppy disk make sure you know how to:

1. operate your Commandore VIC Computer,

2. do elementary programming in BASIC, and

3. open and close files.

This chapter will first acquaint the user with those fundamental disk commands

that perform disk maintenance and file manipulation and will then progressively

advance toward an understanding of those BASIC commands used for data

handling. Approached in this manner, the user will then have developed the

necessary confidence and programming skills to proceed to advanced disk

programming techniques. Practice the disk commands, read the examples, and

follow the step-by-step illustrations of their usage. The understanding of the

more advanced disk programming techniques will depend to a large degree upon

how well the fundamentals have been mastered.

To facilitate your understanding and mastery of Commodore BASIC, two

computer terms are stressed in this Chapter: Block Availability Map (BAM) and

Disk Operating System (DOS). Although these are conventional terms, they will

be riefly discussed as they relate to Commodore Floppy Disk Usage.

15

THE BLOCK AVAILABILITY MAP (BAM)

The BAM is a disk memory representation of available and allocated space on

a disk. When the system stores information on a disk, the BAM will be auto

matically referenced by the DOS to determine what space is available and how

many blocks can be allocated. Iff sufficient space is available to store a given file,

it will be stored on the disk and the BAM updated to account for the space

allocated. However, if the DOS detects that a file will occupy more space than

available, an error message will be generated.

Formatting a disk creates the BAM which is then loaded into DOS memory upon

initialization. The BAM is stored on diskette in varying locations depending

upon the drive used:

BAM Location and Memory Required

Track 18, Sector 0 128 bytes

As changes occur to the BAM in DOS memory, the BAM on disk will be updated

to reflect these changes. Updates to the BAM occur when a program is saved or

a CLOSE is performed on a new SEQuential data file.

THE DISK OPERATING SYSTEM (DOS)

The DOS is responsible for managing information exchange between the disk

controller and the computer.

The DOS performs many functions which are transparent to the user but which

are vital to the operation of the system. For example, the DOS monitors the

input/output (I/O) of the disk so that channels are properly assigned and that

no lengthy waits for an open channel occur. In addition to monitoring of disk

I/O, the DOS also uses the channel structure to search the directory and to

delete and copy files.

DISK MAINTENANCE COMMANDS

The following disk commands permit the user to perform file manipulation and

disk maintenance.

16

Diskette Level <

File Level <

BASIC

COMMAND

NEW

INITIALIZE

LOAD "$"

VALIDATE

COPY

RENAME

SCRATCH

FUNCTION

Formats a disk

Prepare diskette for use

Read disk directory

Reconstruct Block Availability

Map (BAM)

Copies files (optional con

catenation)

Renames a file

Erases a file

NOTE: Diskette commands can be transmitted to the disk by PRINT# com

mands. The examples in this chapter assume that a file has been opened with

the OPEN 15, 8, 15 command. If the error message ? FILE OPEN ERROR ap

pears upon typing the OPEN command, it means that the logical file was

opened but had not been properly closed. When this error appears such logical

file must be properly closed by typing CLOSE 15.

NEW
Each time a diskette is placed in one of the drives, both the diskette and the

drive must be prepared for use. A previously unused diskette must first be

formatted in the soft-sector format recognized by your particular disk drive.

This may be accomplished by use of the NEW disk command.

To use the NEW command, to format the diskette and initialize the disk drive,

enter the command:

PRINT#15, "commandstring"

where 15 is the logical file number of a file which has been opened to the disk

command channel (primary address 8, secondary address 15).

The format ofNEW is:

17

"NEWdr:fn,xx"

or

• "Ndrfnjcx"

Where d=the drive number 0 (0 may be omitted)

fn=the file name you wish to assign to the disk. It may be up to

16 characters long.

xx=a unique two-character, alphanumeric identifier supplied by

the user.

The NEW command (with ID specified) is used on an unformatted diskette or

one which the user wishes to reformat. NEW creates the block headers, writing

the sync characters, disk ID, and track and sector numbers at the beginning of

each block. The directory header and the BAM are created and the diskette is

made ready to accept data. The command may be used on an already formatted

diskette (with no ID specified) to clear the disk directory and reinitialize the

BAM, deallocating all blocks on the diskette. The time involved in reformatting

without an ID is much less than formatting with an ID.

Example 1: OPEN 15,8,15

PRINT#15, "NO:TESTDISK, 88"

These commands will open the command and error channel to the disk drive

and format a disk in the drive, giving it a disk identifer of 88.

The following simplified form may be used for this purpose:

Example 2: OPEN 15, 8,15, "NO:TESTDISK, 88"

Here's an example of reformatting a diskette using the NEW command and no

disk ID.

Example 3: OPEN 1,8,15, "NO:NEWNAME"

The diskette will be assigned the name "NEWNAME" and the directory and

BAM will be cleared. This procedure will work only if the diskette has been

formatted.

The NEW disk command SHOULD NOT be confused with the NEW command

18

in BASIC. The latter will delete the program currently in memory and clear all

variables before entering a new program.

INITIALIZATION

Whenever a diskette is inserted into the drive, for any reason, it MUST be

initialized to ensure that the information on the BAM (in the disk memory) is

the proper information for the diskette currently in the drive. Failure to proper

ly initialize a diskette each time it is inserted or reinserted into the drive will

result in a DISK ID MISMATCH ERROR and/or loss of data.

The VIC-1540 utilizes a DOS 2.6 software routine each time the disk is ad-

dresed to determine if initialization is required. If a different ID is detected, the

VIC-1540 will automatically initialize the new disk. Operator initialization is

not required if unique IDs are assigned each diskette.

The format of INITIALIZE command is:

PRINT#15, "INITIALIZEdr"

Where: dr=drive number 0 (0 may be ommitted).

Note: You may abbreviate INITIALIZE to I.

Example 1: OPEN 15, 8,15

PRINT#15,"I0"

Example 2: OPEN 15, 8,15,"I"

(You may omit the closing double quotation)

NOTE: FILE OPEN ERROR could occur if a previously opened file was ad

dressed with a second OPEN command. When this error appears such logical

file must be properly closed by typing CLOSE lfn.

The diskette in the drive is now initialized. Do not confuse formatting and

initialization. Remember that formatting is usually a one-time operation and

that re-formatting a disk will destroy previously stored data.

Since the VIC-1540 initialization function depends upon a change of ID to

detect a change of diskette, inserting a diskette with an ID identical to one

previously used may lead to a loss of data. This happens because the computer

will reference the BAM left over from the previous diskette. Since the IDs are

19

identical the DOS assumes there have been no change of diskette. A SAVE

command may now cause new data to be written over good data already

present on the disk because the DOS will use the old map of available storage

area, instead of the current one. The results are unpredicable, and the diskette

may become totally useless. For this reason, unique disk IDs must be used when

ever possible for each diskette.

THE DIRECTORY

Confirm that the newly formatted disk has the correct ID and disk name by

using one of the following methods to list the directory. The directory display

includes the following information:

Disk name

Disk ID

DOS version number

File name

File type

Number of blocks used

Number of available (free) blocks

To list the directory, at first type LOAD "$0", 8. (LOAD "$", 8)

LOADS

This procedure will destroy any program currently in computer memory when

the directory is LOADed.

STEP 1: Place a formatted disk in the drive.

STEP 2: Type: LOAD'T', 8 then press RETURN.

The screen displays:

LOAD"$", 8
SEARCHING FOR $
LOADING
READY'

STEP 3: Type: LIST

The directory for the drive will be displayed.

20

Printing The Directory

Quite often, it becomes convenient to affix a diskette directory listing directly

on the protective jacket. This permits the user to scan the printed directory

listing without having to insert the diskette into the drive to obtain this in

formation. Should you desire to print the directory, place the diskette in the

drive and enter the following commands:

LOAD "$", 8 Loads the directory.

OPEN 4, 4:CMD4 Opens device 4 (printer) and changes

the primary output device to 4.

LIST Prints the directory.

PRINT#4:CLOSE4 Returns output to the screen and closes the file.

VALIDATE

The VALIDATE command traces through each block of data contained in

all files on the diskette. If this trace is successful, a new BAM is generated

in the disk memory and written to the diskette. Any blocks which have been

allocated but are not associated with a file name, as in the case of direct access

files will be freed for use.

In addition to reconstructing the BAM, VALIDATE deletes files from the

directory that were never properly closed. If a READ error is encountered

during a VALIDATE, the operation aborts and leaves the diskette in its pre

vious state. If a VALIDATE error does occue, you must re-initialize before

proceeding.

The format of VALIDATE is:

PRINT#15, "VALIDATEdr"

Where: dr=drive number 0 (0 may be ommited)

NOTE: You may abbreviate VALIDATE to V.

Example: OPEN 1,8,15

PRINT#l,"V0"

21

or

OPEN 1, 8,15 "V"

COPY

The COPY command allows you to create multiple copies (under different

names) of files on the same diskette. This command can also be used to con

catenate data files. Up to four source files can be concatenated into the destina

tion file. The COPY command may be abbreviated with a C.

COPY disk command can be formatted two ways depending upon application:

To copy a single file: PRINT#1 fn, "COPYddr:dfn=sfn"

or

PRINT#lfn, "Cddr:dfn=sdr:sfn"

To concatenate and copy: PRINT#lfn, "COPYddr:dfn=sfn, sdnsfn ...

or

PRINT#lfn, "Cddr: dfn=sdr;sfn, sdnsfn

Where: ddr=is the destination drive 0 (0 may be ommitted)

dfn=is the destination file name. This name must be a new name.

sdr=is the source drive 0 (0 may be omitted)

sfn=is the source file name.

Example 1: PRINT#1, "CO:ACCT1=0:ACCT"

A file named ACCT, is copied under a new name ACCT1

Example 2: PRINT#1,"CO:JDATA=O: ACCT1, 0: ADATA, O:BDATA"

Files are concatenated into a file. Note that file names should be short, as

the maximum length of a disk command string is 40 characters.

NOTE: The COPY command is normally used in the Dual Drive Floppy disk to

copy files from one diskette to another. But this function can not be used in

the VIC-1540 which is a Single Drive Floppy Disk.

22

RENAME

The RENAME command renames an existing file. A file can not already exist

with the file name specified in the command or the FILE EXISTS error message

will be generated.

The format of RENAME is:

PRINT#lfn, "RENAMEdr:nfn=ofn"

Where: dr=the drive number 0 (0 may be ommitted)

nfn=the new name of the file.

ofn=the old name of the file.

lfn=a logical file number. You assign this number arbitrarily and it

may be any whole number between 1 and 255.

NOTE: The letter R is a legal abbreviation for RENAME.

NOTE: Close any open files before using the RENAME command since the disk

will not execute this command on any active files.

SCRATCH

The SCRATCH command erases unwanted files from the specified diskette and

its directory. You can erase on file, several files, or all the files on a diskette.

The format of SCRATCH IS:

PRINT* lfn, "sdr:fn, dr:fn . . . :dr:fn"

Where: dr is the drive number 0. (0 may be omitted)

fn is the name of the file to be erased.

To erase one file enter, the entire name of the file:

Example: PRINT#1, "SO:ACCT"

To erase several files with unrelated names, enter the entire name of each file to

be deleted:

23

Example: PRINT#1, "SO:ACCT, CUSTOMER, INV"

To erase several files at one time when names have something in common,

refer to the rules in clapter 8 concerning, pattern matching.

You may erase all files on a diskette using pattern matching as in the following

example:

Example: PRINT#1, "SO:*"

NOTE

24

Chapter 4

BASIC COMMANDS

FOR DATA HANDLING

BASIC COMMANDS ASSOCIATED WITH FLOPPY DISK DRIVES

The BASIC commands described in this chapter, allow the user to communicate

with and transfer data to and from the disk drive.

These commands are available for ALL versions of Commodore BASIC:

OPENlfn, 8, sa, "dr:fn, ft, mode" VERIFY "dr.fn", 8

CLOSElfn PRINT#lfn

LOAD "dr:fn" 8 GET#lfn

SAVE "dr:fn", 8 INPUT#lfn

Where: lfn=logical file number (any number between 1 and 255)

fh=file name supplied by user

dr=disk drive number 0 : (0 may be omitted)

8=device number (8 for disk, 2 for second cassette, 4 for printer)

sa=secondary address

ft=the file type. It may be SEQ (for sequential), USR (for user),

or PRG (for program)

mode=either READ(R) or WRITE(W).

All upper-case characters shown in format are essential for the proper execution

of a command and must be typed by use. These commands are entered via the

keyboard using unshifted characters only.

NOTE: The device number of the disk drive is set at 8 at the factory prior to

shipment. If you wish to change the device number to use multiple number of

VIC-1540 etc. Please consult your Commodore dealer (the device number may

be any number from 8 to 11)

25

SAVE (Writing a Program to a Diskette)

If a program is in computer memory, it can be moved to a diskette for storage.

This is accomplished with the SAVE commands.

Any data transferred with the SAVE command are automaticaly designated by

the DOS as a program (PRG) file. Command transfers PRG files from the

computer's memory to the specified diskette. You must specify the drive

number, the program name, and the device number. The device number will

default to device 1 which is the tape unit if it is not specified.

The format of SAVE is:

SAVE"dr:fn", dn

Where: dr=is the drive number 0 (0: may be omitted)

fn=is any file name of 16 characters or less you wish to assign to

the file to be transferred to the diskette. Blanks are counted

as characters.

dn=is the device number and it must be 8.

This following example illustrates creating a one line program, SAVEing it on

the diskette in the drive under the name TESTPROG.

Example: 10?"THIS IS A TEST"

SAVE"0:TESTROG", 8

Another format of SAVE is

SAVE"@dr:fn",dn

Where @=means to replace the contents of an existing diskette file.

fn=is the name of the diskette file whose contents is to be replaced.

Example: SAVE "@0: TESPROG", 8

In this case a program named TESTPROG will be replaced, but if the

specified program does not exist, then normal SAVE procedures are

executed.

NOTE: In case @ is used in the SAVE command, avoid its repeated use. If @

must be repeatedly used, execute the VALIDATE command before the SAVE

command.

26

VERIFY

The VERIFY command performs a byte-by-byte comparison of the file just

written to the diskette against the file in the computer's memory.

The format of the VERIFY command is:

VERIFY "dr:fn",dn

Where: dr=the drive number 0 (0: may be omitted)

fn=the same file name as used in the immediately proceding SAVE

command.

dn=the device number, in this case 8.

Another format of VERIFY is:

VERIFY "*",dn

Where: * causes the program just saved to be verified.

You should give the VERIFY command everytime you use the SAVE command

to place a file on a diskette. If you do this, you will always know whether or not

the file was copied correctly.

LOAD (Reading a Program from a Diskette)

A program stored on diskette may be loaded into memory using the LOAD

command.

The LOAD command transfers PRG files from the specified diskette to the

computer's memory. You must specify the drive number, the program name,

and the device number. The device number will default to unit 1 which is the

cassette unit. The format of LOAD is:

LOAD"dr:fn", dn

Where: dr=is the drive number 0. (0: may be omitted)

fn=is the file name previously specified in the SAVE command

and/or stored in the disk directory.

27

dn=is the device number and it must be 8.

The following example illustrates how a program is loaded from the diskette

into the computer memory, then executed. To do this example, first type NEW

and depress RETURN key to clear your computer's memory so that you can see

that it really works. Don't confuse the NEW command in BASIC with the NEW

disk command used to format your disk.

Example 1: LOAD"0:TESTPROG", 8

READY.

RUN

THIS IS A TEST

A successful LOAD closes all open files. Therefore you must give a new OPEN

command in order to continue communicating with the disk drive command and

error channel.

OPEN

This command sets up a correspondence between a logical file number and a

file which exists on disk. It also reserves the buffer space within the disk unit

for operations on the file being opened.

The format of the complete OPEN command is:

OPENlfn, dn, sa, "dr:fn, ft, mode"

Where: 1 fn=the logical file number

dn=the device number, in this case 8.

sa=the secondary address. It may be any number from 2 to 14 and

may be used either for input or output as specified in mode.

See note below

dr=the drive number 0. (0: may be omitted)

fn=the name of the file.

ft=the file type. It may be SEQ (for sequential), USR (for user), or

PRG (for program).

mode describes how the channel is to be used. It may be either

READ (R) or WRITE (W).

28

NOTE: Secondary address 15 is the command and error channel and has special

uses which are discussed in subsequent chapters. Secondary addressed 0 and 1

are reserved by the operating systems (BASIC and DOS) for LOADing and

SAVEing programs.

Examples: OPEN 2, 8, 2, "O:FILE1, SEQ, WRITE"

OPEN 3,8,9, "O:TESTDATA, PRG, WRITE"

OPEN 8, 8, 8, ,,0:NUM,USR, READ"

The contents of an existing file may be replaced by preceding the drive number

with an at sign (@) in the OPEN command.

OPEN 3, 8, 5, "@0:JDATA, USR, WRITE"

If the spefified file does not exist, then normal OPENing procedures are exe

cuted.

You can also assign some of the OPEN parameters to a variable name as il

lustrated in these examples:

Example 1: FL$="0:FILEA, SEQ, READ"

OPEN 1,8,14, FL$

Example 2: FL$="0:FILEA"

OPEN 1, 8,14, FL$+", SEQ, WRITE"

The preceding methods are convenient when it is necessary to open several

channels to the same file name.

CLOSE

The CLOSE command closes a file opened by the OPEN command. Its format

is:

CLOSE lfn

Where: 1 fn=the logical file number of a file opened by the OPEN command.

Always close a file after working with it. You are not allowed to have more than

ten open files in the computer and five in the disk drive, so it is prudent to make

a habit of closing files as soon as possible. This way you will always have the

29

maximum number of files available for use.

CLOSING THE COMMAND CHANNEL

Closing the command channel closes all channels associated with the disk drive.

No other part of the logical file environment is affected. That is, the computer

does not recognize that the files have been closed.

The following example illustrates a situation in which several channels are closed

down by a single CLOSE command.

Example:

The command channel is opened.

OPEN3, 8, 2, "0:FILE1,SEQ, WRITE" Data Channels are opened for

OPEN4, 8, 5, "O:FILE2, SEQ,WRITE" writing.

PRINT#3, "IMPORTANT DATA"

PRINT#4, "MORE DATA"

OPEN3, 4 A channel is opened to the printer

by mistake.

?FILE OPEN ERROR? An error message is displayed on

READY. the screen.

a

Since there was an error, all logical files in the computer are closed, but the

channels in the disk drive are still open. To close the disk channels, type:

OPEN1,8,15

CLOSE1

Now all data channels in the disk drive are properly closed.

CLOSING THE DATA CHANNEL

The CLOSE command closes a file and the data or command channel associated

with it. Whenever you close a file opened with a write channel, the closing of

that file writes the final block of data to the disk and updates the disk directory.

When you close a file opened with a read channel, that channel is simply closed

down.

NOTE: When a drive is initialized with INITIALIZE, NEW, or VALIDATE, all

30

channels associated with that drive are deleted. These commands should not be

executed when there are any files open since the files will be disrupted.

PRINT*

The PRINT#command transmits a disk command string to the drive.

The format of PRINT# is:

PRINT#lfn, "commandstring"

Where: lfn =a file previously opened using secondary address 15

"commandstring"=disk handling or disk file handling commands. These

disk commands are discussed in detail in Chapter 3 of

this manual.

PRINT# may also be used to transmit data to a previously-opened sequential or

user file. In CBM BASIC V2 the logical file number 1 to 127 send carriage return

alone and the logical file number 128 to 255 send CRLF. A semicolon (;)must

be used as a terminator for each PRINT# statement when using the logical file

number 128 to 255 to avoid sending extraneous line feeds to the diskette.

It is important to be aware of this face because the carriage return alone is seen

as a terminatory by the DOS. The line feed is then stored in the file as the first

character in the next record. To avoid this, use the following format:

Example: PRINT#128, "JONESABC"; CHR$(13);

The CHR$(13) is the carriage return necessary for the proper terminating of the

record on the disk. When that record is input, the result will be JONESABC

which is the desired result.

The following format may that be used:

PRINT#lfn,A$

It will produce the desired value of A$ for the record, and will not interfere with

the next record.

Several variables may be written to the disk at the same time.

31

The format:

PRINT#lfn,A$,B$,C$

will result in a single variable (A$+B$+C$) being retrieved by the input

command.

The format:

PRINT#lfn,ACHR(13)BCHR(13)C$

will result in the variables A$, B$, and C$ being separated by carriage returns,

and they may then be input as separate variables.

INPUT*

The INPUT# command is used to transfer information from a peripheral device

such as the disk drive into computer memory. INPUT#is valied only when used

in a program and only when referencing a logical file that has been OPENed for

input.

The format for INPUT*is:

INPUT#1 fn, A$ or INPUT#1 fn, A

Where: 1 fn=file previously opened using secondary address 15

A$=astring variable which will contain the data transferred.

A=a numeric variable which will contain the data transferred.

INPUT may also be used to transfer several strings of data at one time:

INPUT#lfn,A$,B$,C$

Where: A$, B$, C$ will contain the data transferred from the disk.

In this format, the data strings must have been separated by carriage returns

(CHR$(13)) at the time they were written to the disk in order to be retrived

separately. No single string may contain more than 88 characters if it is to be

INPUT.

32

Example 1: .

20 INPUT#2, A

Input the next data item which must be in numeric form and

assign the value to aviable A.

Example 2:

10INPUT#8,A$

Input the next data item as a string and assign it to variable A$.

Example 3:

60 INPUT#7, B, C$

Input the next two data items and assign the first to numeric

variable B and the second to string variable C$.

For strings longer than 88 characters, the GET# commmand must be used.

GET#

The GET# command is used to transfer individual bytes of information from an

serial device such as the disk drive into computer memory. GET# is valid only

when used in a program and only when referencing a file that has been OPENed.

The format of GET#is:

GET#lfn,A$

Where: lfn=a file previously opened using secondary address 15

A$=a string variable which will contain the data transferred.

GET# may also be used to transfer several bytes of information, which is useful

for retrieving strings which has been written to the disk in a format which is

unacceptable for the INPUT command (strings longer than 88 characters).

33

Forexampel: 10AA$=""

20 FOR 1=1 TO 254

30GET#lfn,A$

40 AA$=AA$+A$

50 NEXT

is a program segment which would result in a string of length 254 being trans

ferred from the disk (logical file number lfn) to the computer memory and

stored in the variable AA$.

MOVING A TAPE PROGRAM TO DISK

This example illustrates a session with the computer, a tape cassette and a disk

drive. The purpose is to copy a cassette program to a diskette. The program is

than read from the diskette to the computer's memory and printed. It is

assumed that the BASIC program was previously stored on the cassette.

Example:

LOAD"DEMO"

PRESS PLAY ON TAPE

OK

SEARCHING FOR DEMO

FOUND DEMO

LOADING

READY.

SAVE"DEMO",8

VERIFY "DEMO", 8
READY.

NEW

LOAD "DEMO", 8

SEARCHING FOR DEMO

LOADING

READY.

RUN

Load the file from the cassette tape to

the computer's memory.

Create a program file containing the

program on diskette.

Erase everything from memory. (The

NEW command in BASIC will clear

memory; the NEW disk command will

format a disk.)

Load the program back into the com-

putegr's memory

Run the program to verify it has been

loaded.

34

Chapter 5

ADVANCED

DISK PROGRAMMING

This chapter provides detailed information about DOS structure and disk utility

commands. The utility commands provide the programmer with low-level func

tions that may be used for special applications such as special disk handling

routines and random access techniques.

COMMODORE DISK OPERATING SYSTEM (DOS)

The DOS file interface controller is responsible for managing all information be

tween the disk controller and the serial interface. Most disk I/O is performed on

a pipelined basis, resulting in a faster response to a requested operation.

The file system is organized by channels which are opened with the BASIC

OPEN statement. When executed with the OPEN statement, the DOS assigns a

workspace to each channel and allocates either one or two disk I/O buffer areas.

If either the workspace or the buffer is not available, a NO CHANNEL error is

generated. The DOS also uses the channel structure to search the directory, and

to delete and copy files.

Three of the eight buffers are used by the DOS for the Block Availability Maps

(BAM), variable space, command channel I/O, and disk controller's job queue.

The job queue is the vital link between the two controllers. Jobs are initiated on

the file side by providing the disk controller with sector header and type of

operation information. The disk controller seeks the optimum job and attempts

execution. An error condition is then returned in plade of the job command. If

the job is unsuccessful, the file side re-enters the job a given number of times,

depending upon the operation, before generating an error message.

The secondary address given in the OPEN statement is used by DOS as the

channel number. The number the user assigns to a channel is only a reference

number that is used to access the work areas, and is not related to the DOS

ordering of channels. The LOAD and SAVE statements transmit secondary

35

addresses of 0 and 1, respectively. The DOS automatically interprets these

secondary addresses as LOAD and SAVE functions. Unless these functions are

desired when opening files, avoid secondary addresses of 0 and 1. The remaining

numbers, 2 through 14, may be used as secondary addresses to open up to five

channels for data.

Special OPEN and CLOSE Statements for Direct Access

The BASIC statement:

OPEN 2, 8,4, "#"

or

OPEN 2, 8,4, "#7"

opens a channel to one buffer, to be used with the block commands. The first

available buffer is allocated to channel 4 in the first example. The second

example is an attempt to allocate buffer 7 to the channel. If the buffers are not

available, a NO CHANNELS error condition is generated. The explicit buffer

allocation can be used to reserve a buffer for position dependent code as in the

case of an execute command.

You can find the number of the allocated buffer by executing a GET# state

ment. The byte transmitted is the buffer number. The only time you can get a

buffer number is before any write or read operation to that buffer.

The CLOSE statement clears the opened channel and writes the BAM to the

diskette that was last used by that channel. It is recommended that to avoid con

fusion, you limit yourself to accessing one drive with any direct access channel.

DISK UTILITY COMMAND SET

The disk utility command set consists of the following commands:

Commands

BLOCK-READ

BLOCK-WRITE

BLOCK-EXECUTE

BUFFER-POINTER

BLOCK-ALLOCATE

BLOCK-FREE

memory-write

memory-read

memory-execute

USER

Abbreviations

B-R

B-W

B-E

B-P

B-A

B-F

M-W

M-R

M-E

U

General Format

"B-R:"ch,dr,t,s

"B-W:"ch,dr,t,s

"B-E^'ch.dr.t.s

"B-P:"ch,p

"B-A:"dr,t,s

"B-F:"dr,t,s

"M-W"adl/adh/nc/data

"M-R"adl/adh

"M-E"adl/adh

"Ui:parms"

36

Where: ch = the channel number in DOS: identical to the secondary

address in the associated OPEN statement.

dr = the drive number: 0

t = the track number: 1 through 35.

s = the sector number, 0 through 20. For each track number,

the sector range is shown in Table 4.

p = the pointer position for the buffer pointer.

adl = the low byte of the address*.

adh = the high byte of the address*.

nc = the number ofcharacters: 1 through 34*.

data = the actual data in hexidecimal. This is transmitted by using

the CHR$ function, i.e. CHR$(1) would send the binary

equivalent of hexidecimal 01, (decimal 1).

i = the index to the User Table.

parms = the parameters associated with the U command (optional).

The values used in conjunction with the memory commands exist in the VIC-

1540 as hexidecimal values and must be transmitted as CHR$(n), where n is the

decimal equivalent of the desired hexidecimal value.

NOTE: If using variables the format must have only the command in quotes.

For example:

"B-R:"ch,dr,t,s correct

"B-R:ch,dr,t,s" incorrect

To avoid confusion, it is good practice to use this format when using variables or

constants.

As implied in the preceding format, these commands may be abbreviated to the

first character of each of the key words. Abbreviations only are accepted for

those commands shown in lower case. The parameters associated with each com

mand are searched for starting at a colon (:), or in the fourth character position

if a colon is not present. The example following shows four ways that the same

block-read command may be given.

37

NOTE: Initialize the disk before the buffer read or write.

Examples: "BLOCK-READ: " 2,0,4,0

"B-R"2,0,4,0

"B-R"2;0;4;0

"B-READ:"2;0;4;0

Parameters following the key words within quotation marks may be separated

by any combination of the following characters:

Character Name Keyboard Representation

Skip < cursor right >

Space Space bar

Comma

The use of these characters permits sending both ASCII strings and integers.

Parameters not within the confines of quotation marks should be separated by

semi-colons (;).

In the following discussions, a PRINT#is assumed in all examples.

BLOCK-READ

This diskette utility command provides direct access to any block on a diskette

in either disk drive. Used in conjunction with other block commands, a random

access file system may be created through BASIC. This command finds the

character pointer in the 0-position of the block. When a character in this posi

tion is accessed with GET# or INPUT#, an End-or-Identify (EOI) is sent. This

terminates an INPUT# and sets the Status Word (ST) to 64 in the computer.

The format "B-R:"ch;dr;t;s is illustrated in the following example.

Example: "B-R:"5;0;18;0

Reads the block from track 18, sector 0 into channel 5 buffer area.

After using BLOCK READ to transfer the data to the buffer, the data may be

transferred to memory by INPUT* or GET#from the logical file opened to that

disk channel (i.e., using that secondary address).

38

The Ul command described under USER is similar to the BLOCK-READ com

mand.

BLOCK-WRITE

When this command is initiated, the current buffer pointer is used as the last

character pointer and is placed in the 0 position of the new buffer. The buffer is

then written to the indicated block on the diskette and the buffer pointer is left

in position 1.

The format "B-W:"ch;dr;t;s is illustrated in the following example.

Example: "B-W:" 7;0;35;10

Writes channel 7 buffer to the block on track 35, sector 10:

The U2 command described under USER is similar to the BLOCK-WRITE com

mand.

BLOCK-EXECUTE

This command allows part of the DOS or user designed routines to reside on disk

and be loaded into disk drive memory and executed. B-E is really a B-R with an

addition. The File Interface Controller begins execution of the contents after the

block is read into a buffer. Execution must be terminated with a return from the

subroutine (RTS) instruction. Future system extensions or user-created func

tions may implement this command.

The format "B-E:"ch;dr;t;s is illustrated in the following example.

Example: "B-E:"6;0;l;10

Reads a block from track 1, sector 10 into channel 6 buffer and

executes its contents beginning at position 0 in the buffer:

BUFFER-POINTER

This command changes the pointer associated with the given channel to a new

value. This is useful when accessing particular fields of a record in a block or, if

the block is divided into records, individual records may be set for transmitting

or receiving data.

39

The format "B-P:"ch,p is illustrated in the following example.

Example: "B-P:"2;l

Sets channel 2 pointer to the beginning of the data area in the

direct access buffer:

BLOCK-ALLOCATE

The appropriate BAM is updated in the DOS memory to reflect the indicated

block as allocated (used). In future operations, the DOS skips over the allocated

block when saving programs or writing sequential files. TTie updated BAM is

written to diskette upon the closure of a write file or the closure of a direct

access channel.

If the block requested has been previously allocated, the error channel indicates

the next available block (increasing track and sector numbers) with a NO

BLOCK error. If there are no blocks available that are greater in number than

the one requested, zeroes are displayed as track and sector parameters.

The format "B-A:"dr;t;s is illustrated in the following example.

Example: "B-A:"0;10;0

Requests that block (sector) 0 of track 10 be flagged as allocated

on the diskette.

NOTE: The error channel should always be check when using BLOCK AL

LOCATE, so that if the block is already allocated, it will not be overwritten. If

the block is allocated, the error message will also indicate the next available

block.

Example: INPUT#15,EN,EM$ JETJES

Reads the next track and sector, respectively, into ET and ES, as

suming that lfn = 15 has been previously OPENed to the disk error

channel.

BLOCK FREE

The BAM is updated in memory to free the block indicated. The disk is up

dated on a close as previously mentioned. Neither the B-A nor B-F commands

40

require that a direct access channel be open, since there is no channel relation

ship associated with the operations. However, if the BAM is to be updated on

disk, these operations should be used in conjunction the other block com

mands.

The format "B-F:" dr;t;s is illustrated in the following example.

Example: "B-F:"0;9;20

Free up the block (sector) 20 of track 9.

MEMORY

All three MEMORY commands are byte-oriented so that the user may utilize

machine language programs. BASIC statements may be used to access informa

tion through the MEMORY commands by using the CHR$ function. The system

accepts only M-R, M-W, and M-E: neither verbose spelling or the use of the colon
(:) is permitted.

Memory-Write

This command provides direct access to the DOS memory. Special routines may

be down-loaded to the disk drive through this command and then executed using
the MEMORY-EXECUTE command or one of the USER (U) commands. Up to

34 bytes may be deposited with each use of the command. The low byte of the

address must precede the high byte of the address.

The format "M-W:"adl/adh/nc/data is illustrated in the following example.

Example: uM-W:"CHR$(00X:HR$(7X:HR$(4)CHR$(32)CHR(0)CHR$(17)-

CHR$(96)

Writes four bytes to $0700 (decimal 1792):

Memory-Read

The byte pointed to by the address in the command string may be accessed with

this command. Variables from the DOS or the contents of the buffers may also

be read with this command. The M-R command changes the contents of the

error channel since it is used for transmitting information to the computer. The

next GET# from the error channel (secondary address 15) transmits the byte.

An INPUT# should not be executed from the error channel after a MEMORY-

41

READ command until a DOS command other than one of the MEMORY com

mands is executed.

The format "M-R:"adl/adh is illustrated in the following example.

Example: "M-R"CHR$(128);CHR$(0)

Accesses the byte located at $0080 (decimal 128):

Memory-Execute

Subroutines in the DOS memory may be executed with this command. To

return to the DOS, terminate the subroutine with RTS ($60).

The format "M-E:" adl/adh is illustrated in the following example.

Example: "M-E"CHR$(128);CHR$(49)

Requests the execution of code beginning at $3180 (decimal

12672).

USER

This command provides a link to 6502 machine code according to a jump table

pointed to by the special USER pointer. Refer to Table 5. The second character

in this command is used as an index to the table. The ASCII character 0 through

9 or A through 0 may be used. Zero sets the USER pointer to a standard jump

table that contains links to special routines.

The special USER commands Ul (or UA) and U2 (or UB) can be used to replace

the BLOCK-READ and the BLOCK-WRITE commands.

The format of Ul is:

"Ul:"ch;dr;t;s

Ul forces the character count (buffer pointer) to 255 and reads an entire block

into memory. This allows complete access to all bytes in the block.

The format dfU2 is:

"U2:" ch;dr;t;s

42

U2 writes a buffer to a block on the disk without changing the contents of posi

tion 0 as B-W does. This is useful when a block is to be read in (with B-R) and

updated (B-P to the field and PRINT#), then written back to diskette with U2.

Table 3. Standard Jump Table

USER

DESIGNATION

Ul

U2

U3

U4

U5

U6

U7

U8

U9

U:

ALTERNATE

USER

DESIGNATION

UA

UB

UC

UD

UE

UF

UG

UH

UI

UJ

FUNCTION

BLOCK-READ replacement

BLOCK-WRITE replacement

jump to $0500

jump to $0503-

jump to $0506

jump to $0509

jump to $050C

jump to S050F

jump to $FFFA

power up vector

U3 thru U9 commands are user-defined. The locations jumped to are located in

the buffer areas of RAM and routines may be written to reside there and down

loaded using the M-W command.

STRUCTURE OF DISKETTE

Any block on a diskette may be examined by using the program DISPLAY T&S,

provided on the TEST/DEMO diskette.

Table 4. Block Distribution by Track

Track number

1 to 17

18 to 24

25 to 30

31 to 35

Block or

Sector Range

0to20

0tol8

0tol7

0tol6

Total

21

19

18

17

Tables 5 through 11 will assist the user in interpreting information obtained

using the DISPLAY T&S program.

43

Table 5. VIC-1540 BAM Format

Track 18, Sector 0.

BYTE

0,1

2

3

4-143

CONTENTS

18,01

65

0

DEFINITION

Track and sector of first directory block.

ASCII character A indicating 1540 format

(Same as CBM 4040).

Null flag for future DOS use.

Bit map of available blocks for tracks 1-35.

*1 = available block

0 = block not available

(each bit represents one block)

Table 6. Directory Header

Track 18, Sector 0.

BYTE

144-161

162-163

164

165,166

166-167

171-255

CONTENTS

160

50,65

160

0

DEFINITION

Disk name padded with shifted spaces.

Disk ID.

Shifted space.

ASCII representation for 2A which is DOS version

and format type.

Shifted spaces.

Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some

diskettes.

44

Table 7. Directory Format

Track 18, Sector 1.

BYTE

0,1

2-31

34-63

66-95

98-127

130-159

162-191

194-223

226-255

DEFINITION

Track and sector of next directory block.

♦File entry 1

*File entry 2

♦File entry 3

*File entry 4

♦File entry 5

♦File entry 6

♦File entry 7

♦File entry 8

* Structure of single directory entry

BYTE

0

1,2

3-18

19,20

21

22-25

26,27

28,29

CONTENTS

128 +type

DEFINITION

File type OR'ed with $80 to indicate properly

closed file.

TYPES: 0 = DELeted

1 = SEQential

2 = PROGram

3= USER

4 = RELative

Track and sector of 1st data block.

File name padded with shifted spaces.

Relative file only: track and sector for first side

sector block.

Relative file only: record size.

Unused.

Track and sector of replacement file when OPEN©

is in effect.

Number of blocks in file: low byte, high byte.

45

Table 8 . Sequential Format

BYTE

0,1

2-256

DEFINITION

Track and sector of next sequential data block.

254 bytes of data with carriage returns as record terminators.

Table 9 . Program File Format

BYTE

0,1

2-256

DEFINITION

Track and sector of next block in program file.

254 bytes of program into stored in VIC memory format (with
key words tokenized). End of file is marked by three zero bytes.

Figure 5 illustrates an expanded view of a single sector on a diskette formatted

for the 1540. In addition to other information, each sector contains a data block

consisting of 256 stored characters. Blocks within the same file are linked to

gether by means of a two character block pointer. By pointing to the location of

the next data block, block pointers enable the system to retrieve data from non-

continuous blocks. Retrieving the first data block within a file triggers a search

for the next data block which, in turn, utilizes block pointers to locate related

blocks until the entire file is assembled and made available for display. All PRG,

SEQ, and USR files utilize this format.

A data block is addressed by track and sector. A 1540 diskette contains 35

tracks (or rings) numbered 1 to 35. The number of sectors per track will vary (as

illustrated in Table 4) due to differences in track circumference and recording

frequency.

The 1540 maintains a system file on track 18 which contains the BAM, diskette

name, ID, and file directory. The BAM, resident in the first 128 bytes of sector

0, monitors available and occupied storage locations on diskette. The last 128

bytes of sector 0 are used to store the diskette name and ID. The file directory

begins on the next sector, sector 1.

46

POINTERS TO LINK Nv
TOGETHER ALL BLOCKS \
WITHIN A FILE \

SYNC 08 ID1 ID2 TRACK SECTOR CHECK

SUM
GAP1 SYNC 07

i I

254 BYTES

OF DATA
CHECK

SUM
GAP

2

Fig. 5. VIC-1540 Format: Expanded View of a Single Sector

47

NOTES

Chapter 6

SEQUENTIAL FILE

A file handling of sequential file which is the most basic form of the date file is

described in this chapter.

A sequential file is a file which may be read only in the sequence it was written

in. For example, a file with records, A, B and C, must be read in the sequence of

A, B and C if they were written in that sequence. The record C and not be

directly read without reading the record A and B. If it is necessary to read the

record C only, then A and B must be read without doing any work.

In the sequential file, no partial re-write of the record can be made. Only change

which can be made to the sequential file is an addition of new record to the end

of the file.

TO CREATE A SEQUENTIAL FILE AND ACCESSING

The following steps are taken to create a sequential file and accessing.

STEP1 Open a file for write in.

OPEN 2,8,2, "0 : DATE, S,W"

A sequential file with a name DATE is opened to be written upon.

Note the designation W for write in at the end of the command.

.STEP 2 Write in data in the file using PRINT #.

PRINT#2A$;B$;C$

In this case the datas are, 3 string variables, A$, B$, and C$.

STEP 3 Close the file for the access later

CLOSE 2

49

STEP4 Open the file with a name DATA to be read out.

The designation R for read out may be omitted.

OPEN #2,8,2, "0: DATA, S,R"

STEP 5 Read in the data from the sequential file to the program using

INPUT #.

INPUT#2,X$)Y$,Z$

STEP 6 Check the end of the file by the ST variable.

IF (ST) AND 64 THEN CLOSE 2

EXAMPLE OF A SEQUENTIAL FILE PROGRAM

An example of a simple program to create a sequential file is shown below.

Records consisting of string field and numeric field are written in and the con

tents of the records is displayed at the end by typing END.

1 REM ***************

2 REM * EXfiMPLE

3 REM * REfiB & WRITE

4 REM * fl SEQUENTIfll

5 REM * DflTfl FILE

9 REM ***************

10 PRINT"3BW»i!INITIRlIZE DISK."

29 DIMfl*<25> ■

30 DIME<25>

40 OPEN15,8,15,"I0"

60 GOSUB 1000

70 CRS=CHRf<13)

80 PRINT

90 PRINT" WWRITE SEQ TEST FILES"

95 PRINT

10Q REM *.**♦******♦**

101 REM *

102 REM * WRITE SEQ

103 REM ♦ TEST FILE

104 REM *

50

105 REM 4************

110 0PEN2,S,2,"@Ci:SEQ TEST FILE ..S,U"

115 GOSUB l&C'O

126 INPUT"fi*,B".:P!,B

13Q IFR*="END"THEN 168

140 PR I NT#2, fl$"," STP.f (B > CR#;

.145 GOSUB 1000

15G GOTO 126

160 CLOSE 2

20Q REM *************

201 REN *

202 REM * READ SEO

203 REM * TEST FILE

204 REM *

205 REM *************

206 PRINT

207 PRINT" MREflD SEQ TEST FILES"

208 PRINT

210 OPEN2,B,2,"0:SEQ TEST FILE ,S,R"

215 GOSUB 1000

220 INPUTt2,fl$<I),B<I)

224 RS*ST

225 OOSUB 1000

230 PRINTfif<I),Ba>

240 IFR S-64 THEN 300

250 IF RSO0 THEN 400

260 1*1+1

270 GOTO 220

300 CLOSE 2

310 END:
400 PR I NT" IBRDMDISKIBTRTUSMI SIB"RS

410 CLOSE 2

420 END
1000 REM ************

1601 REM *

1002 REM * REBD

1003 REM * THE ERROR

1004 REM * CHRNNEL

1005 REM *

51

1886 REN ♦♦*****♦»***

1818 INPUT#13,EN,EM$,ET,E$:
1828 IF EN»8 THEN RETURN:

1838 PRINT"iniflERROR ON DISK"

1048 PRINT"rEN,EM*,ET,ES"r
1858 CL0SE2

1068 END

52

Chapter 7

RANDOM FILE

A random access file is created with the BLOCK and USER commands described

in Chapter 5-Adranced Disk Programming.

DATA FLOW IN RANDOM FILE

In the random access file the data can not be as simply written in or read from as

in the case of a sequential file.

It is necessary to understand the data flow between the computer, buffer and

disk drive in order to transfer the data in the random access file. It can be illust

rated as Fig. 6.

Channel 5

OPEN 5,8,15

PRINT#5,"B-W";3;0;6;4

Transfer the data from the buffer to

the computer

Channel 3

OPEN 4,8,3, "#7"

PRINT #4, A$; CHR$(44)I; CHR$(13)

Write in the data from the computer

into the buffer

move the buffer pointer

PRINT#5,"B-P"3;120

» i

Disk Drive Buffer Computer

f \
move the buffer pointer

PRINT#5,"B-P"3;120

Transfer the data from the disk to'

the buffer

Read in the data from the buffer to

the computer

PRINT#5,"B-R";3;0;6;4 INPUT #4, A$, I

Fig. 6. Data Flow between Computer, Buffer and Disk Drive

53

The above can be more specifically described as:

STEP1. Open a file

Disk File OPEN 5,8,15

'— Command & Error Channel

-Device Number

-Logical File Number

Buffer File OPEN 4,8,3, "#7"

'—Buffer Number

-Channel Number

-Device Number

-Logical File Number

STEP 2. Move the buffer pointer

PRINT #5 "B:P:" 3; 120

L'—Pointer Position

—Channel Number of(§)

Setting of Block Pointer

STEP 3. Place the data in the buffer

PRINT #4, A$; CHR$(44); I; CHR$(13)

Logical File Number of (Comma Carriage Return

-Variables

STEP 4. Transfer the data from the buffer to the disk

PRINT^,"B-W:"3;0;6;4

Logical File Number of@

Write

•—Sector number

-Track number

Drive number

-Channel Number of (§)

54

STEP 5. Transfer the data from the disk to the buffer

PRINT#5)"BTR:"3;0;6;4

Logical File Number of(A/

Read Out—I

L-Sector Number

Track Number

Drive Number

Channel Number of

STEP 6. Move the buffer pointer

PRINT #5, "B-P:" 3; 120

Logical File Number of®J
-Pointer Position

Channel Number of(B)

Setting of Block Pointer

STEP 7. Take out the data from the buffer

INPUT#4,A$,1

Logical File Number of (By Variables

EXAMPLE OF USING RECORD NUMBER

More practical program which uses variables will be as follows: It assumes OPEN

15, 8, 15 and OPEN CH, 8, CH, "#" and uses Ul and U2 instead of B-W and

B-R.

5166

5185

516S

5110

5120

5130

5140

5150

5160

5180

5190

REN ***'**3|e*#***#*sl**#******

REM * FDD BLOCK REflD *

REM *#*#**#***#**#*♦*******

GQSUB5330

print#i5,"U1:";ch;fb,ft/fs

print#15/"b-p:";ch;fp

GOSUB5270

FORFI=1TOFX

IHPUT#CH,FB$(FI.):

NEXT

RETURN

55

520© REM *#*************♦*****•+•*

5281 REM * FDD BLOCK WRITE *

5292 REM ******♦♦**#***♦***+•+***

5210 G0SUB5339

5220 PRINT#15 >"B-P =";CH; FP
5230 FORFI=1TOFX: PR I HT#CH, FBI- < FI >■; £HR* < 13), = NEXT

5240 PRINT*15>"U2:";CH;FD;FT;FS

5250 GOSUB5270

5260 RETURN

5270 REM ♦**♦**♦+**♦*****♦•*♦*♦•**

5275 REM * ERROR CHECK *

527S REM **###♦**♦***#***#**♦***

5280 INPUT#15,EN,EM*,ET,ES

5290 IFEN=0THENRETURN

5390 PRINT"ERROR STflTUS:",EN;EM*;ET;ES

53101HPUT"CONTINUE?">V*:IFY$="V"THEHRETURN

5320 STOP

5322 REM **##******#*#**********

5324 REM * SET TRflCK & SECTOR *

5326 REM ***********************

5330 IFF<358THENF1=0:F2=22 = F3=1=GOTO5370

5340 IFF>357RNDF<471TRENF1=357:F2=20 = F3=19:GOTO5370

5350 IFF*>471RNDFO88THENF 1=4?1-F2=19: F3=25: G0T03378
5360 IFF>580THENF1=580:F2=18:F3=31

5370 FT=INT<<<P-F1)-1>/<F2-1))+F3

5380 FS=F-F1-<FT-F3)*F2+<FT-F3-1)

5390 RETURN

Where: CH = Channel number

FD = Drive number

FP = Buffer pointer

The line numbers 5270 to 5320 in the above are the error check routine. Also

indicated in above by GOSUB 5330 is a subroutine which is for allocating a

sector in the disk.

A track and sector must be designated in the random access which is rather

troublesome and, therefore, a concept of record number is used here to reduce

the burden of the programmer. For example, serial numbers as shown in Table

below are assigned to the sector 0 in the track 1 to the sector 16 of the track 35,

in VIC-1540. These serial numbers are called as the record number, which is in-

56

dicated by F in the subroutine starting from the line number 5330 in the above

example. When a F number is designated and this subroutine is called, the corres

ponding track and sector are allocated automatically. The directory will not be

destructed as the track 18 has been avoided.

Table 10. Allocation of Record Number

Track Number

1 to 17

18 to 24

25 to 30

31 to 35

Sector

0to20

Oto 8

0tol7

Oto 16

Number of Sector/Track

21

19

18

17

Record No.

1-357

358471

478-579

586-664

EXAMPLE OF A RANDOM FILE PROGRAM

A simple program has been made using method to create a random access file

described above. This program can be used for the preparation, deletion and

inquiry of an address list.

Line number

line number

line number

Line number

Line number

line number

50

100

200

300

5100

5200

- 76

- 190

- 280

- 390

-5190

-5260

Job menu.

Creation of file

Making deletion to the file

Search processirig

File input routine

File output routine

16 REM ******♦****##*****#**#*

12 REM * RRNDOM FILE EXRMPLE *

14 REM ##*#♦##♦♦*♦#*♦♦#**#*#**

16 BIMI$<664>:FD=

18 PRINT'TMW-

20 PRINT" BINSERT DRTfl SHEETS"

22 PRINT" : ";

24 PRINT"WW STflRT PRESS rS'B"

26 GETP*:IFP*O"S"THEN26

28 0PEN15,8,15,"16":0PEN2,8,2,"#'

38 PRINT"3M-
II

>

32 PRINT"INDEX FILE OPERATION"

34 PRINT"

57

36 INPUT"W MEN SHEET? NIMH" ;0$ = PRINT'S"

38 IF0*="N"THEN46

48 IF0*O"V"THEN36

42 PRINT:PRINT" WflIT!":FORI=1TO664

44 PR I NT" >fr»§mm*M*Mf.

45 PRINTI* <I> =NEXT:GOTO50

46 OPEN5,8,5,"0:INDEX,S,R

4? FORI=1TO664:INPUT#5,

4S PR I NT" »TXtiMRl«}!MO»»ai»

49 NEXTI:CLOSES

56 PR I NT 'TM

52 PRINT" JOE MENU

54 PRINT"

56 PRINT

53 PRINT"

60 PRINT"

62 PRINT"

IIISII" I; : I $ < I >='V "

IB91B!" I; I$< I)

l=CREfiTE"

2=DELETE"

3=SEP.RCH"

0=ENH"64 PRINT"

65 PRINT

66 INPUT"1 ,2,3,0 1UM";O*

68 IFO$="0"THENCLOSE15:CLOSES:CL0SE2:END

70 IFO*="1"THEN104

72 IFO*="3"THEN300

74 IFO*O'"2"THES50

76 GOTO200

100 REM ♦*#*#*♦#***♦******♦***#

102 REM * MflSTER FILE CREflTE ♦

103 REM *#*****#*#**#***♦♦*#***

104 PRINTMBW ";

105 PRINT" MflSTER FILE CREflTE"

106 PRINT" "

107 INPUT"IRECORD NO. = 0IIIB";F

109 IF F=0THEN170

110 IHPUT'NflME =.IHI";FB$<1)

120 INPUT"RDDRESS «.IMH";FB*<2>

130 INPUT"ZIP =.III!",FEJ(3>

132 INPUT "TEL a.HM";FB*<4)

134 INPUT'COMMENT =.IM!";FB$<5>

140 GOSUB5200

150

58

160 GOTO104

170 OPENS,8,5,"80=INDEX,SM"

175 FORI=1TO664:PRINT#5,I$<I);CHR*<13);

180 PR I NT" WUUHMKHDM»l»ftUR IT! IHIII" I; I $ < I >

185 NEXT:CLOSES

196 G0T074

200 REM ***********************

201 REM * MflSTER FILE DELETE *

202 REM *********************+*

210 PR I NT" ZtiM ■ " •■

212 PRINT" MflSTER FILE DELETE"

214 PRINT" " PRINT

220 INPUT"iRECORD NO. = 031153", F

230 IFF=QTHEN260

'235 IFI*<F)O"1"THEN220

240 I * < F) =" /" ■ PR I NT" WKECORD NO." F;" DELETES"

250 GOTO220

260 OPENS,8,5,"SO:INDEX,£,1*1"

265 FOR I=1T0664: PR I NT#5,1 i- (I); CHR* < 13 >;

276 PR I NT" *!lS»M?I»W»*Si»lJH IT! IllSai" I; I $ < I)

275 NEXT:CLOSES

280 GOTG50

300 REM ***********************

301 REM * FILE SEflRCH *

302 REM ***********************

310 PRINT ".KM -";

312 PRINT" SEflRCH

314 PRINT" ": PRINT

320 INPUT"1RECORD NO. = SIIIB'SF

321 IFF=0THEN50

322 IFI$(F)O"1"THEN320

325 GOSUB5100

360 PRINT"NRME = ";FB*<1)

370 PRINT"flDDRESS = ";FB*<2>

330 PRINT"ZIP = ";FB$<3>

382 PRINT"TEL = ";FB$<4>

383 PP. I NT "COMMENT = ";FB$<5)

385 PR I NT" "

390 GOTO320

59

51S6 REM ******************+**+*

5185 REM * FDD BLOCK RERL *

5168 REM *♦♦*♦**********♦*****+*

5116 G0SUB5330

5120 PRINT#15, "Ul: ",CH.;FD,F7;F5

5136 PRIHT#15,"B- P;",CH,FP

5140 G0SUB5276

5150 FGRFI=1TOFX

5160 1HPUT#CH..FB$(FI):

51S0 NEXT

5190 RETURN

5209 REM #.#*♦**#********♦*#*****

5201 REM * FDD-BLOCK WRITE *

5202 REM #******#*******♦*******

5210 GOSUB5330

5220 PRINT#15,"B-P:";CH; FP

5230 FORFI=1TOFX=PRINT#CH,F£$<FI);CHR$<13)> ■NEXT

5240 PRINT#15,"U2:"iCH;FD;FT;FS

525Q GOSUB5270

5260 RETURN

5270 REM ******************#****

.5275 REM * ERROR CHECK *

527S REM ********#****♦♦♦♦******

5280 INPUT#.l 5.. EH, EM* .• ET, ES

5296 IFEN=0THENRETURN

5360 PR I NT"ERROR STflTUS:" .■ EH; EM*; ET; ES

5310 INPUT'-CONTINUE?";'f't = IFV$="V"THENRETURN

5320 STOP
5322 REM **********if:********+if:*+

5324 REM * SET TRflCK & SECTOR *

5326 REM #*#**#**♦****♦*********

5330 IFFC358THEHF1=0:F2=22 = F3=1:GOT05378

5340 IFF>357FlHIiF<471THEHFl=357: F2=20 '• F3=19: GOTO5370

5350 IFF>471fiHDF<580THENFl=471:F2=19:F3=25:GOTO5370

5366 IFF>580THENF1=589 = F2=18:F3=31

5370 FT=INT< <<P-F1>-1)/(F2-l))+F3

5380 FS=F-F1-<FT-FS)*F2+(FT-F3-1>

5330 RETURN

60

Chapter 8

ERROR MESSAGES-

PATTERN MATCHING

FILE NAMES-

REQUESTING ERROR MESSAGES

When the drive indicator of the disk drive flashes, it indicates an error occurred

in the disk drive.

The execution of the following program displays the error on the computer

screen and resets the device error indicator:

10 OPEN 1,8,15

20INPUT#l,A,B$,C,D

30 PRINT A,B$,C,D

where A = error message number

B$ = error message

C = track

D = sector

SUMMARY OF DOS ERROR MESSAGES

0 OK, no error exists.

1 Files scratched response. Not an error condition.

2—19 Unused error messages: should be ignored.

20 Block header not found on disk.

21 Sync character not found.

22 Data block not present.

23 Checksum error in data.

24 Byte decoding error.

25 Write-verify error.

61

26 Attempt to write with write protect on.

27 Checksum error in header.

28 Data extends into next block.

29 Disk id mismatch.

30 General syntax error.

31 Invalid command.

32 Long line.

33 Invalid filename.

34 No file given.

39 Command file not found.

50 Record not present.

51 Overflow in record.

52 File too large.

60 File open for write.

61 File not open.

62 File not found.

63 File exists.

64 File type mismatch.

65 No block.

66 Illegal track or sector.

67 Illegal system track or sector.

70 No channels available.

71 Directory error.

72 Disk full or directory full.

73 Power up message, or write attempt with DOS mismatch.

74 Drive not ready.

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the excep

tion of 01 which gives information about the number of files scratched with the

SCRATCH command.

20: READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data

block. Caused by an illegal sector number, or the header has been

destroyed.

21: READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track.

Caused by misalignment of the read/write head, no diskette is present, or

unformatted or improperly seated diskette. Can also indicate a hardware

failure.

62

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that

was not properly written. This error message occurs in conjunction with

the BLOCK commands and indicates an illegal track and/or sector request.

23: READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the

data bytes. The data has been read into the DOS memory, but the check

sum over the data is in error. This message may also indicate grounding

problems.

24: READ ERROR (byte decoding error)

The data or header has been read into the DOS memory, but a hardware

error has been created due to an invalid bit pattern in the data byte. This

message may also indicate grounding problems.

25: WRITE ERROR (write-verify error)

This message is generated if the controller detects a mismatch between the

written data and the data in the DOS memory.

26: WRITE PROTECT ON

This message is generated when the controller has been requested to write

a data block while the write protect switch is depressed. Typically, this is

caused by using a diskette with a write protect tab over the notch.

27: READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data

block. The block has not been read into the DOS memory. This message

may also indicate grounding problems.

28: WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after

writing a data block. If the sync mark does not appear within a pre-deter-

mined time, the error message is generated. The error is caused by a bad

diskette format (the data extends into the next block), or by hardware

failure.

29: DISK ID MISMATCH

This message is generated when the controller has been requested to ac

cess a diskette which has not been initialized. The message can also occur

if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel.

63

Typically, this is caused by an illegal number of file names, or patterns are

illegally used. For example, two file names may appear on the left side of

the COPY command.

31: SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in

the first position.

32: SYNTAX ERROR (long line)

The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)

Pattern matching is invalidly used in the OPEN or SAVE command.

34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOS does not recognize it

as such. Typically, a colon (:) has been left out of the command.

39: SYNTAX ERROR (invalid command)

This error may result if the command sent to command channel

(secondary address 15) is unrecognizable by the DOS.

50: RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET#

commands. This message will also occur after positioning to a record be

yond end of file in a relative file. If the intent is to expand the file by

adding the new record (with a PRINT# command), the error message may

be ignored. INPUT or GET should not be attempted after this error is

detected without first repositioning.

51: OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is truncated.

Since the carriage return which is sent as a record terminator is counted in

the record size, this message will occur if the total characters in the record

(including the final carriage return) exceeds the defined size.

52: FILE TOO LARGE

Record position within a relative file indicates that disk overflow will

result.

60: WRITE FILE OPEN

This message is generated when a write file that has nQt been closed is

being opened for reading.

64

61: FILE NOT OPEN

This message is .generated when a file is being accessed that has not been

opened in the DOS. Sometimes, in this case, a message is not generated;

the request is simply ignored.

62: FILE NOT FOUND

The requested file does not exist on the indicated drive.

63: FILE EXISTS

The file name of the file being created already exists on the diskette.

64: FILE TYPE MISMATCH

The file type does not match the file type in the directory entry for the

requested file.

65: NO BLOCK

This message occurs in conjunction with the B-A command. It indicates

that the block to be allocated has been previously allocated. The para

meters indicate the track and sector available with the next highest

number. If the parameters are zero (0), then all blocks higher in number

are in use.

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not exist in

the format being used. This may indicate a problem reading the pointer to

the next block.

67: ILLEGAL SYSTEM TORS

This special error message indicates an illegal system track or sector.

70: NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maxi

mum of five sequential files may be opened at one time to the DOS. Direct

access channels may have six opened files.

71: DIR ERROR

The BAM does not match the internal count. There is a problem in the

BAM allocation or the BAM has been overwritten in DOS memory. To

correct this problem, reinitialize the diskette to restore the BAM in

memory. Some active files may be terminated by the corrective action.

NOTE: BAM = Block Availability Map

72: DISK FULL

Either the blocks on the diskette are used or the directory is at its limit of

65

144 entries.

73: CBMDOSV2.6V170

The DOS version of the VIC-1540 is 2.6. DOS 2.6 and 1.0 (CBM2040/

3040) are read compatible but not write compatible, that is, the disk

formatted on DOS1.0 may be read but can not be written upon with VIC-

1540, and the disk formatted on DOS2.6 may be read but can not be

written upon with DOS 1.0. DOS2.6 and 2.0 (CBM4040) are read and

write compatible, that is, the disk formatted on either version may be read

and written upon with the other version. DOS2.6 and 2.5 (CBM8050) are

not read or write compatible, that is, the disk formatted on either version

can not be read or written upon with the other version. This error is dis

played whenever an attempt is made to write upon a disk which has been

formatted in a non-compatible format. This message may also appear after

power up.

74: DRIVE NOT READY

An attempt has been made to access the VIC-1540 Single Drive Floppy

Disk without any diskette present in the drive.

PATTERN MATCHING

Pattern matching of file names is available on all Commodore floppys. Pattern

matching uses the question mark (?) and the asterisk (*) to perform operations

on several files with similar names.

The asterisk is used at the end of a string of characters to indicate that the rest

of the name is insignificant. For example:

could refer to files named

or

or

or

FIL*

FIL

FILE1

FILEDATA

FILLER

or any other file name starting with the letters FIL.

The question mark may be used anywhere within the string of characters to in

dicate that the character in that particular position should be disregarded. For
example:

66

????? .SRC could refer to files named

TSTER.SRC

or DIAGN.SRC

or PROGR.SRC

but not SRC.FILES

Both the characters and the position of the characters are significant.

The question mark and asterisk may be combined in many ways:

does not make sense because the question marks are in an area which is insignifi

cant (because of the asterisk).

P???FIL* will access files with the names

PET FILE

or PRG FILE-32

or POKEFILES$$

or any other files starting with P and having FIL in positions 5-7.

SCRATCH with pattern matching should be used carefully, since multiple files

will be scratched. LOAD will load the first file which fits the pattern matching.

OPEN with pattern matching may be used to open an existing file, in which case

the first existing file encountered which fits the description will be opened.

However, OPEN should not be used with pattern matching when creating a new

file. Never use RENAME, SAVE, or COPY for pattern matching since an error

condition will result, if attempted.

67

68

APPENDIX

The following is a list of the programs contained on the TEST/DEMO diskette.

o m

4

6

14

4

9

5

13

689

tTni-nmiflrnnranrn

"DIR"

"VIEW BRM"

"DISPLRY T&S"

"CHECK DISK"

"PERFORMRNCE TEST"

"SEQUENTIRL FILE"

"RRNDOM FILE"

BLOCKS FREE.

Ha

PRG

PRG

PRG

F'RG

PRG

PRG

F'RG

DIR simplifies the commands for the display of the disk directory or the disk

operation.

VIEW BAM will read the BAM on VIC-1540 diskette and display on the VIC-

1001 personal computer. It is a matrix type map with the sector numbers on the

vertical axis and the track number on the horizontal axis. The empty blocks are

displayed brightly and the used blocks are displayed dark. Because of the

formatting of VIC-1540, sector 19 on is not persent on tracks 18 to 24,The

VIEW BAM program will show these blocks as allocated.

DISPLAY T&S will show the users any block of information from a diskette

(including the directory and BAM) to the screen or printer in both ASCII and

hexidecimal. (Refer to Chapter 5.)

CHECK DISK will perform a validate on a disk then identify blocks that can not

be read by the disk. This is useful for detecting a damaged disk.

PERFORMANCE TEST performs a check out on the performance of VIC-1540.

SEQUENTIAL FILE is an example of how to write and read a sequential file

data. (Refer to Chapter 6.)

RANDOM FILE is an example of direct access file handling using BLOCK and

USER commands. (Refer to Chapter 7.)

69

I . D I R

4 0PEN2,8,15

5 PRINT"33":G0T0 10000

10

20

4u GET#l,fi*,B*

59 C=8

60 IF fl$OIIU THEN C=fiSC<R$)

70 IF B$O1M1 THEN C=C+flSC<B$)*256

80 PRINT"flia"MID$<STR$<C),2);TRB<3>; "S2"i

90 GET#1>B$:IF STO0 THEN 1000

1U0 IF B*OCHR$<34> THEN 90

110 GET#1,B*=IF B$OCHR$<34)THEN PRINTED;-GOTQlID

120 GET#1,B$:IF B*=CHR$<32) THEN 120

130 PRINT TflB<18);:C$=IMI

140 C$=C*+B$--GET#1,B*:IF B$Oni1 THEN 140

150 PRINT"Iia11LEFT$<C*,3>

160 GET T$:IF TOO"11 THEN GOSUB 200Q

170 IF ST=0 THEN 30

1000 PRINT" BLOCKS FREES"

1010 CLOSEl:GOTO 10000

2800 IF T$="Q" THEN CLOSED END

2010 GET T$-IF T$="" THEN 2000

2020 RETURN

4000 REM DISK COMMflND

4010 C$="":PRINTI1>M;

4011 GETB$:IFB$=IM1 THEN4011

4012 PRINTB$;:IF B$=CHR$<13> THEN 4020

4013 C*=C$+B$:GOTO 4011

4020 PRINT#2,C$

5008 PRINT"51"; . * • . •■

5010 GET#2,fl$:PRINTfl$;:IF fl$OCHR$(13>GOTO5010

5020 PRINT"*"

10000 PRINT "D-DIRECTORY"

10CU0 PRINT ">-BISK COMMflND" •

10020 PRINT "Q-QUIT PROGRflM"

10030 PRINT "S-DISK STflTUS "

10100 GETfi*:IFfl$=""THEN10100

10200 IF fl$="D" THEM 10

10300 IF R$=".(t OR fl$-">11 OR fl$=">" THEN 4000

10310 IF fl$="Q" THEN END

1032O IF fi*="S" THEN 5Oo0

19539 GOTO 10100

2. VIEW BAM

100 REM

101 REM * VIEW BflM FOR VIC-1540 *
102 REM ♦*♦♦**♦*******♦**♦*♦*******

105 0PEN15,8;15

110 PRINTtlS/'^^NUI^-'N/fl N/fl N/fl N/fl N/fl":Z4=l
120 0PEN2,8,2/'#"

138 v$

148 X$

150 DEF FNS<Z> = 2t<S-INT<S/8>*8> RND <SB<INT<S/8>>)

70

160 PRINT#15,"Ui:";2;0;i8;0

170 PRINT#J5,"B-P";2;l
1S0 PRINT11:!1;

19Q V=22:X=l:GOSUB430

280 FORI=0TO20:PRINT:PRINT"mMRIGHT$<STR$<I)+" ",3>;:NEXT
210 GET#2,flS

■ 220 GET#2,fl$

230 GET#2,fi*

240 TS=0

250 FORT=1TO17:GOSUB450

266 V=22:X=T+4:GOSUB430:GOSUB540:NEXT

278 FORI=1TO2000:NEXT =PRINT"3"

286 V=22:X=l:GOSUB430

290 FORI=0TO20 = PRINT•PRINT11T]I1RIGHT$<STR$<I)+11 ",3); :NEXT
300 F0RT=18T035

310 GOSUB450

320 V=22:X=T-13:GOSUB430•GOSUB540•NEXT

330 FORI=1TO1000-NEXT

34Q print"jmmr

350 PRINT#15/'B-P";2;144

360 N*=IMI :FORI=lTO20:GET#2,fl$-N$=N$+fl*:NEXT
376 PRINT" "N$" "TS-17;"BLOCKS FREE"

3SQ FORI=1TG4000:NEXT

330 PRINT"?]"

400 INPUT-'MUWWiaflNOTHER DISKETTE NIIIG";R*

410 IFfl$="V"THENRUN

420 IFWCV'THENEND
430 PRINTLEFT*<V$,V>LEFT$(X$, X> "II";
440 RETURN

456 GET#2>SC$:SC=RSC<RIGHT$<CHR$<0)+SC$,1)>
460 TS=TS+SC

470 GET#2,fi$:lFfl$=""THENfl$=CHR$<0>

480 SB<0)=flSC<fl$>

490 GET#2ifl*f- IFfl$=""THENfl$=CHR$<0)
500 SB<l>=RSC<fl$>

510 GET#2>fl$:IFfl$=n"THENfl$=CHR$<0)

520 SB<2)=nSC<fl$>

530 RETURN

540 PRINT":?H"RIGHT$<STR$<T>. 1>; "im";

550 REM PRINTT" "SC" "SB<0>" "SB<l)n nSB<2)=CHR$<0)

560 IFT>24flNBS=13THEN:PRINTMII)*':NU^,Z4,l); :GOTO660
570 FGRS=0TO20

530 1FT<18THEN620

590 IFT>30RNLS=17THEN:PRINTMID$<NU$.Z4,1);:GOTO660

6O0 IFT>24flNDS=13THEN:PRlNTMID*<NU^Z4>l>j -GOTO660

610 IFT>24mNDS=19THENPRINTMID$<NU$,Z4>1);:GOTG660

620 IFT>17flNDS=20THENPRINTMID$<NU*,Z4,1); ^Z4=Z4+1:

639 PR I NT "a11;

640 IF FNS'.:S)=0 THEN PRINT"+M; •G0TG66Q

659 PRINTIIB+"; :REHRIGHT$(STR$<S)/ 1>;Z4,1>; :G0T072

fA# PRINT'TIB";

6?d NEXT

630 RETURN

71

3. -Dl SPLAY T & S

100 REN******************************

110 REM* DISPLRV flNV TRfiCK % SECTOR *

120 REM* ON THE VIC TO THE SCREEN *

130 REM* OR THE VIC PRINTER *

140 REM******************************

150 print":hm ••;

160 print»displrv block contents";

163 PRINT" "••

170 REM******************************
180 REM* SET PROGRRM CONSTflNT *

130 REM******************************
200 SP$=" ":NL*=CHR*<0):HX$»"0123456789RBCDEF"

210 FS$=""-F0RI=:64 TO 95:FS$=FS$+"Sl'+CHR$a>+11!" 'NEXT I

220 SS*=" "-FOR 1=192 TO 223'SS*eSS$+"Sll+CHR$<I>+llI" -NEXT I

240 DIM R$<15>,NB<2>

251 D*»"0"

253 PRINT" ftKREENXIIIIIIIIIOR XHSPWINTER"

254 OETJJflF JJ$="" THEN254

255 IF JJ$="S"THENPRINT" HSBBCREENSS"

256 IF JJt»"P"THENPRINTu WSIPRINTERS!11

260 0PEN15,8,15/'r'+D*'GQSUB 650

265 0PEN4,4,7"

276 OPEN 2,8,2, "r"GOSUB 650

230 REM******************************

290 REM* LORD TRRCK RND SECTOR *

306 REM* INTO DISK BUFFER *

310 REM******************************

320 iNPurfcirrRRCK, sector11 ;t,s
330 IF T=0 OR T>35 THEN PRINT#15/lI"Di'CL0SE2-CL0SE4:CL0SE15'-PRINTllEND"-EN

340 IF JJ^'S" THEN PRINT"»WTRRCKIIT" SECTOR1^11*!"

341 IF JJ*=»"P" THEN PRINT#4-PRINTS/'TRRCK'^11 SECT0RMS:PRINT#4

350 PRINTttlS/'Ul^/'DiiTiS'.GOSUBeS©

360 REM******************************

370 REM* RERD BVTE 0 OF DISK BUFFER *

390 REM******************************

400 PRINT#15/'B-P:2,r'

410 PRINTftlS,"M-R"CHR$<0)CHR$(6>

420 GETttl5,fi$<0)>.IFR$<0>=IMITHENR$<0>=NL$

423 IF .JJ$="S"THEN430

430 IF JJ$a"P"THEN460

431 REM******************************

432 REM* RERD & CRT DISPLRV *

433 REM* REST OF THE DISK BUFFER *

434 REM******************************

436 K»r-NBa>=RSC<R*<0>)

43Q FOR J=0 TO 63-IF J»32 THEN GOSUB 710'IF Z*="N"THEN J«80-GOTO 458

440 FOR I*K TO 3

442 GET#2,fl*<I)-IF fi$<I)»IMI THEN R$<I)«NLi

444 IF K*l RND I<2 THEN NB<2)*RSC<R$<D)

446 NEXT I'K=0

449 R$="" '• B$=" • " • N=J*4 • GOSUB 790' fl$*fl$+» : »

456 FOR 1=0 TO 3:N=flSC<fi*<I>>:G0SUB 790

452 C$=fl*a>'-GOSUB 850'Bt=Bf+C$

454 NEXT I•IF JJ$="S" THEN PRINTR$B$

453 NEXT J^G0T0571

72

460 REM******************************

462 REM* RERD & PRINTER DISPLRY *

464 REM******************************

466 K-fNB(l)-RSC<R$<0))

463 FOR J-0 TO 15

470 FOR I»K TO 13

472 0ET#2,flf(I):lF fl$(I)-IMI THEN Rf<I>»Nl*

474 IF K«l RND ,I<2 THEN NB<2>-fiSC<fl$<I>>

476 NEXT l'.K«e
478 R*«" H • B*«" ■ " : N-J*16 '• OOSUB 790: fi$«fl$+" *• "

480 FOR I«0 TO 15:H"RSC<Rt<X»'-G0SUB 790:IF Z*»"N"THEN J«40'GQTO 371

432 C*»R*a>: OOSUB 850:B*«Bt+C*

434 NEXT I

436 IF JJ*-"P» THEN PRINT#4,flB

433 NEXT J:G0T0S71

571 REM********#*****#*******#**##«**

572 REM* NEXT TRRCK RND SECTOR #

573 REMm*mm*mmiMi***********

575 PRINT"NEXT TRRCK RND SECT0Rl(NB<l)NB<2) MM"

536 PRINT"DO VOU WRNT NEXT TRRCK RND SECTOR"

590 GET Z$-IF Z$="" THEH590

600 IF Z*-^11 THEN T-NB(1)--S«NB<2>:GOTO330
610 IF Z$=»"N" THEN 320

620 GOTO 590

630 REM******************************

649 REM* SUBROUTINES *

650 REM******************************

660 REM* ERROR ROUTINE ♦

670 REM******************************

630 INPUT#15,EN,EM$,ET,ES-IF EN=0 THEN RETURN

690 PRINT"3DISK ERRORS"EN>EM*,ET,ES

700 END

710 REM******************************

720 REM* SCREEN CONTINUE MSSG ♦

730 REM******************************

740 PRINTM»MIICONTINUE<V/N>3"

750 GETZ^IF Z*«IMI THEN 750

760 IF Z$="N" THEN RETURN

770 IF Z$O"V" THEN 750

780 PRINT'TJTRRCK11 T " SECTOR"S "T'RETURN

790 REM******************************

300 REM* DISK BVTE TO HEX PRINT *

810 REM******************************
820 Rl=INT<N/16>:R*«fi*+MID$<HX$,Rl+l,l>

830 R2=INT<N-16*fll):fi*»fi*+MID$<HX$,fi2+l,l>

840 RisRt+SP**. RETURN

850 REM******************************
860 REM* DISK BVTE TO RSC DISPLRV *

870 REM* CHRRRCTER ♦

330 REM******************************
890 IF RSCCC$><32 THEN C*»" "-RETURN

910 IF RSC<C$X128 OR RSC<C$»159 THEN RETURN
920 C$=MID$<SS$,3*<fiSC<C$)-127>,3>:RETURN

73

4. CHECK DISK

1 REM CHECK DISK — VER 1.4

2 BN=8:REM FLOPPV DEVICE NUMBER

5 DIMT<100>:DIMS<100):REri BflD TRflCK, SECTOR flRRflY

9 PRINTMBKW ";

19 PRINT" CHECK DISK PROGRRM"

12 PRINT" "

20 D$="0"

39 0PEN15,DN,15

35 PRINT#15,"y"D*

45 N/i=RND<TI)*255

50 fl$="": FORI=:1TO255 = fl*=fl*+CHR$<255flNIKI+N/i)): NEXT

60 GOSUB900

70 0PEN2.DN,2.II#"

80 PRINT:PRINT#2,fi$;

85 T=i:S=0

90 PRINT#15,"B-fl:"D*;T;S

100 INPUT#15,EH,EM$,ET,ES

110 IFEN=0THEN130

115 IFET=0THEN200:REM END

120

130

134 NB=NB+i:PRINT" CHECKED BLOCKS"NB

135 PRINT" TRflCK liHI"T;" SECTOR IHm"S".Tl"

140 INPUT#15>EN,EM$,ES,ET

150 IF EN=0THEN35

160 T(J>=T S<-J>=S:J=J+1

165 PRINT"MWBflD BLOCK:III",T;S"S"

170 G0T035

200 PRINT#15,"rD$

210 GOSUB900

212 CL0SE2

215 IF>0THENPRINT")Ttt»»HO BflD BLOCKS! ":END
217 0PEN2>DN,2,"#"

213 PRINT"W)«flD BLOCKS","TRflCK","SECTORS"
220 FORI=0TOJ-1

230 PRINT#15,"B-fl-";D$,T<I>,S<I>
240 PRINT,,T<I),S<I)
250 NEXT

260 PRINT"M"J"BflD BLOCKS HflVE BEENflLLOCflTED"
270 CLOSE2=END

900 INPUT#15,EN,EM$,ET,ES
910 IF EN=0 THEN RETURN

920 PRIkr'MHERROR #"EN,EM$;ET;ES"3"
930 PRINT#15,"I"D*

5. PERFORMANCE TEST

1600 REM PERFORMflNCE TEST 1.1
1010 :

1020 REM VIC-1340 SINGLE FLQPPV DISK DRIVE
1630 '

1040 :

1050 OPEN 1,9,15--0PEN13,8i13
1060 LT=35

1070 LT$*STR$(LT)

74

1080 HT=30

1090 PRINT'TJO-

1100 PRINT"D PERFORMRNCE TEST"

1110 PRINT" •'

1120 PRINT

1130 PRINT" JIINSERT SCRflTCH"

1140 PRINT

1150 PRINT" DISKETTE IN DRIVE"
1160 PRINT

1170 PRINT"M PRESS ^RETURN!"
1180 PRINT

1130 PRINT" WHEN RERDVM"

1200 FOR 1=0 TO 50:GET ft*:NEXT

1.210 GET R$:IF fl*OCHR$<13> THEN 1210

1220 :

1230 •

1.240 TI$="000000"

1250 TT=13

1260 PRINT*1,"N0'TEST DISK,00"

1270 Cl$="ii DISK NEW COMMflND "

1280 C2$="3M WRIT RBOUT 80 SECONDS"

1290 CC$=C1$+C2$GOSUB 1840

1300 IF TKNTTHEN1370

1310 PRTNT"»3VSTEM IS"

1320 PRINT"H NOT RESPONDING"

1330 PRINT" CORRECTLY TO COMMRNDS"

1340 GOSUB 1330

1350 "•

1360 :

1370 PRINT"MDRIVE PfiSS"

1380 PRINT" MECHRNICRL TESTW"

1390 TT=21

1400 OPEN 2,3,2,"0=TEST FILE,S,W"

1410 CC*»"OPEN WRITE FILE" :GOSUB 1840

1450 CH»2:CC$-"MRITE DRTfl" :GOSUB 1930

1430 CC$="CLOSE "+CC$:GOSUB 1840

1440 OPEN 2,8,2,"0:TEST FILE,S,R"

1450 CC**"OPEN RERD FILE" -GOSUB 1840

1460 CH=2 :GOSUB 1990

1470 PRINT#1/'S0-TEST FILE"

1480 CC$="SCRRTCH FILEW"-TT=1 :GOSUB 1840

1490 ••

1510 TT«21

1520 OPEN 4,8,4,"#"

1530 NN5i»< 1+RND<TI >*254+NNSORND255: PRINT#1, "B-P"; 4;
1540 NN*-MII:FOR 1-1 TO 255:NN$«NN*+CHR$<I) :NEXT
1550 PRINTS 4,NN$;

1560 PRINT* 1/'U2'";4;0;LT;0

1570 CC*="WRITE TRRCK"+LT$-GOSUB 1840
1580 PPINT#i/'U2-";4;0;i;0

1530 CCS="WRITE TRRCK 1" :GOSUB 1840

I600 PRlNT#i/'ur";4;0;LT;0

1610 CC$="RERD TRRCK"+LT$:GOSUB 1840

1620 PRINT#l,«Ul:H;4;e:l;0
1630 CCf="RERD TRRCK 1" :GOSUB 1840
1640 CLOSE 4

1650 :

1660 '■

75

1678 PRINT "Ml UNIT HflS PRSSED"

J689 PRINT" PERFORMflNCE TEST!"

1690 PRINT-W PULL DISKETTE FROM"

1700 PRINT-S DRIVE BEFORE TURNING"

1710 PRINT" POWER OFF."

1720 END

1736 •

1740 ••

1750 PRINT" MHCONTINUE <V/N)?B";

1760 FOR 1=0 TO 50-GET fl$=NEXT

1770 GET fl$:IF fl$-M" THEN 1770

1780 PRTNT R$"W"

1790 IF R*="N" THEN END

1800 IF fi$»"V" THEN RETURN

1810 GOTO 1760

1820 •

1830 ■

1840 PRINT CC*

1850 INPUT* 1,EN,EM$,ET,ES

I860 PRINTTRB<12)"ai'EN;EM$;ET;ES;"SM

1870 IF EN<2 THEN RETURN

1880 PR1NT"M UNIT IS FRILING"

1890 PRINT"M PERFORMflNCE TEST"

1900 TM$-TI$:OOSUB 1750-TI$=TMi-RETURN

1910 •

1920 •

1930 PRINT-WRITING DflTfl"

1940 FOR I«1000 TO 2000'PRINT#CH,I'NEXT

1950 GOSUB1850

I960 CLOSE CH-RETURN

1970 ••

1980 *■

1990 PRINT"RERDING DflTR"

2000 GETR*

2810 FOR 1=1008 TO 2000

2020 INPUT* CH,J

2030 IF KM THEN PRINT":RERD ERROR:I" • GOSUB 1850

2040 NEXT

2050 GOSUB 1350

2060 CLOSE CH:RETURN

76

-ERRATA-

P 12 416

P56, P60

Wrong

TYPE: OPEN1,8,15/10"

5340 IFF>357ANDF<471

5360 IFF>580THENFl = 5

P57

tablelO

P69

P72

25to30 0tol7 18 478-579

31to35 0tol6 17 586-664

DISPLAY T&S

RANDOM FILE

410 PRINT#15/M-R"

CHR$(0) CHR$(6)

Correct

TYPE: OPEN1,8,15/I0"

5340 IFF>357ANDF<472

5360 IFF>579THENF1= 579

25to30 0tol7 18 472-579

31to35 0tol6 17 580-664

These programs require an

expander RAM.

410 PRINT#15,*M-R"

CHR$(0) CHR$(5)

CAUTION-

Attempting to LOAD Disk Progranrs that exceed your VIC's memory

area will overflow into the screen area. To avoid this problem you

should add sufficient memory to your VIC with an expander RAM

cartridge.

1982-06-02

