

USER'S MANUAL STATEMENT

WARNING: This equipment has been certified to comply with the limits for
a Class B computing device, pursuant to subpart J of Part 15 of the
Federal Communications Commission's rules, which are designed to pro
vide reasonable protection against radio and television interference in a
residential installation. If not installed properly, in strict accordance with
the manufacturer's instructions, it may cause such interference. If you
suspect interference, you can test this equipment by turning it off and on. If
this equipment does cause interference, correct it by doing any Of the

following:

• Reorient the receiving antenna or AC plug.

• Change the relative positions of the computer and the receiver.

• Plug the computer into a different outlet so the computer and

receiver are on different circuits.

CAUTION: Only peripherals with shield-grounded cables (computer input-
output devices, terminals, printers, etc.), certified to comply with Class B

limits, can be attached to this computer. Operation with non-certified
peripherals is likely to result in communications interference.

Your house AC wall receptacle must be a three-pronged type (AC
ground). If not, contact an electrician to install the proper receptacle. If a
multi-connector box is used to connect the computer and peripherals to
AC, the ground must be common to all units.

If necessary, consult your Commodore dealer or an experienced radio-
television technician for additional suggestions. You may find the following
FCC booklet helpful: "How to Identify and Resolve Radio-TV Interference
Problems." The booklet is available from the U.S. Government Printing
Office, Washington, D.C. 20402, stock no. 004-000-00345-4.

FOR USERS IN UK

WARNING: THIS APPARATUS MUST BE EARTHED !

IMPORTANT. The wires in this mains lead are coloured in accordance with the fol

lowing code:

Green and yellow

Blue

Brown

Earth

Neutral

Live

As the colours of the wires in the mains lead of this apparatus may not correspond

with the coloured marking identifying the terminals in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in

the plug which is marked by the letter E or by the safety earth symbol—or coloured

green or green and yellow.

The wire which'is coloured blue must be connected to the terminal which is

marked with the letter N or coloured black.

The wire which is coloured brown must be connected to the terminal which is

marked with the letter L or coloured red.

Disk Drive

User's Guide

1571

ommodore Electronics, Ltd. 1985. All rights reserved.

Copyright © 1985 by Commodore Electronics Limited

Second Edition. August 1985

All rights reserved

This manual contains copyrighted and proprietary information. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without the prior

written permission of Commodore Electronics Limited.

CONTENTS

INTRODUCTION 1

PART ONE: BASIC OPERATING INFORMATION

CHAPTER 1: HOW TO UNPACK, SET UP AND BEGIN USING THE 1571.... 3

step-by-step instructions 3

operating modes 5

troubleshooting guide 6

simple maintenance tips 7

inserting a diskette 7

diskette care 8

using pre-programmed (software) diskettes 9

how to prepare a new diskette 10

diskette directory 11

selective directories 12

printing a directory 13

pattern matching 13

splat files 13

CHAPTER 2: BASIC 2.0 COMMANDS 14

error checking . 14

BASIC hints 15

save 16

save with replace 16

verify 17

scratch 18

more about scratch 19

rename 20

renaming and scratching troublesome files (advanced users) 21

copy 21

validate 23

initialize 24

CHAPTER 3: BASIC 7.0 COMMANDS 25

error checking 25

save 25

save with replace 26

dverify 27

copy 27

concat 28

scratch 28

more about scratch 29

rename 30

renaming and scratching troublesome files (advanced users) 30

collect 31

initialize 32

CHAPTER 4: DOS SHELL 33

language selection 33

primary menu screen 33

disk/printer setup 33

run a program 34

format a disk 34

cleanup a disk 34

copy a disk 35

copy files 35

delete files 36

restore files 36

rename files 37

reorder directory 37

PART TWO: ADVANCED OPERATION AND PROGRAMMING

CHAPTERS: SEQUENTIAL DATA FILES 39

the concept of files 39

opening a file 39

adding to a sequential file 43

writing file data: using print# 43

closing a file 45

reading file data: using input# 46

more about input# (advanced users) 47

numeric data storage on diskette 48

reading file data: using get# 49

demonstration of sequential files 51

CHAPTER 6: RELATIVE DATA FILES 53

the value of relative access 53

files, records, and fields 53

file limits 54

creating a relative file 54

using relative files: record# command 55

completing relative file creation 57

expanding a relative file 59

writing relative file data 59

designing a relative record 59

writing the record 60

reading a relative record 64

the value of index files (advanced users) 66

CHAPTER 7: DIRECT ACCESS COMMANDS 67
a tool for advanced users. 67

opening a data channel for direct access 67

block-read 68

block-write 69

the original block-read and block-write commands (expert users) 70

the buffer pointer 71

allocating blocks 72

freeing blocks 73

using random files (advanced users) 73

CHAPTER 8: INTERNAL DISK COMMANDS 74

memory-read 75

memory-write 76

memory-execute .77

block-execute 78

user commands 79

utUity loader 80

CHAPTER 9: MACHINE LANGUAGE PROGRAMS 81

disk-related kernal subroutines 81

CHAPTER 10: BURST COMMANDS 82

read , 82

write 83

inquire disk 83

format MFM 84

format GCR (no directory) 85

sector interleave 85

query disk format 86

inquire status 86

chgutl utUity 87

fastload utUity 87

status byte breakdown 88

burst transfer protocol 89

explanation of procedures 90

example burst routines 91

APPENDICES:

A: changing the device number 98

B: dos error messages 99

C: diskette formats: GCR/MFM 103

D: disk command quick reference chart 112

E: specifications of the 1571 disk drive 114

F: serial interface information 116

G: disk operating systems: Commodore and CP/M 118

INTRODUCTION

MAIN OPERATING FEATURES

The 1571 is a versatile disk drive that handles multiple disk formats and data transfer

rates. Disk formats range from single-sided, single-density to double-sided, double-

density. The 1571 can be used with a variety of computers, including the Commodore

128, the Commodore 64, the Plus 4, C16, and VIC 20.

When used with the Commodore 128 Personal Computer, the 1571 offers the

following features:

• Standard andfast serial data transfer rates—The 1571 automatically selects the

proper data transfer rate (fast or slow) to match the three operating modes

available on the Commodore 128 computer (C128 mode, C64 mode, and CP/M

mode).

• Ability to read and write in double-density MFMformat—This allows access to

the CP/M software libraries of other personal computers.

• Double-sided, double-density data recording—Provides up to 339K storage ca

pacity per disk (169K per side).

• Special high-speed burst commands—These commands, used for machine lan

guage programs, transfer data several times faster than the standard or fast serial

rates.

When used with the Commodore 64 computer, the 1571 disk drive supports the

standard single-density GCR format disks used with the Commodore 1541, 1551, 4040,

and 2031 diskdrives.

NOTE

CP/M disks are included in Commodore 128

carton; CP/M operating information is pre

sented in the Commodore 128 user manuals.

HOW THIS GUIDE IS ORGANIZED

This guide is divided into two main parts and seven appendices, as described below:

PART ONE: BASIC OPERATING INFORMATION—includes all the information

needed by novices and advanced users to set up and begin using the Commodore

1571 disk drive. PART ONE is subdivided into four chapters:

• Chapter 1 tells you how to use disk software programs that you buy, like Perfect

Writer® and Jane®. These pre-written programs help you perform a variety of

activities in fields such as business, education, finance, science, and recreation. If

you're interested only in loading and running pre-packaged disk programs, you

need read no further than this chapter. If you are also interested in saving, loading,

and running your own programs, you will want to read the remainder of the guide.

• Chapter 2 describes the use of the BASIC 2.0 disk commands with the Commo

dore 64 and Commodore 128 computers.

1

• Chapter 3 describes the use of the BASIC 7.0 disk commands with the Commo

dore 128.

• Chapter 4 describes the use of the DOS Shell program, which provides you with a

convenient alternative way to execute disk drive commands. The DOS Shell is

included on the 1571 test/demo diskette supplied with your disk drive.

PART TWO: ADVANCED OPERATION AND PROGRAMMING—is primarily

intended for users familiar with computer programming. PART TWO is subdivided

into six chapters:

• Chapter 5 discusses the concept of data files, defines sequential data files, and

describes how sequential data files are created and used on disk.

• Chapter 6 defines the differences between sequential and relative data files, and

describes how relative data files are created and used on disk.

• Chapter 7 describes direct access disk commands as a tool for advanced users and

illustrates their use.

• Chapter 8 centers on internal disk commands. Before using these advanced

commands, you should know how to program a 6502 chip in machine language

and have access to a good memory map of the 1571.

• Chapter 9 provides a list of disk-related kernal ROM subroutines and gives a

practical example of their use in a program.

• Chapter 10 gives information on high-speed burst commands.

APPENDICES A THROUGH G-—provide various reference information; for example,

Appendix A tells you how to set the device number through use of two switches on the

back of the drive.

PART ONE:

BASIC OPERATING INFORMATION

CHAPTER 1

HOW TO UNPACK, SET UP AND BEGIN USING THE 1571

STEP-BY-STEP INSTRUCTIONS

1. Inspect the shipping carton for damage.

If you find any damage to the shipping carton and suspect that the disk drive may have

been affected, contact your dealer.

2. Check the contents of the shipping carton.

Packed with the 1571 and this book, you should find the following: 3-prong electrical

power cord, interface cable, Test/Demo diskette, and a warranty card to be filled out

and returned to Commodore.

3. Remove the cardboard shipping spacer from the disk drive.

The spacer is there to protect the inside of the drive during shipping. To remove it,

rotate the lever on the front of the drive counter-clockwise (see Figure 1) and pull out

the spacer.

Figure 1. Front of 1571 Disk Drive

POWER DRIVE

LEVERFOR CLOSING DRIVE.

4. Connect the power cord.

Check the ON/OFF switch on the back of the drive (see Figure 2) and make sure it's

OFF. Connect the cord where indicated in Figure 2. Plug the other end into a grounded

(3-prong) outlet. Don't turn the power on yet.

Figure 2. Connection of Power Cord and Interface Cables to 1571

BACK OF

C128

SERIAL PORT

CONNECTOR

ON

C128

ON/OFF

SWITCH

POWER CORD

SOCKET

SERIAL PORT

CONNECTORS

FOR

INTERFACE

CABLES

.BACK OF 1571

DIP SWITCHES

FOR CHANGING

DEVICE

NUMBER

GROUNDED

POWER

OUTLET

5. Connect the interface cable.

Make sure your computer and any other peripherals are OFF. Plug either end of the

interface cable into either serial port on the back of the drive (see Figure 2). Plug the

other end of the cable into the back of the computer. If you have another peripheral

(printer or extra drive), plug its interface cable into the remaining serial port on the

drive.

6. Turn ON the power.

With everything hooked up and the drive empty, you can turn on the power to the

peripherals in any order, but turn on the power to the computer last. When everything

is on, the drive goes through a self test. If all is well, the green light will flash once and

the red power-on light will glow continuously. If the green light continues to flash,

there may be a problem. Refer to the Troubleshooting Guide.

OPERATING MODES

To achieve maximum compatability between the 1571 and other disk drives, the

1571 has two modes of operation that allow it to be used in a variety of situations.

1541 Mode

When you first turn on the 1571, it powers up in 1541 mode. That is, it works almost

exactly as a 1541 disk drive, which helps maintain compatability with certain special

programs and copy-protected diskettes. Also, many loading routines are dependent upon

the 1541-speed internal timing. However, when the drive is in this mode, it can't take

advantage of the special 1571 features.

1571 Mode

In 1571 mode, the drive can take advantage of such features as double-sided

diskettes, MFM-format diskettes, fast data transfer rates, and burst transfer protocol. The

1571 can determine whether or not the host computer can receive fast data transfer and

transmits accordingly.

Mode Selection

As mentioned above, the 1571 powers up in 1541 mode. However, it automatically

shifts to 1571 mode upon the first of a fast serial transfer initiated by the host (the

Commodore 128). The Commodore 64 and Plus 4 can't perform fast serial transfers on the

serial bus, but you can shift from 1541 to 1571 mode by sending the following BASIC

command: OPEN 1,8,15,"U0>M1". Although these computers can't directly take

advantage of the drive's faster transfer speeds, they can have twice the normal storage.

If you are using a Commodore 128 and want the 1571 to remain in 1541 mode, you

can send the following BASIC command: OPEN 1,8,15,"U0>M0". The drive will

then remain in 1541 mode until the next power up or system reset.

The possible combinations of modes with the Commodore 128 and 1571 are shown

below:

C128/1571 modes—Turn on the drive, then turn on or reset the computer.

C128/1541 modes—Turn on or reset the computer, and when the cursor appears,

turn on the drive. In this case, the first disk access will switch

the drive to 1571 mode, so send the BASIC command given on

the previous page to lock the drive into 1541 mode.

C64/1571 modes —Turn on the drive, then turn on or reset the computer and type:

GO 64

C64/1541 modes —Turn on the drive, then hold down the COMMODORE key

while you turn on or reset the computer.

TROUBLESHOOTING GUIDE

Problem

Red power-on

indicator not

lit

Green drive light flashing

Programs won't load and the

computer says "DEVICE

NOT PRESENT ERROR"

Programs won't load, but

the computer and disk drive

Possible Cause

Power not ON

Power cable not

plugged in

Power off to wall outlet

Drive failing its self test

Interface cable not well

connected or drive not ON

Switches on back of drive

may not be set for correct

device number

Another part of the system

may be interfering

Solution

Make sure ON/OFF switch

is ON

Check both ends of power

cable to be sure they are

fully inserted

Replace fuse or reset circuit

breaker in house

Turn the system off for a

moment then try again. If

the light still flashes, turn

the drive off and on again

with the interface cable

disconnected. If the problem

persists, contact your dealer.

If unplugging the interface

cable made a difference,

make sure the cable is

properly connected. If that

doesn't work, the problem is

probably in the cable itself

or somewhere else in the

system

Be sure the cable is properly

connected and the drive

is ON

Check Appendix A for

correct setting to match

LOAD command

Unplug all other machines

on the computer. If that

give no error message cures it, plug them in one at

a time. The one just added

when the trouble repeats is

most likely the problem

Trying to load a machine

language program into

BASIC space will cause this

problem

TROUBLESHOOTING GUIDE (continued)

Problem Possible Cause Solution

Programs won't load and Disk error Check the error channel to

green drive light flashes determine the error, then

follow the advice in

Appendix B to correct it.

The error channel is

explained in Chapters 2 and 3

(Be sure to spell program names correctly and include the exact punctuation when loading the

programs)

Your programs load OK, but Either the diskette is faulty, Try another copy of the

commercial programs and or your disk drive is program. If several

those from other 1571s don' t misaligned programs from several

sources fail to load, have

your dealer align your disk

drive

Your programs that used to Older diskettes have • See the safety tips for

load, won't anymore, but been damaged diskettes in the next section,

programs saved on newly- Recopy from backups

formatted diskettes will The disk^ has gQne ^ Haye^^^^

of alignment your disk drive

SIMPLE MAINTENANCE TIPS

1. Keep the drive well ventilated.

A couple of inches of space to allow air circulation on all sides will prevent heat from

building up inside the drive.

2. Use Commodore diskettes.

Badly-made diskettes can cause increased wear on the drive's read/write head. If

you're using a diskette that is unusually noisy, it could be causing added wear and

should be replaced.

3. The 1571 should be cleaned once a year in normal use.

Several items are likely to need attention: the two read/write heads may need cleaning

(with 91% isopropyl alcohol on a cotton swab). The rails along which the head moves

may need lubrication (with a special molybdenum lubricant, not oil), and the write

protect sensor may need to be dusted. Since these chores require special materials or

parts, it is best to leave the work to an authorized Commodore service center. If you

want to do the work yourself, ask your dealer for the appropriate materials. IMPOR

TANT: Home repair of the 1571 will void your warranty.

INSERTING A DISKETTE

To insert a diskette, first open the drive door by rotating the door lever counter

clockwise one quarter turn until it stops, with the lever parallel to the horizontal slot in the

front of the drive.

Grasp the diskette by the side opposite the large oval access slot, and hold it with the

label up and the write-protect notch to the left (See Figure 3). Now insert the diskette by

pushing it straight into the slot, the access slot going in first and the label last. Be sure the

diskette goes in until it stops naturally. You shouldn't have toforce or bend it to get it in.

NOTE: When the write/protect notch is covered by tape, the contents of the

diskette cannot be altered or added to. That prevents accidental erasing of informa

tion you want to preserve. If a diskette comes without a write/protect notch, the

contents of that diskette were not meant to be altered.

Blank diskettes may not have a label on them when you purchase them.

With the diskette in position, seat it properly for use by twisting the door lever

clockwise one-quarter turn until it stops vertically over the slot. Warning: If it doesn't

move easily, stop. You may have put the diskette in the wrong way, or incompletely. If

that happens, reposition the diskette until the door lever closes easily.

LABEL

WRITE PROTECT NOTCH.

SOMETIMES COVERED WITH TAPE

REINFORCED CENTER HUB

OVAL ACCESS

SLOT

Figure 3. Inserting a Diskette

DISKETTE CAHE

1. Don't touch the axposed parts of a diskette.

That includes the access slot and the center hub (the hole in the middle).

2. Don't bend a diskette.

They're called floppy diskettes, but they're not supposed to be flopped.

3. Keep the diskettes (and disk drive) away from magnets.

That includes the electromagnets in telephones, televisions, desk lamps, and calculator

cords. Keep smoke, moisture, dust, and food off the diskettes. Store diskettes upright

in their paper jackets.

4. Buy diskettes with reinforced hubs.

Although the drive usually centers a diskette correctly, it would be difficult to rescue

data from a diskette recorded with its hub off-center. Reinforced hubs make it easier

. for the drive to center a diskette.

5. Remove a diskette before turning the drive off.

If you don't, you might lose part or all the data on the diskette.

6. Don't remove a diskette from the drive while the green light is glowing.

That light glows when the drive is in use. If you remove the diskette then, you might

lose the information currently being written to the diskette.

8

USING PRE-PROGRAMMED (SOFTWARE) DISKETTES

Your software user's guide should list the procedure for loading the program into

your computer. Nevertheless, we've included the following procedure as a general guide.

You'll also use this procedure to load programs or files from your own diskettes. For

purposes of demonstration, use the Test/Demo diskette included with the disk drive.

1. Turn on system.

2. Insert diskette.

3. If you are using a VIC 20, Commodore 64, or a Commodore 128 computer in C64

mode, type: LOAD "HOW TO USE",8

If you are using a Plus/4 or Commodore 128 in C128 mode, type: DLOAD "HOW TO

USE"

4. Press the RETURN key.

5. The following will then appear on the screen:

SEARCHING FOR 0:HOW TO USE

LOADING

READY

I

6. Type: RUN

7. Press the RETURN key.

To load a different program or file, simply substitute its name in place of HOW TO

USE inside the quotation marks. NOTE: The HOW TO USE program is the key to the

Test/Demo diskette. When you LOAD and RUN it, it provides instructions for using the

rest of the programs on the diskette. To find out what programs are on your Test/Demo

diskette, refer to the section entitled "DIRECTORIES" later in this chapter.

If a program doesn't load or run properly using the above method, it may be that it is

a machine language program. But unless you'll be doing advanced programming, you

need not know anything about machine language. A program's user's guide should tell

you if it is written in machine language. If it is, or if you are having trouble loading a

particular program, simply add a ,1 (comma and number 1) at the end of the command.

IMPORTANT NOTE

Throughout this manual, when the format for a command is given, it will

follow a particular style. Anything that is capitalized must be typed in exactly as it

is shown (these commands are listed in capital letters for style purposes, DO NOT

use the SHIFT key when entering these commands). Anything in lower case is

more or less a definition of what belongs there. Anything in brackets is optional.

For instance, in the format for the HEADER command given on the following

page, the word HEADER, the capital I in lid, the capital D in Ddrive#, and the

capital U in Udevice# must all be typed in as is (Ddrive# and Udevice# are

optional).

On the other hand, diskette name tells you that you must enter a name for the

diskette, but it is up to you to decide what that name will be. Also, the id in lid is

left to your discretion, as is the device# in Udevice#. The drive# in Ddrive# is

always 0 on the 1571, but could be 0 or 1 on a dual disk drive. Be aware, however,

that there are certain limits placed on what you can use. In each case, those limits

are explained immediately following the format (for instance, the diskette name

cannot be more than sixteen characters and the device# is usually 8).

Also be sure to type in all punctuation exactly where and how it is shown in

the format.

Finally, press the RETURN key at the end of each command.

HOW TO PREPARE A NEW DISKETTE

A diskette needs a pattern of magnetic grooves in order for the drive's read/write

head to find things on it. This pattern is not on your diskettes when you buy them, but you

can use the HEADER command or the NEW command to add it to a diskette. That is

known as formatting the disk. This is the command to use with the C128 in C128 mode or

Plus/4:

HEADER "diskette name'\Iid,Ddrive#[,Udevice#]

Where:

"diskette name" is any desired name for the diskette, up to 16 characters long (including

spaces), "id" can be any two characters as long as they don't form a BASIC keyword

(such as IF or ON) either on their own or with the capital I before them. "drive#" is 0 .

"device#" is 8, unless you have changed it as per instructions in Appendix A (the 1571

assumes 8 even if you don't type it in).

The command for the C64, VIC 20, or C128 in C64 mode is this:

OPEN 15,device#,15,"NEWdrive#:diskette name,id"

CLOSE 15

The device#, drive#, diskette name, and id are the same as described above.

The OPEN command is explained in the next chapter. For now, just copy it as is.

10

NOTE TO ADVANCED USERS

If you want to use variables for the diskette name or id, the format is as follows:

C128, Plus/4: HEADER (A$),I(B$),D0

C64: OPEN 15,8,15:PRINT#15,<<N0:"

Where:

A$ contains the diskette name (16 character limit)

B$ contains the id (2 characters long)

After you format a particular diskette, you can reformat it at any time. You can

change its name and erase its files faster by omitting the ic1 number in the HEADER

command.

DISKETTE DIRECTORY

A directory is a list of the files on a diskette. To load the directory on the Cl 28 or

Plus/4, type the word DIRECTORY on a blank line and press the RETURN key or simply

press the F3 key on the C128. That doesn't erase anything in memory, so you can call i-p a

directory anytime—even from within a program. The C64 directory command, LOAD

"$",8 (press RETURN) LIST (press RETURN), does erase what's in memory.

If a directory doesn't all fit on the screen, it will scroll up until it reaches the last line.

If you want to pause, stop, or slow down the scrolling, refer to your particular computer's

user's manual for instructions as to which keys to use.

To get an idea of what a directory looks like, load the directory from the Test/Demo

diskette.

The 0 on the left-hand side of the top line is the drive number of the 1571 (on a dual

disk drive it could be 0 or 1). The diskette name is next, followed by the diskette id—both

of which are determined when the diskette is formatted.

The 2A at the end of the top line means the 1571 uses Version 2A of Commodore's

disk operating system (DOS).

Each of the remaining lines provides three pieces of information about the files on the

diskette. At the left end of each line is the size of the file in blocks of 254 characters. Four

blocks are equivalent to almost IK of memory inside the computer. The middle of the line

contains the name of the file enclosed in quotation marks. All characters within the

quotation marks are part of the filename. The right side of each line contains a three-letter

abbreviation of the file type. The types of files are described in later chapters.

11

TYPES OF FILES

PRG—Program

SEQ—Sequential

REl^-Relative

USR—User

DEL—Deleted (you won't see this type)

Note: Direct Access files, also called Random files, do not automatically appear in

the directory. They are covered in Chapter 7.

The bottom line of a directory shows how many blocks are available for use. This

number ranges from 664 (in 1541 mode) and 1328 (in 1571 mode) on a newly formatted

diskette to 0 on one that is completely full.

SELECTIVE DIRECTORIES

By altering the directory LOAD command, you can create a kind of "sub-directory"

that lists a single selected type of file. For example, you could request a list of all

sequential data files (Chapter 5), or one of all the relative data files (Chapter 6). The

format for this command is:

LOAD4 '$0:pattern = filetype'' ,8 (for the C64)

where pattern specifies a particular group of files, and filetype is the one-letter abbrevia

tion for the types of files listed below:

P = Program

S = Sequential

R = Relative

U = User

The command for the C128 and Plus/4 is this: DIRECTORY* 'pattern = filetype"

Some examples:

LOAD"$0:* = R",8 and DIRECTORY"* = R" display all relative files.

LOAD"$0:Z* = R",8 and DIRECTORY4'Z* = R" display a sub-directory consist

ing of all relative files that start with the letter Z (the asterisk (*) is explained in the

section entitled "Pattern Matching."

12

PRINTING A DIRECTORY

To get a printout of a directory, use the following:

LOAD4'$",8

OPEN4,4:CMD4:LIST

PRINT#4:CLOSE4

PATTERN MATCHING

You can use special pattern-matching characters to load a program from a partial

name or to provide the selective directories described earlier.

The two characters used in pattern matching are the asterisk (*) and the question

mark (?). They act something like a wild card in a game of cards. The difference between

the two is that the asterisk makes all characters in and beyond its position wild, while the

question mark makes only its own position wild. Here are some examples and their

results:

LOAD "A*",8 loads the first file on disk that begins with an A, regardless of what

follows

DLOAD"SM?TH" loads the first file that starts with SM, ends with TH, and one

other character between

DIRECTORY**Q*" loads a directory of files whose names begin with Q

L0AD"*",8 is a special case. When an asterisk is used alone as a name, it matches

the last file used (on the C64 and C128 in C64 mode).

LOAD "0:*",8 loads the first file on the diskette (C64 and C128 in C64 mode).

DLOAD "*" loads the first file on the diskette (Plus/4 and C128 in C128 mode).

SPLAT FILES

One indicator you may occasionally notice on a directory line, after you begin saving

programs and files, is an asterisk appearing just before the file type of a file that is 0

blocks long. This indicates the file was not properly closed after it was created, and that it

should not be relied upon. These "splat" files normally need to be erased from the

diskette and rewritten. However, do not use the SCRATCH command to get rid of them.

They can only be safely erased by the VALIDATE or COLLECT commands. One of

these should normally be used whenever a splat file is noticed on a diskette. All of these

commands are described in the following chapters.

There are two exceptions to the above warning: one is that VALIDATE and

COLLECT cannot be used on some diskettes that include direct access (random) files

(Chapter 7). The other is that if the information in the splat file was crucial and can't be

replaced, there is a way to rescue whatever part of the file was properly written. This

option is described in the next chapter.

13

CHAPTER 2

BASIC 2.0 COMMANDS

This chapter describes the disk commands used with the VIC 20, Commodore 64 or

the Commodore 128 computer in C64 mode. These are Basic 2.0 commands.

You send command data to the drive through something called the command

channel. The first step is to open the channel with the following command:

OPEN15,8,15

The first 15 is a file number or channel number. Although it could be any number

from 1 to 255, we'll use 15 because it is used to match the secondary address of 15, which

is the address of the command channel. The middle number is the primary address, better

known as the device number. It is usually 8, unless you change it (see Appendix A).

Once the channel has been opened, use the PRINT# command to send information

to the disk drive and the INPUT# command to receive information from the drive. You

must close the channel with the CLOSE15 command.

The following examples show the use of the command channel to NEW an unformat

ted disk:

OPEN15,8,15

PRINT# 15,' 'NEWdrive#:diskname,id''

CLOSE15

You can combine the first two statements and abbreviate the NEW command like

this:

OPEN15,8,15,"Ndrive# :diskname,id"

If the command channel is already open, you must use the following format (trying to

open a channel that is already open results in a "FILE OPEN" error):

PRIOT#15,"Ndrive#:diskname,id"

ERROR CHECKING

In Basic 2.0, when the green drive light flashes, you must write a small program to

find out what the error is. This causes you to lose any program variables already in

memory. The following is the error check program:

10OPEN15,8,15

20 INPUT#15,EN,EM$,ET,ES

30 PRINT EN, EM$,ET,ES

40 CLOSE15

This little program reads the error channel into four BASIC variables (described

below), and prints the results on the screen. A message is displayed whether there is an

14

error or not, but if there was an error, the program clears it from disk memory and turns

off the error light on the disk drive.

Once the message is on the screen, you can look it up in Appendix B to see what it

means, and what to do about it.

For those of you who are writing programs, the following is a small error-checking

subroutine you can include in your programs:

59980 REM READ ERROR CHANNEL

59990 INPUT#15,EN,EM$,ET,ES

60000 IF EN>1 THEN PRINT EN,EM$,ET,ES:STOP

60010 RETURN

This assumes file 15 was opened earlier in the program, and that it will be closed at

the end of the program.

The subroutine reads the error channel and puts the results into the named varia

bles—EN (Error Number), EM$ (Error Message), ET (Error Track), and ES (Error

Sector). Of the four, only EM$ has to be a string. You could choose other variable names,

although these have become traditional for this use.

Two error numbers are harmless—0 means everything is OK, and I tells how many

files were erased by a SCRATCH command (described later in this chapter). If the error

status is anything else, line 60000 prints the error message and halts the program.

Because this is a subroutine, you access it with the BASIC GOSUB command, either

in immediate mode or from a program. The RETURN statement in line 60010 will jump

back to immediate mode or the next statement in your program, whichever is appropriate.

BASIC HINTS

Hint #1: It is best to open file 15 once at the very start of a program, and only close it at

the end of the program, after all other files have already been closed. By opening it once at

the start, the file is open whenever needed for disk commands elsewhere in the program.

Hint #2: If BASIC halts with an error when you have files open, BASIC aborts them

without closing them properly on the disk. To close them properly on the disk, you must

type:

CLOSE 15:OPEN 15,8,15,'T':CLOSE 15

This opens the command channel and immediately closes it, along with all other disk

files. Failure to close a disk file properly both in BASIC and on the disk may result in

losing the entire file.

Hint #3: One disk error message is not always an error. Error 73, "CBM DOS 3.0

1571" will appear if you read the disk error channel before sending any disk commands

when you turn on your computer. This is a handy way to check which version of DOS you

are using. However, if this message appears later, after other disk commands, it means

there is a mismatch between the DOS used to format your diskette and the DOS in your

drive. DOS is Disk Operating System.

15

Hint #4: To reset drive, type: OPEN 15,8,15,"UJ":CLOSE 15. This also applies to

sending a UI + or a UI.

SAVE

Use the SAVE command to preserve a program or file on a diskette for later use.

Before you can SAVE to diskette, the diskette must be formatted, as described

earlier.

FORMAT FOR THE SAVE COMMAND

SAVE "drive #:file name",device #

where "file name" is any string expression of up to 16 characters, preceded by the drive

number and a colon, and followed by the device number of the disk, normally 8.

However, the SAVE command will not work in copying programs that are not in the

BASIC text area, such as "DOS 5.1" for the C64. To copy it and similar machine-

language programs, you will need a machine-language monitor program.

FORMAT FOR A MONITOR SAVE

.S "drive #:file name",device #,starting address,ending address + 1

where "drive #:" is the drive number, 0 on the 1571; "file name" is any valid file name

up to 14 characters long (leaving two for the drive number and colon); "device #" is a

two digit device number, normally 08 (the leading 0 is required); and the addresses to be

saved are given in Hexadecimal but without a leading dollar sign ($). Note the ending

address listed must be one location beyond the last location to be saved.

EXAMPLE:

Here is the required syntax to SAVE a copy of "DOS 5.1"

.S "0:DOS 5.1",08,CC00,D000

SAVE WITH REPLACE OPTION

If a file already exists, it can't be saved again with the same name because the disk

drive only allows one copy of any given file name per diskette. It is possible to get around

this problem using the RENAME and SCRATCH commands described later. However, if

all you wish to do is replace a program or data file with a revised version, another

command is more convenient. Known as SAVE-WITH-REPLACE, or ©SAVE, this

option tells the disk drive to replace any file it finds in the diskette directory with the same

name, substituting the new file for the old version.

16

FORMAT FOR SAVE WITH REPLACE:

SAVE*'©Drive #:file name", device #

where all the parameters are as usual except for adding a leading "at" sign (@.) The

"drive #:" is required here.

EXAMPLE:

SAVE"@O:REVISED PR0GRAM",8

The actual procedure is that the new version is saved completely, then the old version

is erased. Because it works this way, there is little danger a disaster such as having the

power going off midway through the process would destroy both the old and new copies

of the file. Nothing happens to the old copy until after the new copy is saved properly.

Caution—do not use @SAVE on an almost-full diskette. Only use it when you have

enough room on the diskette to hold a second complete copy of the program being

replaced. Due to the way ©SAVE works, both the old and new versions of the file are on

disk simultaneously at one point, as a way of safeguarding against loss of the program. If

there is not enough room left on diskette to hold that second copy, only as much of the

new version will be saved as there is still room for. After the command executes, a look at

the directory will show the new version is present, but doesn't occupy enough blocks to

match the copy in memory. Unfortunately, the VERIFY command (see below) will not

detect this problem, because whatever was saved will have been saved properly.

VERIFY

Although not as necessary with a disk drive as with a cassette, BASIC'S VERIFY

command can be used to make doubly certain that a program file was properly saved to

disk. It works much like the LOAD command, except that it only compares each character

in the program against the equivalent character in the computer's memory, instead of

actually being copied into memory.

If the disk copy of the program differs even a tiny bit from the copy in memory,

"VERIFY ERROR" will be displayed, to tell you that the copies differ. This doesn't

mean either copy is bad, but if they were supposed to be identical, there is a problem.

Naturally, there's no point in trying to VERIFY a disk copy of a program after the

original is no longer in memory. With nothing to compare to, an apparent error will

always be announced, even though the disk copy is always and automatically verified as it

is written to the diskette.

FORMAT FOR THE VERIFY COMMAND:

VERIFY "drive#:pattern",device#,relocate flag

where "drive#:" is an optional drive number, "pattern" is any string expression that

evaluates to a file name, with or without pattern-matching characters, and "device#" is

the disk device number, normally 8. If the relocate flag is present and equals 1, the file

will be verified where originally saved, rather than relocated into the BASIC text area.

17

A useful alternate form of the command is:

VERIFY''*",device#

It verifies the last files used without having to type its name or drive number. However, it

won't work property after SAVE-WTTH-REPLACE, because the last file used was the

one deleted, and the drive will try to compare the deleted file to the program in memory.

No harm will result, but "VERIFY ERROR" will always be announced. To use VERIFY

after @SAVE, include at least part of the file name that is to be verified in the pattern.

One other note about VERIFY—when you VERIFY a relocated BASIC file, an error

will nearly always be announced, due to changes in the link pointers of BASIC programs

made during relocation. It is best to VERIFY files saved from the same type of machine,

and identical memory size. For example, a BASIC program saved from a Plus/4 can't be

verified easily vith a C64, even when the program would work fine on both machines.

This shouldn't matter, as the only time you'll be verifying files on machines other than the

one which wrote them is when you are comparing two disk files to see if they are the

same. This is dom by loading one and verifying against the other, and can only be done

on the same machire and memory size as the one on which the files were first created.

SCRATCH

The SCRATCH conn, and allows you to erase unwanted files and free the space they

occupied for use by othsr files. It can be used to erase either a single file or several files at

once via pattern-matching.

FORMAT FOR THE SCRATCH COMMAND:

PRINT# 15,' 'SCRATCH0:pattern''

or abbreviate it as:

PRINT#15,"S0:pattern"

"pattern" can be any file name or combination of characters and wild-card characters. As

usual, it is assumed the command channel has already been opened as file 15. Although

not absolutely necessary, it is best to include the drive number in SCRATCH commands.

If you check the error channel after a SCRATCH command, the value for ET (error

track) will tell you how many files were scratched. For example, if your diskette contains

program files named "TEST," "TRAIN," "TRUCK," and "TAIL," you may

SCRATCH all four, along with any other files beginning with the letter "T," by using the

command:

PRINT#15,'S0:T*'

Then, to prove they are gone, you can type:

GOSUB 59990

18

to call the error checking subroutine given earlier in this chapter. If the four listed were the

only files beginning with "T", you will see:

01 ,FILES SCRATCHED,04,00

READY.

The "04" tells you 4 files were scratched.

MORE ABOUT SCRATCH

SCRATCH is a powerful command and should be used with caution to be sure you

delete only the files you really want erased. When using it with a pattern, we suggest you

first use the same pattern in a DIRECTORY command, to be sure exactly which files will

be deleted. That way you* 11 have no unpleasant surprises when you use the same pattern in

the SCRATCH command.

Recovering from a SCRATCH

If you accidentally SCRATCH a file you shouldn't have, there is still a chance of

saving it. Like BASIC'S NEW command, SCRATCH doesn't really wipe out a file itself;

it merely clears the pointers to it in the diskette directory. There may be an "Unscratch"

program on your Test/Demo diskette.

NOTE: If you accidentally SCRATCH a file within the DOS Shell (see Chapter 4),

you can unscratch it with the Shell's RESTORE FILES function.

More about Splats

Never scratch a splat file. These are files that show up in a directory listing with an

asterisk (*) just before the file type for an entry. The asterisk (or splat) means that file was

never properly closed, and thus there is no valid chain of sector links for the Scratch

command to follow in erasing the file.

If you SCRATCH such a file, odds are you will improperly free up sectors that are

still needed by other programs or files and cause permanent damage to those later when

you add more files to the diskette. If you find a splat file, or if you discover too late that

you have scratched such a file, immediately validate the diskette using the VALIDATE

command described later in this chapter. If you have added any files to the diskette since

scratching the splat file, it is best to immediately copy the entire diskette onto another

fresh diskette, but do this with a copy program rather than with a backup program.

Otherwise, the same problem will be recreated on the new diskette. When the new copy is

done, compare the number of blocks free in its directory to the number free on the original

diskette. If the numbers match, no damage has been done. If not, very likely at least one

file on the diskette has been corrupted, and all should be checked immediately.

19

Locked Files

Occasionally, a diskette will contain a locked file; one which cannot be erased with

the SCRATCH command. Such files may be recognized by the "<" character which

immediately follows the file type in their directory entry. If you wish to erase a locked

file, you will have to use a disk monitor to clear bit 6 of the file-type byte in the directory

entry on the diskette. Conversely, to lock a file, you would set bit 6 of the same byte.

RENAME

The RENAME command allows you to alter the name of a program or other file in the

diskette directory. Since only the directory is affected, RENAME works .very quickly.

FORMAT FOR RENAME COMMAND:

PRINT#15,"RENAME0:new name = old name"

or it may be abbreviated as:

PRINT#15,"R0:new name = old name"

where "new name" is the name you want the file to have, and "old name" is the name it

has now. "new name" may be any valid file name, up to 16 characters in length. It is

assumed you have already opened file 15 to the command channel.

One caution—be sure the file you are renaming has been properly closed before you

rename it.

EXAMPLES:

Just before saving a new copy of a "calendar" program, you might type:

PRINT# 15,* 'R0:CALENDAR/BACKUP= CALENDAR''

Or to move a program called "BOOT," currently the first program on a diskette to

someplace else in the directory, you might type:

PRINT#15,"R0:TEMP = BOOT"

followed by a COPY command (described later), which turns "TEMP" into a new copy

of "BOOT," and finishing with a SCRATCH command to get rid of the original copy of

"BOOT."

20

RENAMING AND SCRATCHING TROUBLESOME FILES

(ADVANCED USERS)

Eventually, you may run across a file which has an odd filename, such as a comma

by itself (",") or one that includes a Shifted Space (a Shifted Space looks the same as a

regular space, but if a file with a space in its name won't load properly and all else is

correct, it's probably a Shifted Space). Or perhaps you will find one that includes

nonprinting characters. Any of these can be troublesome. Comma files, for instance, are

an exception to the rule that no two files can have the same name. Since it shouldn't be

possible to make a file whose name is only a comma, the disk never expects you to do it

again.

Files with a Shifted Space in their name can also be troublesome, because the disk

interprets the Shifted Space as signaling the end of the file name, and prints whatever

follows after the quotation mark that marks the end of a name in the directory. This

technique can be useful by allowing you to have a long file name, and making the disk

recognize a small part of it as being the same as the whole thing without using pattern-

matching characters.

In any case, if you have a troublesome filename, you can use the CHR$() function to

specify troublesome characters without typing them directly. This may allow you to build

them into a RENAME command. If this fails, you may also use the pattern-matching

characters in a SCRATCH command. This gives you a way to specify the name without

using the troublesome characters at all, but also means loss of your file.

For example, if you have managed to create a file named ""MOVIES", with an

extra quotation mark at the front of the file name, you can rename it to "MOVIES" using

the CHR$() equivalent of a quotation mark in the RENAME command:

PRINT#15,"R0:MOVIES = " + CHR$(34) + "MOVIES"

The CHR$(34) forces a quotation mark into the command string without upsetting

BASIC. The procedure for a file name that includes a Shifted Space is similar, but uses

CHR$(160).

In cases where even this doesn't work, for example, if your diskette contains a

comma file, (one named ",") you can get rid of it this way:

PRINT#15,"S0:?"

This example deletes all files with one character names.

Depending on the exact problem, you may have to be very creative in choosing

pattern-matching characters that will affect only the desired file, and may have to rename

other files first to keep them from being scratched.

In some cases, it may be easier to copy desired files to a different diskette and leave

the troublesome files behind.

COPY

The COPY command allows you to make a spare copy of any program or file on a

diskette. On a single drive like the 1571, the copy must be on the same diskette, which

means it must be given a different name from the file copied. It's also used to combine up

21

to four sequential data files (linking the files one to another, end to end in a chain). Files

are linked in the order in which they appear in the command. The source files and other

files on the diskette are not changed. Files must be closed before they are copied or linked.

FORMAT FOR THE COPY COMMAND

PRINT#15,"COPYdrive #:new file = old file"

EXAMPLES:

PRINT#15 ,' 'COPY0:BACKUP= ORIGINAL"

or abbreviated as

PRINT#15,"Cdrive #:new file=old file"

PRINT#15/ 4C0:BACKUP=ORIGINAL''

where "drive #" is the drive number "new file" is the copy and "old file" is the

original.

FORMAT FOR THE COMBINE OPTION

PRINT#15,<tCdrive #:new file = file l,file 2,file 3, file 4"

where "drive #" is always 0,

NOTE: The length of a command string (command and filenames) is limited to 41

characters.

EXAMPLES:

After renaming a file named "BOOT" to "TEMP" in the last section's example,

you can use the COPY command to make a spare copy of the program elsewhere on the

diskette, under the original name:

PRINT#15,"C0:BOOT=TEMP"

After creating several small sequential files that fit easily in memory along with a

program we are using, you can use the concatenate option to combine them in a master

file, even if the result is too big to fit in memory. (Be sure it will fit in remaining space on

the diskette—it will be as big as the sum of the sizes of the files in it.)

PRINT#15,"C0:A-Z = A-G,H-M,N-Z"

22

NOTE: Dual drives make fuller use of this command, copying programs from one

diskette to another in a single-disk unit. To do that on the 1571, check your Test/

Demo diskette to find the programs that you need or use the DOS Shell described in

Chapter 4.

VALIDATE

The VALIDATE command recalculates the Block Availability Map (BAM) of the

current diskette, allocating only those sectors still being used by valid, properly-closed

files and programs. All other sectors (blocks) are left unallocated and free for re-use, and

all improperly closed files are automatically scratched. This brief description of its

workings doesn't indicate either the power or the danger of the VALIDATE command. Its

power is in restoring to good health many diskettes whose directories or block availability

maps have become muddled. Any time the blocks used by the files on a diskette plus the

blocks shown as free don't add up to the 664 (in 1541 mode) or 1328 (in 1571 mode)

available on a fresh diskette, VALIDATE is needed, with one exception below. Similarly,

any time a diskette contains an improperly-closed file (splat file), indicated by an asterisk

(*) next to its file type in the directory, that diskette needs to be validated. In fact, but for

the one exception, it is a good idea to VALIDATE diskettes whenever you are the least bit

concerned about their integrity.

The exception is diskettes containing Direct Access files, as described in Chapter 7.

Most direct access (random) files do not allocate their sectors in a way the VALIDATE

command can recognize. Thus, using VALIDATE on such a diskette may result in un-

allocating all direct access files, with loss of all their contents when other files are added.

Unless specifically instructed otherwise, never use VALIDATE on a diskette containing

direct access files. (Note: these are not the same as the relative files described in Chapter

6. VALIDATE may be used on relative files without difficulty.)

FORMAT FOR THE VALIDATE COMMAND

PRINT#15,"VALIDATE0"

or abbreviated as

PRINT#15,"V0"

where "0" is the drive number. As usual, it is assumed file 15 has been opened to the

command channel and will be closed after the command has been executed.

EXAMPLE:

PRINT#15,"V0"

23

INITIALIZE

One command that should not often be needed on the 1571, but is still of occasional

value is INITIALIZE. On the 1571, and nearly all other Commodore drives, this function

is performed automatically, whenever a new diskette is inserted. (The optical write-

protect switch is used to sense when a diskette is changed.)

The result of an INITIALIZE, whether forced by a command, or done automatically

by the disk, is a re-reading of the current diskette's BAM into a disk buffer. This

information must always be correct in order for the disk to store new files properly.

However, since the chore is handled automatically, the only time you'd need to use the com

mand is if something happened to make the information in the drive buffers unreliable.

FORMAT FOR THE INITIALIZE COMMAND EXAMPLE:

PRINT#15,ttINITIALIZEdrive #" PRINT# 15,''INITIALIZE 0"

or it may be abbreviated to

PRINT#15,"Idrive #" PRINT#15,"I0"

where the command channel is assumed to be opened by file 15, and "drive #" is 0.

One use for Initialize is to keep a cleaning diskette spinning, if you choose to use

one. (There is no need to use such kits on any regular basis under normal conditions of

cleanliness and care.) Nonetheless, if you are using such a kit, the following short

program will keep the diskette spinning long enough for your need:

10 OPEN 15,8,15

20 FOR 1=1 TO 15

3OPRINT#15,"I0"

40 NEXT I

50 CLOSE 15

It uses an Initialize loop to keep the drive motor on for about 20 seconds.

24

CHAPTER 3

BASIC 7.0 COMMANDS

This chapter describes the disk commands used with the Commodore 128 computer

(in C128 mode). This is BASIC 7.0, which includes BASIC 2.0, BASIC 3.5, and

BASIC 4.0 commands, all of which can be used.

ERROR CHECKING

When the drive light (green light) flashes, you must use the following command to

find out what the error is:

PRINT DS$

A message is displayed whether there is an error or not. If there was an error, this

command clears it from disk memory and turns off the error light on the disk drive.

Once the message is on the screen, you can look it up in Appendix B to see what it

means, and what to do about it.

For those of you who are writing programs, the following is a small error-checking

subroutine you can include in your programs:

59990 REM READ ERROR CHANNEL

60000 IF DS> 1 THEN PRINT DS$:STOP

60010 RETURN

The subroutine reads the error channel and puts the results into the reserved variables

DS and DS$. They are updated automatically by BASIC.

Two error numbers are harmless—0 means everything is OK, and 1 tells how many

files were erased by a SCRATCH command (described later in this chapter). If the error

status is anything else, line 60000 prints the error message and halts the program.

Because this is a subroutine, you access it with the BASIC GOSUB command, either

in immediate mode or from a program. The RETURN statement in line 60010 will jump

back to immediate mode or the next statement in your program, whichever is appropriate.

SAVE

This command will save a program or file so you can reuse it. The diskette must be

formatted before you can save it to that diskette.

FORMAT FOR THE SAVE COMMAND

DSAVE "file name" [,Ddrive#] [,Udevice#]

This command will not work in copying programs that are not written in BASIC. To

copy these machine language programs, you can use the BSAVE command or the built-in

Monitor S command.

25

FORMAT FOR THE BSAVE COMMAND

BSAVE "file name" [,Ddrive#] [,Udevice#] [Bbank#]

[,Pstarting address] [TO Pending address 4-1]

where the usual options are the same and bank# is one of the 16 banks of the C128. The

addresses to be saved are given in decimal. Note that the ending address must be 1

location beyond the last location to be saved.

To access a built-in monitor, type MONITOR. To exit a monitor, type X alone on a

line.

FORMAT FOR A MONITOR SAVE

.S"drive #:file name",device #,starting address,ending address +1

where "drive #:" is the drive number, 0 on the 1571; "file name" is any valid file name

up to 14 characters long (leaving 2 for the drive number and colon); "device #" is a two

digit device number, normally 08 on the 1571 (the leading 0 is required); and the

addresses to be saved are given in Hexadecimal (base 16,) but without a leading dollar

sign (for the Plus/4). On the C128, the addresses need not be in Hexidecimal. Note that

the ending address listed must be 1 location beyond the last location to be saved.

SAVE WITH REPLACE

If a file already exists, it can't be saved again with the same name because the disk

drive allows only one copy of any given file name per diskette. It is possible to get around

this problem using the RENAME and SCRATCH commands described later in this

chapter. If all you wish to do is replace a program or data file with a revised version,

another command is more convenient. Known as SAVE WITH REPLACE, or @SAVE

this option tells the disk drive to replace any file it finds in the diskette directory with the

same name, substituting the new file for the old version.

FORMAT FOR SAVE WITH REPLACE

DSAVE "@file name" [,Ddrive#] [,Udevice#]

The actual procedure is this—the new version is saved completely, then the old

version is scratched and its directory entry altered to point to the new version. Because it

works this way, there is little danger a disaster such as having the power going off midway

through the process would destroy both the old and new copies of the file. Nothing

happens to the old copy until after the new copy is saved properly.

Caution—do not use @SAVE on an almost-full diskette. Only use it when you have

enough room on the diskette to hold a second complete copy of the program being

replaced. Due to the way @SAVE works, both the old and new versions of the file are on

disk simultaneously at one point, as a way of safeguarding against loss of the program. If

there is not enough room left on diskette to hold the second copy, only as much of the new

26

version will be saved as there is still room for. After the command is completed, a look at

a directory will show the new version is present, but doesn't occupy enough blocks to

match the copy in memory. \

DVERIFY

This command makes a byte-by-byte comparison of the program currently in mem

ory against a program on diskette. This comparison includes the BASIC line links, which

may be different for different types of memory configurations. What this means is that a

program saved to disk on a C64 and reloaded into a C128 wouldn't verify properly

because the line links point to different memory locations. If the disk copy of the program

differs at all from the copy in memory, a "VERIFY ERROR" will be displayed. This

doesn't mean either copy is bad, but if they were supposed to be identical, there is a

problem.

FORMAT FOR THE DVERIFY COMMAND

DVERIFY "file name" [,Ddrive#] [,Udevice#]

The following version of the command verifies a file that was just saved:

DVERIFY "*"

This command won't work properly after SAVE-WITH-REPLACE, because the last

file used was the one deleted and the drive will try to compare the deleted file to the

program in memory. No harm will result, but "VERIFY ERROR" will always be

announced. To use DVERIFY after @SAVE, include at least part of the file name that is

to be verified in the pattern.

COPY

The COPY command allows you to make a spare copy of any program or file on a

diskette. However, on a single drive like the 1571, the copy must be on the same diskette,

which means it must be given a different name from the file copied. The source file and

other files on the diskette are not changed. Files must be closed before they can be copied

or concatenated.

FORMAT FOR THE COPY COMMAND

COPY [Ddrive#,] "old file name" TO [Ddrive#,] "new file name" [,Udevice#]

Where both drive#s would be 0 if included.

27

NOTE: If you want to copy a file from one diskette to another, you cannot use the

COPY command. Instead, use the copy program on the Test/Demo diskette or the

DOS Shell (see Chapter 4).

CONCAT

The CONCAT command allows you to concatenate (combine) two sequential files.

FORMAT FOR THE CONCAT COMMAND

CONCAT [Ddrive#,] "add file" TO [Ddrive#,] "master file" [,Udevice#]

Where the optional drive# would be 0 in both cases. The old "master file" is

deleted and replaced with a new "master file" which is the concatenation of the old

"master file" and "add file".

NOTE: The length of a command string (command and filenames) is limited to 41

characters.

SCRATCH

The SCRATCH command allows you to erase unwanted programs and files from

your diskettes, and free up the space they occupied for use by other files and programs. It

can be used to erase either a single file, or several files at once via pattern-matching.

FORMAT FOR THE SCRATCH COMMAND

SCRATCH "pattern" [,Ddrive#] [,Udevice#]

Where, "pattern" is any valid file name or pattern-matching character.

You will be asked as a precaution:

ARE YOU SURE? ■

If you ARE sure, simply press Y and RETURN. If not, press RETURN alone or type any

other answer, and the command will be canceled.

28

The number of files that were scratched will be automatically displayed. For exam

ple, if your diskette contains program files named "TEST," 'TRAIN," "TRUCK," and

"TAIL," you may scratch all four, along with any other files beginning with the letter

"T," by using the command:

SCRATCH "T*"

and if the four listed were the only files beginning with "T", you will see:

01,FILES SCRATCHED,04,00

READY

■

The "04" tells you 4 files were scratched.

You can perform a SCRATCH within a program, but there will be no prompt

message displayed.

MORE ABOUT SCRATCH

SCRATCH is a powerful command and should be used with caution to be sure you^

delete only the files you really want erased. When using it with a pattern, we suggest you

first use the same pattern in a DIRECTORY command, to be sure exactly which files will

be deleted. That way you'll have no unpleasant surprises when you use the same pattern in

the SCRATCH command.

Recovering from a SCRATCH

If you accidentally SCRATCH a file you shouldn't have, there is still a chance of

saving it. Like BASIC'S NEW command, SCRATCH doesn't really wipe out a file itself;

it merely clears the pointers to it in the diskette directory. There may be an "Unscratch"

program on your Test/Demo diskette.

NOTE: If you accidentally SCRATCH a file within the DOS Shell (see Chapter 4),

you can unscratch it with the Shell's RESTORE FILES function.

More about Splat Files

Never SCRATCH a splat file. These are files that show up in a directory listing with

an asterisk (*) just before the file type for an entry. The asterisk (or splat) means that file

was never properly closed, and thus there is no valid chain of sector links for the

SCRATCH command to follow in erasing the file. If you SCRATCH such a file, odds are

you will improperly free up sectors that are still needed by other programs or files, and

cause permanent damage to those other programs or files later when you add more files to

the diskette.

29

If you find a splat file, or if you discover too late that you have scratched such a file,

immediately validate the diskette using the COLLECT command described later in this

chapter. If you have added any files to the diskette since scratching the splat file, it is best

to immediately copy the entire diskette onto another fresh diskette, but do this with a copy

program rather than with a backup program. Otherwise, the same problem will be

recreated on the new diskette. When the new copy is done, compare the number of blocks

free in its directory to the number free on the original diskette. If the numbers match, no

damage has been done. If not, very likely at least one file on the diskette has been

corrupted, and all should be checked immediately.

Locked Files

Occasionally, a diskette will contain a locked file; one which cannot be erased with

the SCRATCH command. Such files may be recognized by the "<" character which

immediately follows the file type in their directory entry. If you wish to erase a locked

file, you will have to use a disk monitor to clear bit 6 of the file-type byte in the directory

entry on the diskette. Conversely, to lock a file, you would set bit 6 of the same byte.

RENAME

The RENAME command allows you to alter the name of a program or other file in

the diskette directory. Since only the directory is affected, RENAME works very quickly.

If you try to RENAME a file by using a file name already in the directory, the computer

will respond with a "FILE EXISTS" error. A file must be properly closed before it can be

renamed.

FORMAT FOR RENAME COMMAND:

RENAME [Ddrive#,] "old name" TO [Ddrive#,] "new name" [,Udevice#]

where both drive#s, if included, would be 0

RENAMING AND SCRATCHING TROUBLESOME

FILES (ADVANCED USERS)

Eventually, you may run across a file which has a crazy filename, such as a comma

by itself (",") or one that includes a Shifted Space. Or perhaps you will find one that

includes nonprinting characters. Any of these can be troublesome. Comma files, for

instance, are an exception to the rule that no two files can have the same name. Since it

shouldn't be possible to make a file whose name is only a comma, the disk never expects

you to do it again.

Files with a Shifted Space in their name can also be troublesome, because the disk

interprets the Shifted Space as signaling the end of the file name, and prints whatever

follows after the quotation mark that marks the end of a name in the directory. This

technique can be useful by allowing you to have a long file name, and making the disk

recognize a small part of it as being the same as the whole thing without using pattern-

matching characters.

30

In any case, if you have a troublesome filename, you can use the CHR$() function to

specify troublesome characters without typing them directly. This may allow you to build

them into a RENAME command. If this fails, you may also use the pattern-matching

characters discussed for a SCRATCH command. This gives you a way to specify the

name without using the troublesome characters at all, but also means loss of your file.

For example, if you have managed to create a file named " "MOVIES", with an

extra quotation mark at the front of the file name, you can rename it to *'MOVIES" using

the CHR$() equivalent of a quotation mark in the RENAME command:

Example:

RENAME(CHR$(34) + "MOVIES") TO "MOVIES"

The CHR$(34) forces a quotation mark into the command string without upsetting

BASIC. The procedure for a file name that includes a SHIFT-SPACE is similar, but uses

CHR$(160).

In cases where even this doesn't work, for example, if your diskette contains a

comma file, (one named ",") you can get rid of it this way:

Example:

SCRATCH"?"

This example deletes all files with one-character names.

Depending on the exact problem, you may have to be very creative in choosing

pattern-matching characters that will affect only the desired file, and may have to rename

other files first to keep them from being scratched.

In some cases, it may be easier to copy desired files to a different diskette and leave

the troublesome files behind.

COLLECT

The COLLECT command recalculates the Block Availability Map (BAM) of the

current diskette, allocating only those sectors still being used by valid, properly closed

files and programs. All other sectors (blocks) are left unallocated and free for reuse, and

all improperly closed files are automatically scratched. However, this brief description of

COLLECT doesn't indicate either the power or the danger of the command. Its power is in

restoring to good health many diskettes whose directories or Block Availability Maps

have become muddled. Any time the blocks used by the files on a diskette plus the blocks

shown as free don't add up to the 664 (in 1541 mode) or 1328 (in 1571 mode) available on

a fresh diskette, COLLECT is needed (with one exception below). Similarly, any time a

diskette contains an improperly closed file (splat file), indicated by an asterisk (*) next to

its file type in the directory, that diskette needs to be collected. In fact, but for the one

exception below, it is a good idea to COLLECT diskettes whenever you are concerned

about their integrity. Just note the number of blocks free in the diskette's directory before

and after using COLLECT. If the totals differ, there was indeed a problem, and the

31

diskette should probably be copied onto a fresh diskette file-by-file, using the COPY

command described in the previous section, rather than using a backup command or

program.

The exception is diskettes containing Direct Access files, as described in Chapter 7.

Most direct access (random) files do not allocate their sectors in a way COLLECT can

recognize. Thus, collecting such a diskette may result in unallocating all Direct Access

files, with loss of all their contents when other files are added. Unless specifically

instructed otherwise, never collect a diskette containing Direct Access files. (Note: these

are not the same as the relative files described in Chapter 6. COLLECT may be used on

relative files without difficulty.)

FORMAT FOR THE COLLECT COMMAND

COLLECT [Ddrive#] [,Udevice#]

INITIALIZE

There is no BASIC 7.0 command for initializing, so refer to Chapter 2 for the BASIC

2.0 INITIALIZE command.

32

CHAPTER 4

DOS SHELL

The DOS Shell is a program that provides you with an alternate way to execute disk

drive commands. Prompting messages take you step-by-step through each operation,

making the use of the 1571 easier and more understandable.

The Shell is automatically loaded when you insert the diskette, then turn on or reset

the computer. You can enter or exit the Shell by pressing the Fl key.

LANGUAGE SELECTION

The Shell displays its messages in any one of four languages: English, French,

German, and Italian. When you enter the Shell, each language appears, in turn, on the

screen for about six seconds. To choose one, press the space bar when it appears on the

screen. You can skip to the next language without waiting the six seconds by pressing the

CRSR-down key.

NOTE1: The DOS Shell can be used in 40-column or 80-column mode. The only

difference is a change in the layout of the screen. You can switch the screen size by

first pressing the ESC key and then pressing the X key. This must be done before

you select a function from the primary menu screen (see below).

PRIMARY MENU SCREEN

After a language is chosen, the primary menu screen appears. To choose a function,

use the CRSR keys to position the cursor on that function then press the SPACE BAR.

DISK/PRINTER SETUP

Within the Shell there are two drives: A and B. They are called logical drives because

they reside only within the Shell. You can set them to represent a single disk drive unit,

two single units, or a dual drive unit. Assuming you have a single unit, the usual settings

for A and B would show a device# of 8 and a drive# of 0. Those are the default settings

(in other words, when you first enter the Shell, the Disk Setup is such that it represents a

single unit). With two single units, you would change the device# of one of the drives.

The drive#s can stay the same. With a dual drive unit, you would change the drive# of

one of the drives.

To change a setting, use the CRSR keys to position the cursor over the desired value.

After you have changed any settings, press the F7 key to lock them in. If you change your

mind, press the STOP key instead of F7 and the previous settings are left unchanged.

33

The printer device# is selected in the same way.

To change the device number of the actual drive (the physical drive), position the

cursor on the 'CHANGE DISK DEVICE #' line and press the SPACE BAR. A message

then appears on the screen guiding you through the steps to change the device#. If you

change your mind before completing the steps, press the STOP or F5 keys to cancel the

device# change. F5 returns you to the logical drive selections and STOP returns you to

the primary menu screen.

Changing the device# locks in all current parameters in this function.

NOTE: Unless the Disk Setup is set for a single drive unit, when you choose any of

the following functions, a question appears on the screen asking you which drive

you want to use. In describing these functions, we'll assume that you have a single

disk. If you have more than one, then you'll have to provide the appropriate answer

to that question through the use of the CRSR keys and SPACE BAR.

RUN A PROGRAM

This function automatically loads and runs a program file that you choose from a file

list shown on the screen (for this function the file list contains only program files). Use the

CRSR keys to position the cursor over the desired file, then press the SPACE BAR to

choose that file. If you change your mind, press the F5 key to un-select the file. Press the

F7 key to load and run it. If you press the stop key before the loading is complete, the

function is cancelled.

You can print out the file list, whenever it's displayed for a function, by pressing the

F3 key. Make sure your printer is turned on and the paper is at the top of a page.

Note that some machine language programs won't run in the Shell.

FORMAT A DISK

When you select this function, a message appears on the screen telling you to insert a

blank disk into the drive. After you do that, press the SPACE BAR and the Shell checks to

see if the disk has already been formatted. If it has, the disk header information is

displayed on the screen as a precaution that there may be files on the disk. To proceed

with formatting, either enter a new disk name or accept the old one and press RETURN. If

the disk was previously formatted, it retains its old ID code. If not, the Shell randomly

generates one. You can enter your own ID code by entering a comma and two-digit ID

code as the last three characters of the disk name.

CLEANUP A DISK

This function enables you to validate the Block Availability Map of a disk (see the

VALIDATE command in chapter 2 or the COLLECT command in chapter 3).

34

COPY A DISK

Use this function to make backups of your diskettes. The disk drive setup (drives A

and B) determines what type of copy is performed: single unit, dual drive, or two single

units.

Dual Drive or Two Unit Copy

The Shell asks you from which drive you want to copy (use CRSR keys and space bar

to select A or B). Insert the original disk into that drive and the copy disk into the other

drive and press the SPACE BAR. Press the STOP key to cancel this function. The F5 key

or SPACE BAR can be used to retry a disk operation if an error occurs.

Single Drive Copy

The Shell displays the following warning message: 'PROGRAMS IN MEMORY

WILL BE DESTROYED'. Press the STOP or F5 keys to cancel the function at this point.

Press the SPACE BAR to continue.

Throughout this function you will alternately insert the original and copy disks

according to prompts from the Shell. It takes from one to four swaps to complete the copy.

The first time you insert the copy disk, it is formatted with the same disk name as the

original disk, but a different ID code is generated. Then, each time you insert a disk, its

ID code is checked to make sure that it's the correct disk. If it's not, an error message is

displayed on the screen. If that happens, press the SPACE BAR or the F5 key to return to

the last-used disk swapping prompt.

If the STOP key is pressed, the function is cancelled and the copy will be incomplete.

COPY FILES

This function makes copies of selected files, the type of copy is determined by the

Disk Drive Setup. Once you select the drive from which the files will be copied, the file

list is displayed so you can select the files using the CRSR keys and SPACE BAR. You

can "scroll" the list up or down using the CRSR keys.

Once you position the cursor next to a file you want to copy, press the SPACE BAR.

You can 'unselect' any file(s) by positioning the cursor on the filename and pressing the

F5 key.

Press the F7 key when you've completed file selection. The Shell then asks you if it

is "OK TO COPY FILE-LIST: N Y". If you answer Yes, the function continues. If you

answer No (the default answer), the Shell returns to file selection with all previous

selections intact.

Press the F5 key to restart file selection with all previous selections cancelled.

Press the STOP key to cancel the function and return to the primary menu.

Dual Drive or Two Unit Copy

After you answer the 'OK TO COPY' question, the messages 'INSERT COPY DISK

INTO DRIVE: X' and 'THEN PRESS SPACE' are displayed. After you do that, the

message 'WANT TO FORMAT THE COPY DISK: N Y' is displayed (unless, how

ever, the copy disk has never been formatted, in which case the Shell automatically does it

without asking you). The default answer is No. If you answer Yes, the 'FORMAT A

35

DISK' function begins at the point where you are asked to enter a new disk name for

formatting.

Whether you answer Yes or No to the formatting question, the Shell checks the

available space on the copy disk against the total size of the selected file(s). If the copy

disk can't hold all the files, a warning is displayed and you can press the STOP key to

cancel the function or press the SPACE BAR to continue.

NOTE: For any type of file copy, if the next file to be copied won't fit onto the

copy disk, the following message is displayed: 'COPY DISK FULI^-ANOTHER

DISK: Y N\ If the answer is No (the default answer), the copy is terminated. If

Yes, the function returns to the 'INSERT COPY DISK* message.

Single Drive Copy

After you answer the 'OK TO COPY' question, the following warning is displayed

on the screen: 'PROGRAMS IN MEMORY WILL BE DESTROYED,' along with the

instruction 'PRESS SPACE TO CONTINUE'. Press the F5 or STOP keys to cancel the

function and retain any program in memory.

You will alternately insert the original disk and the copy disk according to prompts

on the screen. It takes from one to four disk swaps to complete the copy.

The first time the copy disk is inserted, the 'WANT TO FORMAT THE COPY

DISK: N Y' message is displayed (unless, however, the copy disk has never been

formatted, in which case the Shell automatically does it without asking you). Again,

whether the answer is Yes or No, the Shell checks the available space on the copy disk

against the total size of the file(s) to be copied and alerts you if there isn't enough room on

the copy disk.

DELETE FILES

This function erases one or more files. Use the CRSR keys and SPACE BAR to

select the file(s) from the file list displayed on the screen. Press the F7 key when you've

completed file selection. The Shell then asks you if it is "OK TO DELETE FILE-LIST:

N Y". If you answer Yes, the function continues. If you answer No (the default

answer), the Shell returns to file selection with all previous selections intact.

Press the F5 key to restart file selection with all previous selections cancelled.

Press the STOP key to cancel the function and return to the primary menu.

RESTORE FILES

This function restores one or more files that have been deleted. A file list of only

deleted files is displayed on the screen and you again use the the CRSR keys and SPACE

BAR to select the file(s) to be restored.

After you select a file, the Shell checks to see if it can be restored without corrupting

other files. If not, the message 'CANNOT RESTORE FILE: file name id' is displayed. If

everything's OK, the file selection continues.

36

As each file is selected, you are asked to 'CHOOSE FILE-TYPE: SEQ PRG USR'.

Use the CRSR keys and SPACE BAR to choose. Relative files are automatically

identified, so you needn't specify that type.

You can 'unselect' any file(s) by positioning the cursor on the filename and pressing

the F5 key.

Press the F7 key when you've completed file selection. The Shell then asks you if it

is "OK TO RESTORE FILE-LIST: N Y". If you answer Yes, the function continues. If

you answer No (the default answer), the Shell returns to file selection with all previous

selections intact.

Press the F5 key to restart file selection with all previous selections cancelled.

Press the STOP key to cancel the function and return to the primary menu.

RENAME FILES

The function changes the name of one or more files. Use the CRSR keys and SPACE

BAR to select a file to rename. The message 'ENTER NEW NAME:' is displayed along

with the original file name. You must now type in the new name or press F5 to un-select

that file and continue.

Each new file name is checked to assure that it is unique. If it isn't, the message

'ERROR: FILE NAME NOT UNIQUE—RETRY' is displayed and the function returns to

the 'ENTER NEW NAME:' message.

Press the F7 key when you've completed file selection. The Shell then asks you if it

is ' 'OK TO CHANGE FILE-LIST: N Y". If you answer Yes, the function continues. If

you answer No (the default answer), the Shell returns to file selection with all previous

selections intact.

Press the F5 key to restart file selection with all previous selections cancelled.

Press the STOP key to cancel the function and return to the primary menu.

REORDER DIRECTORY

This function changes the order in which the file names appear in a diskette

directory. After you select this function, you are asked if you 'WANT TO ALPHABET

IZE DIRECTORY: N Y\ The defaut answer is No. If you answer Yes, the file names

are automatically reordered alphabetically.

Whether you answered Yes or No to the ALPHABETIZE DIRECTORY question,

you can manually reorder the directory. Select a file with the CRSR keys and SPACE

BAR. Then use the CRSR keys to 'drag' the file name through the file list to its new

location. Press the SPACE BAR to deposit the file name.

Press the F7 key when you've completed file selection. The Shell then asks you if it

is "OK TO RE-WRITE DIRECTORY: N Y". If you answer Yes, the function contin

ues. If you answer No (the default answer), the Shell returns to file selection at the

"WANT TO ALPHABETIZE: N Y" message with all previous changes intact.

Press the F5 key to restart file selection at the' 'WANT TO ALPHABETIZE: N Y"

message with all previous changes cancelled.

Press the STOP key to cancel the function and return to the primary menu.

37

38

PART TWO:

ADVANCED OPERATION AND PROGRAMMING

CHAPTER 5

SEQUENTIAL DATA FILES

THE CONCEPT OF FILES

A file on a diskette is just like a file cabinet in your office—an organized place to put

things. Nearly everything you put on a diskette goes in one kind of file or another. So far

all you've used are program files, but there are others. In this chapter you'll learn about

sequential data files.

The primary purpose of a data file is to store the contents of program variables, so

they won't be lost when the program ends. A sequential data file is one in which the

contents of the variables are stored "in sequence," one right after another. You may

already be familiar with sequential files from using a DATASSETTE™, because sequen

tial files on diskette are just like the data files used on cassettes. Whether on cassette or

diskette, sequential files must be read from beginning to end.

When sequential files are created, information (data) is transferred byte-by-byte,

through a buffer, onto the magnetic media. Once in the disk drive, program files,

sequential data files, and user files all work sequentially. Even the directory acts like a

sequential file.

To use sequential files properly, we will learn some more BASIC words in the next

few pages. Then we'll put them together in a simple but useful program.

NOTE: Besides sequential data files, two other file types are recorded sequentially

on a diskette. They are program files, and user files. When you save a program on a

diskette, it is saved in order from beginning to end, just like the information in a

sequential data file. The main difference is in the commands you use to access it.

User files can be even more similar to sequential data files. User files are almost

never used, but like program files, they could be treated as though they were

sequential data files and some can be accessed with the same commands.

For the advanced user, the similarity of the various file types offers the

possibility of reading a program file into the computer a byte (character) at a time

and rewriting it to the diskette in a modified form.

OPENING A FILE

One of the most powerful tools in Commodore BASIC is the OPEN statement. With

it, you may send data almost anywhere, much like a telephone switchboard. As you might

expect, a command that can do this much is fairly complex. You have already used OPEN

statements regularly in some of your diskette commands.

Before you study the format of the OPEN statement, let's review some of the

possible devices in a Commodore computer system:

39

Device#:Name:

0

1

2

3

4,5

8,9,10,11

Keyboard

DATASSETTE

RS232

Screen

Printer

Disk drive

Used for:

Receiving input from the computer operator

Sending and receiving information from cassette

Sending and receiving information from a modem

Sending output to a video display

Sending output to a hard copy printer

Sending and receiving information from diskette

Because of the flexibility of the OPEN statement, it is possible for a single program

statement to contact any one of these devices, or even others, depending on the value of a

single character in the command. If the character is kept in a variable, the device can even

change each time that part of the program is used, sending data alternately and with equal

ease to diskette, cassette, printer and screen.

REMEMBER TO CHECK FOR DISK ERRORS

In the last chapter you learned how to check for disk errors after disk

commands in a program. It is equally important to check for disk errors after using

file-handling statements. Failure to detect a disk error before using another file-

handling statement could cause loss of data, and failure of the BASIC program.

The easiest way to check the disk is to follow all file-handling statements with

a GOSUB statement to an error check subroutine.

EXAMPLE:

BASIC 7.0

840 DOPEN#4,"DEGREE DAY DATA",D0,U8,W

850 GOSUB 59990: REM CHECK FOR DISK ERRORS

BASIC 2.0

840 OPEN 4,8,4,"0:DEGREE DAY DATA,S,W"

850 GOSUB 59990:REM CHECK FOR DISK ERRORS

FORMAT FOR THE DISK OPEN STATEMENT FOR SEQUENTIAL FILES:

BASIC 7.0

DOPEN#file#, "filename" [,Ddrive#] [,Udevice#] [,W]

BASIC 2.0

OPEN file #, device #, channel #,"drive #:file name,file type,direction"

40

where:

"file #" is an integer (whole number) between 1 and 255. Do not open a disk file

with a file number greater than 127 it will cause severe problems. After the file is open, all

other file commands will refer to it by the number given here. Only one file can use any

given file number at a time.

"device #" is the number, or primary address, of the device to be used. This

number is an integer in the range 8-11, and is normally 8 on the 1571.

"channel #" is a secondary address, giving further instructions to the selected

device about how further commands are to be obeyed. In disk files, the channel number

selects a particular channel along which communications for this file can take place. The

possible range of disk channel numbers is 0-15, but 0 is reserved for program loads, 1 for

program saves, and 15 for the disk command channel. Also be sure that no two disk files

have the same channel number unless they will never be open at the same time. (One way

to do this is to make the channel number for each file the same as its file number.).

"drive #" is the drive number, always 0 on the 1571. Do not omit it, or you will

only be able to use two channels at the same time instead of the normal maximum of three.

If any pre-existing file of the same name is to be replaced, precede the drive number with

the "at" sign (@) to request OPEN-WITH-REPLACE.

"file name" is the file name, maximum length 16 characters. Pattern matching

characters are allowed in the name when accessing existing files, but not when creating

new ones.

"file type" is the file type desired: S = sequential, P=program, U = user, A = ap

pend and L = length of a relative file.

"direction" is the type of access desired. There are three possibilities: R = read,

W = write, and M = modify. When creating a file, use "W" to write the data to diskette.

When viewing a completed file, use "R" to read the data from diskette. Only use the

"M" (modify) option as a last ditch way of reading back data from an improperly closed

(Splat) file. If you try this, check every byte as it is read to be sure the data is still valid, as

such files always include some erroneous data, and have no proper end.

"file type" and "direction" don't have to be abbreviated. They can be spelled out

in full for clarity in printed listings.

"file #", "device #" and "channel #" must be valid numeric constants, variables

or expressions. The rest of the command must be a valid string literal, variable or

expression.

"w" is an option that must be specified to write the sequential file, or the file will be

opened to read.

The maximum number of files that may be open simultaneously is 10, including all

files to all devices. The maximum number of sequential disk files that can be open at once

is three (or two if you neglect to include the drive number in your OPEN statement), plus

the command channel.

41

EXAMPLES OF OPENING SEQUENTIAL FILES:

To create a sequential file of phone numbers, you could use:

BASIC 7.0: DOPEN#2,''PHONES'',D0,U8,W

BASIC 2.0: OPEN 2,8,2,"0:PHONES,SEQUENTIAL,WRITE"

or

OPEN 2,8,2,"0:PHONES,S,W"

On the chance you've already got a "PHONES" file on our diskette, you can avoid a

"FILE EXISTS" error message by doing an ©OPEN

BASIC 7.0: DOPEN#2, "©PHONES", D0,U8,W

BASIC 2.0: OPEN 2,8,2,"@0:PHONES,S,W"

This erases all your old phone numbers, so make sure that any information that may be

deleted is of no importance. After writing our phone file, remove the diskette and turn off

the system. To recall the data in the file, reopen it with something like:

BASIC 7.0: DOPEN#8,''PHONES",D0,U8

BASIC 2.0: OPEN 8,8,8,"0:PHONES,S,R"

It doesn't matter whether the file and channel numbers match the ones we used before, but

the file name does have to match. It's possible to use an abbreviation form of the file

name, if there are no other files that would have the same abbreviation:

BASIC 7.0: DOPEN#1O,"PH*",D0,U8

BASIC 2.0: OPEN 1O,8,6,"0:PH*,S,R"

If you have too many phone numbers, they might not fit in one file. In that case, use

several similar file names and let a program choose the correct file.

BASIC 7.0:

100 INPUT "WHICH PHONE FILE (1-3)";PH

110 IF PHO1 AND PHO2 AND PH<>3 THEN 100

120 DOPEN#4,"PHONE" + STR$(PH),D0,U8

BASIC 2.0:

100 INPUT "WHICH PHONE FILE (1-3)";PH

110 IF PHO1 AND PHO2 AND PH<>3 THEN 100

120 OPEN 4,8,2,"PHONE" + STR$(PH) + ",S,R"

You can omit the drive number on an OPEN command to read a file. Doing so allows

those with dual drives to search both diskettes for the file.

42

ADDING TO A SEQUENTIAL FILE

The APPEND command allows you to reopen an existing sequential file and add

more information to the end of it. In place of the "type" and "direction" parameters in

your OPEN statement, substitute ",A" for Append. This will reopen your file, and

position the disk head at the end of the existing data in your file, ready to add to it.

FORMAT FOR THE APPEND OPTION

BASIC 7.0: APPEND#file#,"file name"[,Ddrive#] [,Udevice#]

BASIC 2.0: OPEN file #,device #,channel #,"drive #:file name,A"

where everything is as on the previous page except for the ending "A" replacing the

"type" and "direction" parameters.

EXAMPLE:

If you are writing a grading program, it would be convenient to simply tack on each

student's new grades to the end of their existing grade files. To add data to the "JOHN

PAUL JONES" file, type:

BASIC 7.0: APPEND#1,"0:JOHN PAUL JONES",D0,U8

BASIC 2.0: OPEN 1,8,3,"0:JOHN PAUL JONES,A"

In this case, the Disk Operating System (DOS) will allocate at least one more sector

(block) to the file the first time you append to it, even if you only add one character of

information. You may also notice that using the COLLECT or VALIDATE command

didn't correct the file size. If the wasted space becomes a problem, you can easily correct

it by copying the file to the same diskette or a different one, and scratching the original

file. Here's a sequence of commands that will copy such files to the original diskette under

the original name:

RENAME "JOHN PAUL JONES" TO "TEMP"

COPY ' TEMP'' TO ' 'JOHN PAUL JONES''

SCRATCH "TEMP"

WRITING FILE DATA: USING PRINT#

After a sequential file has been opened to write (with a type and direction of

",S,W"), we use the PRINT# command to send data to it for storage on diskette. If you

are familiar with BASIC'S PRINT statement, you will find PRINT# works exactly the

same way, except that the list of items following the command word is sent to a particular

file, instead of automatically appearing on the screen. Even the formatting options such as

punctuation work in much the same way as in PRINT statements. This means you have to

be sure the items sent make sense to the particular file and device used.

43

For instance, a comma between variables in a PRINT statement acts as a separator in

screen displays, making each successive item appear in the next preset display field

(typically at the next column whose number is evenly divisible by 10). If the same comma

is included between variables going to a disk file, it will again act as a separator, again

inserting extra spaces into the data. This time, however, it is inappropriate, as the extra

spaces are wasted on the diskette, and may create more problems when reading the file

back into the computer. Therefore, follow the following format precisely when sending

data to a disk file.

FORMAT FOR THE PRINT# COMMAND:

PRINT#file #,data list

where "file #" is the same file number given in the desired file s ciment OPEN

statement. During any given access of a particular file, the file number must remain

constant because it serves as a shorthand way of relating all other file-handling commands

back to the correct OPEN statement. Given a file number, the computer can look up

everything else about a file that matters.

The "data list" is the same as for a PRINT statement - a list of constants, variables

and/or expressions, including numbers, strings or both. However, it's better if each

PRINT# statement to disk include only one data item. If you wish to include more items,

they should be separated by a carriage return character, not a comma. Semicolons are

permitted, but not recorded in the file, and do not result in any added spaces in the file.

Use them to separate items in the list that might otherwise be confused, such as a string

variable immediately following a numeric variable.

NOTE: Do not leave a space between PRINT and #, and do not abbreviate the

command as ?#. The correct abbreviation for PRINT# is pR.

EXAMPLES:

To record a few grades for John Paul Jones, using a sequential disk file #1 previously

opened for writing, use:

200 FOR CLASS = 1 TO COURSES

210 PRINT#1,GRADE$(CLASS)

220 GOSUB 59990:REM CHECK FOR DISK ERRORS

320 NEXT CLASS

assuming your program includes an error check subroutine like the one in the last chapter.

In using PRINT#, there is an exception to the requirement to check for disk errors

after every file-handling statement. When using PRINT#, a single check after an entire

set of data has been written will still detect the error, so long as the check is made before

any other file-handling statement or disk command is used. You may be familiar with

PRINT statements in which several items follow each other:

44

400 PRINT NAME$,STREET$,CITY$

To get those same variables onto sequential disk file number 5 instead of the screen, the

best approach would be to use three separate PRINT# statements, as follows:

400PRINT#5,NAME$

410PRINT#5,STREET$

420PRINT#5,CITY$

If you need to combine them, here is a safe way to do it:

400PRINT#5,NAME$;CHR$(13);STREET$;CHR$(13);CITY$

CHR$(13) is the carriage return character, and has the same effect as putting the print

items in separate lines. If you do this often, some space and time may be saved by

previously defining a variable as equal to CHR$(13):

10CR$ = CHR$(13)

400 PRINT#5,NAME$;CR$;STREET$;CR$;CITY$

The basic idea is that a proper sequential disk-file write, if redirected to the screen,

will display only one data item per line, with each succeeding item on the next line.

CLOSING A FILE

After you finish using a data file, it is extremely important that you CLOSE it.

During the process of writing a file, data is accumulated in a memory buffer, and only

written out to the diskette when the buffer fills.

Working this way, there is almost always a small amount of data in the buffer that

has not been written to diskette yet, and which would simply be lost if the computer

system were turned off. Similarly, there are diskette housekeeping matters, such as

updating the BAM (Block Availability Map) of sectors used by the current file, which are

not performed during the ordinary course of writing a file. This is the reason for having a

CLOSE statement. When you are done with a file, the CLOSE statement will write the

rest of the data buffer out to diskette, update the BAM, and complete the file's entry in the

directory. Always close a data file when you are done using it. Failure to do so may cause

loss of the entire file.

However, do not close the disk command channel until all other files have been

closed. The command channel should be the first file opened, and the last file closed in

any program.

FORMAT FOR THE CLOSE STATEMENT

BASIC 7.0: DCLOSE#file# [,Udevice#]

BASIC 2.0: CLOSE file #

where "file #" is the same file number given in the desired file's current OPEN

statement.

45

EXAMPLES:

To close the data file #5 used as an example on the previous page, use:

BASIC 7.0: DCLOSE#5

BASIC 2.0: CLOSE 5

In BASIC 7.0, when the DCLOSE statement is used alone (no# or file# param

eters), it closes all disk files at once. With a bit of planning, the same can be done via a

program loop. Since there is no harm in closing a file that wasn't open, close every file

you even think might be open before ending a program. If you always gave your files

numbers between 1 and 5, you could close them all with

9950 FOR 1=1 TO 5

9960 CLOSE I

9970 GOSUB 59990:REM CHECK FOR DISK ERRORS

9980 NEXT I

assuming your program includes an error check subroutine like the one in the last chapter.

READING FILE DATA: USING INPUT#

Once information has been written properly to a diskette file, it may be read back into

the computer with an INPUT# statement. Just as the PRINT# statement is much like the

PRINT statement, INPUT# is nearly identical to INPUT, except that the list of items

following the command word comes from a particular file instead of the keyboard. Both

statements are subject to the same limitations—halting input after a comma or colon, not

accepting data items too large to fit in BASIC'S Input buffer, and not accepting non-

numeric data into a numeric variable.

FORMAT FOR THE INPUT# STATEMENT

INPUT#file #,variable list

where "file #" is the same file number given in the desired file's current OPEN

statement, and "variable list" is one or more valid BASIC variable names. If more than

one data element is to be input by a particular INPUT# statement, each variable name

must be separated from others by a comma.

EXAMPLES:

To read back in the grades written with the PRINT# example, use:

300 FOR CLASS = 1 TO COURSES

310 INPUT# 1 ,GRADE$(CLASS)

320 GOSUB 59990:REM CHECK FOR DISK ERRORS

330 NEXT CLASS

46

assuming your program includes an error check subroutine like the one in the last chapter.

To read back in the address data written by another PRINT# example, it is safest to

use:

. 800 INPUT#5,NAMES

810 GOSUB 59990:REM CHECK FOR DISK ERRORS

820 INPUT#5,STREET$

830 GOSUB 59990:REM CHECK FOR DISK ERRORS

840INPUT#5,CITY$

850 GOSUB 59990:REM CHECK FOR DISK ERRORS

but many programs cheat on safety a bit and use

800 INPUT#5,NAME$,STREET$,CITY$

810 GOSUB 59990:REM CHECK FOR DISK ERRORS

This is done primarily when top speed in the program is essential, and there is little risk of

reading improper data from the file.

MORE ABOUT INPUT# (ADVANCED USERS)

Troublesome Characters

After you begin using data files regularly, you may encounter two BASIC error

messages. They are "STRING TOO LONG ERROR" and "FILE DATA ERROR".

Both are likely to halt your program at an INPUT# statement, but may also have been

caused by errors in a PRINT# statement when the file was written.

"STRING TOO LONG" ERRORS

A BASIC string may be up to 255 characters long, although the longest string you

can enter via a single Input statement is just under two lines of text. This lower limitation

is due to the size of the input buffer in Commodore's serial bus computers. The same limit

applies to INPUT# statements. If a single data element (string or number) being read

from a disk file into an INPUT# statement contains more than 88 (BASIC 2) and 160

(BASIC 7) characters, BASIC will halt with a "STRING TOO LONG ERROR."

"FILE DATA" ERRORS

The other error message "FILE DATA ERROR" is caused by attempting to read a

non-numeric character into a numeric variable. To a computer, a number is the characters

0 through 9, the " + " and " - " signs, the decimal point (.), the SPACE character, and

the letter "E" used in scientific notation. If any other character appears in an INPUT# to

a numeric variable, "FILE DATA ERROR" will be displayed and the program will halt.

The usual causes of this error are a mismatch between the order in which variables are

written to and read from a file, a missing carriage return within a PRINT# statement that

writes more than one data item, or a data item that includes either a comma or a colon

without a preceding quotation mark. Once a file data error has occurred, you should

correct it by reading the data item into a string variable, and converting it back to a

number with the BASIC VAL() statement after removing non-numeric characters with the

string functions described in your computer user's manual.

47

COMMAS (,) AND COLONS (:)

As suggested before, commas and colons can cause trouble in a file, because they

delimit (end) the data element in which they appear and cause any remaining characters in

the data element to be read into the next INPUT# variable. They have the same effect in

an INPUT statement, causing the common "EXTRA IGNORED" error message. How

ever, sometimes you really need a comma or colon within a data element, such as a name

written as "Last, First." The cure is to precede such data elements with a quotation mark.

After a quotation mark, in either an INPUT or INPUT# statement, all other characters

except a carriage return or another quotation mark are accepted as part v:f the current data

element.

EXAMPLES:

To force a quotation mark into a data element going to a file, append a CHR$(34) to

the start of the data element. For example:

PRINT#2,CHR$(34) + "DOE, JOHN"

or

PRINT#2,CHR$(34);"DOE, JOHN"

If you do this often, some space and time may be saved by previously defining a variable

as equal to CHR$(34) as we did earlier with CHR$(13):

20QT$ = CHR$(34)

400 PRINT#5,QT$ + NAMES

In each case, the added quotation mark will be stripped from the data by the Input or

INPUT# statement, but the comma or colon will remain part of the data.

NUMERIC DATA STORAGE ON DISKETTE

Up to this point we have discussed string data storage, now let's look at numeric

storage.

Inside the computer, the space occupied by a numeric variable depends only on its

type. Simple numeric variables use seven bytes (character locations) of memory. Real

array variables use five bytes per array element, and integer array elements use two bytes

each. In contrast, when a numeric variable or any type is written to a file, the space it

occupies depends entirely on its length, not its type. This is because numeric data is

written to a file in the form of a string, as if the STR$() function had been performed on it.

The first character will be a blank space if the number is positive, and a minus sign (-) if

the number is negative. Then comes the number, digit-by-digit. The last character is a

cursor right character.

This format allows the disk data to be read back into a string or numeric variable

later. It is, however, wasteful of disk space, and it can be difficult to anticipate the space

required by numbers of unknown length. For this reason, some programs convert all

48

numeric variables into strings before writing them to diskette, and use string functions to

remove any unneeded characters in advance. Doing so still allows those data elements to

be read back into a numeric variable by INPUT# later, although file data errors may be

avoided by reading all data in as strings, and converting to numbers using the VAL ()

function after the information is inside the computer.

For example, "N$ = RIGHT$(STR$(N),LEN(STR$(N))- 1)" will convert a posi

tive number N into a string N$ without the usual leading space for its numeric sign. Then

instead of writing PRINT#5,N, you would use PRINT#5,N$.

READING FILE DATA: USING GET#

The GET# statement retrieves data from the disk drive, one character at a time. Like

the similar keyboard GET statement in BASIC, it only accepts a single character into a

specified variable. However, unlike the GET statement, it doesn't just fall through to the

next statement if there is no data to be gotten. The primary use of GET# is to retrieve

from diskette any data that cannot be read into an INPUT# statement, either because it is

too long to fit in the input buffer or because it includes troublesome characters.

FORMAT FOR THE GET# STATEMENT:

GET#file#,variable list

where "file #" is the same file number given in the desired file's current OPEN

statement, and "variable list" is one or more valid BASIC variable names. If more than

one data element is to be input by a particular GET# statement, each variable name must

be separated from others by a comma.

In practice, you will almost never see a GET or GET# statement containing more

than one variable name. If more than one character is needed, a loop is used rather than

additional variables. Also as in the INPUT# statement, it is safer to use string variables

when the file to be read might contain a non-numeric character.

Data in a GET# statement comes in byte-by-byte, including such normally invisible

characters as the Carriage Return, and the various cursor controls. All but one will be read

properly. The exception is CHR$(0), the ASCII Null character. It is different from an

empty string (one of the form A$ = " "), even though empty strings are often referred to as

null strings. Unfortunately, in a GET# statement, CHR$(0) is converted into an empty

string. The cure is to test for an empty string after a GET#, and replace any that are found

with CHR$(0) instead. The first example below illustrates the method.

EXAMPLES:

To read a file that may contain a CHR$(0), such as a machine language program

file, you could correct any CHR$(0) bytes with

1100 GET#3,G$:IF G$= "" THEN G$ = CHR$(0)

If an overlong string has managed to be recorded in a file, it may be read back safely

into the computer with GET#, using a loop such as this

49

3310GET#l,A$

3320 IF A$OCHR$(13) THEN B$ = B$ + A$:GOTO 3310

The limit for such a technique is 255 characters. It will ignore CHR$(0), but that may be

an advantage in building a text string. If CHR$ (0) is required in the file, then use the

following alternate line:

3320 If A$OCHR$(13) THEN B$ = B$ + (A$ + CHR$(0): GOTO 3310

GET# may be useful in recovering damaged files, or files with unknown contents.

The BASIC reserved variable ST (the file STatus variable) can be used to indicate when

all of a properly closed file has been read.

500 GET#2,S$

510 SU = ST:REM REMEMBER FILE STATUS

520 PRINT S$;

530 IF SU = 0 THEN 500:REM IF THERE'S MORE TO BE READ

540 IF SUO64 THEN PRINT "STATUS ERROR: ST = ";SU

Copying ST into SU is often an unneccessary precaution, but must be done if any other

file-handling statement appears between the one which read from the file and the one that

loops back to read again. For example, it would be required if line 520 was changed to

520PRINT#l,S$;

Otherwise, the file status checked in line 530 would be that of the write file, not the read

file.

The following table applies to single errors or a combination of two or more errors.

POSSIBLE VALUES OF THE FILE STATUS VARIABLE "ST,"

IFST=

0

1

2

4

8

16

32

64

128

AND THEIR MEANINGS

THEN

All is OK

Receiving device was not available (time out on talker)

Transmitting device was not available (time out on listener)

Cassette data file block was too short

Cassette data file block was too long

Unrecoverable read error from cassette, verify error

Cassette checksum error—one or more faulty characters were read

End of file reached (EOI detected)

Device not present, or end of tape mark found on cassette

50

DEMONSTRATION OF SEQUENTIAL FILES (BASIC 2.0)

Use the following program for your first experiments with sequential files.

Comments have been added to help you better understand it.

150CR$ = CHR$(13)

160 OPEN 15,8,15

170 PRINT CHR$(147):REM CLEAR

SCREEN

190 PRINT "** WRITE A FILE **"

210 PRINT

220 OPEN 2,8,2,44@0:SEQ FILE,S,W"

230 GOSUB 500

240 PRINT4'ENTER A WORD,

THEN A NUMBER"

250 PRINT4'OR 4END,0' TO STOP"

260 PRINT

270 INPUT A$,B

280 PRINT#2,A$;CR$;B

290 GOSUB 500

300 IF A$O44END" THEN 270

310 PRINT

320 CLOSE 2

340 PRINT <4** READ SAME FILE

BACK **"

360 PRINT

370 OPEN 2,8,2,440:SEQ FILE,S,R"

380 GOSUB 500

390 INPUT#2,A$,B

400RS = ST

410 GOSUB 500

420 PRINT A$,B

430 IF RS = 0 THEN 390

440 IF RSO64 THEN

PRINT44STATUS = ";RS

450 CLOSE 2

455 CLOSE 15

460 END

480 REM ** ERROR CHECK S/R **

500 INPUT#15,EN,EM$,ET,ES

510 IF EN>0 THEN PRINT

EN,EM$,ET,ES:STOP

520 RETURN

Make a carriage return variable

Open demo file with replace

Check for disk errors

Accept a string & number

from keyboard

Write them to the disk file

Until finished

Tidy up

Reopen same file for reading

Read next string & number from file

Remember file status

Display file contents

until done,

unless there's an error

Then quit

A Basic 3.5-only version could

replace line 500 with

500 IF DS>0 THEN PRINT

DS$:STOP

and delete line 510

51

DEMONSTRATION OF SEQUENTIAL FILES (BASIC 7.0)

Use the following program for your

Comments have been added to help you

150CR$ = CHR$(13)

170 PRINT CHR$(147):REM CLEAR

SCREEN

190 PRINT "** WRITE A FILE **"

210 PRINT

220 DOPEN #2,"@SEQ FILE",W

230 GOSUB 500

240 PRINT''ENTER A WORD,

THEN A NUMBER"

250 PRINT4'OR 'END,0' TO STOP"

260 PRINT

270 INPUT A$,B

280 PRINT#2,A$;CR$;B

290 GOSUB 500

300 IF A$<>4'END" THEN 270

310 PRINT

320 DCLOSE #2

340 PRINT "** READ SAME RLE

BACK**"

360 PRINT

370 DOPEN #2,"SEQ FILE"

380 GOSUB 500

390 INPUT#2,A$,B

400RS = ST

410 GOSUB 500

420 PRINT A$,B

430 IF RS = 0 THEN 390

440 IF RSO64 THEN

PRINT"STATUS = ";RS

450 DCLOSE #2

460 END

480 REM ** ERROR CHECK S/R **

500 IF DS>0 THEN PRINT DS$:STOP

510 RETURN

first experiments with sequential files.

better understand it.

Make a carriage return variable

Open demo file with replace

Check for disk errors

Accept a string & number

from keyboard

Write them to the disk file

Until finished

Tidy up

Reopen same file for reading

Read next string & number from file

Remember file status

Display file contents

until done,

unless there's an error

Then quit

52

CHAPTER 6

RELATIVE FILES

THE VALUE OF RELATIVE ACCESS

Sequential files are very useful when you're just working with a continuous stream of

data — i.e., information that can be read or written all at once. However, sequential files

are not useful in some situations. For example, after writing a large list of mail labels, you

wouldn't want to have to reread the entire list each time you need a person's record.

Instead, you need some kind of random access, a way to get to a particular label in your

file without having to read through all those preceding it.

As an example, compare a record turntable with a cassette recorder. You have to

listen to a cassette from beginning to end, but a turntable needle can be picked up at any

time, and instantly moved to any spot on the record. Your disk drive works like a turntable

in that respect. In this chapter you will learn about a type of file that reflects this

flexibility.

Actually, two different types of random access files may be used on Commodore

disk drives: relative files and random files. Relative files are much more convenient for

most data handling operations, but true random access file commands are also available to

advanced users, and will be discussed in the next chapter.

FILES, RECORDS, AND FIELDS

When learning about sequential files, you did not worry about the organization of

data within a file, so long as the variables used to write the file matched up properly with

those which read it back into the computer. But in order for relative access to work, you

need a more structured and predictable environment for our data.

The structure you will use is similar to that used in the traditional filing cabinet. In a

traditional office, all customer records might be kept in a single file cabinet. Within this

file, each customer has a personal record in a file folder with their name on it, that

contains everything the office knows about that person. Likewise, within each file folder,

there may be many small slips of paper, each containing one bit of information about that

customer, such as a home phone number or the date of the most recent purchase.

In a computerized office, the file cabinet is gone, but the concept of a file containing

all the information about a group or topic remains. The file folders are gone too, but the

notion of subdividing the file into individual records remains. The slips of paper within

the personal records are gone too, replaced by subdivisions within the records, called

fields. Each field is large enough to hold one piece of information about one record in the

file. Thus, within each file there are many records, and within each record there are

typically many fields.

A relative file takes care of organizing the records for you, numbering them from 1 to

the highest record number, by ones, but the fields are up to you to organize. Each record

will be of the same size, but the 1571 won't insist that they all be divided the same way.

On the other hand, they normally will be subdivided the same way, and if it can be known

in advance exactly where each field starts within each record, there are even fast ways to

access a desired field within a record without reading through the other fields. As all of

this implies, access speed is a primary reason for putting information into a relative disk

53

file. Some well-written relative file programs are able to find and read the record of one

desired person out of a thousand in under 15 seconds, a feat no sequential file program

could match.

FILE LIMITS

With relative files, you don't have to worry about exactly where on the diskette's

surface a given record will be stored, or whether it will fit properly within the current disk

sector, or need to be extended onto the next available sector. DOS takes care of all that for

you. All you need to do is specify how long each record is, in bytes, and how many

records you will need. DOS will do the rest, and organize things in such a way that it can

quickly find any record in the file, as soon as it is given the record number (ordinal

position within the file).

The only limit that will concern you is that each record must be the same size, and the

record length you choose must be between 2 and 254 characters. Naturally the entire file

also has to fit on your diskette too, which means that the more records you need, the

shorter each record must be.

CREATING A RELATIVE FILE

When a relative file is to be used for the first time, its Open statement will create the

file; after that, the Open statement is used to reopen the file for both reading and writing.

FORMAT STATEMENT TO OPEN A RELATIVE FILE:

BASIC 7.0: DOPEN # file #, "file name", L record length [,Ddrive #]

[,Udevice #]

BASIC 2.0: OPEN file #, device #, channel #, "drive #: file name, L," + CHR$

(record length)

where "file #" is the file number, normally an integer between 1 and 127; "device #" is

the device number to be used, normally 8 on the 1571; "channel #" selects a particular

channel along which communications for this file can take place, normally between 2 and

14; "drive #" is the drive number, always 0 on the 1571; and "file name" is the name of

the file, with a maximum length of 16 characters. Pattern matching characters are allowed

in the name when accessing an existing file, but not when creating a new one. The record

length is the size of each record within the file in bytes used, including carriage returns,

quotation marks and other special characters.

54

NOTES:

1. Do not precede the file name (in BASIC 7.0) or the drive number (in

BASIC 2.0) with the "at" sign (@); there is no reason to replace a relative file.

2. L record length (in BASIC 7.0) or, L ," 4- CHR$(record length) (in BASIC

2.0) is only required when a relative file is first created, though it may used later, so

long as the record length is the same as when the file was first created. Since

relative files may be read from or written to alternately and with equal ease, there is

no need to specify Read or Write mode when opening a relative file.

3. "file #", "device #" and "channel #" must be valid numeric constants,

variables or expressions. The rest of the command must be a valid string literal,

variable or expression. In BASIC 7.0 DOPEN, whenever a variable or expression

is used as a file name it must be surrounded by parentheses.

4. Only 1 relative file can be open at a time on the 1571, although a sequential

file and the command channel may also be open at the same time. However, if you

have a sequential and relative file open at the same time, you can't request a

directory.

EXAMPLES:

To create or reopen a relative file named "GRADES", of record length 100, use

BASIC 7.0: DOPEN#2,"GRADES",L100,D0,U8

BASIC 2.0: OPEN 2,8,2,"GRADES,L," + CHR$(10O)

To reopen an unknown relative file of the user's choice that has already been created,

use:

BASIC 7.0: 200 INPUT"WHICH FILE";FI$

210 DOPEN#5,(FI$),D0,U8

BASIC 2.0: 200 INPUT"WHICH FILE";FI$

210 OPEN 5,8,5,FI$

USING RELATIVE FILES: RECORD# COMMAND

When a relative file is opened for the first time, it is not quite ready for use. Both to

save time when using the file later, and to assure that the file will work reliably, it is

necessary to create several records before closing the file for the first time. At a minimum,

enough records to fill more than two disk sectors (512 bytes) should be written. In

practice, most programs go ahead and create as many records as the program is eventually

expected to use. That approach has the additional benefit of avoiding such problems as

running out of room on the diskette before the entire file is completed.

55

If you simply begin writing data to a just-opened relative file, it will act much like a

sequential file, putting the data elements written by the first PRINT# statement in Record

#1, those written by the second PRINT# statement in record #2 and so on. This means

each record must be written by a single PRINT# statement, using embedded carriage

returns within the data to separate fields that will be read in via one or more INPUT#

statements later. However, it is far better to explicitly specify which record number is

desired via a RECORD# command to the disk. This allows you to access records in any

desired order, hopping anywhere in a file with equal ease.

FORMAT FOR THE RECORD# COMMAND:

BASIC 7.0: RECORD # file #, record number [,offset]

BASIC 2.0: PRINT#15, "P" + CHR$ (channel # + 96) + CHR$

(<record #) + CHR$(>record #) + CHR$(offset)

where "file #" is the file # specified in the current DOPEN statement for the specified

file, "record number" is the desired record number, "channel #" is the channel number

specified in the current OPEN statement for the specified file, "<record #" is the low

byte of the desired record number, expressed as a two-byte integer, ">record #" is the

high byte of the desired record number, and an optional "offset" value, if present, is the

byte within the record at which a following Read or Write should begin.

To fully understand this command, you must understand how most integers are

stored in computers based on the 6502 and related microprocessors. In the binary

arithmetic used by the microprocessor, it is possible to express any unsigned integer from

0-255 in a single byte. It is also possible to store any unsigned integer from 0-65535 in

two bytes, with one byte holding the part of the number that is evenly divisible by 256,

and any remainder in the other byte. In machine language, such numbers are written

backwards, with the low-order byte (the remainder) first, followed by the high-order byte.

In assembly language programs written with the Commodore Assembler, the low part of a

two-byte number is indicated by preceding its label with the less-than character (<).

Similarly, the high part of the number is indicated by greater-than (>).

SAFETY NOTE: GIVE EACH RECORD# COMMAND TWICE

To avoid the remote possibility of corrupting relative file data, it is necessary to

give RECORD# command once before the Read or Write access and once after the

access.

EXAMPLES:

In BASIC 7.0, to position the record pointer for file #2 to record number 3, type:

RECORD#2,3

56

In BASIC 2.0, to position the record pointer for channel #2 to record number 3, type:

PRINT #15, "P" +CHR$(98) +CHR$(3) + CHR$(0)

The CHR$(98) comes from adding the constant (96) to the desired channel number (2).

(96 + 2 = 98) Although the command appears to work even when 96 is not added to the

channel number, the constant is normally added to maintain compatibility with the way

RECORD# works in BASIC 7.0.

Since 3 is less than 256, the high byte of its binary representation is 0, and the entire

value fits into the low byte. Since you want to read or write from the beginning of the

record, no offset value is needed.

Since these calculations quickly become tedious, most programs are written to do

them for you. Here is an example of a program which inputs a record number and converts

it into the required low-byte/high-byte form:

450 INPUT'RECORD NUMBER DESIRED";RE

460 IF RE<1 OR RE>65535 THEN 450

470RH = INT(RE/256)

480RL = RE-256*RH

490PRINT#15, "P" +CHR$(98) + CHR$(RL) + CHR$(RH)

Assuming RH and RL are calculated as in the previous example, programs may also use

variables for the channel, record, and offset required:

570 INPUT "CHANNEL, RECORD, & OFFSET DESIRED'';CH,RE,OF

630PRINT#15, "P" +CHR$(CH + 96) + CHR$(RL) + CHR$(RH) + CHR$(OF)

COMPLETING RELATIVE FILE CREATION

Now that you have learned how to use both the Open and Record# commands, you

are almost ready to properly create a relative file. The only additional fact you need to

know is that CHR$(255) is a special character in a relative file. It is the character used by

the DOS to fill relative records as they are created, before a program fills them with other

information. Thus, if you want to write the last record, you expect to need in your file

with dummy data that will not interfere with your later work, CHR$(255) is the obvious

choice. Here is how it works in an actual program which you may copy for use in your

own relative file programs.

BASIC 2.0:

1020 OPEN 15,8,15 Open command channel

1380 INPUT4 'ENTER RELATIVE FILE NAME'' ;FI$ Select file parameters

1390 INPUT"ENTER MAX. # OF RECORDS";NR

1400 INPUT4 'ENTER RECORD LENGTH'';RL

(continued)

57

1410OPEN l,8,2,440:" + FI$+44,L," + CHR$(RL)

1420 GOSUB 59990

1430RH = INT(NR/256)

1440RL = NR-256*RH

1450 PRINT#15,44P" + CHR$(96 + 2) +

CHR$(RL) + CHR$(RH)

1455 PRINT#15,4'P"+CHR$(96 + 2) +

CHR$(RL) + CHR$(RH)

1460 GOSUB 59990

1470 PRINT#1,CHR$(255);

1480 GOSUB 59990

1500 GOSUB 59990

1510 CLOSE 1

1520 GOSUB 59990

9980 CLOSE 15

9990 END

59980 REM CHECK DISK SUBROUTINE

59990 INPUT#15,EN,EM$,ET,ES

60000 IF EN> 1 AND ENO50 THEN PRINT

EN,EM$,ET,ES:STOP

60010 RETURN

BASIC 7.0:

1380 INPUT44ENTER RELATIVE FILE NAME";FI$

1390INPUT44ENTER MAX. # OF RECORDS";NR

1400 INPUT44ENTER RECORD LENGTH";RL

1410 DOPEN#1,(FI$),L(RL)

1420 GOSUB 60000

1450RECORD#1,(NR)

1455RECORD#1,(NR)

1460 GOSUB 60000

1470 PRINT#1,CHR$(255);

1480 GOSUB 60000

1500 GOSUB 60000

1510 CLOSE 1

(continued)

Begin to create desired file

Check for disk errors

Calculate length values

Position to last record

number

Re-position for safety

Send default character to it

Now the file can be safely

closed

And the command channel

closed

Before we end the pro

gram

Error check subroutine

Ignore 44RECORD NOT

PRESENT"

Select file parameters

Begin to create desired file

Check for disk errors

Calculate length values

Position to last record

number

Send default character to it

Now the file can be safely

closed

58

1520 GOSUB 60000

9980 CLOSE 15 And the command channel

closed

9990 END Before we end the pro

gram

59980 REM CHECK DISK SUBROUTINE

60000 IF DS> 1 AND DSO50 THEN PRINT Error check subroutine

DS,DS$:STOP Ignore ''RECORD NOT

PRESENT"

60010 RETURN

Two lines require additional explanation. When line 1470 executes, the disk drive will

operate for up to several minutes, creating all the records in the file, up to the maximum

record number you selected in line 1390. This is normal, and only needs to be done once.

During the process you may hear the drive motor turning and an occasional slight click as

the head steps from track to track. Second, line 60000 above is different from the

equivalent line in the error check subroutine given earlier. Here disk error number 50 is

specifically ignored, because it will be generated when the error channel is checked in line

1460. Ignore it because not having a requested record would only be an error if that record

had been created previously.

EXPANDING A RELATIVE FILE

What if you underestimate your needs and need to expand a relative file later? No

problem. Simply request the record number you need, even if it doesn't currently exist in

the file. If there is no such record yet, DOS will create it as soon as you try to write

information in it, and also automatically create any other missing records below it in

number. When the first record beyond the current end record is written, the DOS returns

"50, Record Not Present" error. This is expected and correct.

WRITING RELATIVE FILE DATA

The commands used to read and write relative file data are the same PRINT#,

INPUT#, and GET# commands used in the preceding chapter on Sequential files. Each

command is used as described there. However, some aspects of relative file access do

differ from sequential file programming, and we will cover those differences here.

DESIGNING A RELATIVE RECORD

As stated earlier in this chapter, each relative record has a fixed length, including all

special characters. Within that fixed length, there are two popular ways to organize

various individual fields of information. One is free-format, with individual fields varying

in length from record to record, and each field separated from the next by a carriage return

character (each of which does take up one character space in the record). The other

approach is to use fixed-length fields, that may or may not be separated by carriage

returns. If fixed length fields are not all separated by carriage returns, you will either need

59

to be sure a carriage return is included within each 88-character portion of the record (88 is

for BASIC 2, 160 is for BASIC 7). If this is not done, you will have to use the GET#

command to read the record, at a significant cost in speed.

Since each relative record is most easily written by a single PRINT# statement, the

recommended approach is to build a copy of the current record in memory before writing

it to disk. It can be collected into a single string variable with the help of BASIC'S many

string-handling functions, and then all written out at once from that variable.

Here is an example. If we are writing a 4-line mail label, consisting of 4 fields named

"NAME," "STREET," "CITY & STATE," and "ZIP CODE," and have a total record

size of 87 characters, we can organize it in either of two ways:

WITH FIXED LENGTH FIELDS

Field Name Length

NAME 27 characters

STREET 27 characters

CITY & STATE 23 characters

ZIP CODE 10 characters

WITH VARIABLE LENGTH FIELDS

Field Name Length

NAME 31 characters

STREET 31 characters

CITY & STATE 26 characters

ZIP CODE 11 characters

Total length 87 characters Potential length

Edited length

99 characters

87 characters

With fixed length records, the field lengths add up to exactly the record length. Since

the total length is just within the Input buffer size limitation, no carriage return characters

are needed. With variable length records, you can take advantage of the variability of

actual address lengths. While one name contains 27 letters, another may have only 15,

and the same variability exists in street and city lengths. Although variable length records

lose one character per field for carriage returns, they can take advantage of the difference

between maximum field length and average field length. A program that uses variable

record lengths must calculate the total length of each record as it is entered, to be sure the

total of all fields doesn't exceed the space available.

WRITING THE RECORD

Here is an example of program lines to enter variable length fields for the above file

design, build them into a single string, and send them to record number RE in file number

3 (assumed to be a relative file that uses channel number 3).

BASIC 7.0:

100 INPUT"ENTER RECORD NUMBER";RE

110:

120 DOPEN#3,"MYRELFILE"L88

130CR$ = CHR$(13)

140 INPUT"NAME"; NA$

150 IF LEN(A$)>30 THEN 140

160 INPUT"STREET";SA$

170 IF LEN(SA$)>30 THEN 160

(continued)

60

180 INPUT"CITY & STATE"; CS$

190 IF LEN(CS$)>25 THEN 180

200 INPUT4 'ZIP CODE";ZP$

210 IF LEN(ZP$)>10 THEN 200

220 DA$ = NA$ + CR$ + SA$ + CR$ + CS$ + CR$;ZP$

230 IF LEN(DA$)<88 THEN 260

240 PRINT4'RECORD TOO LONG''

250 GOTO 140

260:

270:

280RECORD#3,(RE),1

290IFDS = 50THENPRESfT#3,CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310PRINT#3,DA$

320 GOSUB1000

330RECORD#3,(RE),1

340 GOSUB1000

350 DCLOSE3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRBSfTDS$:DCLOSE3:END

BASIC 2.0:

100 INPUT''ENTER RECORD NUMBER'';RE

110 OPEN 15,8,15

120 OPEN3,8,3,"MYRELFDLE,L," + CHR$(88)

130CR$ = CHR$(13)

140 INPUT'NAME"; NA$

150 IF LEN(A$)>30 THEN 140

160INPUT"STREET";SA$

170 IF LEN(SA$)>30 THEN 160

180 INPUT'CITY & STATE"; CS$

190 IF LEN(CS$)>25 THEN 180

200 INPUT"ZIP CODE";ZP$

210 IF LEN(ZP$)>10 THEN 200

220 DA$ = NA$ + CR$ 4- SA$ + CR$ + CS$ + CR$;ZP$

230 IF LEN(DA$)<88 THEN 260

240 PRINT'RECORD TOO LONG"

250 GOTO 140

260RH = INT(RE/256)

270RL= RE-256*RH

280 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)

290 GOSUB 1000:IF EN = 50THENPRINT#3,CHR$(255):GOSUB1000:GOTO280

300 GOSUB 1000

310PRINT#3,DA$

320 GOSUB 1000

330 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)

(continued)

61

340 GOSUB1000

350 CLOSE3:CLOSE15:END

1000 INPUT#15,EN,EM$,ET,ES

1002 IF EN<20 THEN RETURN

1010 PRINTEM$:CLOSE3:CLOSE15:END

To use the above program lines for the version with fixed length fields, we would

alter a few lines as follows:

BASIC 7.0:

100 INPUT4'ENTER RECORD NUMBER";RE

110:

120 DOPEN#3,"MYRELFILE",L88

130 BL$ = "(27 shited space chars)"

140 INPUT*'NAME"; NA$

145LN = LEN(NA$)

150 IF LEN>27 THEN 140

155 NA$ =NA$ + LEFT$(BL$,27 - LN)

160 INPUT''STREET" ;SA$

165LN = LEN(SA$)

170 IF LEN>27 THEN 160

175 SA$ = SA$ + LEFT$(BL$,27 - LN)

180 INPUT"CITY & STATE"; CS$

185LN = LEN(CS$)

190 IF LEN>23 THEN 180

195 CS$ = CSS + LEFT$(BL$,23 - LN)

200 INPUT"ZIP CODE";ZP$

205LN = LEN(ZP$)

210 IF LN>10 THEN 200

215 ZP$ = ZP$ + LEFT$(BL$, 10 - LN)

220 DA$ = NA$ + SA$ + CSS + ZP$

260:

270:

280RECORD#3,(RE),1

290IFDS = 50THENPRINT#3,CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310PRINT#3,DA$

320 GOSUB 1000

330RECORD#3,(RE),1

340 GOSUB 1000

350 DCLOSE#3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRINT"ERROR:"DS$:DCLOSE#):END

62

BASIC 2.0:

100 INPUT*'ENTER RECORD NUMBER" ;RE

110 OPEN 15,8,15

120 OPEN#3,8,3,"MYRELFILE,L," + CHR$(88)

130 BL$ = "(27 shited space chars)"

140 INPUT'NAME"; NA$

145LN = LEN(NA$)

150 IF LEN>27 THEN 140

155 NA$ = NA$ + LEFT$(BL$,27 - LN)

160 INPUT"STREET";SA$

165LN = LEN(SA$)

170 IF LEN>27 THEN 160

175 SA$ = SA$ + LEFT$(BL$,27 - LN)

180 INPUT1 'CITY & STATE''; CS$

185LN = LEN(CS$)

190 IF LN>23 THEN 180

195 CSS = CS$ + LEFT$(BL$,23 - LN)

200 INPUT''ZIP CODE";ZP$

205LN = LEN(ZP$)

210IFLN>10THEN200

215 ZP$ = ZP$ + LEFT$(BL$, 10 - LN)

220 DA$ = NA$ + SA$ + CS$ 4- ZP$

260RH = INT(RE/256)

270RL = RE-256*RH

280 PRINT#15,"P" +CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)

290 GOSUB 1000:IF EN = 50THENPRINT#3)CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310 PRINT#3,DA$

320 GOSUB 1000

330 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)

340 GOSUB 1000

350 GOSUB 1000:CLOSE3:CLOSE15:END

1000 IIS[PUT#15,EN,EM$,ET,E

1002 IF EN<20 THEN RETURN

1010 PRINT"ERROR:"EM$:CLOSE3:CLOSE15:END

If field contents vary in length, variable field lengths are often preferable. On the

other hand, if the field lengths are stable, fixed field lengths are preferable. Fixed length

fields are also required if you want to use the optional offset parameter of the Record#

command to point at a particular byte within a record. However, one warning must be

made about using the offset this way. When any part of a record is written, DOS

overwrites any remaining spaces in the record. Thus, if you must use the offset option,

never update any field in a record other than the last one unless all succeeding fields will

also be updated from memory later.

63

The above programs are careful to match record lengths exactly to the space

available. Programs that don't do so will discover that DOS pads short records out to full

size with fill characters, and truncates overlong records to fill only their allotted space.

When a record is truncated, DOS will indicate error 51, "RECORD OVERFLOW," but

short records will be accepted without a DOS error message.

READING A RELATIVE RECORD

Once a relative record has been written properly to diskette, reading it back into

computer memory is fairly simple, but the procedure again varies, depending on whether

it uses fixed or variable length fields. Here are the program lines needed to read back the

variable fields created above from record number RE in file and channel 3:

BASIC 7.0:

10:

20 DOPEN#3,"MYRELFILE",L88

30 INPUT'ENTER RECORD NUMBER";RE

40:

50:

60RECORD#3,(RE),1

70GOSUB1000

80 INPUT#3,NA$,SA$,CS$,ZP$

90GOSUB1000

100RECORD#3,(RE),1

110 GOSUB1000

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 DCLOSE#3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRINT"ERROR:"DS$:DCLOSE#3:END

BASIC 2.0:

10 OPEN 15,8,15

20 OPEN3,8,3,"MYRELFILE,L," + CHR$(88)

30 INPUT*'ENTER RECORD NUMBER1';RE

40RH = INT(RE/256)

50RL= RE-256*RH

60 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) 4- CHR$(RH) + CHR$(l)

70 GOSUB 1000

80 INPUT#3,NA$,SA$,CS$,ZP$

90 GOSUB 1000

100 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)

110 GOSUB 1000

120 PRINTNA$:PRINTSA$

(continued)

64

130 PRINTCS$:PRINTZP$

140 CLOSE3:CLOSE15:END

1000 INPUT#15,EN,EM$,ET,ES

1002 IF EN<20 THEN RETURN

1002PRINT4'ERROR:''EM$:CLOSE3:CLOSE15:END

READY.

Here are the lines needed to read back the version with fixed length fields:

BASIC 7.0:

10:

20 DOPEN#3,"MYRELFILE",L88

30 INPUT*'ENTER RECORD NUMBER'';RE

40:

50:

60RECORD#3,(RE),1

70GOSUB1000

80INPUT#3,DA$

90 GOSUB1000

100RECORD#3,(RE),1

110 GOSUB1000

112 NA$ = LEFT$(DA$,27)

114 SA$ = MID$(DA$,28,27)

116CS$ = MID$(DA$,55,23)

118ZP$ = RIGHT$(DA$,10)

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 DCLOSE#3:END

1000 IFDS<20 THEN RETURN

1002 :

1010 PRINT'ERROR:"DS$:DCLOSE#3:END

BASIC 2.0:

10 OPEN 15,8,15

20 OPEN3,8,3,"MYRELFILE,L" + CHR$(88)

30 INPUT*'ENTER RECORD NUMBER'';RE

40RH = INT(RE/256)

50RL= RE-256*RH

60 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)

70 GOSUB 1000

80INPUT#3,DA$

90 GOSUB 1000

100 PRINT#15,"P" +CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)

110 GOSUB 1000

(continued)

65

112 NA$ = LEFT$(DA$,27)

114 SA$ = MID$(DA$,28,27)

116 CS$ = MED$(DA$,55,23)

118 ZP$ = RIGHT$(DA$,IO)

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 CLOSE3:CLOSE15:END

1000 INPUT#15,EN,EM$,ET,ES

1002 IF EN<20 THEN RETURN

1002PRINT''ERROR:''EM$:CLOSE3:CLOSE15:END

READY.

THE VALUE OF INDEX FILES (ADVANCED USERS)

In the last two chapters you have learned how to use sequential and relative files

separately. But they are often used together, with the sequential file used to keep brief

records of which name in the relative file is stored in each record number. That way the

contents of the sequential file can be read into a string array and sorted alphabetically.

After sorting, a technique known as a binary search can be used to quickly find an entered

name in the array, and read in or write the associated record in the relative file. Advanced

programs can maintain two or more such index files, sorted in differing ways simulta

neously.

66

CHAPTER 7

DIRECT ACCESS COMMANDS

A TOOL FOR ADVANCED USERS

Direct access commands specify individual sectors on the diskette, reading and

writing information entirely under your direction. This gives them almost complete

flexibility in data-handling programs, but imposes tremendous responsibilities on the

programmer, to be sure nothing goes awry. As a result, they are normally used only in

complex commercial programs able to properly organize data without help from the disk

drive itself.

A far more common use of direct access commands is in utility programs used to

view and alter parts of the diskette that are not normally seen directly. For instance, such

commands can be used to change the name of a diskette without erasing all of its

programs, to lock a program so it can't be erased, or hide your name in a location where it

won't be expected.

In this chapter we will describe the DOS commands for directly reading and writing

any track and block on the diskette, as well as the commands used to mark blocks as used

or unused.

OPENING A DATA CHANNEL FOR DIRECT ACCESS

When working with direct access data, you need two channels open to the disk: the

command channel we've used throughout the book, and another for data. The command

channel is opened with the usual OPEN 15,8,15 or equivalent. A direct access data

channel is opened much like other files, except that the pound sign (#)* optionally

followed by a memory buffer number, is used as a file name.

FORMAT FOR DIRECT ACCESS FILE OPEN STATEMENTS:

OPEN file #,device #, channel #, "#buffer #"

where "file #" is the file number, "device #" is the disk's device number, normally 8;

"channel #" is the channel number, a number between 2 and 14 that is not used by other

files open at the same time; and "buffer #," if present, is a 0, 1,2, or 3, specifying the

memory buffer within the 1571 to use for this file's data.

EXAMPLES:

If we don't specify which disk buffer to use, the 1571 will select one:

OPEN5,8,5,"#"

Or we can make the choice ourselves:

OPEN4,8,4,"#2"

67

BLOCK-READ

The purpose of a BLOCK-READ is to load the contents of a specified sector into a

file buffer. Although the BLOCK-READ command (B-R) is still part of the DOS

command set, it is nearly always replaced by the Ul command (See Chapter 8).

FORMAT FOR THE BLOCK-READ COMMAND:

PRINT#15, "Ul"; channel #; drive #; track #; sector #

where "channel #" is the channel number specified when the file into which the block

will be read was opened, "drive #" is the drive number, and "track #"*and "sector #"

are respectively the track and sector numbers containing the desired block of data to be

read into the file buffer.

ALTERNATE FORMATS:

PRINT#15,"Ul:"channel #;drive #;track #;sector #

PRINT#15,"UA:"channel #;drive #;track #;sector #

PRINT#15,"Ul:channel #,drive #,track #,sector #"

EXAMPLE:

Here is a complete program to read a sector into disk memory using Ul, and from

there into computer memory via GET#. (If a carriage return will appear at least once in

every 88 characters of data, Input# may be used in place of GET#).

110 MB = 7936:REM $1FOO Define a memory buffer.

120 INPUT"TRACK TO READ";T Select a track

130 INPUT"SECTOR TO READ";S and sector.

140 OPEN 15,8,15 Open command channel.

150 OPEN 5,8,5,"#" Open direct access channel.

160 PRINT#15,"U1 ";5;0;T;S Read sector into disk buffer.

170 FOR I = MB TO MB + 255 Use a loop to

180 GET#5,A$:IF A$ = " " copy disk buffer.

THEN A$ = CHR$(0) into computer memory.

190 POKE I,ASC(A$) Tidy up after.

200 NEXT

210 CLOSE 5:CLOSE 15

220 END

As the loop progresses, the contents of the specified track and sector are copied into

computer memory, beginning at the address set by variable MB in line 160, and may be

examined and altered there.

68

BLOCK-WRITE

The purpose of a BLOCK-WRITE is to save the contents of a file buffer into a

specified sector. It is thus the reverse of the BLOCK-READ command. Although the

BLOCK-WRITE command (B-W) is still part of the DOS command set, it is nearly

always replaced by the U2 command.

FORMAT FOR THE BLOCK-WRITE COMMAND:

PRIOT#15,"U2'';channel #;drive #;track #;sector #

where ' 'channel #" is the channel number specified when the file into which the block

will be read was opened; "drive #" is the drive number; and "track #" and "sector #"

are respectively the track and sector numbers that should receive the block of data being

saved from the file buffer.

ALTERNATE FORMATS:

PRINT#15,"U2:"channel #;drive #;track #;sector #

PRINT#15,"UB:''channel #;drive #;track #;sector #

PRINT#15,"U2:channel #,drive #,track #,sector #"

EXAMPLES:

To restore track 18, sector 1 of the directory from the disk buffer filled by a BLOCK-

READ, use:

PRINT#15,"U2";5;0;18;1

You'll return to this example on the next page, after you learn to alter the directory in a

useful way.

You can also use a BLOCK-WRITE to write a name in Track 1, Sector 1, a rarely-

used sector. This can be used as a way of marking a diskette as belonging to you. Here is a

program to do it, using the alternate form of the BLOCK-WRITE command:

110 INPUT"YOUR NAME";NA$ Enter a name.

120 OPEN 15,8,15 Open command channel.

130 OPEN 4,8,4,"#" Open direct access channel.

140 PRINT#4,NA$ Write name to buffer.

150 PRINT#15,"U2";4;0;l;l Write buffer to Track 1,

160 CLOSE 4 Sector 1 of diskette.

170 CLOSE 15 Tidy up after.

180 END

69

THE ORIGINAL BLOCK-READ AND BLOCK-WRITE COMMANDS (EXPERT

USERS)

Although the BLOCK-READ and BLOCK-WRITE commands are nearly always

replaced by the Ul and U2 commands respectively, the original commands can still be

used, as long as you fully understand their effects. Unlike Ul and U2, B-R and B-W allow

you to read or write less than a full sector. In the case of B-R, the first byte of the selected

sector is used to set the buffer pointer (see next section), and determines how many bytes

of that sector are read into a disk memory buffer. A program may check to be sure it

doesn't attempt to read past the end of data actually loaded into the buffer, by watching for

the value of the file status variable ST to change from 0 to 64. When the buffer is written

back to diskette by B-W, the first byte written is the current value of the buffer pointer.

Only that many bytes are written into the specified sector. B-R and B-W may thus be

useful in working with custom-designed file structures.

FORMAT FOR THE ORIGINAL BLOCK-READ AND BLOCK-WRITE COM

MANDS:

PRIOT#15,"BLOCK-READ";channel #;drive #;track #;sector #

abbreviated as: PRINT#15,"B-R";channel #;drive #;track #;sector #

and

PRINT#15,<<BLOCK-WRITE";channel #;drive #;track #;sector #

abbreviated as: PRINT#15,"B-W";channel #;drive #;track #;sector #

where '*channel #" is the channel number specified when the file into which the block

will be read was opened, "drive #" is the drive number, and "track #" and "sector #"

are the track and sector numbers containing the desired block of data to be partially read

into or written from the file buffer.

IMPORTANT NOTES:

1. In a true BLOCK-READ, the first byte of the selected sector is used to

determine how many bytes of that sector to read into the disk memory buffer. It

thus cannot be used to read an entire sector into the buffer, as the first data byte is

always interpreted as being the number of characters to read, rather than part of the

data.

2. Similarly, in a true BLOCK-WRITE, when the buffer is written back to

diskette, the first byte written is the current value of the buffer pointer. Only that

many bytes are written into the specified sector. It cannot be used to rewrite an

entire sector onto diskette unchanged, because the first data byte is overwritten by

the buffer pointer.

70

THE BUFFER POINTER

The buffer pointer points to where the next READ or WRITE will begin within a disk

memory buffer. By moving the buffer pointer, you can access individual bytes within a

block in any order. This allows you to edit any portion of a sector, or organize it into

fields, like a relative record.

FORMAT FOR THE BUFFER-POINTER COMMAND:

PRINT#15,"BUFFER-POINTER";channel#;byte

usually abbreviated as: PRINT#15,"B-P";channel #;byte

where "channel #" is the channel number specified when the file reserving the buffer

was opened, and "byte" is the character number within the buffer at which to point.

ALTERNATE FORMATS:

PRINT#15,"B-P:"channel #;byte

PRINT#15,"B-P:channel #;byte"

EXAMPLE:

Here is a program that locks the first program or file on a diskette. It works by

reading the start of the directory (Track 18, Sector 1) into disk memory, setting the buffer

pointer to the first file type byte (see Appendix C for details of directory organization),

locking it by setting bit 6 and rewriting it.

110 OPEN 15,8,15 Open command channel.

120 OPEN 5,8,5,"#" Open direct access channel.

130 PRINT#15,"Ul";5;0;18;l Read Track 18, Sector 1.

140 PRINT#15,"B-P";5;2 Point to Byte 2 of the buffer.

150 GET#5,A$:IF A$ = " " THEN A$ = CHR$(0) Read it into memory.

160 A = ASC(A$) OR 64 Turn on bit 6 to lock.

170 PRINT#15,"B-P";5;2 Point to Byte 2 again.

180 PRINT#5,CHR$(A); Overwrite it in buffer.

190 PRINT#15,"U2";5;0;18;l Rewrite buffer to diskette.

200 CLOSE 5 Tidy up after.

210 CLOSE 15

220 END

After the above program is run, the first file on that diskette can no longer be erased. If

you later need to erase that file, rerun the same program, but substitute the revised line

160 below to unlock the file again:

160 A = ASC(A$) AND 191 Turn off bit 6 to unlock

71

ALLOCATING BLOCKS

Once you have written something in a particular sector on a diskette with the help of

direct access commands, you may wish to mark that sector as *'already used", to keep

other files from being written there. Blocks thus allocated will be safe until the diskette is

validated.

FORMAT FOR BLOCK-ALLOCATE COMMAND:

PRINT#15,"BLOCK-ALLOCATE";drive #; track #;sector #

usually abbreviated as: PRINT#15,"B-A";drive #; track #;sector #

where "drive #" is the drive number, and "track #" and "sector #" are the track and

sector containing the block of data to be read into the file buffer.

ALTERNATE FORMAT:

PRINT#15,"B-A:";drive #; track #;sector #

EXAMPLE:

If you try to allocate a block that isn't available, the DOS will set the error message

to number 65, NO BLOCK, and set the track and block numbers in the error message to

the next available track and block number. Therefore, before selecting a block to write,

try to allocate that block. If the block isn't available, read the next available block from

the error channel and allocate it instead. However, do not allocate data blocks in the

directory track. If the track number returned is 0, the diskette is full.

Here is a program that allocates a place to store a message on a diskette.

100OPEN15,8,15

110OPEN5,8,5,"#"

120 PRINT#5,"I THINK

THEREFORE I AM"

130T=l:S=l

140 PRINT#15,"B-A";0;T;S

150 INPUT#15,EN,EM$,ET,ES

160 IF EN = 0 THEN 210

170 IF ENO65 THEN PRINT

EN,EM$,ET,ES:STOP

180 IF ET = 0 THEN PRINT

"DISK FULL":STOP

190 IF ET= 18 THEN ET= 19:ES = 0

200 T = ET:S = ES:GOTO 140

210 PRINT#15,"U2";5;0;T;S

220 PRINT "STORED AT:",T,S

230 CLOSE 5:CLOSE 15

240 END

Open command channel.

" direct access "

Write a message to buffer.

Start at first track & sector.

Try allocating it.

See if it worked.

If so, we're almost done.

"NO BLOCK" means already allocated.

If next track is 0, we're out of room.

Don't allocate the directory.

Try suggested track & sector next.

Write buffer to allocated sector.

Say where message went

and tidy up.

72

FREEING BLOCKS

The BLOCK-FREE command is the opposite of BLOCK-ALLOCATE. It frees a

block that you don't need any more, for re-use by the DOS. BLOCK-FREE updates the

BAM to show a particular sector is not in use, rather than actually erasing any data.

FORMAT FOR BLOCK-FREE COMMAND:

PRINT#15,"BLOCK-FREE";drive #;track #;sector #

abbreviated as: PRINT#15,''B-F';drive #;track #;sector #

where "drive #" is the drive number, and "track #" and "sector #" are respectively

the track and sector numbers containing the desired block of data to be read into the file

buffer.

ALTERNATE FORMAT:

PRINT#15,t'B-F:";drive #;track #;sector #

EXAMPLE:

To free the sector in which we wrote our name in the BLOCK WRITE example, and

allocated in the first BLOCK-ALLOCATE example, we could use the following com

mand:

PRINT#15,"B-F";0;l;l

USING RANDOM FILES (ADVANCED USERS)

By combining the commands in this chapter, it is possible to develop a file-handling

program that uses random files. What you need to know now is how to keep track of

which blocks on the disk such a file has used. (Even though you know a sector has not

been allocated by your random file, you must also be sure it wasn't allocated by another

unrelated file on the diskette.)

The most common way of recording which sectors have been used by a random file is

in a sequential file. The sequential file stores a list of record numbers, with the track,

sector, and byte location of each record. This means three channels are needed by a

random file: one for the command channel, one for the random data, and the last for the

sequential data.

73

CHAPTER 8

INTERNAL DISK COMMANDS

Expert programmers can give commands that directly alter the workings of the 1571,

much as skilled programmers can alter the workings of BASIC inside the computer with

Peeks, Pokes and Sys calls. It is also possible to write machine language programs that

load and run entirely within the 1571, either by writing them into disk memory from the

computer, or by loading them directly from diskette into the desired disk memory buffer.

This is similar to loading and running machine language programs in your computer.

As when learning to use Peek, Poke and Sys in your computer, extreme caution is

advised in using the commands in this chapter. They are essentially machine language

commands, and lack all of BASIC'S safeguards. If anything goes wrong, you may have to

turn the disk drive off and on again (after removing the diskette) to regain control. Do not

practice these commands on any important diskette. Rather, make a spare copy and work

with that. Knowing how to program a 6502 in machine language will help greatly, and

you will also need a good memory map of the 1571. A brief 1571 map appears below.

Location

1571 MEMORY MAP

Purpose

0000-OOFF Zero page work area, job queue, variables

0100-01FF GCR overflow area and stack (1571 mode BAM side one)

0200-02FF Command buffer, parser, tables, variables

0300-07FF 5 data buffers, 0-4 — one of which is used for BAM

1800-65C22A Serial, controller ports

1C00-65C22A Controller ports

8OOO-FFE5 32K byte ROM, DOS and controller routines

FFE6-FFFF JMP table, user command vectors

NOTE: The 1571, as well as other Commodore peripherals, is designed to support

interfacing via software command structures. The software commands provided in

the 1571 allow for a smooth and controllable interface between the peripheral and

CPU. Commodore reserves the right to change the ROM and I/O structure at any

time.

74

MEMORY-READ

The disk contains 32K of ROM (Read-Only Memory), as well as 4K of RAM (Read-

Write Memory) of which only 2K is used. You can get direct access to any location within

these, or to the buffers that the DOS has set up in RAM, by using memory commands.

MEMORY-READ allows you to select which byte or bytes to read from disk memory into

the computer. The MEMORY-READ command is the equivalent of the BASIC Peek()

function, but reads the disk's memory instead of the computer's memory.

NOTE: Unlike other disk commands, those in this chapter cannot be spelled out in

full. Thus, M-R is correct, but MEMORY-READ is not a permitted alternate

wording.

FORMAT FOR THE MEMORY-READ COMMAND:

PRINT#15,ttM-R')CHR$(<address)CHR$(>address)CHR$(# of bytes)

where "<address" is the low order part, and ">address" is the high order part of the

address in disk memory to be read. If the optional "# of bytes" is specified, it selects

how many memory locations will be read in, from 1-255. Otherwise, 1 character will be

read.

ALTERNATE FORMAT:

PRINT#15,<4M-R"CHR$(<address)CHR$(>address)CHR$(# of bytes)

The next byte read using the GET# statement through channel #15 (the error

channel), will be from that address in the disk controller's memory, and successive bytes

will be from successive memory locations.

Any INPUT# from the error channel will give peculiar results when you're using

this command. This can be cleared up by sending any other command to the disk, except

another memory command.

EXAMPLES:

To see how many tries the disk will make to read a particular sector, and whether

4'seeks" one-half track to each side will be attempted if a read fails, and whether

"bumps" to track one and back will be attempted before declaring the sector unreadable,

you can use the following lines. They will read a special variable in the zero page of disk

memory, called REVCNT. It is located at $6A hexadecimal.

75

110 OPEN 15,8,15

12OPRINT#15,"M-R"CHR$(106)CHR$(0)

130 GET#15,G$:IF G$ = "" THEN G$ = CHR$(0)

140G = ASC(G$)

150 B =G AND 128:B$ = "ON":IFB THEN B$ = "OFF"

160 S = G AND 64:S$ = "ON":IF S THEN S$ = "OFF"

170 T = G AND 31:PRINT "# OF TRIES IS";T

180 PRINT "BUMPS ARE";B$

190 PRINT "SEEKS ARE";S$

200 CLOSE 15

210 END

Open command channel.

SameasG = PEEK(106).

Check bit 7.

Check bit 6.

Check bits 0-5

and give results.

Tidy up after.

Here's a more general purpose program that reads one or more locations anywhere in disk

memory:

110OPEN15,8,15

120 INPUT"# OF BYTES TO READ (0 = END)";NL

130 IF NL<1 THEN CLOSE 15:END

14OIFNL>255THEN120

150 INPUT4STARTING AT ADDRESS";AD

160 AH = INT(AD/256):AL = AD-AH*256

170PRINT#15,"M-R"CHR$(AL)CHR$(AH)

CHR$(NL)

180 FOR 1=1 TO NL

190 GET#15,A$:IF A$ = "" THEN A$ = CHR$(0)

200 PRINT ASC(A$);

210 NEXT I

220 PRINT

230 GOTO 120

Open command channel.

Enter number of bytes wanted

unless done,

or way out of line.

Enter starting address.

Convert it into disk form.

Actual Memory-Read.

Loop until have all the data,

printing it as we go,

forever.

MEMORY-WRITE

The MEMORY-WRITE command is the equivalent of the BASIC Poke command,

but has its effect in disk memory instead of within the computer. M-W allows you to write

up to 34 bytes at a time into disk memory. The MEMORY-EXECUTE and some User

commands can be used to run any programs written this way.

FORMAT FOR THE MEMORY-WRITE COMMAND:

PRINT#15,4tM-W"CHR$(<address)CHR$(>address)CHR$

(# of bytes)CHR$(data byte(s))

where "<address" is the low order part; and ">address" is the high order part of the

address in disk memory to begin writing, "# of bytes" is the number of memory

locations that will be written (from 1-34), and "data byte" is 1 or more byte values to be

written into disk memory, each as a CHR$() value.

76

ALTERNATE FORMAT:

PRINT# 15,' 'M-W'CHR$(<address)CHR$(>address)CHR$

(# of bytes)CHR$(data byte(s))

EXAMPLES:

We can use this line to turn off the "bumps" when loading DOS-protected programs (i.e.,

programs that have been protected against being copied by creating and checking for

specific disk errors).

PRINT#15,ttM-W"CHR$(106)CHR$(0)CHR$(l)CHR$(133)

The following line can be used to recover bad sectors, such as when an important file has

been damaged and cannot be read normally.

PRINT#15,<<M-W"CHR$(106)CHR$(0)CHR$(1)CHR$(31)

These two examples may be very useful under some circumstances. They are the

equivalent of POKE 106,133 and POKE 106,31 respectively, but in disk memory, not

inside the computer. As mentioned in the previous section's first example, location 106 in

the 1571 disk drive signifies three separate activities to the drive, all related to error

recovery. Bit 7 (the high bit), if set means no bumps (don't thump the drive back to track

1). Bit 6, if set, means no seeks. In that case, the drive won't attempt to read the half-track

above and below the assigned track to see if it can read the data that way. The bottom six

bits are the count of how many times the disk will try to read each sector before and after

trying seeks and bumps before giving up. Since 31 is the largest number that can be

expressed in six bits, that is the maximum number of tries allowed.

From this example, you can see the value of knowing something about Peeks, Pokes,

and machine-language before using direct-access disk commands, as well as their poten

tial power.

MEMORY-EXECUTE

Any routine in disk memory, either in RAM or ROM, can be executed with the

MEMORY-EXECUTE command. It is the equivalent of the BASIC Sys call to a machine

language program or subroutine, but works in disk memory instead of within the comput

er.

FORMAT FOR THE MEMORY-EXECUTE COMMAND:

PRINT#15,t<M-E"CHR$(<address)CHR$(>address)

where "<address" is the low order part, and ">address" is the high order part of the

address in disk memory at which execution is to begin.

77

ALTERNATE FORMAT:

PRINT# 15,' 'M-E' 'CHR$(<address)CHR$(>address)

EXAMPLE:

Here is a MEMORY-EXECUTE command that does absolutely nothing. The first

instruction it executes is an RTS, which ends the command:

PRINT#15,"M-E''CHR$(179)CHR$(242)

A more plausible use for this command would be to artificially trigger an error message.

Don't forget to check the error channel, or you'll miss the message:

PRINT#15,"M-E''CHR$(201)CHR$(239)

However, most uses require intimate knowledge of the inner workings of the DOS, and

preliminary setup with other commands, such as MEMORY-WRITE.

BLOCK-EXECUTE

This rarely-used command will load a sector containing a machine language routine

into a memory buffer from diskette, and execute it from the first location within the

buffer, until a RETURN from Subroutine (RTS) instruction ends the command.

FORMAT FOR THE BLOCK-EXECUTE COMMAND:

PRIOT#15,"B-E:'';channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into which the block

will be loaded was opened, "drive #" is the drive number, and "track #" and "sector

#" are respectively the track and sector numbers containing the desired block of data to

be loaded into the file buffer and executed there.

ALTERNATE FORMATS:

PRINT#15,"B-E:";channel #;drive #;track #;sector #

PRINT#15,"B-E:channel #,drive #,track #,sector #"

78

EXAMPLES:

Assuming you've written a machine language program onto Track 1, Sector 8 of a

diskette, and would like to run it in buffer number 1 in disk memory (starting at $0400

hexadecimal, you could do so as follows:

110 OPEN 15,8,15 Open command channel.

120 OPEN 2,8,2,"#1" Open direct access channel to buffer 1.

130 PRINT#15,"B-E:";2;0;l;8 Load Track 1, Sector 8 in it & execute.

140 CLOSE 2 Tidy up after.

150 CLOSE 15

160 END

USER COMMANDS

Most User commands are intended to be used as machine language JMP or BASIC

SYS commands to machine language programs that reside inside the disk memory.

However, some of them have other uses as well. The Userl and User2 commands are used

to replace the BLOCK-READ and BLOCK-WRITE commands, UI re-starts the 1571

without changing its variables, UJ cold-starts the 1571 almost as if it had been turned off

and on again.

User Command Function

uO restores default user jump table

ul or ua block read replacement

u2 or ub block write replacement

u3 or uc jump to $0500

u4 or ud jump to $0503

u5 or ue jump to $0506

u6 or uf jump to $0509

u7 or ug jump to $050c

u8 or uh jump to $050f

u9 or ui jump to ($fffa) reset tables

u: or uj power up vector

By loading these memory locations with another machine language JMP command,

such as JMP $0520, you can create longer routines that operate in the disk's memory

along with an easy-to-use jump table.

FORMAT FOR USER COMMANDS:

PRINT#15,''Ucharacter";

where "character" defines one of the preset user commands listed above.

79

EXAMPLES:

PRINT#15,"U:"; Form of DOS RESET command

PRINT# 15, * *U3''; Execute program at start of buffer 2

UTILITY LOADER

This command loads a user-type file into the drive RAM. The first two bytes of the

file must contain the low and high addresses respectively. The third byte is the amount of

characters to follow. In addition, a trailing checksum byte must be included. The load

address is the starting address.

FORMAT FOR THE UTILITY LOADER COMMAND

PRINT#44&0:filename"

NOTE: The filename parameter is valid only in 1571 mode.

80

CHAPTER 9

MACHINE LANGUAGE PROGRAMS

Here is a list of host computer disk-related Kernal ROM subroutines and a practical

example of their use in a program which reads a sequential file into memory from disk.

Note that most require advance setup of one or more processor registers or memory

locations and all are called with the assembly language JSR command.

For a more complete description as to what each routine does and how parameters are

set for each routine, see the Programmer's Reference Guide for your specific computer.

DISK-RELATED KERNAL SUBROUTINES

Label Address Function

SETLFS

SETNAM

OPEN

CLOSE

CHKIN

CHKOUT

CLRCHN

CHRIN

CHROUT

START

NEXT

END

=

=

=

=

=

=

=

=

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

JSR

LDX

JSR

JSR

BEQ

JSR

JMP

LDA

JSR

JSR

RTS

$FFBA

$FFBD

$FFC0

$FFC3

$FFC6

$FFC9

$FFCC

$FFCF

$FFD2

#4

#<FNADR

#>FNADR

SETNAM

#3

#8

#0

SETLFS

OPEN

#3

CHKIN

CHRIN

END

CHROUT

NEXT

#3

CLOSE

CLRCHN

;SET LOGICAL, FIRST & SECOND ADDRESSES

;SET LENGTH & ADDRESS OF FILENAME

;OPEN LOGICAL FILE

;CLOSE LOGICAL FILE

;SELECT CHANNEL FOR INPUT

;SELECT CHANNEL FOR OUTPUT

;CLEAR ALL CHANNELS & RESTORE

DEFAULT I/O

;GET BYTE FROM CURRENT INPUT DEVICE

;OUTPUT BYTE TO CURRENT OUTPUT

DEVICE

;SET LENGTH & ADDRESS

;OF FILE NAME, LOW

;& HIGH BYTES

;FOR NAME SETTER

;SET FILE NUMBER

;DISK DEVICE NUMBER

;AND SECONDARY ADDRESS

;AND SET THEM

;OPEN 3,8,0,"TEST"

;SELECT FILE 3 FOR INPUT

;GET NEXT BYTE FROM FILE

;UNTIL FINISH OR FAIL

;OUTPUT BYTE TO SCREEN

;AND LOOP BACK FOR MORE

;WHEN DONE

;Ci:OSE FILE

;RESTORE DEFAULT I/O

;BACK TO BASIC

FNADR .BYT "TEST" ;STORE FILE NAME HERE

81

CHAPTER 10

BURST COMMANDS

The Burst Command Instruction Set (BCIS) is a series of powerful, versatile, and

complex commands that enables the user to format, read, and write in numerous formats.

Burst commands are sent via kernal calls, but the handshaking of data is done by the user

for maximum performance. There is no parameter checking, so exercise care when using

the BCIS. For instance, if a burst read with an illegal track address is sent to a 1571, the

drive will noisily keep trying to find the invalid track. Reading and writing in other

formats is automatic if the commands are given in proper sequence. Please become

thoroughly familiar with all the commands and follow the examples given in this chapter.

It's important to follow the handshake conventions exactly for maximum performance.

READ

BYTE

00

01

02

03

04

05

06

BIT7

0

0

T

6

1

0

E

5 4 3 2

0 10 1

110 0

B S 0 0

DESTINATION TRACK

DESTINATION SECTOR

NUMBER OF SECTORS

NEXT TRACK (OPTIONAL)

1

0

0

0

0

1

0

N

RANGE: All values are determined by the particular disk format.

SWITCHES: T—transfer data (1 = no transfer)

E—ignore error (1 = ignore)

B—buffer transfer only (1 = buffer transfer only)

S—side select (MFM only)

N—drive number

PROTOCOL: Burst handshake

CONVENTIONS: Before you can READ or WRITE to a diskette, it must be logged-in

using either the INQUIRE DISK or QUERY DISK FORMAT com

mand (both are described later). This must be done once each time you

change diskettes.

OUTPUT: One burst status byte, followed by burst data, is sent for each sector trans-

fered. An error prevents data from being sent unless the E bit is set.

82

WRITE

BYTE

00

01

02

03

04

05

06

BIT 7

0

0

T

6

1

0

E

5 4 3 2

0 1 0 1

110 0

B S 0 0

DESTINATION TRACK

DESTINATION SECTOR

NUMBER OF SECTORS

NEXT TRACK (OPTIONAL)

1

0

0

1

0

1

0

N

RANGE: All values are determined by the particular disk format:

SWITCHES: T—transfer data (1 = no transfer)

E—ignore error (1 = ignore)

B—buffer transfer only (1 = buffer transfer only)

S—side select (MFM only)

N—drive number

PROTOCOL: Go output (spout), send data, go input (spin), pull clock low, wait for

status, release clock (for multi-sector, start over i.e. Go output, etc.).

CONVENTIONS: Before you can READ or WRITE to a diskette, it must be logged-in

using either the INQUIRE DISK or QUERY DISK FORMAT com

mand (both are described later). This must be done once each time

you change diskettes.

INPUT: Host must transfer burst data.

OUTPUT: One burst status byte following each WRITE operation.

INQUIRE DISK

BYTE

00

01

02

BIT 7

0

0

X

6

1

0

X

5

0

1

X

4

1

1

S

3

0

0

0

2

1

0

1

1

0

0

0

0

1

0

N

SWITCHES: S—side select (MFM only)

N—drive number

PROTOCOL: Burst handshake

OUTPUT: One burst status byte following each INQUIRE DISK operation.

83

FORMAT MFM

BYTE

00

01

02

03

04

05

06

07

08

09

0A

OB-??

BIT 7 6 5

0 1 0

0 0 1

P I D

M = l T

INTERLEAVE

SECTOR SIZE

LAST TRACK NUMBER

NUMBER OF SECTORS

4 3 2 10

10 10 1

10 0 0 0

S 0 1 1 N

LOGICAL STARTING SECTOR

(OPTIONAL DEF-0)

♦(OPTIONAL DEF-01,256 BYTE SECTORS)

(OPTIONAL DEF-39)

♦♦(OPTIONAL DEPENDS ON BYTE 05)

LOGICAL STARTING TRACK (OPTIONAL DEF-0)

STARTING TRACK OFFSET (OPTIONAL DEF-0)

FILL BYTE

SECTOR TABLE

(OPTIONAL DEF-$E5)

(OPTIONAL T-BIT SET)

*00—128 BYTE SECTORS **DEF 26—128 BYTE SECTORS

01—256 BYTE SECTORS 16—256 BYTE SECTORS

02—512 BYTE SECTORS 9—512 BYTE SECTORS

03—1024 BYTE SECTORS 5—1024 BYTE SECTORS

SWITCHES: P—partial format (1 = partial)

I—index address mark written (1 = written)

D—double sided flag (1 = format double sided)

S—side select

T—sector table included (1 = included, all other parameters must be

included)

N—drive number

PROTOCOL: Conventional

CONVENTIONS: This command must be followed by the INQUIRE DISK or QUERY

DISK FORMAT command to log in the diskette.

OUTPUT: None. The status is updated within the drive.

84

FORMAT GCR (NO DIRECTORY)

BYTE BIT 7 6 5

00

01

02

03

04

05

0

0

X

M= 0

1

0

X

0

1

X

ID LOW

ID HIGH

1

1

X

0

0

0

1

0

1

0

0

1

1

0

N

SWITCHES N—drive number

X—don't care

PROTOCOL: Conventional

CONVENTIONS: This command must be preceded by the INQUIRE DISK or QUERY

DISK FORMAT command to log in the diskette.

OUTPUT: None. The status is updated within the drive.

SECTOR INTERLEAVE

BYTE BIT 7 6

00

01

02

04

0

0

W

1

0

X

0

1

X

1

1

0

INTERLEAVE

0

0

1

1

0

0

0

0

0

1

0

N

SWITCHES W—write switch (0 = write)

N—drive number

X—don't care

PROTOCOL: Burst handshake (W= 1)

CONVENTIONS: This is a soft interleave used for multi-sector burst READ and

WRITE.

OUTPUT: None (W = 0), Interleave burst byte (W = 1)

85

QUERY DISK FORMAT

BYTE BIT 7 6

00

01

02

03

0

0

F

1

0

X

0 1

1 1

X S

OFFSET

0

0

1

1

0

0

0

0

1

(OPTIONAL F-BIT SET)

1

0

N

SWITCHES: F—force flag (F = 1 steps the head with the offset specified in byte 03)

N—drive number

X—don't care

S—side select

PROTOCOL: Burst handshake

CONVENTIONS: Determines the diskette format on any particular track. Also logs non-

standard diskettes (i.e. minimum sector addresses other than one).

OUTPUT: *burst status byte (no bytes will follow if there is an error or if the format is

GCR)

**burst status byte (no bytes will follow if there was an error in compiling

MFM format information)

number of sectors (the number of sectors on a particular track)

logical track (the logical track number found in the disk header)

minimum sector (the logical sector with the lowest value address)

maximum sector (the logical sector with the highest value address)

CP/M interleave (the hard interleave found on a particular track)

♦status from track offset zero

**if F bit is set, status is from offset track

INQUIRE STATUS

BYTE

00

01

02

03

BIT 7

0

0

W

6

1

^ 0

C

5

0

1

X

NEW

4

1

1

0

STATUS

3

0

0

1

(W-BIT CLEAR)

2

1

0

1

1

0

0

0

0

1

0

N

SWITCHES: W—write switch (0 = write)

C—change (C = 1 and W = 0—log in disk)

(C = 1 and W = 1—return whether disk was logged, i.e. $B error or old

status)

N—drive number

X—don't care

86

PROTOCOL: Burst handshake (W= 1)

CONVENTIONS: This is a method of reading or writing current status.

OUTPUT: None (W = 0), Burst status byte (W = 1)

CHGUTL UTILITY

BYTE

00

01

02

03

04

BIT 7

0

0

X

6 5 4

1 0 1

0 1 1

X X 1

UTILITY COMMANDS: 'S\ *

COMMAND PARAMETER

3

0

0

1

lx , 1 ,

2

1

0

1

•M\ 'H\

1

0

0

1

#DEV

0

1

0

0

SWITCHES: X—don't care

UTILITY COMMANDS: 'S'—DOS sector interleave

'R'—DOS retries

4T'—ROM signature analysis

'M'—mode select

'H'—head select

#DEV—device #

Note: Byte 02 is equivalent to '>'.

EXAMPLES: "U0>S" +CHR$ (SECTOR INTERLEAVE)

"U0>R" + CHR$ (RETRIES)

"U0>T" (If the ROM signature failed, the activity LED blinks 4 times)

"U0>M1" = 1571 MODEL"U0>M0" = 1541 MODE

"U0>H0" = SIDE ZERO4'U0>H1" = SIDE ONE (1571 mode only)

"U0>" + CHR$ (#DEV), where #DEV = 4-30

FASTLOAD UTILITY

BYTE

00

01

02

03-??

BIT 7

0

0

P

6

1

0

X

5

0

1

X

4

1

1

1

FILE

3

0

0

1

NAME

2

1

0

1

1

0

0

1

0

1

0

1

87

SWITCHES: P—sequential file bit (P = 1, does not have to be a program file)

X—don't care

PROTOCOL: Burst handshake

OUTPUT: Burst status byte preceding each sector transfered. Track and sector for link are

automatically treated. In a program file, the loading address should be handled

correctly.

STATUS IS AS FOLLOWS: 0000000X—OK

00000010—-file not found

00011111—EOI

Any other status byte should be considered a file read error.

Note: The byte after the EOI status byte denotes how many data bytes follow.

STATUS BYTE BREAKDOWN

BIT7654321 0

MODE DN SECTOR SIZE [CONTROLLER STATUS]

MODE—1 = MFM, 0 = GCR

DN—DRIVE NUMBER

SECTOR SIZE--(MFM ONLY)

00 128 BYTE SECTORS

01 256 BYTE SECTORS

10 512 BYTE SECTORS

11 1024 BYTE SECTORS

CONTROLLER STATUS (GCR)

000X OK

0010 SECTOR NOT FOUND

0011 NO SYNC

0100 DATA BLOCK NOT FOUND

0101 DATA BLOCK CHECKSUM ERROR

0110 FORMAT ERROR

0111 VERIFY ERROR

1000 WRITE PROTECT ERROR

1001 HEADER BLOCK CHECKSUM ERROR

1010 DATA EXTENDS INTO NEXT BLOCK

1011 DISK ID MISMATCH/DISK CHANGE

1100 RESERVED

1101 RESERVED

1110 SYNTAX ERROR

1111 NO DRIVE PRESENT

CONTROLLER STATUS (MFM)

000X OK

0010 SECTOR NOT FOUND

0011 NO ADDRESS MARK

0100 RESERVED

0101 DATA CRC ERROR

0110 FORMATERROR

0111 VERIFY ERROR

1000 WRITE PROTECT ERROR

1001 HEADER BLOCK CHECKSUM ERROR

1010 RESERVED

1011 DISK CHANGE

1100 RESERVED

1101 RESERVED

1110 SYNTAX ERROR

1111 NO DRIVE PRESENT

BURST TRANSFER PROTOCOL

Before using the following burst transfer routines, you must determine whether or not the

peripheral is a fast device. The Fast Serial (byte mode) protocol makes that determination

internally when you include a query routine (send-cmd-string;). This routine addresses the

peripheral as a listener and thereby determines its speed.

BURST READ

send-cmd-string;

if device-fast then

serial-in;

toggle-clock;

repeat

read-error;

toggle-clock;

repeat

wait-byte;

toggle-clock;

store-data;

until last-byte;

until last-sector;

set-clock-high;

else

read-1541;

(♦determine speed*)

(♦turn 6526 to input*)

(♦toggle state of clock line*)

(♦repeat for all sectors*)

(♦retrieve error byte+)

(♦no error+)

(♦repeat for all sectors*)

(*poll 6526 for byte*)

(♦toggle clock^)

(♦save data^)

(♦last byte ?♦)

(♦any more sectors ?♦)

(♦release clock line^)

(♦send unit read+)

89

BURST WRITE

send-cmd-string;

if device-fast then

repeat

serial-out;

repeat

send-byte;

until last-byte;

serial-in;

clock-low;

read-err;

clock-high;

until last-sector;

else

write-1541;

(♦determine speed*)

(♦repeat for multi-sector*)

(♦serial port out*)

(♦repeat for sector-size^)

(♦send byte*)

(*lastbyte?*)

(♦serial port in+)

(♦ready for status^)

(♦controller error ?♦)

(♦restore clock^)

(♦until last sector^)

(♦unit write^)

EXPLANATION OF PROCEDURES

send-cmd-string sends command string to determine whether the drive is fast or slow,

toggle-clock changes the state of the clock line.

changes the state of the clock to logic 1.

changes the state of the clock to logic 0.

polls the 6526 for a byte ready.

calls wait-byte, then returns to the main if there are no errors.

stores the data in a particular memory location.

clock-hi

clock-lo

wait-byte

read-error

store-data

last-byte depending on sector size, will increment and compare value to sector

size.

last-sector decrements the number of sector transfers requested and stops when

done.

serial-in sets the 6526 serial port and driver circuit to input mode.

read-err calls wait-byte and evaluates the status of the previous controller job.

serial-out sets the 6526 serial port and driver circuit to output mode.

90

send-byte

read-1541

write-1541

HANDSHAKE

sends a byte of data to the 1571.

sends a typical unit read to a 1541.

sends a typical unit write to a 1541.

The figure below shows the burst transfer protocol. It is a stat-dependent protocol (simple

and fast). As the clock line is toggled, a byte of data is sent. Burst protocol is divided into

three parts:

1. Send Command: send string using existing kernal routines.

2. Query: determine whether the peripheral is fast.

3. Handshake Code: follow handshake conventions.

DATA

CLK

SRQ

ARFD

(Acknowledge and Ready For Data)

RFD (Ready For Data)

EXAMPLE BURST ROUTINES

* = $1800

ROUTINE TO READ N-BLOCKS OF DATA

COMMAND CHANNEL MUST BE OPEN ON DRIVE

OPEN 15,8,15

BUFFER AND CMDJ3UF, AND CMD_LENGTH MUST BE SETUP

PRIOR TO CALLING THIS COMMAND.

; fast serial flagsenal

d2pra

clkout

dlicr

dlsdr

= $0alc

= $ddOO

= $10

= $dc0d

= $dc0c

91

stat

buffer

= $fa

= $fb

Ida

ldx

ldy

jsr

Ida

jsr

#15

#8

#15

setlfs

#0

setnam

; $fb & $fc

; logical file number

; device number

; secondary address

; setup logical file

; noname

; setup file name

jsr open ; open logical channel

; after the command channel is open subsequent calls should be from 'read'

read

sendit

readJt

wait 1

Ida

sta

Ida

and

sta

ldx

jsr

ldx

ldy

Ida

jsr

inx

dey

bne

jsr

bit

bvc

sei

bit

ldx

Ida

eor

sta

Ida

bit

beq

Ida

eor

sta

#$00

stat

serial

#%10111111

serial

1 #15

chkout

#0

cmdJength

cmd_buf,x

bsout

sendit

clrchn

serial

error

dlicr

cmd_buf+5

d2pra

#clkout

d2pra

#8

dlicr

wait 1

d2pra

#clkout

d2pra

; clear status

; clear bit 6 fast serial flag

; open channel for output

; length of the command

; get command

; send the command

; send eoi

; check speed of drive

; slow serial drive

; clear interrupt control reg

; get # of sectors

; read serial port

; change state of clock

; store back

•

; wait for byte

; read serial port

; change state of clock

; store back

92

Code to check status byte.

1) This code will check for mode

whether GCR or MFM.

2) Verify sector size.

3) Check for error, if ok then continue.

On error, check error switch if set continue

otherwise abort.

4) Verify switches

Ida

sta

and

cmp

bcs

ldy

top_rd Ida

wait 2 bit

beq

Ida

eor

sta

Ida

sta

iny

bne

dex

beq

inc

jmp

done_read

clc

.byte

error sec

rts

cmcLbuf .byte

dlsdr

stat

#15

#2

error

#0

#8

dlicr

wait 2

d2pra

#clkout

d2pra

dlsdr

(buffer),y

top_rd

done_read

buffer+1

read-it

$24

'U0',0,0,0,0,0

; get data from serial data reg

; save status

; just check for (3)

; even page

; wait for byte

; toggle clock

; get data

; save data

; continue for buffer size

; done ?

; next buffer

; return to sender

93

ROUTINE TO WRITE N-BLOCKS OF DATA

COMMAND CHANNEL MUST BE OPEN ON DRIVE

OPEN 15,8,15

BUFFER AND CMD.BUF, AND CMDXENGTH MUST BE SETUP

PRIOR TO CALLING THIS COMMAND.

serial

d2pra

clkout

olcLclk

clkin

dlicr

dlsdr

stat

buffer

mmureg

dltimh

dltiml

dlcra

= $0alc

= $ddOO

= $10

= $fd

= $40

= $dcOd

= $dcOc

= $fa

= $fb

= $d505

= $dcO5

= $dcO4

= $dcOe

Ida #15

ldx #8

Idy #15

jsr setlfs

jsr setnam

; fast serial flag

; $fb & $fc

; timer a high

; timer a low

; control reg a

; logical file number

; device number

; secondary address

; setup logical file

; setup file name

jsr open ; open logical channel

; after the command channel is open subsequent calls should be from 'write'

write

sendit

Ida

sta

Ida

and

sta

ldx

jsr

ldx

ldy

Ida

jsr

inx

dey

bne

#$00

stat

serial

#%10111111

serial

#15

chkout

#0

cmdJength

cmd_buf,x

bsout

sendit

; clear bit 6 fast serial flag

; open channel for output

; length of the command

; get command

; send the command

94

jsr

bit

bvc

sei

Ida

sta

ldy

ldx

wrLit jsr

topwr Ida

cmp

bne

eor

and

beq

Ida

eor

sta

Ida

sta

OPTIONAL

Ida

wait 1 bit

beq

clrchn

serial

error

#clkin

old-elk

#0

cmd_buf-l-5

spout

d2pra

d2pra

topwr

olcLclk

#clkin

topwr

olcLclk

#clkin

old.clk

(buffer),y

dlsdr

#8

dlicr

wait 1

END OPTIONAL

iny

bne topwr

; talker turn around

jsr

bit

jsr

Ida

wait 2 bit

beq

spinp

dlicr

clklo

#8

dlicr

wait 2

; send eoi

; check speed of drive

; clock starts high

; even page

; get # of sectors

; serial port out

; check clock

; debounce

; change status of old clock

; send data

; put code here or before spinp

; wait for transmission time

; continue for buffer size

; serial port input

; clear pending

; set elk low, tell him we are ready

; wait for status byte

95

Ida

sta

jsr

dlsdr

stat

clkhi

; get data from serial data reg

; save status

; set clock high

Code to check status byte.

1) This code will check for mode

whether GCR or MFM.

2) Verify sector size.

3) Check for error, if ok then continue.

On error, check error switch if set continue

otherwise abort.

4) Verify switches

Ida stat

and #15

cmp #2

bcs error

dex

beq

inc

jmp

done_wr

buffer+1

wrt-it

; retrieve status

; just chk for error only (3)

; finish

; done?

; next buffer

done_wr

error

cli

.byte $24

sec

its

cmdbuf .byte 4U0\2,0,0,0,0

96

; subroutines (refer to C128 User's Guide for SPINP and SPOUT vectors)

spout

spinp

clklo

clkhi

Ida

ora

sta

Ida

sta

Ida

sta

Ida

sta

Ida

and

ora

sta

bit

its

Ida

and

ora

sta

Ida

and

sta

rts

Ida

ora

sta

rts

Ida

and

sta

rts

mmureg

#$08

mmureg

#$7f

dlicr

#$00

dltimh

#$03

dltiml

dlcra

#$80

#$55

dlcra

dlicr

dlcra

#$80

#$08

dlcra

mmureg

#$f7

mmureg

d2pra

#clkout

d2pra

d2pra

#$ff-clkout

d2pra

; change serial direction

; no irq's

; low 6 us bit (fastest)

; keep TOD

; setup CRA for output

; clr pending

; input, 6526

; mmu serial direction in

; set clock low

; set clock high

97

APPENDIX A

CHANGING THE DEVICE NUMBER

HARDWARE METHOD

Two switches on the back of the 1571 enable you to change the device # of the drive.

You can use a screwdriver, pen, or any other small tool to set the switches. The following

table shows the settings required for each device number:

Left

UP

DOWN

UP

DOWN

Right

UP

UP

DOWN

DOWN

Device #

8

9

10

11

SOFTWARE METHOD

One way to temporarily change the device number of a disk drive is via a program.

When power is first turned on, the drive reads an I/O location whose value is controlled by

the two switches on its circuit board, and writes the device number it leads there into

memory locations 119 and 120. Any time thereafter, you may write over that device

number with a new one, which will be effective until it is changed again, or the 1571 is

reset.

FORMAT FOR TEMPORARILY CHANGING THE DISK DEVICE NUMBER:

PRINT#15,"U0>" + CHR$(n)

Where n = 8 to 30

EXAMPLE:

Here is a program that sets any device number:

5 INPUT "OLD DEVICE NUMBER"; ODV

10 INPUT "NEW DEVICE NUMBER"; DV

20 IF DV<8 or DV>30 then 10

30 OPEN 15,ODV,15, i4U0>" +CHR$(DV): CLOSE 15

NOTE: If you will be using two disk drives, and want to temporarily change the

device number of one, you will need to run the above program with the disk drive

whose device number is not to be changed turned off. After the program has been

run, you may turn that drive back on. If you need to connect more Ufaan two drives

at once, you will need to use the hardware method of changing device numbers.

98

APPENDIX B

DOS ERROR MESSAGES

NOTE: Many commercial program diskettes are intentionally created with one or

more of the following errors, to keep programs from being improperly duplicated.

If a disk error occurs while you are making a security copy of a commercial

program diskette, check the program's manual. If its copyright statement does not

permit purchasers to copy the program for their own use, you may not be able to

duplicate the* diskette. In some such cases, a safety spare copy of the program

diskette is available from your dealer or directly from the company for a reasonable

fee.

00: OK (not an error)

This is the message that usually appears when the error channel is checked. It

means there is no current error in the disk unit.

01: FILES SCRATCHED (not an error)

This is the message that appears when the error channel is checked after using the

SCRATCH command. The track number tells how many files were erased.

NOTE: If any other error message numbers less than 20 ever appear, they may be

ignored. All true errors have numbers of 20 or more.

20: READ ERROR (block header riot found)

The disk controller is unable to locate the header of the requested data block.

Caused by an illegal block or a header that has been destroyed. Usually unrecovera

ble.

21: READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track. Caused by

misalignment, or a diskette that is absent, unformatted or improperly seated. Can

also indicate hardware failure. Unless caused by one of the above simple causes,

this error is usually unrecoverable.

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that was not

properly written. Occurs in conjunction with BLOCK commands and indicates an

illegal track and/or sector request.

23: READ ERROR (checksum error in data block)

There is an error in the data. The sector has been read into disk memory, but its

checksum is wrong. May indicate grounding problems. This fairly minor error is

often repairable by reading simply and rewriting the sector with direct access

commands.

99

24: READ ERROR (byte decoding error)

The data or header has been read into disk memory, but a hardware error has been

created by an invalid bit pattern in the data byte. May indicate grounding problems.

25: WRITE ERROR (write-verify error)

The controller has detected a mismatch between the data written to diskette and the

same data in disk memory. May mean the diskette is faulty. If so, try another. Use

only high-quality diskettes from reputable makers.

26: WRITE PROTECT ON

The controller has been requested to write a data block while the write-protect

sensor is covered. Usually caused by writing to a diskette whose write protect notch

is covered over with tape to prevent changing the diskette's contents.

27: READ ERROR (checksum error in header)

The controller detected an error in the header bytes of the requested data block. The

block was not read into disk memory. May indicate grounding problems. Usually

unrecoverable.

28: WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after writing a

data block. If the sync mark does not appear on time, this error message is

generated. It is caused by a bad diskette format (the data extends into the next

block) or by a hardware failure.

29: DISK ID MISMATCH

The disk controller has been requested to access a diskette which has not been

initialized. Can also occur if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel. Typically,

this is caused by an illegal number of file names or an illegal pattern. Check your

typing and try again.

31: SYNTAX ERROR (invalid command)

The DOS does not recognize the command. It must begin with the first character

sent. Check your typing and try again.

32: SYNTAX ERROR (long line)

The command sent is longer than 58 characters. Use abbreviated disk commands.

33: SYNTAX ERROR (invalid file name)

Pattern matching characters cannot be used in the SAVE command or when

Opening files for the purpose of Writing new data. Spell out the file name.

34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOS does not recognize it as such.

Typically, a colon (:) has been omitted. Try again.

100

39: SYNTAX ERROR (invalid command)

The DOS does not recognize a command sent to the command channel (secondary

address 15). Check your typing and try again.

50: RECORD NOT PRESENT

The requested record number has not been created yet. This is not an error in a new

relative file or one that is being intentionally expanded. It results from reading past

the last existing record, or positioning to a non-existent record number with the

Record# command.

51: OVERFLOW IN RECORD

The data to be written in the current record exceeds the record size. The excess has

been truncated (cut off). Be sure to include all special characters (such as carriage

returns) in calculating record sizes.

52: FILE TOO LARGE

There isn't room left on the diskette to create the requested relative record. To

avoid this error, create the last record number that will be needed as you first create

the file. If the file is too large for the diskette, either split it into two files on two

diskettes, or use abbreviations in the data to allow shorter records.

60: WRITE FILE OPEN

A write file that has not been closed is being reopened for reading. This file must be

immediately rescued, as described in BASIC Hint #2 in Chapter 2, or it will

become a splat (improperly closed) file and probably be lost.

61: FILE NOT OPEN

A file is being accessed that has not been opened by the DOS. In some such cases

no error message is generated. Rather the request is simply ignored.

62: FILE NOT FOUND

The requested file does not exist on the indicated drive. Check your spelling and try

again.

63: FILE EXISTS

A file with the same name as has been requested for a new file already exists on the

diskette. Duplicate file names are not allowed. Select another name.

64: FILE TYPE MISMATCH

The requested file access is not possible using files of the type named. Reread the

chapter covering that file type.

65: NO BLOCK

Occurs in conjunction with B-A. The sector you tried to allocate is already

allocated. The track and sector numbers returned are the next higher track and

sector available. If the track number returned is 0, all remaining sectors are full. If

the diskette is not full yet, try a lower track and sector.

101

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not exist. May

indicate a faulty link pointer in a data block.

67: ILLEGAL SYStEM TORS

This special error message indicates an illegal system track or block.

70: NO CHANNEL (available)

The requested channel is not available or all channels are in use. A maximum of

three sequential files or one relative file plus one sequential file may be opened at

one time, plus the command channel. Do not omit the drive number in a sequential

OPEN command, or only two sequential files can be used. Close all files as soon as

you no longer need them.

71: DIRECTORY ERROR

The BAM (Block Availability Map) on the diskette does not match the copy in disk

memory. To cdfrect, Initialize the diskette.

72: DISK FULL

Either the diskette or its directory is full. DISK FULL is sent when two blocks are

still available, allowing the current file to be closed. If you get this message and the

directory shows any blocks left, you have too many separate files in your directory,

and will need to combine some, delete any that are no longer needed, or copy some

to another diskette.

73: DOS MISMATCH (CBM DOS V3.0 1571)

If the disk-error status is checked when the drive is first turned on, before a

directory or other command has been given, this message will appear. In that use, it

is not an error, but rather an easy way to see which version of DOS is in use. If the

message appears at other times, an attempt has been made to write to a diskette with

an incompatible format, such as the former DOS 1 on the Commodore 2040 disk

drive. Use one of the copy programs on the Test/Demo diskette to copy the desired

file(s) to a 1571 diskette.

74: DRIVE NOT READY

An attempt has been made to access the 1571 single disk without a formatted

diskette in place. Blank diskettes cannot be used until they have been formatted.

102

APPENDIX C

DISKETTE FORMATS: GCR/MFM

Basically, the surface of a formatted diskette is divided into a number of concentric

circles called tracks. Each track is subdivided into sectors (also called blocks) and each

sector consists of a number of bytes. The number of tracks per diskette>sectors per track,

and bytes per sector depends on the type of recording format used.

The 1571 has the ability to read and write two different formats—GCR and 1

GCR (Group Code Recording) is the only format used by the Disk Operating System

in all other Commodore disk drives. On a GCR-formatted disk (see Figure C-l), there are

35 tracks (70 on a double-sided ch'skette) numbered 1 to 35 (36 to 70) starting at the

outennosurack. The number of sectors per track is fixed, although not uniform, through

out the entire surface (see the table entitled "Block Distribution by Track"), and each

sector consists "of 256 bytes.

MFM (Modified Frequency Modulation) is the Standard* format used by many other

companies. The ability of the 1571 to handle MFM diskettes provides the Commodore

128 with access to applications software in other coTnpatnHnrbrmafe. On-an MFM-

formatted diskette (see Figure C-2), the tracks per diskette, sectors per track, and bytes

per sector are not fixed. With the 1571, those parameters are programmable, allowing

greater flexibility in reading and writing different forms of MFM.

To make Commodore's version of CP/M usable with disk drives other than the 1571,

CP/M files can be used in either MFM or GCR format. In this manual, information on

CP/M appears in Appendix G. More detailed CP/M information can be found in

the Commodore 128 System Guide.

103

NOTE

Not to scale

\
\

POINTER TO LINK \
TOGETHER ALL BLOCKS y

WITHIN A FILE N

1 1

ill
254 BYTES I CHECK-
OF DATA SUM 2

GAP I

Note: Tracks 36 to 70 refer to double-sided disks readable in 1571 mode.

Figure C-l. GCR-Formatted Diskette

SYNC 1 — 40 bits of ones (all Ts is the highest write frequency).

08 — Disk I.D. field identification mark.

CHECKSUM — Checksum of ID1, ID2, SECTOR, TRACK.

SECTOR — The number of this sector

TRACK — Track which this sector resides on.

ID1, ID2 — 2 bytes (20 bits) indicating the diskette I.D. (the I.D. is

specified by the user when the diskette is formatted).

GAP1 — 72 bits of GCRO or 01010101 (8 bit byte x 9)

SYNC 2 — 40 bits of ones.

07 — Disk data field identification mark.

BYTE0, BYTEl — Track and sector of next related block.

DATA — 254 bytes (2540 bits) of data.

CHECKSUM 2 — Checksum of BYTE0, BYTEl, and DATA.

GAP 2 — Variable gap of GCR 0. This gap is variable depending on the

speed of the disk during format. GAP 2 will be constant for all

sectors except for the tail gap (the gap between first and the

last sectors).

104

S
y
n
c

F
i
e
l
d

1
2
8
.
2
5
6
.
o
r
5
1
2
B
y
t
e
s

S
y
n
c

F
i
e
l
d

Fi
el
d

\

,
©
©

©
A
M
2
:

D
a
t
a
:
h
e
x
F
B
o
r
F
8

F
B

=
d
a
t
a

f
i
e
l
d

F
8
=

c
o
n
t
r
o
l
f
i
e
l
d

(
T
h
e
c
o
n
t
r
o
l
f
i
e
l
d
c
a
n

b
e
g
i
n
w
i
t
h
a
D
o
r
a
n

F
:

D
=■
d
e
l
e
t
e
d
r
e
c
o
r
d

F
"
d
e
f
e
c
t
i
v
e
r
e
c
o
r
d

C
l
o
c
k
:
h
e
x
C
7
>

H
e
x
0
0

f
o
r
1
2
8
b
y
t
e
p
e
r
s
e
c
t
o
r
f
o
r
m
a
t

1
H
e
x

01
fo

r
2
5
6
by
te

pe
r
se

ct
or

fo
rm
at

H
e
x
0
2
f
o
r
5
1
2
b
y
t
e

p
e
r
s
e
c
t
o
r
f
o
r
m
a
t

H
e
x
0
1
t
h
r
o
u
g
h
1
A

f
o
r
1
2
8
b
y
t
e
p
e
r
s
e
c
t
o
r
f
o
r
m
a
t
d
i
s
k
e
t
t
e

H
e
x
0
1
t
h
r
o
u
g
h
O
F

f
o
r
2
5
6
b
y
t
e
p
e
r
s
e
c
t
o
r
f
o
r
m
a
t
d
i
s
k
e
t
t
e

H
e
x
0
1
t
h
r
o
u
g
h
0
8
f
o
r
5
1
2
b
y
t
e
p
e
r

s
e
c
t
o
r
f
o
r
m
a
t
d
i
s
k
e
t
t
e

H
e
x
0
0

f
o
r
o
n
e
s
i
d
e
d
d
i
s
k
e
t
t
e
s
e
n
d

s
i
d
e
0
o
f
t
w
o
-
s
i
d
e
d
d
i
s
k
e
t
t
e
s

H
e
x
0
1

f
o
r
s
i
d
e

1
o
f
t
w
o
-
s
i
d
e
d
d
i
s
k
e
t
t
e
s

H
e
x
0
0
t
h
r
o
u
g
h
4
A

(
D
e
c
i
m
a
l

1
t
h
r
o
u
g
h
7
4
.
C
y
l
i
n
d
e
r
s
7
5
a
n
d
7
6

a
r
e
u
s
e
d
a
s
a
l
t
e
r
n
a
t
e
c
y
l
i
n
d
e
r
s
.
)

©
©

©

© © © © © ©

P
r
o
-
i
n
d
e
x
g
a
p
.

P
o
s
t
-
i
n
d
e
x
g
a
p
.

6
b
y
t
e
s
o
f

x
e
r
o
e
s
.

C
y
c
l
i
c
r
e
d
u
n
d
a
n
c
y
c
h
e
c
k
.

T
h
e
c
h
e
c
k
b
y
t
e
s
e
r
e

g
e
n
e
r
a
t
e
d
d
u
r
i
n
g
a
w
r
i
t
e

o
p
e
r
a
t
i
o
n
.
T
h
e
y
i
r
e
u
s
e
d

d
u
r
i
n
g
a
r
e
a
d
o
p
e
r
a
t
i
o
n

t
o
v
e
r
i
f
y
t
h
a
t
d
a
t
a

is

r
e
a
d
c
o
r
r
e
c
t
l
y
.

P
o
s
t
-
I
D
g
a
p
.

P
o
s
t
-
d
a
t
a
g
a
p
.

A
M
I
:

i
d
e
n
t
i
f
i
e
s
I
D
f
i
e
l
d

D
a
t
a
:
h
e
x
F
E

C
l
o
c
k
:
h
e
x
C
7

F
i
g
u
r
e
C
-
2
.

M
F
M
-
F
o
r
m
a
t
t
e
d

D
i
s
k
e
t
t
e

NOTE: The information in the following tables applies only to GCR diskettes that

are used for the Commodore Disk Operating System, not CP/M.

BLOCK DISTRIBUTION BY TRACK

Track number

1 to 17

18 to 24

25 to 30

31 to 35

36 to 52

53 to 59

60 to 65

66 to 70

Range of Sectors

0to20

Oto 18

Oto 17

Oto 16

Oto 20

Oto 18

Oto 17

Oto 16

Total # of Sectors

21 '

19

18

17 .

single

sided

21

19

18

17

double

sided

106

BAM FORMAT/DIRECTORY HEADER (1541 MODE)

Track 18, Sector 0

BYTE

0

1

2

3

4

5

6

7

8

9

10

11

140

141

142

143

144-159

160-161

162-163

164

165-166

167-170

171-255

CONTENTS

18*

1

65

160

160

DEFINITION

Track of next directory block (always 18)

Sector of next directory block (always 1)

ASCII character A indicating 1541/1551/1571/4040 format

Double-sided Flag (ignored 1541 mode)

Number of sector available on track 1

Track 1, sector 0-7 availability map*

Track 1, sector 8-16 availability map*

Track 1, sector 17-23 availability map*

Number of sector available on track 2

Track 2, sector 0-7 availability map*

Track 2, sector 8-16 availability map*

Track 2, sector 17-23 availability map*

Number of sector available on track 35

Track 35, sector 0-7 availability map*

Track 35, sector 8-16 availability map*

Track 35, sector 17-23 availability map*

Diskette name padded with shifted spaces [CHR$(160)]

Shifted space [CHR$(160)]

Diskette ID

Shifted space [CHR$(160)]

ASCII representation of 2A, which are respectively,

the DOS version (2) and format type (1540/1541/1551/

1571/4040/2030).

Shifted spaces [CHR$(160)]

Nulls [CHR$(0)], not used

107

BAM FORMAT/DIRECTORY HEADER (1571 MODE)

Track 18, Sector 0

BYTE

0

1

2

3

4

5

6

7

8

9

10

11

140

141

142

143

144-159

160-161

162-163

164

165-166

167-170

171-220

221-237

238

239-244

245-250

251-255

CONTENTS

18

1

65

160

160

0

DEFINITION

Track of next directory block (always 18)

Sector of next directory block (always 1)

ASCH character A indicating 1541/1551/1571/4040 format

Double-sided Flag: $80 = double-sided; $00 = single-sided

Number of sector available on track 1

Track 1, sector 0-7 availability map*

Track 1, sector 8-16 availability map*

Track 1, sector 17-23 availability map*

Numb'er of sector available on track 2

Track 2, sector 0-7 availability map*

Track 2, sector 8-16 availability map*

Track 2, sector 17-23 availability map*

Number of sector available on track 35

Track 35, sector 0-7 availability map*

Track 35, sector 8-16 availability map*

Track 35, sector 17-23 availability map*

Diskette name padded with shifted spaces [CHR$(160)]

Shifted space [CHR$(160)]

Diskette ID

Shifted space [CHR$(160)]

ASCII representation of 2A, which are respectively,

the DOS version (2) and format type (1540/1541/1551/

1571/4040/2030).

Shifted spaces [CHR$(160)]

Nulls [CHR$(0)], not used

Number of sector available on track 36 - 52

(each sector by each byte)

Number of sector available on track 53

(always 0, all sectors are allocated)

Number of sector available on track 54 - 59

(each track by each byte)

Number of sector available on track 60 - 65

(each track by each byte)

Number of sector available on track 66 - 70

(each track by each byte)

*%1 = available sector (% means binary)

%0 = sector not available (each bit represent one block)

108

BAM Side One (1571 mode)

BYTE

0

1

2

102

103

104

105-255

—^— ^

CONTENTS

0

Track 53, Sector 0

DEFINITION

Track 36, sector 0-7 availability map

Track 36, sector 8-16 availability map

Track 36, sector 17-23 availability map

Track 70, sector 0-7 availability map

Track 70, sector 8-16 availability map

Track 70, sector 17-23 availability majr

Nulls ($00) not used

%1 = available block (% means binary)

%0 = block not available (each bit represent one block)

PROGRAM FILE FORMAT

BYTE DEFINITION

FIRST SECTOR

0,1 Track and sector of next block in program file 1.

2,3 Load address of the program.

4-255 Next 252 bytes of program information stored as in computer,

memory (with key words tokenized).

REMAINING FULL SECTORS

0,1 Track and sector of next block in program file 1.

2-255 Next 254 bytes of program information stored as in computer memoryL-

(with key words tokenized).

FINAL SECTOR

0,1 Null ($00), followed by number of valid data bytes in sector.

2-??? Last bytes of the program information, stored as in computer

memory (with key words tokenized). The end of a BASIC file is

marked by three zero bytes in a row. Any remaining bytes in the

sector are garbage and may be ignored.

109

SEQUENTIAL FILE FORMAT

BYTE

ALL BUT FINAL SECTOR

0-1 Track and sector of next sequential data block.

2-255 254 bytes of data.

FINAL SECTOR

0,1 Null ($00), followed by number of valid data bytes in sector.

2-??? Last bytes of data. Any remaining bytes are garbage and may be ignored.

RELATIVE FILE FORMAT

BYTE DEFINITION

DATA BLOCK

0,1

2-255

Track and sector of next data block.

254 bytes of data. Empty records contain $FF

(all binary ones) in the first byte followed by $00

(binary all zeros) to the end of the record. Partially

filled records are padded with nulls ($00).

SIDE SECTOR BLOCK

0-1

2

3

_4-5

6-7

8-9

10-11

12-13

14-15

16-255

Track and sector of next side sector block.

Side sector number (0-5)

Record length

Track and sector of first side sector (number 0)

Track and sector of second side sector (number 1)

Track and sector of third side sector (number 2)

Track and sector of fourth side sector (number 3)

Track and sector of fifth side sector (number 4)

Track and sector of sixth side sector (number 5)

Track and sector pointers to 120 data blocks.

110

DIRECTORY FILE FORMAT

Track 18, Sectors 1-19

BYTE

0,1

2-31

34-63

66-95

98-127

130-159

162-191

194-223

226-255

DEFINITION .

Track and sector of next directory block.

File entry 1*

File entry 2*

File entry 3*

File entry 4*

File entry 5*

File entry 6*

File entry 7*

File entry 8*

. i

♦STRUCTURE OF EACH INDIVIDUAL DIRECTORY ENTRY

BYTE

0

1-2

3-18

19-20

21

22-25

26-27

28-29

CONTENTS

128

+

type

DEFINITION

File type OR'ed with $80 to indicate properly closed file.

(if OR'ed with $C0 instead, file is locked.)

TYPES: 0 = DELeted

1 = SEQuential

2 = PROGram

3 = USER

4 = RELative

Track and sector of first data block.

File name padded with shifted spaces.

Relative file only: track and sector of first side

sector block.

Relative file only: record length.

Unused.

Track and sector of replacement file during an

©SAVE or ©OPEN.

Number of blocks in file: stored as a two-byte integer,

in low-byte, high-byte order.

in

APPENDIX D

DISK COMMAND QUICK REFERENCE CHART

General Format: OPEN 15,8,15:PRINT#15,command:CLOSE 15 (Basic 2)

HOUSEKEEPING COMMANDS

BASIC 2.0

BASIC 7.0/

3.5

NEW

COPY

RENAME

SCRATCH

VALIDATE

NEW

COPY

RENAME

SCRATCH

VALIDATE

"NO:diskette name,id"

"C0:new file = 0:old file"

"R0:new name = old name"

"SQ;file-name"

"V0"

HEADER4diskette name",Iid,D0

COPY "old file" TO "new file"

RENAME "old name" TO "new file

SCRATCH "file name"

COLLECT

BOTH INITIALIZE

FILE COMMANDS

BASIC 2.0 LOAD

SAVE

VERIFY

BASIC 7.0/ LOAD

3.5 — - SAVE

—- VERIFY

BASIC 7.0 BLOAD

BSAVE

only

BOTH

BOOT

OPEN

CLOSE

RECORD#

OPEN

CLOSE

RECORD#

PRINT#

GET#

INPUT#

'10"

LOAD"filename",8

SAVE"filename",8

VERIFY"filename",8

DLOAD"file name"

SAVE"file name"

DVERIFY"file name" (BASIC 7.0 only)

BLOAD"filename' * ,Bbank# ,Pstart address

BSAVE"filename",Bbank#,Pst.add To Pen.add

BOOT"filename"

DOPEN#file#,"filename" [.Lrecord length] [,W]

DCLOSE#file#

RECORD#file#,record number [,offset]

OPENfile#,8,channel#,"0:filename,file

type, direction"

CLOSEfile#

"P" + CHR$(channel#) + CHR$(<record#)

+ CHR$(>record#) + CHR$(offset)

PRINT#file#,data list

GET#file#,variable list

INPUT#file#,variable list

112

DIRECT ACCESS COMMANDS

BLOCK-ALLOCATE

BLOCK-EXECUTE

BLOCK-FREE

BUFFER-POINTER

BLOCK-READ

BLOCK-WRITE

MEMORY-EXECUTE

MEMORY-READ

MEMORY-WRITE

USER

UTILITY LOADER

BURST

' 'B-A" ;0;track#;sector#

"B-E";channel#;0;track#;sector#

' 'B-F'' ;0;track#;sector#

"B-P" ;channel#;byte

* 'Ul'' ;channel#;0;track;sector#

' 'U2" ;channel#;0;track#;sector#

' 'M-E' 'CHR$(<address)CHR$(>address)

"M-R"CHR$(<address)CHR$(>address)CHR$(# of bytes)

"M-W"CHR$(<address)CHR$(>address)CHR$(# of bytes)

CHR$(data byte). . .

"Ucharacter"

"&0:file name"

4'Ucharacter" + character(s)

113

APPENDIX E

SPECIFICATIONS OF THE 1571 DISK DRIVE

STORAGE

GCR format

Total unformatted capacity

Total formatted capacity

Maximum Sequential file size

Maximum Relative file size

Record per file

Files per diskette

Tracks per diskette

Sectors per track

Sectors per diskette

Bytes per sector

MFM format

Total unformatted capacity

Total formatted capacity

Sector Size 128

Sector Size 256

Sector Size 512

Sector Size 1024

Maximum tracks per disk

Sectors per track

Sector Size 128

Sector Size 256

Sector Size 512

Sector Size 1024

single sided double sided

252019 bytes 252019*2 bytfis

174848 bytes 349696 bytes

168656 bytes 337312 bytes

167132 bytes 167132 bytes

65535 65535

144 144

35 70

17-21 17-21

683 total 1366 total

664 free 1328 free

256 256

250000 bytes per side

133120 bytes per side

163840 bytes per side

184320 bytes per side

204800 bytes per side

40 per side

26

16

9

5

INTEGRATED CIRCUIT CHIPS USED

6502A

(2) 65C22A

23256

4016

64H156/64H157

R/W Hybrid IC

PHYSICAL DIMENSIONS

Height

Width

Depth

Weight

microprocessor

I/O

32K bytes ROM

2K bytes RAM

Gate Array

Analog Circuit IC (MFM, GCR)

76 mm

216 mm

346 mm

3.5 kg

114

ELECTRICAL REQUIREMENTS

Voltage

Frequency

Power used

North America

Europe/Australia

North America

Europe/Australia

100-120 VAC

220-240 VAC

60 Hz

50 Hz

25 Watts

MEDIA

Any good quality 5l/4 inch diskette may be used (Commodore diskettes are recom

mended).

115

APPENDIX F

SERIAL INTERFACE INFORMATION

The Serial Interface consists of two 6-pin DIN Female Connectors on each drive. The

second connector is for daisy chaining to other drives and/or peripherals. The voltage

interface is a serial interface at TTL levels.

There are three types of operation over a serial bus—Control, Talk, and Listen. The

host is the controller and initiates all protocol on the serial bus. The host requests the

peripheral to listen or talk (if the peripheral is capable of talking as disk drive). All devices

connected to the serial bus receive data transmitted over the bus. To allow the host to route

its data to an intended destination, each device has a bus address (known as device

number). Disk drive's device addresses are 8-11 (8 is normal).

Data and control signals as follows:

Pin No.

Pinl

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Signal Direction

SRQ in/out

(Service

Request)

GND

(Ground)

ATN in

(Attention)

CLK in/out

(Clock)

DATA in/out

RESET

Description

Used by fast serial bus as a bi-

direction fast clock line. Unused by

the slow serial bus.

Logic ground

The host brings this signal low

which then generates an interrupt on

the controller board. The attention

sequence is followed by a device ad

dress. If the device does not respond

within a preset time the host will as

sume the device addressed is not on

the bus.

This signal is used for timing the

data sent on slow serial bus (soft

ware clocked).

Data on the serial bus is transmitted

one bit at a time (software toggled).

This line will reset the peripheral

upon host reset.

116

The 6-pin DIN connector looks like (from outside):

In detail, the 1571 serial bus supports the new FAST serial communication as well as

standard (SLOW) serial communication.

The important difference between the FAST serial bus and the SLOW serial bus is

the incorporation of the hardware controlled lines for the CLOCK and DATA lines. Fast

serial communication is transparent to any peripheral connected to the serial bus that does

not contain the necessary hardware or software to talk at fast speed.

To remain compatible with the SLOW serial bus all bytes sent under attention are

sent slow.

117

APPENDIX G

DISK OPERATING SYSTEMS: Commodore and CP/M

The Disk Operating System (DOS) is the software that provides an interface between

the host computer and the drive's internal mass storage devices and diskettes. The DOS

keeps track of the file management details necessary to create, modify, and delete files. It

also monitors the amount of free space on a diskette, keeps track of the file names in a

directory, and remembers where each is so that the files won't overlap.

Commodore DOS

The 1571 is an 'intelligent' device. That means it contains its own CPU and ROM,

which allow it to function, in part, without the aid of the host CPU. Despite that, the 1571

is considered a 'slave' device, existing primarily to perform tasks requested by a host

computer.

An example of the host/drive relationship is when the host requests a directory of all

files on a diskette. The host sends the directory command to the drive, then simply waits

for the drive to send back the information. The drive, on the other hand, must first check

to see if the diskette is inserted, start it spinning, wait until it is spinning at the proper

speed, move the read/write head to the track where the appropriate information is stored,

read it, sort it out, format the information properly, and send it down the serial bus to the

host.

The ROM software in the 1571 can be broken down into two major components—

the DOS and the Controller. As mentioned above, the DOS takes care of the file

management details. The information for those files is arranged on the diskette in

uniformly-sized chunks called sectors. The DOS only understands information in the form

of sectors. It is the job of the Controller to actually go out and read sectors from the

diskette and hand them to the DOS.

The C64 computer or the C128 computer in C64 mode contain no DOS of their own.

All of the DOS software is in the drive itself. That's also the case with the C128 in C128

mode, the difference being that the relationship between the 1571 and the C128 is

friendlier when the computer is in C128 mode. As a result, some of the more common

commands such as SAVE/DSAVE, LOAD/DLOAD, and NEW/HEADER are easier to

execute.

For instance, to format a disk with a C64 or with a C128 in C64 mode, you must send

the following command (after opening channel 1 to the drive's command channel 15):

PRINT# l,"NEW0:name,id". With the C128 in C128 mode, the command is mis:

HEADER "name,id",D0 or HEADER "name", lid, D0.

The latter method is easier because the C128 automatically opens the channel and

sends the correctly formatted command string to the drive. It then requests status

information and reports any errors. To check the error in C64 mode, you would have to

type several more lines.

CP/M DOS

In CP/M mode, the DOS resides inside the host computer, and only the Controller

portion of the 1571 is used. The DOS code is loaded into the host's RAM when the CP/M

system is booted, and is executed by the host's CPU. All file handling functions are

performed within the host. Commands sent to the drive in CP/M mode request individual

sectors of data from the diskette. These sectors are located and read by the Controller in

the 1571, and handed to the CP/M DOS over the serial bus to the C128.

118

BESCHEINIGUNG DES HERSTELLERS

■]

Hiermit wird besta'tigt, dass die Floppy Disk 1

COMMODORE 1571

in tJbereinstimmung mit den Bestimmungen der

Amtsblattverftigung Nr. 1046/1984

funk-entstort ist. 1

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Ger&tes angezeigt

und die Bereichtigung zur Uberprtifung der Serie auf Einhaltung der Bestim

mungen eingera'umt.

COMMODORE BtJROMASCHINEN GMBH

CERTIFICATE OF THE MANUFACTURER

Herewith we certify that our device Floppy Disk

COMMODORE 1571

complies to the regulations

Amtsblattverftigung Nr. 1046/1984

concerning radio interference.

The German Bundespost has been informed that this unit is on the market

and it has the right to check on the mass production limits are kept.

COMMODORE BUSINESS MACHINES LIMITED

COMMODORE SALES CENTERS

Commodore Business Machines, Inc.

1200 Wilson Drive

West Chester, PA 19380, U.S.A.

Commodore Business Machines Limited

3370 Pharmacy Avenue, Agincourt

Ontario, M1W 2K4, Canada

Commodore Business Machines (UK) Ltd.

1, Hunters Road, Weldon

Corby, Northants, NN17 1QX, England

Commodore Bueromaschinen GmbH

PO BOX 710126, Lyonerstrasse 38

6000 Frankfult 71, West Germany

Commodore Italiana S.P.A.

Via Fratelli Gracchi 48

20092 Cinisello Balsamo, Milano, Italy

Commodore Business Machines Pty Ltd.

5 Orion Road

Lane Cove, NSW 2066, Australia

Commodore Computer B.V.

Marksingel 2e, 4811 NV BREDA

Postbus 720, 4803 AS BREDA, Netherlands

Commodore AG(Scheweiz)

Aeschenvorstadt 57

Ch-4010 Basel, Switzerland

Commodore Computer NV-SA

Europalaan 74

1940ST-STEVENS-WOLUWE, Belgium

Commodore Data AS

Bjerrevej 67

Horsens, Denmark

I

COMMODORE'
Commodore Business Machinos, Inc

1200 Wilson Drive West Chcslci, PA 1D3B0

Conimodore Business Machines, Limited

3370 Pharmacy Avenue- Agincourl. Onlano, MIW2K4

252095-04 Pnniad «i Taiyarr

