AICROCOAPUTERS

Users' Manual Memory Expansion Module KIM-3B

Users' Manual Memory Expansion Module KIM-3B

The information in this manual has been reviewed and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. The material in this manual is for informational purposes only and is subject to change without notice.

First Edition

© MOS TECHNOLOGY, INC.

"All Rights Reserved"

MOS TECHNOLOGY, INC. 950 Rittenhouse Road Norristown, PA. 19401

CHAPTER 1 Introduction

Congratulations on your purchase of a KIM memory expansion board. It has been carefully engineered to provide high reliability and a long service life. Please make sure you take a few minutes and read this <u>User's Manual completely</u>. You will then be familiar with all the features of your memory expansion board and will find it easy to connect the board to your existing KIM-l system.

A single memory expansion board may be wired directly to your KIM-1.

By using the KIM-4 motherboard you may add additional memory modules to expand your memory space by an additional 58,000 bytes

Like all MOS Technology, Inc. microprocessor modules, your memory expansion module is completely assembled and tested. Even if you are not using a KIM-4 motherboard, all you will have to do is wire a simple cable. Your KIM memory expansion module is covered by a complete 90-day warranty and, like all KIM modules, factory repair services are available even after the expiration of your warranty.

Your KIM memory expansion board has its own +5v regulator and requires only 8 to 10 VDC unregulated for satisfactory operation. If you already have a regulated +5v supply, you may use it with your expansion board and bypass the regulation circuitry.

All the necessary circuitry has been included to make your memory expansion module completely compatible with KIM-1. By setting the switches on the

memory expansion board, you can select the address locations in memory where you wish your expansion memory to reside.

The integrated circuit memories used on your board are high-speed static memory modules. No refresh cycles are required and access to this memory will not require any slow-down of your KIM-1.

Chapter 2 of this manual explains how to install your new memory expansion module in your KIM system. Chapter 3 explains how to check out your memory expansion module and how to test it if you ever suspect that it has failed.

Chapter 4 contains information on your memory expansion module warranty, and Chapter 5 explains the theory of operation. If for any reason you are unable to get your memory expansion module operating satisfactorily, follow carefully the checkout instructions in Chapter 3. If you are still unable to get satisfactory operation, return the module as described in Chapter 4 or contact the manager of KIM Customer Support at MOS Technology, Inc. corporate headquarters, 950 Rittenhouse Road, Norristown, PA 19401.

for end no Joke ware in the HE -HE on the property of the section at

CHAPTER 2 Installation

2.1 INTRODUCTION

How you install your KIM memory expansion module will depend on whether or not you are using a KIM-4 motherboard to interface your expansion module to KIM-1. The pin configuration on your KIM-3B allows you to plug your memory expansion module directly into the KIM-4 motherboard and begin operation immediately. You may insert as many KIM-3B memory expansion modules into the motherboard as you wish, taking care that each is set to a different memory location. If, however, you are connecting your memory expansion module directly to KIM-1, only one KIM-3B may be connected in this manner. In this case you will have to wire a cable for your memory expansion module which connects to the KIM-1 expansion and application connectors. (See Figure 1)

2.2 CONNECTING YOUR MEMORY EXPANSION MODULE TO THE MOTHERBOARD (KIM-4)

If you have already installed a KIM-4 motherboard in your KIM system, it is only necessary to plug the KIM-3B into any slot on the motherboard. Make sure that your motherboard power supply has sufficient capacity to supply the needs of your memory expansion module. See your KIM-4 User Manual for power supply connections. The KIM-3B memory expansion module draws 2.1A maximum. Your KIM memory expansion module should be inserted in the motherboard so that the component side of the board faces away from the end of the motherboard to which KIM-1 is connected. Prior to inserting the memory board in the motherboard set the address switches located on the memory board to the correct position

Figure 1

for the address in KIM's memory space where you wish to have the additional memory reside. Setting the address switches is described below. When the memory switches are set and the card is inserted in the motherboard you are ready to check out the operation of the board. See Chapter 3 for this operation.

2.3 CONNECTING YOUR MEMORY EXPANSION MODULE WITHOUT A MOTHERBOARD

If you are connecting your memory expansion module directly to a KIM-1, it will be necessary for you to wire a cable to connect the memory expansion module connector to the application and expansion connectors on your KIM-1. Note that if you wish to use the same +5v supply which presently powers your KIM-1, that supply should be connected to pin 21 and pin Y on your memory expansion module connector. If, however, you wish to use an unregulated +8v to +10v supply, that unregulated voltage should be connected to pins 19 and 20 on your memory expansion module. Unregulated +8v to +10v should never be connected to your KIM-1. In either case, insure that your supply can provide at least 1.3A for KIM-3B.

Tables 2A and 2B show the interconnection between KIM-1 and your memory expansion module. If you do not have the appropriate connectors for the KIM-1 expansion connector and your KIM-3B memory expansion module, they can be obtained from most electronic parts supply houses. They are manufactured by Vector and their part number is R644. Note that the pin designation is marked next to each pin on the connector. Once you have wired the cable interconnecting the three connectors, carefully recheck your wiring for incorrectly placed wires or inadvertent short circuits. Note that the wiring table shows the pins on the KIM-1 connectors are preceded by an "A" or "E." The "A" indicates that the connection should be made to the appropriate pin on the applications connector; the "E" indicates that the pin is on the expansion connector.

TABLE 2A

KIM-3B Connector Pin	n_	KIM-1 Connections
1		A-1
2		No Connection
3		No Connection
4		No Connection
5		No Connection
6		No Connection
7		No Connection
8		E-8
9		E-9
10		E-10
11		E-11
12		E-12
13		E-13
14		E-14
15		E-15
16		A-K (Remove Jumper from A-1)
17	0-5	No Connection
18		No Connection
19		+8v]
20		+8v Connect only +5v or +8v, NOT BOTH
21		+5v J 61 16V, NOT BOTH
22		A-1

NOTE: Cable from KIM-1 to KIM-3B must be six inches in length or less.

TABLE 2B

KIM-1 Connections
A-1
E-A
E-B
E-C
E-D
E-E
E-F
Е-Н
E-J
E-K
E-L
E-M
E-N
E-P
E-R
E-S
E-T
E-U
E-V
E-Y
To +5v (If +8v NOT USED)
A-1

2.4 SETTING THE ADDRESS SWITCHES

In order to make your memory expansion module as versatile as possible, we have included four switches to allow you to place your expansion memory at any memory address (see Figure 3). We suggest that you place your first memory expansion module starting at address 2000 and continue to expand your memory into successively higher memory locations. Tables 4 and 5 indicate the switch settings for various memory locations using your KIM-3B. Be sure to consult the appropriate table for the module you have purchased. Once you have chosen the memory space for your expansion module and correctly set the addressing switches, turn off all power and insert the memory module in its connector. You are now ready to test your memory expansion module.

Note: Do <u>not</u> set the switches so that your expansion memory has an address below 2000_{hex} as it will conflict with the memory and other circuitry in your KIM-1. It is <u>not</u> possible to put your expansion memory in the Memory block 0400-1400_{hex} already decoded on KIM-1.

KIM-3B Address Switch Setting

When	Addre	SS	Switch	Is:	Lowest Address I	s: <u>Highest Ad</u>	ddress Is:
	3	2	1				
	0	0	0		0000	1FFF	(do not use)
	0	0	х		2000	3FFF	
	0	X	0		4000	5FFF	
	0	х	x		6000	7FFF	
	X	0	0		8000	9FFF	
	Х	0	X		A000	BFFF	
	х	Х	0		C000	DFFF	
	х	х	х		E000	FFFF	

X = Switch is NOT on

0 = Switch IS on

Note: Switch 4 will logically disconnect the board when closed. Switch 5 is used for write protection when left open.

CHAPTER 3

Checkout and Test Program

3.1 Your memory expansion module has been carefully tested to assure correct operation. In this section we will describe how you can briefly check the operation of your memory expansion module. We have also included a test program which will allow you to verify correct operation of all memory cells in your memory expansion module. It should only be necessary to run this program if you suspect that the memory module has failed.

To verify that your memory expansion module has been correctly wired and that the address switches are correctly set, just address some of the memory locations and verify that you can change the contents of those locations.

Using the keypad provided with your KIM-1, and assuming that you have set the address switches on your memory expansion module so that the lowest address is 2000, use the following procedure:

Checkout and Test Program

Depress Key	See Displayed		
/RS/	xxxx xx		
/AD/	xxxx xx		
12/ 10/ 10/ 10/	2000 XX		
/DA/	2000 XX		
/3/ /A/	2000 3A		
/7/ /9/	2000 79		
<u>/+/</u>	2001 XX		
/3/ /7/	2001 37		

If you are unable to change the data in memory there are two possible sources of trouble:

- 1. The memory expansion board is not correctly connected to KIM-1. If you are using a motherboard, check that the motherboard is correctly installed and that the memory expansion card has the component side of the board facing away from the KIM-1. If you are not using a motherboard, carefully check your wiring against the list provided in Tables 2A and 2B.
- 2. You have incorrectly set the memory address switches. The figure below shows the appearance of the memory address switch when it is configured so that the lowest expansion memory address is 2000₁₆. Recheck the information in Chapter 2 if you are unsure of the placement of the memory expansion module.

3.2 TEST PROGRAM FOR MEMORY CHECKOUT

Although your KIM memory expansion module has been carefully tested before shipment, like any other electronic device, it can fail in use. If you suspect that your memory expansion module is not working correctly, the following program can be used to check the memory operation. It should be noted that programs for testing memory modules for all possible failure modes would be quite complex and require lengthy running time on KIM. The following programs simply write and read every possible bit pattern in every memory location. They do not check, for instance, whether writing to a given memory location may also affect other memory locations.

3.3 CHECKING YOUR MEMORY FROM A TERMINAL

The following program assumes that you have a terminal connected to the serial input and output ports of your KIM-1. To use the program, type it into KIM memory starting at location 20016; make a paper tape copy once you have loaded the program using the KIM dump routine. To operate the program, load the lowest address which you wish to test in location 0000 and 0001, then load the highest memory address you wish to test in location 0002 and 0003. For instance, to check all memory locations between 2000 and 2FFF you would load 00 in location 0000, 20 in location 0001, FF in location 0002, and 2F in location 0003. To operate the program, load address 022A and hit the G key. The program will then fill the specified memory locations with 0's and then read all locations to verify that the zero has been written. It will then load the specified memory with 01 and again verify the data. The process will continue until all bit patterns from 00 to FF have been written and read correctly. If any memory location fails to read or write correctly the address of the defective cell will be written to the terminal, along with the code which would not

```
CARD
BOTLO=$0
BOTHI=$1
TOPHI=$2
TOPHI=$3
CARD = LOC
                                    CODE
         123
                                                       TOPHI=$3
PTRLO=$4
PTRHI=$5
MASK=$6
PRTBYT=$1E3B
OUTSP=$1E9E
CRLF=$1E2F
*=$200
INCPTR INC P
         5
         67
         8
          9
       10
                0000
0200
0202
0204
0206
       1123456789012345678901234567
                               E6
                                      04
                                                                       INC
                                                                                 PTRLO
                                                                        INC
                               E6
                                      05
                                                                                 PTRHI
                               60
                                                       END
                                                            ERROR ROUTINE FOR TTY
                0207
0209
020C
020E
0211
0214
                                                                        JSR
LDA
JSR
JSR
LDA
                                      05
38
04
                                                                                 PREBAT
                               A5
20
A5
                                                       ERROR
                                             18
                                                                                 PRIBYT
                               20
20
20
20
20
20
20
                                             1E
                                      3B
9E
                                                                                 OUTSP
                                              1E
                                                                                 MASK
PRTBYT
CRLF
                                      06
                0216
0219
0210
                                      3B
2F
                                                                        JSR
JSR
RTS
                                             1E
                                                          INITIALIZATION SUBROUTINE
                0210
021F
0221
0223
0225
0227
0229
                                      00 06 00 04
                                                       INIT LDA
                               A9
85
85
85
85
85
                                                                           = $00
                                                                        STA MASK
                                                                        LDA BOTLO
STA PTRLO
LDA BOTHI
STA PTRHI
RTS
                                                       RESET
                                      01
                                      05
                               60
       38
                                                         MAINLINE FOR MEMORY TEST
       40142
                 022A
022B
                               28
                                                       BEGIN
                                                                     SLOR
                                                                                INIT
                                       1D
                                              02
                                                                                2DY #$00
MASK
(PTRLO),Y
INCPTR
       43
                                      00
                                                                        LP1
LDA
STA
                 022E
0230
0232
0234
0237
0239
0238
023D
023F
0241
                               A0
91
20
A5
C5
D0
                                                       WRLOUP
       45
                                                                        JSR
LDA
CMP
BNE
       46
                                      00
                                             02
                                                                                  PTRLU
                                      04
02
F3
                                                                                 TOPLO
WRLOOP
PTRHI
TOPHI
       48
       49
                                                                        LDA
       50
                               A5
                                      05
       51
                               65
                                      O3
ED
                                                                        BNE
                                                                                  WRLUOP
                 0241
0243
0246
0248
024C
024C
025C
0256
       21
                                                                                 RESET (PTRLO),Y
                                                                         JSR
                               201500
20500
20500
                                              02
                                                       RDLOOP
                                                                        LDA
                                      0603
                                                                        CMP
                                                                                 MASK
                                              02
                                                                        JSR
JSR
                                                                                 ERROR
       58
                                                       CONT
                                                                                 PTRLO
                                                                        LDA
                                      04
                                      02E03
                                                                                  ROLUUP
        61
                                                                                  PTRHI
                 0258
0254
025C
025E
       62
                               45
                                                                        LDA
CMP
BNE
                                                                                  TOPHI
                                                                                 ROLOUP
MASK
CYCLE
CRLF
RESET
                                      E806
       64
                                                                        INC
                                E6
                 0260
0262
0265
0268
                               00000
                                      03
2F
2E
       66
                                                                        JSR
JSR
                                              1E
02
02
                                                       CYCLE
        68
                                                                         JMP LP1
        69
```

read or write correctly. When all bit patterns have been tested in all specified cells, the program will output a carriage return and line feed and begin the entire cycle over again. For a 4K memory expansion module the entire test will take about 1-1/2 minutes.

3.4 CHECKING MEMORY OPERATION WITH THE KEYPAD

Program 2 tests memory in a similar fashion, but does not require a terminal. As in the first program, the address of the lower limit and upper limit of the memory to be checked is inserted in locations 0 through 3. When the program has been keyed in, you will probably wish to record it on your audio cassette for future use. When the starting address (022E) is loaded and the GO button is depressed the program will check memory as described above. However, if a defective cell is encountered the address of the defective cell will be displayed on the leftmost four digits of the display and the program will halt. Pushing any button on the keypad will resume the testing operation. When all memory cells have been checked, a value of 0000 will appear in the display and the program will halt.

```
Program 2
                                                CARD
CARD
        = LUC
                            CODE
                                           BOTLU=$0
BOTHI=$1
                                           TUPLU=$2
TUPHI=$3
       45
                                           PTRLU=$4
                                           PTRHI = $5
       6
                                           MASK=$6
PUINTH=$FB
        7
                                           POINTL=SFA
       9
                                           SCANS=$1F1F
AK=$1EFE
RESVEC=$1C22
*=$200
INCPTR INC P
      10
      1121314
             0000
0200
0202
0204
0206
                                                        INC
BNE
INC
RTS
                                                               PTRLO
END
PTRHI
                              04
02
05
                        E6
                        DO
E6
       5
      16
                                           END
      17
                        60
      18
     19
                                             ERROR ROUTINE FOR KEYPAD
                                                        LDA
STA
LDA
     2122324252729
             0207
0209
0208
0200
020F
0211
0213
0216
0219
0218
                        A555555000
                              05
                                           ERROR
                                                                PTRHI
                              FB
O4
FA
                                                                POINTH
                                                                PTRLO
                                                        STA
                                                                POINTL
                                                               MASK
                              06
F9
                                                       $F9
SCANS
                                    16
                              1F
                                           ER1
                                                               AK
ER1
                                    1E
                              F8
                        20
                              FE
                                           ERLOUP
                                                                AK
      30
                                    16
                                                         JSR
      31
                                                         BNE
                                                                ERLUOP
                                                         RTS
      32
             0220
                        60
      33
      34
                                              INITIALIZATION SUBROUTINE
      35
             0221
0223
0225
0227
0229
0228
0220
                                                      DA =$00
STA MASK
LDA BOTLU
STA PTRLO
LDA BUTHI
STA PTRHI
                                            INIT LDA
                         A9
                              00
      36
                         85
                              06
      37
      38
                                            RESET
                         A5
                              00
                        85
                              04
      40
                              01
      41
                         85
                              05
                                                         RIS
                         60
      43
      44
                                             MAINLINE FOR MEMORY TEST
      45
             022E
022F
0231
0234
0236
0238
                                            BEGIN CLD
      46
                         08
                                                         LDY
                              00
21
06
                                                                =$00
                         A0
20
A5
      47
                                                                INIT
      48
                                    02
                                                               MASK
(PTRLO),Y
INCPTR
PTRLO
                                                         LDA
                                            WRLOOP
      49
                         91
                              04
      50
      51
                              00
                                    02
                                                         LDA
      52
                         A5
                              04
                         CD 55000
                              023
03
03
                                                                TOPLU
      53
              023D
023F
0241
0243
0245
0247
0244
0253
0256
0255
0256
0256
0266
0266
                                                         CMP
       54
                                                         BNE
       55
                                                         LDA
                                                                PTRHI
      5678
                                                         CMP
                                                                TOPHI
                                                         BNE
                                                                WRLOOP
                              ED 25
                                                       JSR
LDA
CMP
                                                             RESET
A (PTRLU), Y
                         20
B1
C5
F0
                                    02
                                            ROLOOP
       59
                                                                MASK
CUNT
ERROR
INCPTR
       60
                               06
                                                         BEQ
JSR
JSR
       61
                               03
                         20
20
25
00
00
                                    02
      62
                               07
                               00
                                            CONT
       63
                                                         LDA
                                                                PTRLU
       64
                               04
                               DZ
EE
       65
                                                         BNE
                                                                ROLOUP
       66
                               05
03
E8
                                                         LDA
                         45
                                                                 PTRHI
       67
                                                                 TOPHI
       68
                         35
                                                                RDLOOP
                                                         BNE
       69
                                                          INC MAS
BNE LOOP
                               06
       70
                         E6
       71
               0264
                          DO
                                                          LDA = $00
       72
               0266
                         A9
                               00
       73
               0268
                          85
                               FA
                                                          STA $FA
       74
               026A
                          85
                               FB
                                                          STA $FB
       75
               026C
                          4C
                               22
                                    1C
                                                          JMP RESVEC
       76
               026F
                               25
                                    02
                                                          LOOP JSR RESET
                          20
       77
               0272
                          4C
                               34
                                    02
                                                                 JMP WR LOOP
       78
                                                          .END
```

CHAPTER 4

Warranty and Service

Should you experience difficulty with your KIM-3B module and be unable to diagnose or correct the problem, you may return the unit to MOS Technology, Inc. for repair.

4.1 IN-WARRANTY SERVICE

All KIM series microcomputer modules are warranted by MOS Technology, Inc. against defects in workmanship and materials for a period of ninety (90) days from date of delivery. During the warranty period, MOS Technology, Inc. will repair or, at its option, replace at no charge components that prove to be defective provided that the module is returned, shipping prepaid, to:

KIM Customer Service Department 901 California Ave. Palo Alto, CA 94304

This warranty does not apply if the module has been damaged by accident or misuse, or as a result of repairs or modifications made by other than authorized personnel at the above captioned service facility.

No other warranty is expressed or implied. MOS Technology, Inc. is not liable for consequential damages.

4.2 OUT-OF-WARRANTY SERVICE

Beyond the ninety (90) day warranty period, KIM modules will be repaired for a reasonable service fee. All service work performed by MOS Technology,

Inc. beyond the warranty period is warranted for an additional ninety (90) day period after shipment of the repaired module.

4.3 POLICY OF CHANGES

All KIM series modules are sold on the basis of descriptive specifications in effect at the time of sale. MOS Technology, Inc. shall have no obligation to modify or update products once sold. MOS Technology, Inc. reserves the right to make periodic changes or improvements to any KIM series module.

4.4 SHIPPING INSTRUCTIONS

It is the customer's responsibility to return the KIM series module with shipping charges prepaid to the above captioned service facility.

For in-warranty service, the KIM module will be returned to the customer, shipping prepaid, by the fastest economical carrier.

For out-of-warranty service, the customer will pay for shipping charges both ways. The repaired KIM module will be returned to the customer C.O.D. unless the repairs and shipping charges are prepaid by the customer.

Please be certain that your KIM module is safely packaged when returning it to the above captioned service facility.

CHAPTER 5

Theory of Operation

5.1 The schematic shows the interconnection of the components on the KIM-3B board. The diagram below illustrates the pin connections to the 2114-type memories used on the boards. When $\overline{\text{CSX}}$ is low, four of the 1024 bits in the package are selected. If $\overline{\text{WE}}$ is low, the selected cells will have the values of the I/O lines (1 or O) written into them. If pin $\overline{\text{WE}}$ is high, the contents of the addressed cells will be placed on the I10 lines.

		6550		
A6	1		18	VCC
A5	2		17	A7
A4	3	2	16	A8
A3	. 4	2	15	A9
AO	5	1	14	1/01
Al	6	4	13	1/02
A2	7	4	12	I/03
CS	8		11	I/04
GND	9		10	WE

The board is composed of the memory circuits, addressing circuitry, and buffers. An on-board voltage regulator is also provided.

In operation, address bus lines 0 through 9 are buffered by AlO, BlO and Bll, and connected directly to the memory circuits. The high-order address

lines (AB13 - 15) are presented to B12, a 4-bit comparator. The bit pattern on these lines is compared with the bit pattern generated by the three address switches. If the address switch settings and the high-order address lines match, pin 6 of B12 will go high. This signal is passed off the board as the board SELECTED line (BDSEL). When BDSEL goes high it disables U4 on KIM-1, preventing the memory circuits on KIM-1 from conflicting with addresses intended for the expansion memory board.

Address bus lines 10, 11 and 12 are decoded in All to provide eight output lines. Each of these eight lines is connected to two memory circuits to determine which memory will be active at any time. The memory circuits will not be activated unless the proper address configuration exists on address bus lines 13, 14 and 15. The comparison signal from pin 6 of Bl2 is also used in Al2 to combine with the Ø2 and R/W signals from KIM-1 to control the input and output buffers (Al and Bl).

When clock phase 2 is present the data bus buffers will be enabled, allowing data to be fed into or out of the board, depending on the condition of the Read/Write line. All will enable the appropriate two memory circuits and the selected memory circuits will decode the ten least significant address bits to complete the Read/Write operation.

Also present is a conventional 3-terminal regulator, which takes the unregulated +8v supplied to the board and supply a regulated +5v for the circuitry.

MOSTECHNOLOGY, INC.

VALLEY FORGE CORPORATE CENTER

950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401

TEL: (215) 666-7950

TWX:510/660/4033