John Fﬂsans

-

7N

MICROCOMPUTERS

Publication Number 6500-60P

MCS6500

MICROCOMPUTER FAMILY

CROSS ASSEMBLER MANUAL

PRELIMINARY

AUGUST 1975

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

First Edition
©MOS TECHNOLOGY, INC. 1975
“All Rights Reserved”

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA. 19401

TABLE OF CONTENTS

I. INTRODUCTION.::eesesosonasnnennancacasssasannanas 1
II. INSTRUCTION FORMAT. . :eeeeoovssenonsannsnsscaanaa 3
III. ASSEMBLER DIRECTIVES.:v.veereeennaroneesananenas 13
IV. OUTPUT FILES.::eencnseenooassonanssneanassansnss 17
A. LISTING FILE.::ueeessnoseonsasanaannneaas L7

B. ERROR FILE.u:eeaeousscasoeosoncannoaneanns 19

C. INTERFACE FILE...ee2einnnsonennaneananans 29

D. SAMPLE LISTING EXPLANATIONS....200000000. 30

E. SAMPLE LISTING PRINTOUT..:vveeeveaeaonasas 33

V. USING THE G. E. TIMESHARING CROSS-ASSEMBLER......37

VI. PROCEDURE FOR USING THE MCS650X CROSS-ASSEMBLER
ON THE NCSS SYSTEM.......

LA I B R I Y I T T I Y 39

I. INTRODUCTION

This manual describes the assembly language and assembly process for
programs for the MCS-650X series of microprocessors. Several assemblers are
available for program development and while they are all slightly different

in detail of use they are essentially the same in substance.

The process of translating a mmemonic or symbolic form of a computer
program to actual machine code is ca]]ed an assembly, and a program which
performs the translation is an assembler. The symbols used and rules of
association for those symbols are the assembly language. In general one
assembly language statement will translate into one machine instruction.

This distinguishes an assembler from a compiler which may produce many
machine instructions from a single statement. An assémb]er which executes
on a computer other than the one for which code is generated is called a
cross-assembler, Use of cross-assemblers for program development for micro-
processors is common since often a microcomputer system has fewer resources
than are needed for an assembler.

Normally digital computers use the binary number system for representation
of data and instructions. Computers understand only ones and zeroces corres-
ponding to an "on" or "off" state. Human users on the other hand find it
difficult to work with the binary number system and hence use a more convenient
representation such as octal (base 8), decimal (base 10), or hexadecimal (base 16).
Two representations of the MCS-650X operation to "load" information into an
"accumulator" are shown below:

10101001 (binary)
A9 (hexadecimal)

An instruction to move the value 21 (decimal) to the accumulator is:
A9 15 (hexadecimal) —
Users still find numeric representations of instructions tedious to
work with and hence have developed symbolic representations. For example the
preceeding instruction might be written as:
LDA #21
In this case LDA is a symbol for A9, Load the Accumulator. A computer program
used to translate the éymbo]ic form LDA to numeric form A9 js called an assembler.
The symbolic program is referred to as source code and the numeric program is the
object code. Only object code can be executed on the processor.
Each machine instruction to be executed has a symbolic name referred to as
an opcode (operation code). The opcode for "store the accumulator" is STA.
The opcode for "transfer accumulator to index X" is TAX. There are 55 opcodes
for the MCS-650X processors (listed in section II). A machine instruction in
assembly language consists of an opcode and perhaps operands which specify the.
data on which the operation is to be performed.
Instructions may be labelled for reference by other fnstructions as shown in
L2 LDA #12
The label is L2, the opcode is LDA, and the operand is #12. At least one blank
must separate the three parts (fields) of the instruction. Additional blanks
- may be inserted.for ease of reading. Instructions for the MCS-650X processors
have at most one operand and many have none. In these cases the operation to be
performed is completely specified by the opcode as in CLC (Clear the Carry Bit).
Programming in assembly language requires learning the instruction set
(opcodes), addressing conventions for referencing data, the data structures

within the processor, as well as the structure of assembly 1anguage programs.,

IT. INSTRUCTION FORMAT

Assembler instructions for the MCS-650X are of two basic types
according to function:

1. Machine instructions
2., Assembler directives
Machine instructions correspond to the 55 operations implemented on
the MCS—650% processors. The instruction format is:
(label) opcode (operands) (comments)
Fields are bracketed to show that they are optional. Labels and
comments are always optional and many operation codes (opcodes) such
as RTS (Return from Subroutine) do not require operands. A typical
instruction showing all four fields is:
LOOP LDA BETA,X FETCH BETA INDEXED BY X

A field is defined as a string of characters separated by a blank
space or tab character or characters. The list of o?codes for the
MCS-650X processors is shown in Table 1.

A label is an alphanumeric string of from one to six characters,
the first of which must be alphabetic. A label may not be any of
the 55 opcodes and also may not be any of the special single characters
A, S, P, X, or Y. These spécial characters are used by the_assembler
to reference the Accumulator (A), Stack pointeér (S), Processor
status (P), and index registers X and Y respectively. A label may
begin in any column provided it is the first field of an instruction.
Labels are used on instructions as branch targets and on data elements

for reference in operands.

ADC
AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CcMpP
CPX
CPY
DEC
DEX
DEY
EGR

INC
INX
INY
JMP

Table 1.

MCS650X MICROPROCESSOR INSTRUCTION SET - OP CODES

Add with Carry to Accumulator
“"AND" to Accumulator

Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Zero Result

Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus

Force an‘Interrupt or Break
Branch on Overflow Clear
Branch on Overflow Set
Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit
Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

Exclusive-or Memory with
Accumulator

Increment Memory by One
Increment X by One
Increment Y by One

Jump to New Location

JSR

LDA
LDX
LDY
LSR

N@P
PRA
PHA
PHP
PLA
PLP
RAL

RTI
RTS
SBC

SEC
SED
SEI
STA
STX
STY
TAX

TAY

TSX
TXA
TXS
TYA

Jump to New Location Saving Return
Address

Transfer Memory to Accumulator
Transfer Memory to Index X
Transfer Memory to Index Y

Shift One Bit Right (Memory or
Accumulator)

Do Nothing - No Operation

"OR" Memory with Accumulator
Push Accumulator on Stack

Push Processor Status on Stack
Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Return From Interrupt
Return From Subroutine

Subtract Memory and Carry from
Accumulator

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Trans fer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Register to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Register

‘Transfer Index Y to Accumulator

The operands portion of an instruction specifies either an address or
a value. An address may be computed by expression evaluation and the assem-
bler allows considerable flexibility in expression formation. An assembly
language expression consists of a string of names and constants separated by
operators +, -, *, and / (add, subtract, multiply, and divide). Expressions
are evaluated by the assembler to compute operand addresseé. Expressions are
evaluated left to right with no operator precedence and no parenthetical
grouping. Note that expressions are evaluated at assembly time and not
execution time. (

Any string of characters following the operands field is considered
to be comments and is listed but not further processed. If the first non-
blank character of any record is a semi-colon (;) the record is processed
as a comment. On instructions which require no operand, comments may follow
the opcode. At least one separating character (space or horizontal tab)
must separate the fields of an instruction.

There are eight assembler directives used to reserve storage and
direct information to the assembler. Seven have symbolic names with a period
as the first character. The eighth, a symbolic equate, uses an equals
sign (=) to establish a value for a symbol. A list of the directives is
given below and their use is explained in a later section.

.BYTE .WORD .DBYTE .PAGE .SKIP .OPT .END =
Labels and symbols other than directives may not begin with a period.

A typical MCS-650X assembler program segment is shown on the following
page. This example is given primarily to show the form of the information

output by the assembler. An annotated example is given in later sections.

213

215
216

218
219
220
221
222
223
224
225
227
228
229
230
231
232
233
234
235
236
237
238
239

240
A

076A
076D
076F
0771

0773
0775
0777
0779
0778
077D
077E
0781
0782
0784
0786
0787
0788
0789
078A
078C

078F
0791
0793
0795
0797
N~V

20 60 09 ALPHA JSR GETINS FIND START OF NEXT INS.
A9 00 LDA #0 \“
85 ID STA EFLAG
85 1E STA DFLAG NO DATA QR EFFECTIVE ADDR YET
s PICK UP THE OPCODE AND BREAK IT INTO ITS PARTS
A5 14 LDA OPCODE
29 03 AND #%11
85 13 STA GROUP BITS 1,0 = GROUP CODE
A5 14 LDA OPCODE
29 FC AND #%11111100
4A LSR A
85 10 STA B72
AA TAX
29 07 AND #2111
85 12 STA B42
8A TXA
4A LSR A
4A LSR A
4A LSR A
85 11 STA B75
20 79 09 JSR SETUP GET DATA FROM IT
3 SEE IF WE HAVE A LABEL TO PRINT
AF 15 LDA IADR
85 27 STA NUMBER
AF 16 LDA IADR+1
85 28 STA NUMBER+1
@9,1§L£EL BETé JSR, NUM \EE{NI/E?EBEEI\E;EE)
' object code - label opérand comments
memory address opcode

1ine number

Example 1.

Segment of an MCS-650X progranm.

Symbolic

Perhaps the most common operand addressing mode is the symbolic form as in:

LDA BETA PUT BETA VALUE IN ACCUMULATOR

In the example BETA references a byte in memory that is to be loaded into the
accumulator. BETA is an address at which the value is located. Similarly in
the instruction

LDA ALPHA+BETA
the address ALPHA+BETA is computed by the assembler and the value at the
computed address is loaded into the accumulator.

Memory associated with the MCS-650X processors is segmented into pages

of 256 bytes each. The first page, page zero, is treated differently by the
assembler and by the processor for optimization of memory storage space. Many
of the instructions have a]tarnate operation codes if the operand address is in
page zero memory. In those cases the address requires only one byte rather
than the normal two. For example if BETA is located at byte 4B in page zero
memory then the code generated for

LDA BETA
is A5 4B. This is called page zero addressing. If BETA is at 01 3C in memory
page one the code generated is AD 3C 10 This is an example of absolute
addressing. Thus, to optimize storage and execution time a programmer should
design with data areas in page zero memory whenever possible. Note that the
assembler makes decisions on which form to use based on operand address

computation.

Constants R

Constant values in assembly language can take several forms as needed by
the programmer. If a constant is other than decimal a prefix character is used
to specify type.

$ (Dollar sign) specifies hexadecimal
@ (Commercial at) specifies octal
% (Percent) specifies binary

(Apostrophe) specifies an ASCII literal character
in immediate instructions

The absence of a prefix symbol indicates decimal value. In the statement
LDA BETA+5
the decimal number 5 is added to BETA to compute the address. Similarly
| LDA BETA+ $5F
denotes that the hexadecimal value 5F is to be added to BETA for the address
computation. S
The immediate mode of addressing is signified by a # (Pounds sign) followed
by a constant. For example
LDA #2
specifies that the decimal value 2 is to be put into the accumulator.
Similarly
LDA #'G
will load the ASCII character G into the accumulator.

Immediate mode addressing a]ways generates two bytes of machine code, the
opcode and the value to be used as operand. Note that constant values can be
used in address expressions and as values in immediate mode addressing. They
can also be used to initialize locations as explained in a later section on

assembler directives.

Relative

There are 8 conditional branch instructions available to the user. An
example is

BEQ START IF EQUAL BRANCH TO START

which might typically follow a compare instruction. If the values compared
are equal a transfer to the instruction labelled START is made. The branch
address is a one byte positive or negative offset which is added to the program
counter during execution. At the time the addition is made the program counter
is pointing to the next instruction beyond the branch instruction. Thus, a
branch address must be within 129 bytes forward or 125 bytes backward from the
conditional branch instruction. An error will be flagged at assembly time if
a branch target falls outside the bounds for relative addressing. Re]ative

addressing is not used for any other instructions.

Implied

Twenty-five instructions such as TAX (Transfer Accumulator to Index X)
require no operand and hence are single byte instructions. Thus, the operand
addresses are implied by the operation code.

Three instructions ASL, LSR, and ROL are special in that the accumulator,
A, can be used as an operand. In this special case these three instructions

are treated as implied mode addressing and only an operation code is generated.

Indexed

Operands may be indexed with values in registers X and Y. Indexing is
indicated by a comma and appropriate letter following the operand. For example
LDA BETA,Y
The value in register Y is added to BETA to form the address of the operand. Not
all instructions can be indexed and on some indexing may be permitted with one
register but not the other, Refer to Table 2 for allowable addressing modes.

9

Indexed indirect

In this mode the operand address is a location in page zero memory

which contains the address to be used as an operand. An example is:

LDA (BETA,X)
The parentheses around the operand indicate it is indirect mode. In the
above example the value in index register X is added to BETA. That sum
must reference a location in page zero memory. During execution the high
order byte of the address is ignored thus forcing a page zero address.
The two bytes starting at that location in page zero memory are taken as
the address of the operand. For purposes of illustration assume the
following: BETA is 12
" X contains 4

Locations 0017 and 0016 are 01 and 25

Location 0125 contains 37
Then BETA + X is 16, the address at location 16 is 0125. The value at
0125 is 37 and hence the instruction LDA (BETA,X) Toads the value
37 into the accumulator. This form of addressing is shown in the

illustration below.

LDA (operand,X)

operand ----> l::j + X —
:

__ {:j D
I

L value

10

Indirect indexed

Another mode of indirect addressing uses index register Y and is
illustrated by:
LDA (GAMMA),Y
In this case GAMMA references a page zero location at which an address
is to be found. The value in index Y is added to that address to compute
the actual address of the operand. Suppose for example that:

GAMMA is 38 (hexadecimal)

Y contains 7

Locations 0039 and 0038 are 00 and 54
Location 005B contains 126

Then the address at 38 is 0054 and 7 is added to this giving an effective
address 005B. The value at 0658 is 126 which is loaded into the
accumulator.

In indexed indirect the index X is added to the operand prior to the
indirection. In indirect indexed the indirection is done and then the
index Y is added to compute the effective address. Indirect mode is
always indexed except for a JMP instruction which allows an absolute
indirect address as exemplified by JMP (DELTA) which causes a branch
to the address at location DELTA. The indexed indirect mode of addressing
is shown in the illustration below.

LDA (operand),Y

operand ----+ [:::::::]

>
> >
>
2 > >
o L0 L0
(] ~) o
x [«}) Q (V]
(] x x x
=) [}] . [¢3]
f o o o ke
o— < < ol
@ o o B - -
5 S~ [}] e b [3} +
© [¢}] + [¢5) -+ -+ Q
5 N 2 N 2 =2 ¢
Q [©) o Q o o o
= (o)} %) fw)] (%2} wn o
= (] L < 2 £ =
— Q. <L a. <L f—t
ACD X X X X X X X
AND X X X X X X X
ASL (1) X X X X
BIT X X
CMP X X X X X X X
CPY X X X
CPX (2) ' X X X
DEC X X X X
EOR X X X X X X X
INC X X X X
JMP (3) X X
JSR X
LDA X X X X X X X
LDX (2) X X X X X
LDY X X X X X
LSR (1) X X X X
ORA X X X X X X X
ROL (1) X X X X »
SBC X X X X X X X
STA X X X X X X
STX X X X
STY X X X

(1) Accumulator A can also be an operand

(2) Indexing with Y

(3) Indirect is absolute indirect and not indexed

The 8 conditional branches use relative addressing.

The 25 other instructions not in this table use implied addressing.

Table 2. Instruction addressing modes.

12

III. ASSEMBLER DIRECTIVES

There are eight directives which are used to control the assembly process,
define values or initialize memory locations. Assembler directives always appear
in the opcode field of an instruction and thus might be considered as assembly
time opcodes instead of execution time opcodes. The directives are: .BYTE, .WORD,
.DBYTE, .OPT, .PAGE, .SKIP, .END and equates which are denoted by the equals sign =.
A1l directives which are proceded by the period may be abbreviated to the period
and three characters if desired (eg. .BYT).

.BYTE is used to reserve one byte of memory and load it with a value. The
directive may contain multiple operands which will store values in consecutive
bytes. ASCII strings may also be generated by enclosing the string with quotes.

HERE .BYTE 2
THERE .BYTE 1, $F, @3, %101, 7
ASCIT .BYTE 'ABCDEFH'

Note that numbers may be represented in the most convenient form. In general,
any valid MCS650X expression which can be resolved to eight bits may be used in
this directive. If it is desired to include a quote in an ASCII string, this may
be done by putting two quotes in the string; '

.BYTE 'JIM"S CYCLE'
could be used to print:

JIM'S CYCLE

.WORD is used to reserve and load two bytes of data at a time. Any valid

expression, except for ASCII strings, may be used in the operand field.

HERE .WORD 2
THERE .WORD 1, $FF03, @3
WHERE .WORD HERE, THERE

The most common use for .WORD is to generate addresses as shown in the above
example labelled "WHERE" which stores the 16 bit addresses of "HERE" and "THERE".

Addresses in the MCS650X are fetched from memory in the order Tow byte, high byte,
13

and therefore .WORD génerates the values in this order. The hexadecimal portior
of the second example above ($FFO3) would be stored 03,FF. If this order 1s nc
desired, the following directive is used.

.DBYTE is exactly Tike .WORD except the bytes are stored in high byte, low
byte order.

.DBYTE $FFO3

will generate FF,03. Thus, fields generated by .DBYTE may not be used as indirect
addresses.

= is the EQUATE directive and is used to reserve memory locations, reset

the program counter (*), or assign a value to a symbol.

HERE *=%4] reserve one byte
WHERE *=%4+2 reserve two bytes
*=$200 set program counter
NB=8 assign value
MB=NB+%101 assign value

The = directive is very powerful and can be used for a wide variety of purposes.;

Expressions must not contain forward references or they will be

flagged as an error.

For example,
*=C+D-E*F
would be legal if C, D, E and F are all defined but would be illegal if any of
the variable*were a forward reference. Note also that expressions are evaluated
in strict left to right order.
.PAGE is used to cause an immediate jump to top of page and may also be
used to generate or reset the title printed at top of page.

.PAGE ‘THIS IS A TITLE®
PAGE
PAGE 'NEW TITLE'

If a title is defined, it will be printed at the top of each page until it is

redefined or cleared. A title may be cleared with: .PAGE ' '.
| 14

.SKIP is used to generate blank Tines in a listing. The directive will not

appear but its position may be found in a listing since it is treated as a valid

input "card" and the card number printed on the left side of the listing will

jump by two when the next line is printed.

.SKIP 2 skip two blank Tines
. SKIP 3*2-1 skip five lines
.SKIP ONELIN

.OPT is the most powerful directive and is used to control géneration of

output fieldss listings and expansion of ASCII strings in .BYTE directives

.OPT XREF, ERRORS, COUNT, LIST, MEMORY, GENERATE
.OPT NOXREF, NOERRORS, NOCOUNT, NOLIST, NOMEMORY, NOGENERATE

The operand fields in this directive are only scanned for the first three

characters, thus all fields may be shortened to:

.OPT XRE,ERR,COU,LIS,MEM,GEN
.OPT NOX,NOE,NOC,NOL ,NOM,NOG

Also valid is:

.OPT CNT

Default settings are:

.OPT NOCNT,XREF,MEM,LIST,ERR,NOGEN

The individual .OPT operands are:

(1)

XREF [NOXREF] controls whether a full cross reference listing will be
printed. A symbol table will always be printed (unless NOLIST is used,
see below).

ERRORS [NOERRORS] is used to control creation of a separate error file.
The error - file contains the source line in error and the error message.
This facility is normally of greatest use to time-sharing users who
have limited print capacity. The error file may be turned on and
examined until all errors have been corrected. The listing file may
then be examined. Another possibility is to run with:

.OPT ERRORS, NOLISTING
15

until all errors have been corrected and then make one more run with
.0PT NOERRORS, LISTING

(3) COUNT [NOCOUNT] is used to generate a count of times each instruction
has been used in a program and data on the number of symbols,
bytes of code generated, etc. which are hain]y of use to batch users
who might have to recompile the assembler if they desire to assemble
very large programs. An instruction count can be very useful to
indicate if certain instructions which might be useful are not being
used due to lack of familiarity with the entire instruction set.

CNT may also be used for COUNT.

(4) LIST [NOLIST] is used to control the generation of the listing file
which contains source input, errors and warnings, code generated,
symbol table and instruction count if enabled.

(5) MEMORY [NOMEMORY] is used to control generation of the memory file
which is used as an interface between the assembler and the simulator
and various loader programs. The memory file contains information
about symbols, Tine numbers and code generated and is described in
detail elsewhere in this document.

(6) GENERATE [NOGENERATE] is used to control printing of ASCII strings
in the .BYTE directive. The first two characters will always be
printed and further characters will be printed (normally two bytes
per 1ine) if GENERATE is used.

.END should be the last statement in a program and is used to signal the

physical end of the program. Its use is optional but highly recommended for

program documentation.

16

VI. Output files

There are three output files generated by the assembler. Each
file is optional through use of the .OPT assembler directive. The
listing file contains the program list, symbol table and instruction
count. The error file contains all error lines and errors. The
interface file contains the interface to the simulator.

A. Listing file

The 1isting file will be produced unless the NOLIST option
is used on the .0OPT assembler directive. This file is made up
of three sections: program, symbol table and instruction count.

1. Program

This 1isting will always be produced unless the NOLIST
option is selected. It contains the source statements of
the program along with the assembled code. Errors and
warnings appear after erroneous statements. For an
explanation of error codes see part B in this section.

At the end of the program is a count of the errors

and warnings found during the assembly. An example of
this section is shown below.

CARD #.LOC CODE CARD

1 CR=15
2 LF=12
3 ; LOW CORE DATA AREAS
4 0000 E7 06 TEMTBL .WORD G3TEM, GITEM
5 0002 E7 05
6 GROUP=B10
7 0004 00 THI .BYTE O
8 0005 00 TLO .BYTE O
9 0006 EA EA EA 3PER .WORD 0
**xx% ERROR ** LABEL DOESN'T BEGIN WITH ALPHABETIC CHARACTER - NEAR COLUMN 1
10 0009 B1 OE NEXT LDA (SAVIL)Y
269 07C9 (9 3B CMP #'
270 07CB FO EA BEQ DONE
%%% ERROR ** UNDEFINED SYMBOL - NEAR COLUMN 18
280 .END

17

END OF MOS/TECHNOLOGY 650X ASSEMBLY VERSION 4
NUMBER OF ERRORS = 2, NUMBER OF WARNINGS = O

2. Symbol table

The symbol table will always be produced unless the
NOLIST option is used. It contains a list of all symbols
used in the program, their value and the line they are
defined in. The cross-reference listing is part of the
symbol table and is produced unless the NOXREF option is
used. It contains cross-references for each symbol.
Symbols that are undefined are flagged as such with
cross-references remaining in the listing. Part of a
symbol table listing with cross-references is shown below.

SYMBOL VALUE LINE DEFINED CROSS-REFERENCES
AGAIN 093C 369 374

BLANK 07F6 292 247 274 285

DONE *UNDEFINED* 0 270

EFLAG 001D 25

3. Instruction count

The instruction count table is optional and will be
produced unless the NOCOUNT option is selected in the
.OPT directive. This table is a listing, in alphabetical
order, of all the op codes with a usage count for each one.
At the end of the table is a count of the number of
symbols, bytes, lines and cross-references generated along
with the assembler 1imits for each of these. An example of
the instruction count table is shown below.

ADC
AND
ASL
BCC
BCS

O =01 OMN

TXS
TYA

w O

0(LIMIT=500) # BYTES = 243(LIMIT=1500)

S= 2
= 280(LIMIT=1000) # XREFS = 75(LIMIT=1500)

18

B. Error file

Error messages are given in the program listing accompanying the statement
in error as shown in previous examples. The same information may be produced
on a separate file unless the NOERRORS option is specified. This file can be
used conveniently if the NbLIST option is taken. It would typically be used
with a timesharing system where a long progkam listing during debug is time-
consuming and unnecessary. The following is a list of all error messages which

might be produced during assembly.

** A X, Y, S, AND P ARE RESERVED NAMES
A label on a statement is one of the five reserved names (A, X, Y, S and
P). They have special meaning to the assembler and therefore cannot be
used as labels. Use of one of these names will cause the above error
message to be printed and no code to be generated for the statement. The
label does not get defined and will appear in the symbol table as an un-
define? variable. Reference to such a label elsewhere in the program will

cause error messages to be printed as if the label were never declared.

How to avoid: don't use A, X, Y, S or P as a label to a statement.

** ACCUMULATOR MODE NOT ALLOWED
Following a legal opcode and one or more spaces is the letter A followed
by 1 or more spaces. The assembler is trying to use the accumulator
(A means accumulator mode) as the operand. However, the opcode in the
statement is one which does not allow reference to the accumulator.
Check for a statement labelled A (an illegal statement) to which this
statement is referencing. If you were trying to reference the accumulator,

look up the valid operands for the opcode used.

19

** ADDRESS NOT VALID

An address referred to in an instruction or in one of the
assembler directives (.BYTE and .WORD) is invalid. In the case
of an instruction, the operand that is generated by the assembler
must be greater than or equal to zero and less than or equal to
FFFF16 (2 bytes long). (This excludes relative branches which are
limited to ¥ 127 from the next instruction.) If the operand
generates more than 2 bytes of code or is less than zero, this
error message will be printed. For a .BYTE each operand is limited
to one byte and for a .WORD each operand is limited to two bytes.
All must be greater than or equal to zero.

This validity is checked after the operand is evaluated.
Check for values of symbols used in the operand field (see the

symbol table for this information).

** FORWARD REFERENCE IN EQUATE OR ORG o
The expression on the right side of an equals sign contains a
symbol that hasn't been defined previously. One of the operations
of the cross assembler is to evaluate expressions or labels and
assign addresses or values to them. The cross assembler processes
the input values sequentially which means that all of the symbolic
values that are encountered fall into two classes--already de-
fined values and not previously encountered values. The cross
assembler assigns defined values and builds a table of undefined
values. When a previously used value is discovered, it is sub-
stituted into the table and the cross assembler processes all of

the input statements a second time using currently defined values.

20

A label or expression which uses a yet undefined value is
considered to be referenced forward to the to-be-defined value.

To allow for conformity of evaluating expressions, this
cross assembler allows for one level of forward reference so

that the following code is allowed:

Card Segquence Label Opcode Operand
100 " BNE New One
200 New One I.DA #5

but the following is not allowed:

Card Sequence Label Opcode Operand
100 BNE New One
200 New One Next + 5
300 Next LDA #5

This feature should not disturb the normal use of labels

as the cure for this error.

Card Sequence Label Opcode Operand
100 BNE New One
300 Next LDA #5
301 New One Next + 5

is very simple and always sol&es the problem.

This error may also mean that the value on the right
side of the = is not defined at all in the program in which case
the cure is the same as for undefined values.

Due to the sequential processing of the assembler and the
dependency on the value of the program counter on symbols,

throughout the rest of the program, the assembler cannot

21

process a forward reference in this type of statement. All —

expressions with symbols that appear on the right side of any

equals sign must refer only to previously defined symbols for

the equate to be processed.

** ILLEGAL OPERAND TYPE FOR THIS INSTRUCTION
After finding an opcode that does not have an implied operand,
the assembler passes the operand field (the next non-blank
field following the opcode) and determines what type of
operand it is (indexed, absolute, etc.). If the type of
.operand found is not valid for the opcode, this error message
will be printed.
Check to see what types of operands are allowed for the

opcode and make sure the form of the operand type is correct .

(see the section on addressing modes).

22

** JLLEGAL OR MISSING OPCODE
The assembler searches a line until it finds the first non-blank character
string. If this string is not one of the 55 valid opcodes it assumes it is
a label and places it in the symbol table. It then continues parsing for
the next non-blank character string. If none is found, the next line will
be read in and the assembly will continue. However, if a 2nd field is
found it is assumed to be an opcode (since one label is allowed per line).
If this character string is not a valid opcode, the error message is printed.

This error can occur if opcodes are misspelled in which case the

assembler will interpret the opcode as a label (if no label appears on the
card). It will then try to assemble the next field as the opcode. If
there is another field, this error will be printed.

Check for a misspelled opcode or for more than one label on a line.

** INVALID EXPRESSION
In evaluating an expression, the assembler found a character it couldn't
interpret as being part of a valid expression. This can happen if the
field following an opcode contains special characters not valid within
expressions (e.g. parentheses). Check the operand field and make sure

only valid special characters are within a field (between commas) .

** INVALID INDEX - MUST BE X OR Y
After finding a valid opcode, the assembler Tooks for the operand. In
this case, the first character in the operand field is a left paren. The

assembler interprets the next field as an indirect address which, with the
23

exception of the jump statement, must be indexed by one of the index
registers, X or Y. In the erroneous case, the character the assembler o
was trying to interpret as an index register was not X or Y and the error
was printed.
Check for the operand field starting with a left paren. If it is
supposed to be an indirect operand, recheck the correct format for the
two types available. If the format was wrong (missing right paren or index
register), this error will be printed. Also check for missing or wrong

index registers in an indexed operand (form: expression, index register)

** LABEL DOESN'T BEGIN WITH ALPHABETIC CHARACTER
The first non-blank field is not a valid opcode. Therefore, the assembler
tried to interpret it as a label. However, the first character of the
field does not begin with an alphabetic character and the error message
is printed. —
Check for an unlabelled statement with only an operand field that does

start with a special character. Also check for illegal label instruction.

** | ABEL GREATER THAN SIX CHARACTERS

A11 symbols are limited to six characters in length. When parsing, the
assembler looks for one of the separating characters to find the end of a
label or string. If other than one of these separators is used, the error
message will be printed providing the illegal separator causes the symbol
to extend beyond six characters in length. Check for no spacing between
Tabels and opcodes. Also check for a comment card with a long first word
that doesn't begin with a semicolon. In this case the assembler is trying

to interpret part of the comment as a label.

24

** LABEL OR OPCODE CONTAINS NON-ALPHANUMERIC CHARACTER
Labels are made up of from one to six alphanumeric digits. The label
field must be separated from the opcode field by one or more blanks.
If a special character or other separator is between the Tabel and the
opcode, this error message might be printed.

The 55 valid opcodes are each three alphabetic characters. They
must be separated from the operand field (if one is necessary) by one or
more blanks. If the opcode ends with a special character (such as a
comma), this error message will be printed.

In the case of a lone label or an opcode that needs no operand,
they can be followed directly by a semicolon to denote the rest of the

card as a comment.

** | ABEL PREVIOUSLY DEFINED

The first field on the card is not an opcode so it is interpreted as a
label. If the current line is the first line in which that symbol appears
as a label (or on the left side of an equals sign) it is put in the symbol
table and tagged as defined in that line. However, if the symbol has
appeared as a label, or on the left of an equate, prior to the current
line, the assembler finds the label already in the symbol table. The
assembler does not allow redefinitions of symbols and will, in this case,

print the error message.

** QUT OF BOUNDS ON INDIRECT ADDRESSING
An indirect address is recognized by the assembler by the parentheses that
surround it. If the field following an opcode has parens around it, the
assembler will try to assemble it as an indirect address. Since indirects
work only in page zero memory, if the address in the operand field extends
into absolute (is larger than 256 - one byte) this error message will be

25
printed.

This error will only occur if the operand field is in correct form
(i.e. an index register following the address), and the address field
is out of page zero. To correct this, the address field must refer to page

zero memory.

** PROGRAM COUNTER NEGATIVE - RESET TO 0 -
An assembled program is loaded into core from position O to 64K (65536).
This is the extent of the machine. Instructions can only refer to up to
2 bytes of information. Because there is not such a thing as negative memory,
an attempt to reference a negative position will cause this error and the
program counter (or pointer to the current memory location) will be reset
to 0.
When this error occurs, the’assemb1er continues assembling the code
with the new value of the program counter. This could cause multiple
bytes to be assembled into the same locations. Therefore, care should be

taken to keep the program counter within the proper limits.

** RAN OFF END OF CARD
This error message will occur if the assembler is looking for a needed
field and runs off the end of the card (or line image) before the field
is found. The following should be checked fdr: a valid opcode field
without an operand field on the same card; an opcode that was thought
to take an implied operand, which in fact needed an operand; an ASCII
string that is missing the closing quote (make sure any embedded quotes
are doubled - to have a quote in the string at the end, there must be 3
‘quotes - 2 for the embedded quote and one to close off the string); a
comma at the end of the operand field indicates there are more'operands

to come; if there aren't other operands, the assembler will run off the

card looking for them. 26

** RELATIVE BRANCH OUT OF RANGE
A1l of the branch instructions (excluding the two jumps) are assembled into
2 bytes of code. One byte is for the opcode and the other for the address
to branch to. To allow a forward or backward branch, this branch is taken
relative to the beginning of the next instruction, according to the address
byte. If the value of the byte is 0-127 the branch is forward; if the
value is 128-255 the branch is backward. (A negative branch is in 2's
complement form). Therefore, a branch instruction can only branch forward
or backward 127 bytes relative to the beginning of the next instruction.
If an attempt is made to branch further than these Timits, the error message

will be printed.

** UNDEFINED ASSEMBLER DIRECTIVE
A1l assembler directives begin with a period. If a period is the first
character in a non-blank field the assembler interprets the following
character string as a directive. If the character string that follows
is not a valid assembler directive, this error message will be printed.
Check for a misspelled directive, or a period at the beginning of

a field that is not a directive.

** UNDEFINED SYMBOL
This error is generated by the 2nd pass. If in the first pass the assembler
finds a symbol in the operand field (the field following the opcode or an
equals sign) that has not been defined yet, that symbol is flagged for
interpretation by pass 2. If the symbol is defined (shows up on the left
of an equate or as the first non-blank field in afstatement) pass 1 will
define it and enter it in the symbol table. Then a symbol in an operand
field before the definition will be defined with a value when pass 2

assembles it. In this case the assembly process can be completed. However,
27

if pass 1 doesn't find the symbol as a label or on the left of an equate,
it never enters it in the symbol table as a defined symbol. When pass 2

tries to interpret the operand field this type of symbol is in, there is

no value for the symbol and the field cannot be interpreted. Therefore,

the error message is printed with no value for the operand.

This error will also occur if a saved symbol (A, X, Y, S or P) is used
as a label and refered to elsewhere in the program. On the statement that
references the saved symbol, the assembler sees it as a symbol that has not
been defined.

Check for use of saved symbols, misspelled labels or missing labels to

correct this error.

Along with the error messages listed, there is one warning message that

might be printed. The difference between the errors and warnings is that unlik

errors, warnings generate the full code for the statement. Errors generate
partial code and leave NOPs where code cannot be generated. The following is

the warning that might be produced during assembly.

** FORWARD REFERENCE TO PAGE ZERO MEMORY
When the assembler finds an expression (whether it is in an operand field
or on the right of an equals sign) it tries to evaluate the expression.
If there is a symbol within the expression that hasn't been defined yet,
the assembler will flag it as a forward reference and wait to evaluate
it in the second pass. If the expression is on the right side of an equals
sign, the forward reference is a severe error and will be flagged as such.
However, if the expression is in an operand field of a valid opcode, the
first pass will set aside 2 bytes for the value of the expression and flag
it as a forward reference. When the énd pass fills in the value of the

expression, this warning will be printed if the expression is one byte long
28

- (i.e. < 256). The warning is printed because the forward reference to
page zero memory wastes one byte of memory - the extra one that was saved

because during the first pass the assembler didn't know how large the value

was so had to save for the largest value - 2 bytes.

C. Interface file
The interface file will be produced on a separate file unless the NOMEMORY

option is used in the .OPT directive. This file is the output from the assembler

that is used as input to the simulator and other loader programs.

29

D. The following example lists some of the characteristics and capabilities

of the MCS650X cross-assembler.

(1)

(6)

(7)

(8)
- (9)

The title is generated with the following card:
.PAGE "MULTIPLE BYTE DECIMAL ADD'
The page directive can be used for listing control and title
information. A directive with no title field will cause a skip
to top of next page. If a title had previously been used, it will
be printed again. To clear a title field, enter the following:
LPAGE ' !
Comment - first non-blank is ';'.
The program counter is set to zero. In this example, not really
necessary as the program counter is automatically started at zero.
An equate. The variable NB is assigned the decimal value 8.
These instructions provide the dual purpose of defining the start
of data areas and reserving memory locations for the data. Ex-
pressions which do not contain forward references are permitted.
This shows an address calculated from the current value of the
program counter. The current PC (*) points to the beginning of
the instruction (24), hence *-1=23. Note also that addresses on
the MCS650X machines are stored low byte, high byte; thus the
operand field of the jump instruction is 23,00 and not 00,23. The
code printed on the assembly listing is exactly as it is loaded
in memory and fetched by the processor during machine execution.
Blank Tine generated by .SKIP 1. Note card was counted but not
printed.
Program counter is set to decimal 100 (Hex 64).

Immediate mode used to load Y with byte count.

30

(10) Expressions. Note that expressions are evaluated in strict left to

(11)
(12)

(13)

(15)

right order with no parenthetical nesting allowed. Thus the logical
evaluation of the expression is:
(3*NB)-1 = (3*8)-1 = 24-1 = 23 = 17 (Hex)
The .END directive signals end of assembly.
Cross-reference listing requested by
.OPT XREF
Showing sorted symbol table (12A), value (12B), Tine defined (12C),
and Tine number where symbol was referenced (12D). A symbol which
is referenced but never defined will be clearly marked with:
**NDEFINED

in the value field and symbols defined but never referenced are marked
by

khkk
in the reference position. This is not an error but is included for
programmer reference as an unreferenced symbol may sometimes indicate
logical errors.
Count of all instructions used requested by

.OPT COUNT
or LOPT CNT

Error file requested by:

.OPT ERRORS
Contains card where error occurs and error message. This is normally
of greatest use to time-sharing users who have limited access to high
speed printers. The error file can be listed first on the terminal
to see if there were any assembly errors. If there were, they can
be corrected in the source input without 1isting the entire printout
at the terminal.
This is the interface file which is created by the assembler as input

31

to the simulator and various loader programs. All interface file rec B

begin with a semicolon and a number. Records then contain a four o

character hexadecimal sequence number. The format after this point

depends on the record type.

(15A) Type 1 records are basically a dump of the symbol table giving
symbols and their value.

(15B) Type 2 records describe the value of the program counter at the
beginning of each card.

(15C) Type 3 records contain the code generated by the program and
are normally of greatest interest. Each record contains the
standard information, a hexadecimal byte count, starting program
counter value, 32 characters'containing 16 bytes of hexadecimal
code and a four character checksum. On records which contain
fewer than 16 bytes of data, the unused byte positions are fi' '
with zeroes. In this example, the first type 3 record contaiﬁEJJ”'
14 (decimal) bytes of data, the second a full 16 and the Tast

contains 5 bytes.

(15D) Type 4 records are used to denote the end of the interface file.

32

—

ﬁ .

H
'
'
!

i |
; e . S S
I
;) | | |
i | i
: 1 i |
m L _ |
, " _
U | Q = _SONINMYM_ JO_dFuWON ¢ = _SHO¥N3 40 43aWON
! | ? NDIS®IA ANBWIS[SY XCS9 ADDIINHDIL/SIN 4D aNd
. & 1
R _ @D gng- -1 T
m | 1 NWNTDD HYIN ~ FHALTVHYHI 15 NVHL |[431VEd) I38v1 &% Y0493 sexss
m L 4093 TWNOILINIZINI NV SI SIHL 9N HO43a2€eY VvH VE V3 3L00 Iv
” _ m sL | 9 SL3) Ov
. e — B - [}o) e _BQ LDV _6E
i ‘ dC07 30 QZu LX3N ENE | 94 5Q 2L)y 8E
: | g/. A3d “ €9 130 g
| ! X 34 _ vD 2433 3E
U o b | XS YN L WAS 21 k%3930 _SE
i | | X* T ~uNxg oav 33 19 D932 wE
m | | | X ¢ T=gyN VG LX 3N LY IV ¥IVU' EE
_ | 300W Vw1230 4138 Q3s 8d 6922 ° 2¢
-1 — o o I el DXD LBV 32202 V&
i SS 3yadv viva savion N¥Aavy | XG LGy 2y 93d0 oe |
: AVILvmzn AGD aocd 8) Ov ¢330 62 :
m Camd TALE L2320 sz |
- . a — S U N SRR A -
: ANILYO®eNs N193g ¢ f 92
w | © |
e WYHO0Yd NIVW 40 ONZ 1-x dwlr€—CD 50 €2 2y v2Jd %2
h " dON v €220 €2
| i aow &Sr od ¥3 02 o2cC 22
m m Hav X1S 03 93 3100 12 |
P - ~ e P B dd¥ X017 19 .2¥ 2100 w2 |
i i JIINIOD HIOVLG® s SX L ve 3130 61 |
, *[**3Z1WI LINI 49% 8 X3 NIVA 43 2v 5130 81 m
I : L1
. . 1028 INTLNO¥MGNS d4O AS3L ¢ 2 _
omnomwnu—OQQNQnQnN_O_OWNOnvnN_OOQA«WM v»|nw_c.o mxmw})m vlmzw(_wm-mim»w,m,vz.m.wi_.o.o..mx o!.m‘.v.n}m,—r.o‘a\al.n Om Qm 4_ 40mmcovmm_comﬂcme}mzﬁ:_w
6 8 L 9 S 14 £ (A l 0
68.95b e 106895V EZ1006849GvELI06DLIGVER .ii 68 .9 SvET 1068 ,9S5YEL 1068295 vEz1068.95pet1068s9sbEZ1 Oescosvel
6 w 8 | L 9 , S v anNT 4nd g vW NI9238 & l : ar |
“ h , « vl
! | w AN+ x= % 5=y Tty €1
SR A — . Lo i 3Npezw o D e . —eowL. .21 |
, w m YN+ * =% dd 1acy T
i _ =N (VA ¢ 1
” “ WYHOOHd NIVW 3HL yud () ¢ 5 ;
e e e S F IO SR RN &, 3. F—f. S L2500 d |
: a P 4NI LNOY8NS 3HL 404 : ‘ _
| i odan 9 w
m AMOW3W 30 [20Vd LSuld NI vasv vied ¥V 5ivD , =
: i R — N j b SR R S
, : ! B \, (YN 103 373000 Ay : £
(! | _ mmwrs:z,zoamWUA FSTLTION DML 40 NOT L ; FA
\ _ , : _ a) 23 ¢ auvd

ERNOY-[oF |

2alivy

33

Oleszosvezioedzosy €2106879sveEz 10687 SPEL (]
|
i

5 e J R a5 e “ AR _ \

J

‘ | "
| X |
i 1
" ‘ i “
v]
) | ! k
! _ | |
' ! i
| B e b * et R o A : : -
: : | _ ;
' i !
' t ! '
P | :
- e .r S et - e e - - [T - - N i
i :
! t
f
: , i
. ! i 1 .
.ﬂo - — o e a2 I_|. [—— N
' ! | !
: | | ,_
. _ | | _
Pl e s st 1 : p s e
i w |
| .
_ i !
A | ! [e
l
i
! .
T - :

* 3 %
' ¥ X ok
i v ce
e S - g€
| St e £E 52 [21 11
t
_
|

* X

q
3

™

* %k sk
cc
; . 0¢F 1c

*
CJ o= 7)) v ot g

VEVOM=~AM

SIONIHIATY =SS HD JEBNIZ3T 3NET 3VTIvA

e P AA9yd 109 WASL
6B .9StEL1068.9SPELLO6B LS L1068 L9SrYEL1068L9SYELLO68BL9SPEL10/68,9SvELl068L.9CSvELIO068C9SPELI06E (9SbEZI

6 8 Vi 9 4 v € [4 L o

AN ERL

34

8 L

068 29SS PET 1068 .9StECI068LZ9CPELZILO

(o0 h

9 (00e

WVwio

6895

895V EL
(oci1e =
ud = 11

~
2

68L9Sb¢E

NIT) EV
1) 8

Z1of68:

'
i

ALS
_x.—.m
vis

QO OO C Q=S rmio:

S e

Randl

i
i
!
i
i
i

R 1)

135
[33s
D35
245
S1y
14y
Rl
@04

vd
dH d
VYHd
730

e —

dON
3487
AT

Ot MO e, OO OWEQ

ON I
4035
A 3d

I

x3d
Two
3au
XdDd

i
[
I
|
1
I
'

b
|

HWD
A
17D
J10

271D
SAg
2A8
MHod

7448
aNg
IAG
ild

534
soa
208
1SV

~OOOCQCUNOOVC™mQOUOC GO ~e OC 2

LNNJD N

INV
20V

o1

2NHLSNIE

of
-
L]
~
| o
i n
1™
~
)

68 L9SPYETLO

68 L96PETLO

68L9SPvETLO

68L9SVETLO¢

9SPveETLO

6B LISPETLO68LISPELZLDO

i
P
i

U R

6B LY9SY L L

{ L

9

S

14 \

€

[4

t

0

RIS ST

kiL-1oF]

35

V,._-_.._.

I
|

6

wxcm?ﬂn

i
|
!
L
|

.‘ﬁmWwaHML,ﬁekomvn«_oomscmwMmeFWhWMWWW_M?ﬁtMMQHn_oTano vPeEriolens9sviiiossz @ﬁﬁmwmcommml‘mur
! 8 ! L 9 < Y £ z | L 1 _
;! _ \ M i
- | i _ _ i
| | |
- ; fom T
! !
| |
| _ T
| m w
! | |
B) i e _
|
|
- b ——— S F B S
| m
. i
i B
4?
i m JJ20p
| GJE[Y H0000D0UIIT0IVVUO0YUOOLCYIVIVEOIBT $200 150 £000E ¢
I AP 940098V ILT I8 U ISLDIVELBTIC02ZVR2IY #3900 DI z200¢
. 1Ayl 200000£2DHVICO%900098T102vVve/4BaY 6100 |30 TUOIES
GGou 0 cono 0 0300 O 6L00 2v 9L00 1y 63002
SL0U OV viLuu 6F 2L00 BE 100 L€ ILID PE 332J2¢
B 3900 3¢ 23D _ve V7290 EE 6900 ¢t 9900 1&g | _ L2002¢
9900 0¢ 700 62 LZUG §e L2000 L2 L2l 92 290022
L2000 se b0 ve E200 €€ 0200 22 3100 12 50002
2100 wue 8100 €1 6120 w1 5100 ¢1 5130 91 Y0002
- €LY 51 6109 %1 1L90 $ 1 600¢ 21 1020 X1 | - EQDI2?
190C¢ 1 1Uoo s 03090 & 900G L JOCU 9 € Uu0e
! 0gog s QoY v ovLo € 0Cou 2 0CG00 1 1000¢:
1100 S34 5929 D TU00 4d; v309 LX3N 22001
] 8020 __BN_ 5190 NIVW ¥90C god_ 03903 ¥UIV_ 10001 %
_:::ow.;n_oou,omvnu_ow,wu.omqnwt_.mm.@%ﬂi. €L L0668 LIS PELLIOD68LI9SPELIO68./9GVELLO68L9SEPEZ 106 68L9s5verioersosvec
8 L 9] 14 £ z L 0
| | |
o j :
| | |
! + v _
M I 0 = SONINHYM JO 3¥IJEWNN 1 = SH0YH3 40 ¥IFGWNN
i i Y NJIISMIN ATTEANISISY X053 ASOTIONHIIL/SDW 40 ONZ
i | 1 NWNTI0D dVIN « [SHILOVHYHI XIS NvH1l M3 IVIND T1IPvI »x ¥J933 i*ldj
| . | . HOuH3 TYNOIANIUINI NV ST [STHL dON HO43Q28v % |
A ; adv]d & asv)
_ _ ElR B acaaL
| | :
€106 Wﬂﬁ.vn«.%onsonvﬁ«_ooesonvnm_oocnenvnu_eoehamvn«_ooahowvau_oouhomemu_pomhcmcna_oothnvmn;

[
:Eamuc

s b
e

8

L

9

g

v

€

[A

L

0

0

Using the G.E. Timesharing Cross-assembler.

Before using the assembler, users should be familiar with the
BLIST, MEDIA and editing commands. The BLIST command is used

to list the output reports returned by the assembler and the MEDIA
command is used to transfer them to foreground files.

Prior to running the assembler, a file must be created containing
the source code to be assembled., This file must not contain line
numbers (EDIT DESEQUENCE command) and all alphabetic characters
must be in upper case.

Once the file is created and ready to be assembled, call the
assembler by issuing the command:
RUN MOSASM

The assembler will respond by typing a header and requesting the
input filename. Enter the filename containing the code to be
assembled and hit the carriage return. Failure to enter a saved
filename will cause the error '

INPUT FILE NOT SAVED - PROGRAM TERMINATED

to be printed, followed by termination of the program.

If a saved filename is entered, the assembler will then ask for the con-
trol filename. This is the file that will be created by the interface
program and background to control the assembly process. If the

filename entered is an old file, the old file will be overwritten;

if it is a new file, the file will be created and placed in the

user's area. It is up to the user to delete this file. If blanks

or a carriage return are entered rather than a filename, the

question will be repeated.

Once the control file has been established, the assembler will

ask for a priority. Valid entries are O(overnight), N or carriage
return (normal), P (priority) and S (super). The program checks
the first character only and an invalid entry will cause a repeat
of the question. Refer to the GE manual 2000.01B for a descrip-
tion of the priorities. |

37

When the priority is properly entered the job will be transfered
to background for processing. The user's job ID will be printed
followed by a summary of the reports generated by the assembler,
Refer to the section on output files for further explanations of
these reports. The reports can be listed using the BLIST command.
If you wish to save the reports beyond 24 hours, use the MEDIA
command to transfer them to foreground files.

38

VI. PROCEDURE FOR USING THE MCS650X CROSS-ASSEMBLER ON THE NCSS SYSTEM

1. Dial the appropriate number for the terminal speed you are
using and sign on. A sample sign on for a 30 cps terminal

is shown below.

CSS ONLINE - STMI

>I, HSYS MOSTECO1

PASSWORD:

RERRRREEK

A/C INFO:

>DB

HSYS READY AT 15.43.20 ON 02SEPT75
Css.211 05/07/75

2. Using the editor build and save a file containing the desired
source code. In Example 1, the sample program was inputed,

saved, and then listed using the PRINTF command.

39

14.46.30 >EDIT DICKI DATA

NEW FILE.

INPUT:

>3

>; 650X CROSS ASSEMBLER SAMPLE PROGRAM.
>3

> * = SC000 DEFINE ORIGIN.

> LDX #S$FF SET UP STACK.

> TXS LOAD STACK POINTER.
> LDA :S$FO LOAD A WITH HEX FO.
> STA ASAVE SAVE A IN ASAVE.

>3

>; ALLOCAR?TE SAVE AREAT

>; ALLOCATE SAVE AREA.

>3

> * = 50000

>ASAVE * = *

> JEND

>

EDIT:

>FILE

14.52.22 >PRINTF DICKI DATA

650X CROSS ASSEMBLER SAMPLE PROGRAM.

~o we %

* = $C000 DEFINE ORIGIN,

LDX 3 SFF SET UP STACK.

TXS LOAD STACK POINTER.
LDA #S$F0 LOAD A WITH HEX FO.
STA ASAVE SAVE A IN ASAVE,

ALLOCATE SAVE AREA,

~e W e

* = $0000
ASAVE * = *
.END

Example 1

40

Build a file containing the JCL required to run the job and

save this file. 1In Example 2, the JCL file is saved as

Sampl Exec.

File 1 is a scratch file which will contain the intermediate

File

File

File

File

object code between Pass 1 & Pass 2.

is a scratch file which will contain all the error
messages generated by the assembly just completed.

is a permanent file which will contain the symbol table,
the line number table, and the object code in loader
format.

is the source code as entered above.

is defined as the terminal and the assembly will be
listed as it runs. This could be defined as a disk

file and listed after the assembly is completed.

41

14.52.34 >EDIT SAMPl EXEC

NEW FILE.

INPUT:

>ATTACH TEMP5 AS 192

>FILEDEF 1 DSK SCRAT1 DATA T LRECL 120
>FILEDEF 2 DSK SCRAT2 DATA T LRECL 120
>FILEDEF 3 DSK FCCAI DATA

>FILEDEF 5 DSK DICKI DATA P

>FILEDEF 6 CONO

>RUN VV3S

>

EDIT:

>FILE

15.15.04 >PRINTF SAMPLl EXEC

ATTACH TEMPS5 AS 192

FILEDEF 1 DSK SCRAT1 DATA T LRECL 120
FILEDEF 2 DSK SCRAT2 DATA T LRECL 120
FILEDEF 3 DSK FCCAI DATA

FILEDEF 5 DSK DICKI DATA P

FILEDEF 6. CONO
RUN VV3S

Example 2

4. List the error file and the source code file as desired
using the PRINTF command. Examples 3 and 4 show the assembler

listing and the listing of Files 2 and 3.

42

15.18.31

>SAMP1

15.18.37 ATTACH TEMP5 AS 192
SCRATCH ATTACHED AS 192, (T) _ A
15.18.38 FILEDEF 1 DSK SCRAT1 DATA T LRECL 120
15.18.38 FILEDEF 2 DSK SCRAT2 DATA T LRECL 120
15.18.38 FILEDEF 3 DSK FCCAI DATA
15.18.38 FILEDEF 5 DSK DICKI DATA P
15.18.38 FILEDEF 6 CONO
15.18.38 RUN VV3S
EXECUTION:
CARD 4= LOC CODE CARD PAGE 1
1 7
2 ; 650X CROSS ASSEMBLER SAMPLE PROGRAM.
3 ;
4 0000 * = SC000 DEFINE ORIGIN.
5 €000 A2 FF LDX SFF SET UP STACK.
6 C002 9A TXS LOAD STACK POINTER.
7 C003 A9 FO LDA - $FO LOAD A WITH HEX FO.
8 C005 8D 00 00 STA ASAVE SAVE A IN ASAVE.
k%%% WARNING ** FORWARD REFERENCE TO DIRECT MEMORY - NEAR
COLUMN 6
9 7
10 ; ALLOCATE SAVE AREA.
11 :
12 Co008 * = $0000
13 0000 ASAVE * = *
14 .END

END OF MOS/TECHNOLOGY 6501 ASSEMBLY VERSION 3
NUMBER OF ERRORS

SYMBOL

ASAVE

SYMBOL T
VALUE

0000

0, NUMBER OF WARNINGS 1
ABLE
LINE DEFINED CROSS~REFERENCES

13 8

Example 3

43

15.20.32 >PRINTF SCRAT2 DATA
ERROR FILE
CARD it CARD

8 STA ASAVE SAVE A IN ASAVE.
**%k%* WARNING ** FORWARD REFERENCE TO DIRECT MEMORY - NEAR COLUMN

15.21.03 >PRINTF FCCAI DATA

712711 ASAVE 0000 0000 0000 0000

;24E21 1 0000 2 0000 3 0000 4 0000 5 C000
;24E22 6 C002 7 C003 - 8 C005 9 coo8 10 coos8
;24E23 11 coos 12 coos8 13 0000 14 0000 0 0000

;37531 08 CO000 A2FF9AA9F08D0O0000000000000000000 0461
15.21.40 >DETACH TEMP5
!1E(00002) !

15.22,07 >DR
INVALID CSS COMMAND

15.22.14 >DETACH TEMP5 AS 192
DEV 192 DETACHED

15.22.26 >L0OG

23.730 VPU'S, 1.01 CONNECT HRS, 988 I/0

LOGGED OFF AT 15.22.32 ON 02SEPT75

XZw (-
Example 4

INSTRUCTION COUNT

ADC U DEC 0 ROL 0
AND 0 DEX 0 RTI 0
ASL 0 DEY 0 RTS 0
BCC 0 EOR 0 SBC 0
BCS 0 INC 0 SEC 0
BED 0 INX 0 SED 0
BIT 0 INY 0 SET 0
BMI 0 JMP 0 STA 1
BNE 0 JSR 0 STX 0
BPL 0 LDA 1 STY 0
BRK 0 LDX 1 TAX 0
BVC 0 LDY 0 TAY 0
BVS 0 LSR 0 TSX 0
CLC 0 NOP 0 TXA 0
CLD 0 ORA 0 TXS 0
CLI 0 PHA 0 TYA 0
CLV 0 PHP 0

CMP 0 PLA 0

CPX 0 PLP 0

CPY 0

44

HEADQUARTERS -
MOS TECHNOLOGY, INC. 950 Rittenhouse Road
Norristown, Pa. 19401, (215) 666-7950, TWX: 510/660/4033
EASTERN REGION —
Mr. William Whitehead
MOS TECHNOLOGY, INC., Suite 312
410 Jericho Turnpike, Jencho N.Y. 11753
(516) 822-4240
WESTERN REGION —
MOS TECHNCLOGY, INC. 2172 Dupont Drive,
Patio Bldg., Suite 221. Newport Beach, CA. 92660
(714) 833-1600

Mr. Petr Sehnal, Regionai Applications Mgr.

MOS TECHNOLOGY, INC., 26921 Grasmere Place,
Hayward, CA. 94542

(415) 881-8080

