commodore Su per'pET computer
Waterloo microFORTRAN

C.'. commodore

COMPUTER

Dieses Handbuch wurde gescannt, bearbeitet und ins PDF-Format konvertiert von
Riidiger Schuldes

schuldes@itsm.uni-stuttgart.de

(c) 2003

Waterloo microFORTRAN

Tutorial and Reference Manual

P. H. Dirksen

J. W. Welch

Copyright 1981, by the authors.

All rights reserved. No part of this publication may be reproduced or used in any
form or by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping or information storage and retrieval systems - without written
permission of Waterloo Computing Systems Ltd.

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for
any particular purpose or with respect to its adequacy to produce any particular result.
In no event shall Waterloo Computing Systems Limited, its employees, its
contractors or the authors of this documentation be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claim for lost
profits, fees or expenses of any nature or kind.

PREFACE

Waterloo microFORTRAN is a dialect of FORTRAN designed to be used in
educational and research environments. Because it is intended to be executed using
microcomputers, it is a subset of the FORTRAN-77 standard language. It is also
important to provide modern programming facilities such as good primitives for
Structured Programming. Consequently, the standard language has been extended in
significant ways. Because it is anticipated that the interpreter will be used widely as a
debugging processor, special emphasis has been placed upon the detection and
diagnosis of errors. In addition, an interactive debugging facility has been
implemented.

In order to aid those familiar with the FORTRAN-77 language standard, an
overview of the differences between the standard and Waterloo microFORTRAN
follows:

(@ The following features are omitted: BLOCK DATA SUBPROGRAM,
IMPLICIT statement, ENTRY statement, PARAMETER statement, DATA
statement, arithmetic statement functions, EQUIVALENCE statement,
COMMON statement, INTRINSIC statement, SAVE statement,
BACKSPACE statement, INQUIRE statement, DIMENSION statement and
assigned GOTO.

(b) Three data types are supported: INTEGER, REAL and CHARACTER. The
implementation of the CHARACTER data type is incompatible with that of
FORTRAN-77. The implemented version is considered more flexible than
the FORTRAN-77 definition.

(c) A subset of the input/output capability is provided. The implementation
includes sequential and direct input/output, together with a significant
portion of the possible FORMAT specifications.

()] Expressions have been generalized to be a superset of those normally
allowed.

(e) An extensive collection of statements for Structured Programming have been
added.

) The format of the program is generalized. Statements may be entered

without regard to columns in a line. Continued lines are recognized by an
"&" character in the first position. Syntactic units may not be continued

iii

across lines. The length of variable names is limited only by the length of a

line.

{g) Space characters within a line are significant delimiters. The language uses
reserved words, while FORTRAN-77 specifies contextual recognition of
names.

(h) Comment lines are recognized by an "*” character in the first position in a
line.

This manual is presented in two parts. The first part is a collection of annotated
examples intended to introduce the reader to many of the features of Waterloo
microFORTRAN. In this way, a novice is provided with a staged introduction to the
language. An experienced programmer will find examples to compare Waterloo
microFORTRAN to other dialects or languages. The second part is a comprehensive
language reference manual for Waterloo microFORTRAN.

Acknowledgement

All members of the Computer Systems Group at the University of Waterloo have
made a significant contribution to the design of the Waterloo microFORTRAN
interpreter. The design is based upon ideas evolved and proven over the past decade
in other compiler projects in which the group has been involved. The actual design
and programming of the processor was primarily performed by Douglas Mulholland,
Jack Schueler, Glenn Waters and Jim Welch. Charlotte Ross, Sharon Malleck and
Tammy Tilson were responsible for the production of the manual.

P. H. Dirksen,
J. W. Welch,

June, 1981.

iv

Introduction
Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17
Example 18
Example 19
Example 20
Example 21
Example 22
Example 23
Example 24
Example 25
Example 26
Example 27
Example 28
Example 29
Example 30
Example 31
Example 32
Example 33
Example 34
Example 35
Example 36
Example 37
Example 38
Example 39
Example 40
Example 41

Table of Contents

Waterloo microFORTRAN tutorial

Comments, Variables, PRINT, STOP .
Infinite Loops .
Exiting Loops, Relatlonal Expressxons
Another Method of Constructing Loops
Indentation, Separators ..
Expanding Previous Examples .
Character Strings . .
Square Root Function (SQRT)
SINE/COSINE Functions (SIN,COS) .
Declaration Statements .
Input
Exiting a Program due to an Input
Nested Loops . .
IF...ELSE...ENDIF .
Character Variables and Concatenatlon

Reading and Printing Various Types of Data

Substring Operation .

Expand on Example 17 .

Length Function (LEN) .

The DO Statement

Reverse 3 Characters in a Strmg
Reverse the Characters in any String .
Simple FORMAT

E and F FORMAT

I and A FORMAT

Mixed FORMAT

Test REAL FORMAT Output

Test CHARACTER FORMAT Output
Arrays, Printing a Blank Line .
Select Names from an Array

Printing an Array .

Printing an Array with FORMAT
More I/O with Arrays

Even more I/O with Arrays .
REMOTE BLOCKS

SUBROUTINE Subprograms .
Another SUBROUTINE Example
FUNCTION Subprograms .

File Definition, OPEN, CLOSE, End of Fﬂe
Multiple-field File Records .

Reading the Entire Record .

11
11
12
14
15
17
18
19
20
21
22
23
25
26
27
28
30
31
33
34
35
36
38
39

42

45
46
47
48

. 49

50
51
52
53
54
56
58
59
61
63
65

Table of Contents

A. Fundamental Concepts . . . e e e . . . 69
A-1 Statements, Data Types and Expresmons s
A-2 Assignment Statement 12
A-3 Variable Names « . . T2
A-4 Data TypesinGeneral 73
A-5 Type Statements 74
A-6 NumericData 74
A-7 CHARACTER Data 176
A-8 Expressions T
A9 Operators« « « + + « « o« . . 18
A-10 Substrings . . . -3 |
A-11 Examples of Expressmns e - ¥
A-12 Interrupting Programs 83

B. Structured Control Statements 8§
B-1 What is Meantby Controt 8§

B-2 Conditions . . B 1
B-3 Loops with WHILE or LOOP B 1)
B-4 Structured DO Loop . . B *

B-5 IF, ELSEIF, ELSE, ENDIF Statements) |
B-6 Nesting Loops and IF-Groups 94
B-7 QUIT and QUITIF Statements 95
B-8 Block Identifiers . . . e e e 4 s o« . . 96
B-9 GUESS and ADMIT Statements B 14

C.Remote Blocks 101
C-1 Imtroduction 101
C-2 Execute Statement o 102
C3 Remote Blocks « . « 103

D. Arrays 0 0 0 e e e e . L 107

D-1 Introduction 107
D-2 Defining Arrays 108
D-3 Subscripts . . s e e e e .. . 109

D-4 Substring with Character Arrays e e s+ e« « . . 110
D-5 Storage Orderof Arrays 110

vi

Table of Contents

E. Functions and Subroutines 113
E-1 Program Units 113
E-2 Main Program 114
E-3 Parameters in General 115
E-4 Subroutines 115

E-5 Functions . . e § (4]
E-6 Argument: simple varxable T 3 ¢
E-7 Argument: expression . . . B B 8
E-8 Argument: substring of simple vanable B 8 1
E-9 Argument: array 120
E-10 Argument: array element 123
E-11 Argument: substring of array element. 124
E-12 Argument: function and subroutine names 124
E-13 Recursion . . e Do
E-14 EXTERNAL Statement T v
E-15 Intrinsic Functions 127
F. Input/Qutput . . . e K 7

F-1 Introduction to Flles e K Y
F-2 Sequential Input/Output 138
F-3 Direct Input/Output 138
F-4 Error Handling 138

F-5 OPEN Statement 139
F-6 CLOSE Statement 140
F-7 READ Statement . . e e e .« o« . . 140

F-8 PRINT and WRITE Statements S, ¥
F-9 Carriage Control 147
F-10 REWIND statement 147

G.Format10
G-1 Introduction 149
G-2 FORMAT Statement 151
G-3 Format Specifications Generally 151
G-4 Data Transmission Items 152
G-5 ImsertionItems 156
G6 Otherltems 157

vii

Table of Contents

H. Miscellaneous Statements
H-1 Introduction
H-2 END Statement
H-3 STOP Statement
H-4 PAUSE Statement .
H-5 GOTO Statement
H-6 Computed GOTO Statement .
H-7 RETURN Statement
H-8 Logical IF Statement .
H-9 Arithmetic IF statement
H-10 DO Statement . .
H-11 CONTINUE statement

I. FORTRAN Debugger .
I-1 Introduction .
1I-2 CONTINUE (c) .
I-3 QUIT (q) .
I-4 EXECUTE (e)
I-5 WHERE-AM-I (w) .
I-6 STEP (s) .

J. System Dependencies
J-1 Introduction .

J-2 System Dependencies for Commodore SuperPET

J-3 System Dependencies for VM/CMS:

viii

161
161
161
162
162
162
163
163
164
164
165
166

167
167
168
168
168
169
169

171
171
171
173

Waterloo microFORTRAN

Tutorial Examples

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Waterloo microFORTRAN tutorial 11

Introduction

The following tutorial is a sequence of examples meant to introduce the reader to
the "flavour” of Waterloo microFortran. They do not present a complete or rigorous
treatment of any topic, as this detailed information is available in the reference
manual in the latter part of this document. This tutorial could be useful in the
following situations:

L] Someone already familiar with FORTRAN can determine some of the major
differences between Waterloo microFORTRAN and the dialect already
known.

] Teachers may find the examples useful as a progressive introduction of the

material to their students.

. People who already know some other language can get an appreciation for
Waterloo microFORTRAN before reading the reference manual.

[Complete novices could run the various programs, and possibly learn some
of the material by exploring the various language features in conjunction
with the reference material.

In order that the examples be fully appreciated, it is important that they be entered
into the computer and executed.

12

Waterloo microFORTRAN tutorial

Example 1 Comments, Variables, PRINT, STOP

Function

This example sets a FORTRAN variable x equal to 12, squares this value placing the
result in y, and prints both x and y.

Notes:

* Example 1

x=12
y=x*x
print, X,y
stop

end

The first statement contains a comment which is indicated by an asterisk (*).
The computer ignores comments when executing the program.

The second statement is a null line containing only blanks; blank lines may
appear anywhere in the program and are ignored when the program is
executed.

x and y are FORTRAN variables. These variables begin with a letter and can
contain letters, digits and the dollar sign. They can be of any length.

The Print statement contains a print list, in this case, x and y. The values
contained in x and y are printed side by side on the page. Note the comma

immediately following the word print.

Multiplication is denoted by *. The arithmetic operators are:

+ addition

- subtraction

* multiplication
/ division

skok

exponentiation

10.

Waterloo microFORTRAN tutorial 13

Expressions may be contained in parentheses:
e.g. Y=(X+3.2)*6.4
Statements such as x=12 and y=x*x are called assignment statements.

Order of priority of operators is as in algebra. Equal priority proceeds left to
right.

Both upper and lower case letters may be used in variables.
FORTRAN keywords such as Print, Stop, and End are always displayed in

lower case, even though they may have been entered in upper case. In the
Tutorial section all such words will begin with a capital letter for emphasis.

14 Waterloo microFORTRAN tutorial

Example 2 Infinite Loops

Function

The computations of Example 1 are repeated endlessly. When you run this program,
it must be stopped by depressing the "RUN STOP" key one or more times.

* Example 2
x=12
23 y=x*x
print,x,y
x=x+1
goto 23
end

Notes:

1. The statement x=12 gives an initial value to x.

2. A statement number has been inserted on the line which calculates y. Note
that it is followed by a space.

3. The statement x=x+1 causes the value of x to increase by 1.

4, The statement Goto 23 causes control to transfer to the statement numbered
23.

5. The statements
23 y=x*x
print,x,y
x=x+1
goto 23

are repeated endlessly, i.e. we have an infinite loop.

6 We learn how to stop loops automatically in the following examples.

Waterloo microFORTRAN tutorial 15

Example 3 Exiting Loops, Relational Expressions

Function

This example prints squares of the integers from 12 to 20, automatically terminating
when x=21.

Notes:

* Example 3

x=12

23 y=x*x
print,x,y

x=x+1

if (x.1e.20) goto 23
stop

end

The If statement
if (x.le.20) goto 23

causes the FORTRAN processor to repeat the loop if x has a value less than
or equal to 20. However, when x has the value 21 control proceeds to the
next statement.

The x.le.20 in the If statement is called a relational expression and has the
value true or false. When used with the logical If statement, the relational
expression must be enclosed in parentheses. The characters .le., are used to
represent a relational operator. The relational operators are as follows:

.gt. greater than

.ge. greater than or equal to
e less than

Jde. less than or equal to
.ne. not equal to

.€q. equal to

All variables and keywords must be preceded and followed by delimiters.
The most common delimiter is a space character, but others include (), . =
* [, Thus, the statement

16

Waterloo microFORTRAN tutorial

if (x.1e.20) goto 23

has extra unneeded spaces after the If and before the Goto. However, the
space after the Goto is necessary.

Waterloo microFORTRAN tutorial 17

Example 4 Another Method of Constructing Loops

Function

This example performs exactly the same as the previous example using the Loop -

Endloop

Notes:

statement.
* Example 4

x=12

loop
y=x*x
print,x,y
x=x+1
quitif x=21
endloop
end

The Quitif statement
quitif x=21

causes the FORTRAN processor to complete the repetition of the loop if x
has the value 21 when the Quitif statement is executed. Control proceeds to
the statement following the Endloop.

The Quitif statement can appear anywhere in the loop.

The x=21 in the Quitif statement is also called a relational expression and
has the value frue orfalse. It need not be enclosed in parentheses as was the
case with the logical If statement. The equal sign, =, can be used instead of
.eq.. The other relational operators can be used as follows:

greater than
= greater than or equal to
less than
= less than or equal to
<> not equal to

18 Waterloo microFORTRAN tutorial

Example § Indentation, Separators

Function

This example is identical to Example 4. However, all statements in the loop are
indented two spaces to accent those which are to be repeated.

* Example 5

x =12
loop
y = x*x
print,x,y
x =x+1
quitif x = 21
endloop
end

Notes:

1. All statements can have as many leading blanks as are desired.

2. Blanks may appear within statements to make the program more readable.
However, blanks may not be inserted within variable names or keywords.

Thus, the Print keyword cannot be written as

pr int

Waterloo microFORTRAN tutorial 19

Example 6 Expanding Previous Examples

Function

This example simply expands the previous examples to include the cube of the
integers from 12 to 20, inclusive.

Notes:

* Example 6

x=12
loop
y = x*x
zZ = x*x*x
print,x,y,z
X = x+1
quitif x = 21
endloop
end

A third variable z is introduced.
The statement z=x*x*x could have been written as z=x*y.

As outlined in a previous example, the relational expression does not have to
be enclosed in parentheses. However, there must be a blank between Quitif
and x=21. (Without the blank, the FORTRAN processor interprets
quitifx=21 as a variable followed by an equal sign followed by a constant,
namely an assignment statement.)

20 Waterloo microFORTRAN tutorial

Example 7 Character Strings

Function
This example introduces a heading for the previous example.
* Example 7

print,"Table of Squares and Cubes”
x =12
loop
y = x*x
Z = x*x*x
print,x,y,z
X = x+1
quitif x = 21
endloop
end

Notes:

1. The "Table of Squares and Cubes” is called a character string constant and
will print literally as it appears in the program. Character string constants
always contain a "string” of characters between quotes.

e.g. 'ABCDEF’ or "ABCDEF’

2. Either single quotes (') or double quotes () may be used to delimit character
strings.

3. The character string can contain any legal character.
4. If a quote is required as part of the string
e.g. IT'S
this can be accomplished in several ways.

e.g. "IT'S" or 'IT"'S’

Waterloo microFORTRAN tutorial 21

Example 8 Square Root Function (SQRT)

Function

This example calculates a table of square roots of x, for x having values from 1 to 30,
inclusive.

* Example 8

x=1
loop
y = sqrt(x)
print,"Square Root of ",x," is ",y
X =x+1
quitif x = 31
endloop
end

Notes:

1. SQRT is known as an intrinsic function and will compute the square root of
the quantity in parentheses, provided the quantity is not negative.

2. Other intrinsic functions such as SIN and COS are available in FORTRAN.

3. Results are printed rounded, with at most, 8 digits.

22 Waterloo microFORTRAN tutorial

Example 9 SINE/COSINE Functions (SIN,COS)

Function
This example calculates a table of sine and cosine values.
* Example 9

print,”This is a Table of Sines and Cosines”
x=0
loop
y = sin(x)
Zz = cos(x)
print,x,y,z
X = x+.1
quitif x = 2.1
endloop
end

Notes:

1. When you run this program, it does not stop and must be terminated using
the "RUN STOP” key. This is because numbers are stored somewhat
inaccurately by computers. For example, the fraction "one third” is written as
.3333333 to seven figures in decimal notation, and this result is slightly
incorrect. Computers work internally in binary notation and similar slight
inaccuracies occur. Thus, 2.1 is probably stored something like

2.09999999

Since x=2.1 is never true, the program does not terminate. To correct this
problem, replace the quitif line with

quitif x>2.01

and run the program again.

Waterloo microFORTRAN tutorial 23

Example 10 Declaration Statements

Function

This example is similar to Example 8 and is used to introduce reals and integers.

Notes:

* Example 10

real y

integer x

x=1

Ioop
y = sqrt(float(x))
print,"square root of ",x," is",y
x = x+1
quitif x = 31

endloop

end

Two declaration statements have been added to the program, declaring y to
be a real variable and x to be an integer variable. In the absence of any
declaration, variables beginning with the letter I, J, K, L, M and N are
integer and all others are real.

Real variables are used to hold real constants.

Real constants contain a decimal point and a fractional part following the
decimal.

e.g. 14.56 13.0 -.9743962 0.0

Real constants are also used to contain very large or very small numbers.
These values are represented using the FORTRAN exponent notation; e.g.,

3.19764*10%*7 3.19764E07
.9762583%10**-3 ,9762583E-03

Integer variables are used to hold integer constants.

24

10.

11.

Waterloo microFORTRAN tutorial

Integer constants do not explicitly contain a decimal point, e.g.,
39 46572 65 O

While it is not important to know the various representations of real and
integer constants, it is important to realize that for the same constant they are
not represented in the same way. Thus the integer constant 1" is not the
same as the real constant "1.”.

The SQRT function requires a real value as its argument. The function
FLOAT converts an integer to a real value.

Functions may have other functions as arguments, e.g.,

SIN (SQRT(Y))
SIN (COS(SQRT(Y)))

The output for x does not contain a decimal.

Real and integer variables may be used in the same program and in fact in the
same expression.

Waterloo microFORTRAN tutorial 25

Example 11 Input

Function

This program is an endless loop which requests the user to "Type in x”, and it returns
the value of the cube of x.

Notes:

* Example 11

print,"Test simple input from the keyboard”
loop
print,’Type in X’
read,x
y = x**3
print,x,” cubed =
endloop
end

’

Yy

The purpose of the statement

print ‘Type in x’
is to prompt the user; that is, this statement reminds the user that a value
must be typed into the keyboard, followed by carriage return (RETURN
key).
The statement

read,x

inputs a value which may or may not contain a decimal point.

This program is an endless loop and must be terminated with the "RUN
STOP” key.

The operator ** is the exponentiation operator.

26 Waterloo microFORTRAN tutorial

Example 12 Exiting a Program due to an Input

Function

This program operates as the previous example except that when you type -999, the
loop is terminated.

* Example 12

print,"Test simple input from the keyboard”
loop
print,"type in X'
read,x
quitif x = -999
y = x**3
print,x,’ cubed = ',y
endloop
end

Waterloo microFORTRAN tutorial 27

Example 13 Nested Loops

Function

This example computes a set of tables of squares of x, with the starting value of x,
increment of x, and number of entries being prompted as input from the keyboard.

* Example 13

loop

print,’start x at’

read,x

quitif x = -999

print,’vary x by’

read,xvary

print,'number of values for x is’

read,number

loop
y = x*¥x
print,"x=",x," y=",y
X = X+xvary
number = number-1
quitif number = 0

endloop
print,’job finished’
endloop
end
Notes:
I. This example introduces a "loop within a loop”. The inside loop is the five

statements between the inside Loop - Endloop pair. The outside loop
contains all those statements between the outside Loop - Endloop pair,
which includes the inner loop.

2. To terminate, type -999 when the initial value of x is requested.

28 Waterloo microFORTRAN tutorial

Example 14 IF...ELSE...ENDIF

Function

In this example, the user is asked to input a "dividend” and a "divisor”. The "quotient”
is printed, unless the divisor is zero, in which case an appropriate message is printed.
To terminate, type -999 when the dividend is requested.

* Example 14

loop
print,"input dividend”
read,dividend
quitif dividend = -999
print,"Input divisor”
read,divisor
if (divisor = 0)

print,"Divisor is zero”

else
quotient = dividend/divisor
print,quotient
endif
endloop
end
Notes:
1. The purpose of this example is to illustrate the use of the If - Else - Endif
construction.
a. The If statement always contains a relational expression which,

when evaluated, is true or false.

b. If the relational expression is true, all statements between the If and
Else are executed.

C. If the relational expression is false, all statements between the Else
and Endif are executed.

Waterloo microFORTRAN tutorial 29
The Else statement can be omitted. If so, all statements between the If and
Endif are executed when the relational expression is true.
If's can be nested, if desired.

The condition on this type of If need not be enclosed in parentheses.

30

Waterloo microFORTRAN tutorial

Example 15 Character Variables and Concatenation

Function

The user is prompted to type in his first name, followed by his last name. The
computer "composes” the two names into a single string and prints it.

Notes:

* Example 15

character firstname,lastname,fullname
print,"Concatenation of character strings”
loop

print,"What is your first name?’

read ,firstname

quitif firstname = "quit”

print,"What is your last name?”

read,lastname

fullname = firstname // " ” // lastname

print,” Your full name is ”,fullname
endloop
end

Variables capable of being assigned character strings are said to be character
variables which must be declared in a character declaration statement.

A declaration statement (real, integer or character statement) may contain a
list of variables.

The two names are assigned to two character variables namely, firstname
and lastname.

The // operator causes the two strings before and after it to be combined into
one string (concatenation), with no space between them. Thus, in order to
have a blank space between the two names, it is necessary to "add” three
strings together, with the center one being a character string constant
containing a single blank.

Waterloo microFORTRAN tutorial 31

Example 16 Reading and Printing Various Types of Data

Function

This example shows various situations that occur when reading and printing data.

Notes:

* Example 16

character stringl,string2
read,a,b,i
print,a,b,i

read,string]1,string2
print,string1,string2

read,stringl,i
print,string1,i

end

When reading data, a line is viewed as a number of zones. Two consecutive
zones are separated by a comma. A zone is used for each item in the Read
statement. When the zones in a line have all been used and more input items
exist, the Read statement accepts another line to be processed.

The first Read statement asks for two real values and an integer value to be
input. The values can be entered on one line separated by commas.

e.g. 6.5,9.432, 77
The second Read statement asks for two character strings to be input. They
could be input as two separate lines or the two strings can be placed on one
line if they are separated by a comma.

e.g. ABCD,QWERTY

The output from the second Print statement has the two strings concatenated.

e.g. ABCDQWERTY

32

Waterloo microFORTRAN tutorial

The third Read statement asks for a character string followed by an integer.
These could be input as two lines or the string and the integer could be
placed on one line with the character string and the integer separated by a
comma.

Leading and trailing blanks are not ignored. If a comma is desired with a
character string, the string should be enclosed in quotes.

A null string may be entered by a zone with no characters in it. This can be
accomplished by entering two consecutive commas or by entering a blank
line.

Waterloo microFORTRAN tutorial 33

Example 17 Substring Operation

Function

This example assigns a value ABCDEFGHIJ to the character variable alpha, then
extracts 4 characters from within the string, beginning at the third character and prints
them as a new string from newstring.

Then, the program prints all the characters, one at a time.

Notes:

* Example 17

character alpha,newstring
alpha = "ABCDEFGHIJ’
newstring = alpha(3:6)
print,newstring
n=1
loop
newstring = alpha(n:n)
print,newstring
n = n+l
quitif n = 11
endloop
end

The substring operation is defined as follows:

character variable(M : N)
The operation causes the Mth through the Nth characters from the character
variable to form a new string. If M=N then the string consists of one
character (the Mth). If M>N or M<=0, an error results.
One can also assign a character string to a substring. To illustrate this, try
the following assignment and print the new value of newstring (newstring

should be defined previously).

newstring(5:7) = "eee’

34 Waterloo microFORTRAN tutorial

Example 18 Expand on Example 17

Function

The character string, ABCDEFGHIJ, is assigned to alpha. The first print line will
contain the first character, the second print line will contain the first two characters,
etc., with the 10th line containing all 10 characters in the string.

* Example 18

character alpha,newstring
alpha = "ABCDEFGHIY’
n=1
loop
newstring = alpha(1:n)
print,newstring
n=n+1
quitif n=11
endloop
end

Waterloo microFORTRAN tutorial 35

Example 19 Length Function (LEN)

Function

The user is asked to type in his name. The program prints the name vertically, one
character per line.

* Example 19

character name,letter
loop
print,"What is your name?”
read,name
quitif name="quit"
m = len(name)
n=1
loop
letter = name(n:n)
print,letter
quitif n=m
n=n+1
endloop
endloop
end

Notes:
1. As each name will be of different length, we use the LEN function.
LEN(character variable)

returns the number of characters in the string.

36

Waterloo microFORTRAN tutorial

Example 20 The DO Statement

Function

This example produces the same output as the previous example. It introduces the Do

statemen

Notes:

t.
* Example 20

character name,letter
loop
print,"What is your name?”
read,name
quitif name="quit"
m = len(name)
don=1,m
letter = name(n:n)
print,letter
enddo
endloop
end

In previous examples, before entering the loop we have initialized the value
of n to be 1 and the value of m to be the length of the string. Within the loop
we have incremented the value of n by 1 and then tested if n was equal to m.

The DO statement

do n=1,m
performs the same function. It initializes n to 1, tests if it is greater than or
equal to m and exits the loop if this condition is true. The enddo indicates

end of the loop.

The Do statement may be inside another loop. In fact Do’s themselves may
be nested.

The value to be incremented is assumed to be 1. However, any increment
may be used by adding a third parameter to the Do statement, e.g.,

Waterloo microFORTRAN tutorial 37
do i=1,99,2
do i=99,1,-2
The variable i is said to be the Do parameter, as it is used to control the
execution of the loop. It is illegal to assign a value to a Do parameter while
executing the associated loop.

The Do parameter may also be a real variable; e.g.,

dox = .1,2.5,.01
do x = 79.45,70.,-.01

The preceding examples illustrate Do statements with a real variable x.

38 Waterloo microFORTRAN tutorial

Example 21 Reverse 3 Characters in a String

Function

This example asks the user to input a three-letter word. The program prints the word
with the letters in reverse order.

* Example 21

character name,cl,c2,c3
loop
print,”what is your name?’
read,name
quitif name="quit"
cl=name(3:3)
c2=name(2:2)
c3=name(l:1)
print,cl,c2,c3
endloop
end

Waterloo microFORTRAN tutorial 39

Example 22 Reverse the Characters in any String

Function

This example asks the user to input a name. The program prints the name with the
letters in reverse order.

* Example 22

character name,reverse
loop
print,”what is your name?’
read,name
reverse = name
quitif name="quit"
n = len(name)
doi=1,n
reverse(n-i+1:n-i+1) = name(i:i)
enddo
print,reverse
endloop
end

Notes:
1. The statement
reverse = name

is necessary to initialize the character variable reverse to the same length as
name.

2. The substring feature can be used to the left of the assignment operator.

40

Waterloo microFORTRAN tutorial

Example 23 Simple FORMAT

Function

This example introduces format strings for the three data types.

Notes:

* Example 23

character string
x = 12.75
print "(’ *,16.2)",x

i= 295
print II(I ’,iS)”,i

string = "hello”
print "(" ’,a6)",string
end

When the program is run, the output will be the three lines

b12.75
bb295
HELLOb

b represents the blank character.

The Print statements have been modified to include a character string
immediately following the word print. This string, called a format string,
contains a number of format codes separated by commas. The format codes
may be enclosed in parentheses.

Format strings will let us print (and read) data according to our own rules as
compared to rules set up by the FORTRAN processor. Thus in the above
example we can print x as b12.75 instead of 12.750000.

The string 'b’, is used as a special control character for vertical spacing of
the output. If the character is blank, output is single-spaced, if it is O the
output is double-spaced and if it is - the output is triple-spaced. The character
1 causes the output to display at the top of the screen. While Print statements

Waterloo microFORTRAN tutorial 41

do not need to have a control character, it is usually advisable that they be
included.

The format code F6.2 is used to print real constants. The value is printed
using the first 6 print positions, with 2 decimal places, and the constant is
right-justified within the 6 position field and is padded on the left with
blanks.

The format code IS5 is used to print integer constants. The value is printed
using the first 5 positions and the constant is right-justified in the 5 position
field and is padded on the left with blanks.

The format code A6 is used to print character strings. The value is printed
using the first six positions and the string is left-justified in the 6 position
field and is padded on the right with blanks.

42

Waterloo microFORTRAN tutorial

Example 24 E and F FORMAT

Function

This example illustrates the use of format strings by printing real quantities using F
and E formats.

Notes:

* Example 24

x=26.458

print,x

print "(' ’,£6.3)",x
print n(r ',f8.4)”,x
print "(" ',£5.2)",x
print (' ',f4.3)",x

print (' ’,e14.8)",x
print "’ ’,el4.3)" x
print "(' ’,e7.5)",x

end

F format is used to print real values in a "normal” notation.
E format is used to print real numbers using the E-type or scientific notation.
F8.4 causes an extra zero to be added to the fractional portion.

F5.2 specifies only 2 digits following the decimal causing the value 26.46 to
be printed. Note that rounding has occurred.

F4.3 asks that a 5 digit field plus a decimal be printed in a 4 position field.
Since this is not possible, an error is indicated by filling the field with *'s.

E14.8 causes the value 0.2645800E+02 to be printed. E format causes the
values to be printed in normalized form: the most significant digit is
immediately to the right of the decimal.

Waterloo microFORTRAN tutorial 43
E14.3 specifies that only 3 significant digits are to be printed. Again the
value is rounded.

E7.5 does not allow sufficient positions to print the value, the 'E’, and the
exponent. Thus, *'s are placed in the field.

44 Waterloo microFORTRAN tutorial

Example 25 I and A FORMAT

Function

This example illustrates the use of format strings by printing integer constants and
characters strings.

* Example 25
character string

n=32
print,n
print "’ *,i5)",n
print II(I ',il)”,n

string="junk”
print,string

print "(’ ’,a5)",string
print "(' ’,a3)",string

end
Notes:
1. I5 causes the value 32 to be printed with 3 blanks on the left.
2. I1 does not allow enough space for the constant and *'s are printed to
indicate this condition.
3. A4 causes the string "junk” to be printed with 1 blank on the right.
4. A3 does not allow enough space for the string. However, in this case the

left-most 3 characters of the string are printed.

Waterloo microFORTRAN tutorial

Example 26 Mixed FORMAT

Function
This example shows use of a number of format codes.
* Example 26

character string

n=32
string="hello”
x=26.458

print,n,string,x
print "(" *,i5,a8,9.3,e14.8)",n,string,x,Xx
print "(" ’,'n=",i5,"x=",§6.3)",n,x
end
Notes:

1. Format codes of different types may be used in the same format string.

2. Character strings inserted in the format string are printed.

46 Waterloo microFORTRAN tutorial

Example 27 Test REAL FORMAT Output

Function

This example permits the user to enter a particular real number and to display it using
various format statements which are requested as input.

* Example 27

character form
loop
print,"Give me a real number”
read,value
quitif value=-999
loop
print,"Give me a format for a real number”
read,form
quitif form="quit"
print form,value

endloop
endloop
end
Note:
1. This example can be used to provide "drill” with respect to the rules of
format.

2. The format string can be stored in a character variable.

Waterloo microFORTRAN tutorial 47

Example 28 Test CHARACTER FORMAT Output

Function

This example operates identically to Example 27 except that the variables involved
are character variables.

* Example 28

character form,string
loop
print,"Give me a character string”
read,string
quitif string="zzz"
loop
print,"Give a format for a character string”
read,form
quitif form="quit"
print form,string
endloop
endloop
end

48

Waterloo microFORTRAN tutorial

Example 29 Arrays, Printing a Blank Line

Function

This example requests the user to enter exactly 10 names. It then prints them in
reverse sequence.

Notes:

* Example 29

character names(10)

character name

do i=1,10
print,"name please”
read,name
names(i) = name

enddo

print
print,"The names in reverse order are”
do i=10,1,-1
print,names(i)
enddo
end

The names are stored in an array which is specified using the declaration
statement. This statement creates a ten element array:

names(1),names(2), ... ,names(10)

Each element of the array is able to hold a character string, with each string
being of a different length, if desired.

Numeric arrays can be set up using the real or integer declaration statements.
Arrays can have up to seven dimensions.

The print statement with no list causes a blank line to be printed.

Waterloo microFORTRAN tutorial 49

Example 30 Select Names from an Array

Function

The user enters 10 names. Then he is asked for an integer between 1 and 10. If he
enters 5, the 5th name is printed, etc.

Note:

* Example 30
character names(10),name

do i=1,10
print,"Name please”
read,name
names(i) = name
enddo

loop
print,"Enter a number between 1 and 10"
read,i
quitif i=-1
print,"The i'th name is ”,names(i)
endloop
end

The declaration statement may be used to declare the table names as well as
the string name. The variables are separated by a comma.

50 Waterloo microFORTRAN tutorial

Example 31 Printing an Array

Function

The program asks the user to input 10 names. These names are then printed in the
same order.

* Example 31
character names(10),name

do i=1,10
print,"Name please”
read,name
names(i) = name
enddo

print,names
end

Note:
1. The second print statement contains the name of the array. The entire array
names is printed, i.e. all ten elements are printed. As many elements are

printed in one line as the line can hold.

2. The output line(s) may be difficult to read since the strings are concatenated.
The next example resolves this problem.

Waterloo microFORTRAN tutorial 51

Example 32 Printing an Array with FORMAT

Function

This program functions as in the last example except the output is printed with format
control.

* Example 32
character names(10),name

do i=1,10
print,"name please”
read,name
names(i) = name
enddo

print “(’ ‘,2a20)",names
end

Note:

1. The format code a20 is preceded by a field count namely 2 indicating that the
format code is to be used twice. This causes 2 elements to print in each line;
the format string is reused as often as necessary. Each time it is reused a new

line is signalled.

2. If any name contains more than 20 characters, the left-most 20 are printed.

52 Waterloo microFORTRAN tutorial

Example 33 More I/O with Arrays

Function

The example reads 10 values, stores them in an array, and then prints the values.
* Example 33
character nametable(10)

print,"enter 10 names - 1 per line”
read,nametable

print "(" ',3a20)",nametable
end

Note:

1. If we wish to read or print all the elements of an array, we can use the
variable nametable without subscripts.

2. The names are printed 3 per line.

Waterloo microFORTRAN tutorial 53

Example 34 Even more I/O with Arrays

Function

The example reads a number of values which partially fill an array and then prints the
values.

* Example 34
character nametable(100)

print,"enter the number of names - max 100"
read,number

print,”enter”,number,’ names - 1 per line”’
read,(nametable(i),i=1,number)

print
print,"The”,number,” names are”
print "(' ’,2a10)",(nametable(i),i=1,number)

end
Notes:
1. Both the read and print use a do loop as part of the statement.
2. The input data may contain more than one name per line. This is particularly

useful when entering numeric constants.

3. The output names can be printed more than one per line.

54 Waterloo microFORTRAN tutorial

Example 35 REMOTE BLOCKS

Function

This example invites the user to submit 10 names which are stored in an array and
then are printed in reverse order.

* Example 35

character nametable(10),name
execute readdata
print,"Names in reverse order”
execute printdata

stop

remote block readdata

do i=1,10
print,"Name please”
read,name
nametable(i) = name
enddo
endblock
remote block printdata
do i=10,1,-1
print,nametable(i)
enddo
endblock
end
Notes:
1. The main purpose of this example is to introduce remote blocks. We define
two remote blocks namely, readdata and printdata.
2. Remote blocks are defined by the Remote Block statement which includes

the name of the block.

3. A remote block is terminated by an Endblock statement.

Waterloo microFORTRAN tutorial 55

A remote block is called by including the name in an execute statement.
e.g. execute readdata

When a block is called by the Execute, control passes to the first statement of
the block. The statements are executed in sequence until the Endblock
statement is encountered. Control then passes to the statement immediately
following the Execute.

All variables in the calling program are available to the remote block when it
is executing. Similarly, all variables assigned values in a remote block have
the updated values after execution of the block is complete.

This type of use of a call permits one to modularize the program and is a
matter of programming style.

Remote blocks cannot be nested. In other words, a remote block cannot be
placed within another remote block.

A remote block may be called using an Execute statement which is within a
remote block.

56 Waterloo microFORTRAN tutorial

Example 36 SUBROUTINE Subprograms

Function

Calculate the average of a set of 15 numbers. The subroutine subprogram is
introduced.

* Example 36

real marks(15)
print,”Input 15 numbers”
read,(marks(i),i=1,15)
call average(marks,15)
end

subroutine average(marks,number)
real marks(15)
sum=0.0
do i=1,number
sum=sum-marks(i)
enddo
answer=sum/number
print,"The average of’,number,” numbers is”,answer

return
end
Notes:
1. The marks can be input more than 1 per line separated by commas.
2. The average is calculated in a special portion of the program called a
subroutine subprogram.
3. The subroutine is "called” using the statement

call average(marks,15)

Waterloo microFORTRAN tutorial 57

The statement
subroutine average(marks,number)

gives the subprogram a name, average, and indicates which data is required
in this case to calculate the average.

After the average is calculated and printed, control "returns” to the statement
following the call.

Variables in the calling program are not available to a subroutine unless their
values are passed as arguments. Thus, if variables in the calling program and
the subroutine have the same name, they are treated as separate variables.
The assignment of a value to a variable in the subroutine would have no
effect on a variable with the same name in the calling program.

58 Waterloo microFORTRAN tutorial

Example 37 Another SUBROUTINE Example

Function

Use the subroutine of the previous example to calculate the average of the first five
numbers, first ten numbers, and first fifteen numbers.

* Example 37

real marks(15)
print,"Input 15 numbers”
read,(marks(i),i=1,15)
call average(marks,5)
call average(marks,10)
call average(marks,15)
end

subroutine average(marks,number)
real marks(15)
sum=0.0
do i=1,number
sum=sum+ marks(i)
enddo
answer=sum/number
print,"The average of”,number,” numbers is”,answer

return
end
Note:
1. Three successive calls are made to the subroutine with the values 5, 10, and

15 respectively.

Waterloo microFORTRAN tutorial 59

Example 38 FUNCTION Subprograms

Function
Do exactly as the previous example but also print the largest of the three averages.
* Example 38

real marks(15)

print,"Input 15 numbers”
read,(marks(i),i=1,15)

al = average(marks,5)

a2 = average(marks,10)

a3 = average(marks,15)

big = amax1(al,a2,a3)
print,"The largest average is”,big
end

function average(marks,number)
real marks(15)
sum=0.0
do i=1,number
sum=sum-+ marks(i)
enddo
answer=sum/number
print,"The average of’,number,” numbers is”,answer
average=answer

return
end
Notes:
1. Since we wish to calculate and print the largest average, we require some
means of remembering each of the averages.
2. One method is to convert the subroutine subprogram to a function
subprogram.
3. The function subprogram is called by the statement

al=average(marks,5)

60

Waterloo microFORTRAN tutorial

The statement
function average(marks,number)

gives the function a name and indicates the data required to calculate the
average.

After calculating the average, it is assigned in the statement
average=answer

to the function name. Control then returns to the statement which called the
function.

The value assigned to the function name can now enter into any arithmetic
operation. In this case, it is assigned to al, a2 and a3 respectively.

The intrinsic function amax1 is used to find the largest average.

Waterloo microFORTRAN tutorial 61

Example 39 File Definition, OPEN, CLOSE, End of File

Function

This program creates a file on disk called namefile. The program requests the user to
type names at the terminal. These names are printed as records on the disk file. When
the name “quit” is input, the program halts.

* Example 39

integer status
character name
open (unit=2,file="namefile")

loop
print,"name?”
read,name
quitif name="quit’
write(unit=2) name
endloop
close (unit=2)

open (unit=2,file="namefile")

loop
read(unit=2,iostat=status)name
quitif status<>0
print,name

endloop

close (unit=2)

end

Notes:

1. The Open statement is used to tell the system that we wish to use a file. If
there is no such file as namefile, a new file is automatically created. Since
the file will be used as output and if this is not a new file, all old information
will be destroyed. The 2 in the open statement is a unit number assigned to
the file for this program only. All other references to the file in this program
are done using this number rather than the file name.

62 Waterloo microFORTRAN tutorial

2. The file name (e.g., namefile) may be a character string of 16 or fewer
characters.
3. When we want to write data into the file, we use a write statement. This

causes a "record” containing the single field name to be written onto unit 2.

4. When the file has been written, it must be closed. A special "end of file
indicator” is written at the end of the file.

5. When the file is reopened following the close, it is automatically positioned
at the beginning.

6. As the records are read, one name at a time is assigned to the variable name.

7. When the read statement does not successfully complete, the variable status
is assigned a non-zero value.

8. The file is closed before exiting the program.

Waterloo microFORTRAN tutorial 63

Example 40 Multiple-field File Records

Function

This program creates two fields in each record in the file, namefile.

Note:

* Example 40

integer age,status
character name
open (unit=2,file="namefile")

loop
print,"name?’
read,name
quitif name="quit"
print,"age?’
read,age
write(unit=2) name, ",", age
endloop
close (unit=2)

open (unit=2,file="namefile")

loop
read(unit=2,iostat=status)name,age
quitif status<>0
print,age,name

endloop

close (unit=2)

end

Each time the write statement is executed both name and age are written onto
the file. Since we wish to read the file at some later point, a comma is placed
between the name and age.

When the data is read we use exactly the same number and type of fields as
when the data was written.

Waterloo microFORTRAN tutorial

Note that we print age to the left of name to show that this ordering is
independent of the order of the fields in the record.

Waterloo microFORTRAN tutorial 65

Example 41 Reading the Entire Record

Function

Here we create a file, namefile, and subsequently read each record as a character

string.

Notes:

* Example 41

integer age,status

character name,form,record
form="(a20,’--*,i3)"

open (unit=1,file="namefile")

loop

print,"name?’

read,name

quitif name="quit"

print,"age?”

read,age

write(unit=1,fmt=form) name,age
endloop
close (unit=1)

open (unit=1,file="namefile")

loop
read(unit=1,iostat=status)record
quitif status<>0
print,record

endloop

close (unit=1)

end

Each record will be 25 characters in length. Name will be left-justified in the
first 20 positions, the constant "--" will appear in positions 21 to 22 in each
record, followed by the age right-justified in positions 23 to 25.

The entire record will be read and assigned to the character variable line.
When it is printed, we see the format of each record as described above.

Notes:

Waterloo microFORTRAN

Reference Manual

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

69

Chapter A

Fundamental Concepts

A-1 Statements, Data Types and Expressions

A FORTRAN program is a series of statements as shown in the following
example:

value = 71

cube = value ¥ value * value
print, value, cube

end

There are four statements in the program. The first two statements are assignment
statements which cause values to be assigned to variables when executed. The third
statement, when executed, causes the current values of the two variables, "value” and
"cube”, to be displayed at the terminal. The fourth marks the end of the program.

Once the program has been entered into the computer (see the description of the
Waterloo microEditor in the System Overview manual), the program may be
executed by entering the RUN command. This will cause execution of the statements

70 Chapter A
starting with the first one in the program. In the preceding sample program, four
statements would be executed in the following sequence:

VALUE =71

The value 71 is assigned to variable named VALUE.

CUBE = VALUE * VALUE * VALUE

The value (71) of the variable VALUE is multiplied together twice to produce a
result (357911). This resultant value is assigned to the variable CUBE.

PRINT, VALUE, CUBE

The execution of this statement causes the current value of VALUE (71) and
CUBE (357911) to be displayed at the terminal.

END Statement
This statement causes execution of the program to stop.
The following output will be displayed on the terminal:
Executing...
71.000000 357911.00
...Stop

The first message signals that program execution has started. The last message
indicates that the execution of the program has completed.

It should be noted that the sample program performed a simple manipulation
(computation of a cube) of numeric data. In subsequent sections we will discuss in
detail numeric data and numeric variables.

Additional Rules About Programs:
4y Use of Spaces
Spaces should be used within statements to clarify the program. Spaces

cannot occur inside variable names, numeric constants, operators which are
composed of more than one character, keywords, or statement numbers.

Fundamental Concepts 71

@

3

C)

&)

(6)

Q)

Comment Statements

When the first character in a statement is an asterisk (*), the statement is
treated only as documentation and is ignored during the execution of the
program.

Null Lines

Lines containing only space characters may be entered anywhere in a
program. These lines are ignored during the execution of a program. These
null lines may be used to increase the readability of programs.
END Statement
The END statement is used to mark the end of a program unit.
Statements
Each statement starts on a new line.
Statement Numbers
Most statements may be preceded by an integer called a statement number.
FORMAT statements must have a statement number. PROGRAM,
SUBROUTINE and FUNCTION statements may not have statement
numbers.
Continued Statements
Occasionally, a statement contains too many characters to be conveniently
placed on a single line. A statement may be continued by placing an
ampersand character (&) as the first character on the continued line, thus
A=
&B
&+ C
is equivalent to

A=B+C

Only the first line in a continued statement may have a statement number.

72 Chapter A

Statement elements may not be continued across separate lines. It is illegal to
split across a continued line variable names, keywords, quoted strings,
constants or compound operators.

A-2 Assignment Statement

Syntax: variable = expression

Examples: X = 493 ¥4 + 2
TITLE = 'ABC’ // PAGE

The assignment statement specifies an expression (to the right of the assignment
operator (=)) which is used to calculate a resultant value to be assigned the variable
(to the left of the assignment operator (=)). In succeeding sections we will discuss in
detail the rules for specifying variables and expressions.

The expression is evaluated and assignment occurs when the statement is
executed. This means that a different result could be assigned each time the statement
is executed since the values of variables used in the expression to the right of the
assignment operator (=) could have different values at each execution of the
statement.

CHARACTER expressions (see CHARACTER data) may only be assigned to
CHARACTER variables. Numeric data (see Numeric data) may only be assigned to
numeric variables. When a REAL value is assigned to an INTEGER variable, the
value to be assigned is converted to an integer by truncating the fractional part from
the value.

A-3 Variable Names

A variable name is specified as a sequence of alphabetic (A-Z, a-z) characters,
digits (0-9), underscore (_) characters, and dollar-sign ($) characters. The first
character in the name must be alphabetic. The name may have as many characters as
desired as long as it is entered on a single line. It is a good idea to use names which
clearly indicate the use of the variable. Examples of variables are as follows:

SumofSquares
PageNumber

Fundamental Concepts 73

LineCounter
StudentAverage
TitlePage
CustomerName
DataRecord

Note that the names can be used to clearly define the usage of the variable.

At any time there is one value associated with a variable. These values may be
assigned to variables by the execution of FORTRAN statements such as assignment
statements. When a program begins execution, none of the variables have been
assigned values and all are said to be undefined variables. An error will be detected if
one of these variables is used in an expression before a value has been assigned to it.

Certain names, such as PRINT and END, are reserved for use as FORTRAN
keywords. These names (see RESERVED WORDS) cannot be used as variable
names. These names may be entered with any combination of upper and lower case
letters. They will, however, be displayed in the program as if they had been entered
entirely using lower case letters.

A-4 Data Types in General

There are three different types of data which may be manipulated in FORTRAN
programs:

¢y INTEGER Data

These data elements are integers or whole numbers (no fractional part).
When expressions involving only integers are evaluated, the result is an
integer, even if the algebraic result would involve a fraction.

2 REAL Data

These data elements may contain fractions. The precision of these numbers
is limited to a number of significant digits (say eight) depending upon the
type of the computer used. Consequently, the results of computations are not
necessarily absolutely accurate.

3 CHARACTER Data

These data elements are sequences of zero or more characters.

74 Chapter A

Successive sections will discuss each of these data types in detail.

Each variable is defined to contain values of one of the three data types. This may
be accomplished by specifying the variable in INTEGER, REAL, or CHARACTER
statements located at the start of the program. When a variable is used in a program
and is not explicitly mentioned in one of those statements, it is assumed to be aREAL
variable unless the first character of the name is one of the Iletters
LI,K,L,M,N.i,j,k,I,m or n. In the latter situation, the variable is an INTEGER
variable.

A-5 Type Statements

Syntax: INTEGER variable,variable,....,variable
REAL variable,variable,....,variable
CHARACTER variable,variable,....,variable

Examples: integer PageCount
real Cost,ProfitMargin
character StudentName,PrintLine

The type statements are used to declare the type of variables (and of functions and
arrays as discussed later). A variable that is not declared in this way is assumed to be
either REAL or INTEGER (see DEFAULT TYPE) as established by the first letter in
the name. It is an error to declare the same variable more than once in a program unit.

A-6 Numeric Data

Numeric data can be represented as either INTEGER data or REAL data.
INTEGER data represents numbers which have no fractional part while REAL data is
used to represent numbers which may have fractional parts.

The magnitude of numbers which can be represented is limited by the computer
hardware. Typically much larger numbers can be represented by REAL data (see
SYSTEM DEPENDENCIES) than by INTEGER data. For example, in the Motorola
6809 computer the range of INTEGER values is -32767 to 32767 and the largest
REAL value is approximately ten to the 35th power (the smallest is the negative value
of this magnitude).

Fundamental Concepts 75

The precision of REAL numbers is limited to several digits (the implementation
for the Motorola 6809 limits the precision to approximately 9 digits). Consequently,
each REAL number should be viewed as an approximation to an actual value. An
INTEGER value is always precise since it represents a whole number.

The smallest absolute value (apart from zero) which can be represented is also
limited. For example, in the implementation for the Motorola 6809 the smallest
positive value is approximately one divided by 10 to the 35th power.

Because REAL values are to be viewed as approximations, the results of
computations involving these values are also approximations. It is well known that
the potential error increases as more calculations involving these values are
performed. In most practical problems, however, the amount of error is not
significant compared to the result. The discipline of Numeric Analysis studies this
problem. It is beyond the scope of this manual to discuss the problem in detail.

INTEGER constants are written as a sequence of digits:

43 =17 2974

The preceding examples illustrate valid INTEGER constants. It is erroneous to
include commas (,) or decimal points (.) in the numbers.

4,327 69. 2,231.
The preceding are all illegal INTEGER constants.
REAL constants may be written with a decimal point (.):
47.63 .97 263. 274
The preceding are all valid REAL constants. Commas (,) may not be used in REAL

constants. In order to compactly represent very large or small numbers, scientific
notation may also be used to represent REAL values.

Scientific Notation Value
43.E4 430000
43.E-7 .0000043
—16.2E+5 —1620000

In this form, an integer or decimal value is followed by an E and a second integer
value. The actual value to be represented is determined by taking the number

76 Chapter A

preceding the E and multiplying it by 10 raised to the power of the integer following
the E.

There are no rules which specify where scientific notation should or should not be
used. A programmer should use whichever form makes the program easier to
understand by another person.

A-7 CHARACTER Data

CHARACTER data is a sequence of 0 to 32767 characters. CHARACTER
constants may be used to specify CHARACTER data:

'HI THERE'
"Report Title"
"John Smith, President”

"I can’t leave now”
X

"

The preceding examples illustrate valid CHARACTER constants. The last two
constants are character strings of length zero, called null strings. Each constant is
enclosed by a pair of either single (') or double () quotation characters. The same
character must be used to start and terminate the constant. Thus, to include one of the
quotation characters in the constant, the other quotation character can be used to mark
the start and the end of the constant.

Alternatively, a quotation character may be included as part of a string by
including the quotation character (which delineates the string) twice in successive
positions.

'I'’'m programming’
IIlIlIHowdleIII

The preceding two examples represent the following character strings:

I'm programming
"Howdy"

Fundamental Concepts 77

A-8 Expressions

Expressions are combinations of operators, variables, constants, and function
references which specify how a computation is to be performed. The order by which
this computation occurs is determined by parentheses in the expression and the

priority of the operators involved. The following table gives the priority of the
operators:

Priority Operator

enclosed in parentheses
kk

*7 I

+, -
comparisons
/l, .AND.
.OR.

—_ WAL

Operations enclosed in parentheses are performed before any other operations.
Operations with a higher priority are performed before those with a lower priority.
When two operations have the same priority, the leftmost is performed first. In the
evaluation, the current values for variables specified in the expression are used in the
computation.

The evaluation of an expression can be viewed as a pumber of successive
reductions of sub-expressions, according to the priorities, until only a single value
(the result) remains. Consider the following expression:

-A*¥((2+B)/C)*2.5*%C

where the REAL variables A,B, and C have values 4., 6., and 2., respectively. The
first step is to substitute the values for the variables used in the expression:

-4 .¥%((2.46.)[2.)%2.5%2.

The evaluation then proceeds according to the priority of the operations.

78 Chapter A

Expression Operator Applied
—4.¥%((2.46.)/2.)%2.5%2, (Start)
-4 x%({8.} [2.)¥2.5%2. +
—4. %% {4} *2.5%2, /
—{256.} *2.5%2, *k

- {640.} *2. *
- {1280.} *
{—1280.} -

In the preceding example, each evaluation result is shown in braces ({}). The second
column shows the operation performed at each step. In the next section, precise
definitions of the operators are specified.

A-9 Operators

In this section, each of the operators is defined. Each operation involves one or
two operands which are indicated by NUMB for an INTEGER or REAL datum and
by CHAR for a CHARACTER datum.

Exponentiation: NUMB ** NUMB

The first value is raised to the power of the second value. When both operands are
INTEGER, the result is an INTEGER value. Otherwise, the result is a REAL value.
It is an error if the first number is negative and the second number is not an INTEGER
value. It is also illegal to attempt to raise zero to the zero power.

Multiplication: NUMB * NUMB

The result is the product of the two operands. When both values are INTEGER,
the result is INTEGER; otherwise, the result is REAL.

Division: NUMB / NUMB

The result is the quotient of the two operands. When both values are INTEGER,
the result is INTEGER, otherwise, the result is REAL. The second operand is divided
into the first. It should be noted that the INTEGER result of this operation is obtained
by removing the fractional part of the algebraic result. Thus, 8/3 will result in 2. The
result is not rounded. An error will be detected when the second value is zero.

Fundamental Concepts 79

Addition: NUMB + NUMB

The result is the sum of the two operands. When both values are INTEGER, the
result is INTEGER; otherwise, the result is REAL.

Subtraction: NUMB - NUMB

The result is the difference of the two operands. When both values are INTEGER,
the result is INTEGER; otherwise, the result is REAL. The second operand is
subtracted from the first.

Unary Minus: - NUMB
The result has the same size as the operand and is given the opposite sign.
Unary Plus: + NUMB

The result is identical to the numeric operand. This operation has no effect and is
included only to aid in writing readable programs.

Numeric Comparison

NUMB = NUMB or NUMB .eq. NUMB (equal)

NUMB > NUMB or NUMB .gt. NUMB (greater)
NUMB < NUMB or NUMB .1t. NUMB (less)

NUMB >= NUMB or NUMB .ge. NUMB (greater,equal)
NUMB <= NUMB or NUMB .le. NUMB (less,equal)
NUMB <> NUMB or NUMB .ne. NUMB (not equal)

The two numeric operands are compared to determine a result of one (relationship
is true) or zero (relationship is false). The relationship to be tested is indicated by the
comparison operator.

Care should be exercised when comparing two REAL numbers for equality or for
non-equality. Because the numeric representation in a computer is accurate, at most,
to a finite number of significant digits, two values which are algebraically equal may
be computed as unequal.

80 Chapter A

Character Comparison

CHAR = CHAR or CHAR .eq. CHAR (equal)

CHAR > CHAR or CHAR .gt. CHAR (greater)

CHAR < CHAR or CHAR .It. CHAR (less)

CHAR >= CHAR or CHAR .ge. CHAR (greater, equal)
CHAR <= CHAR or CHAR .le. CHAR (less, equal)
CHAR <> CHAR or CHAR .ne. CHAR (not equal)

The two character operands are compared to determine a numeric result of one
(relationship is true) or zero (relationship is false). The relationship to be tested is
indicated by the comparison operator.

When one string is shorter than the other, it is padded with space characters to be
the length of the larger and then the comparison is performed.

Concatenation: CHAR // CHAR

The result of this operation is a character string composed of the contents of the
first operand followed by the contents of the second operand; i.e.,

"WATERLOO’ // ' FORTRAN'
results in a character string
"WATERLOO FORTRAN'

This operation is used to build up larger character strings from smaller character
strings.

Logical AND: NUMB .AND. NUMB

The result of this operation is an INTEGER value of zero or one. If both the
operands are non-zero, the result is one; otherwise, the result is zero.

Logical OR: NUMB .OR. NUMB

The result of this operation is an INTEGER value of zero or one. If either operand
is non-zero, the result is one; otherwise, the result is zero.

Fundamental Concepts 81

Logical NOT: .NOT. NUMB

The result of this operation is an INTEGER value of zero or one. If the operand is
zero, the result is one; otherwise, the result is zero.

A-10 Substrings

Syntax: variable(first:1ast)
or variable(first:)
or variable(:last)

where "variable” is a CHARACTER variable and "first” and "last” are numeric
expressions.

A substring is used to represent part of a CHARACTER variable. The two
numeric expressions, if present, are evaluated as integer values to be used as the first
and last positions of the subsection of the CHARACTER variable. When the first
number is missing, the value 1 is used. When the second number is missing the length
of the character string is used as the second number. This is illustrated by the
following table:

specification value

C ABCDEFG
C(3:5) CDE

C(:3) ABC

C(@3:) CDEFG

It is an error to specify a substring for an undefined CHARACTER variable, for a null
string, or for a part of the substring beyond the bounds of a defined string.

A substring may be used in expressions wherever a CHARACTER value is
appropriate. A substring may also be assigned a value, in which case the
CHARACTER value is either truncated to be the size of the substring or padded with
space characters to be the size of the substring. For example,

82

Chapter A

1)
@
(3
4
(5)

character S

S = 'ABCDEFG’
S(3:5) = 'XXXXX'
print, S

end

would produce the following output:

ABXXXFG

A-11 Examples of Expressions

In this section, several examples of expressions are given in order to illustrate the

FORTRAN operations. Suppose that the following assignment statements have been
executed in order to assign values to variables:

A =2

B =3

C =3

D =4

AS ="AAA’

BS ='BBBB’

CS ='CCcccc’

These preceding values will be used in the following examples. In each case the
successive reductions to the final result are illustrated.

Example: (A+B)*-(D+C**2)

(2+3)*-(4+3*2)

{5
{5
{5
{5

} *(4+43%+2)
} *-(4+{9)
}*- {13}
}*{-13}
{-65}

Fundamental Concepts 83

Example: AS [/ BS // CS

'AAA’ // 'BBBB' /] 'CCCCC
{'"AAABBBB'} 'CCCCC’
{"AAABBBBCCCCC'}

Example: A=B .OR. C<>D

2=3 .0OR. 3<>4

{0} .OR. 3<>4

{0} .OR. {1}
{1}

Example: .NOT. (A+C=B+D)

NOT. 2+3 = 3+4)
NOT. (5 =3+4)
NOT. (5 = 7))
.NOT. 0

{1}

A-12 Interrupting Programs

A program may be interrupted while it is executing by entering the "STOP” key
found on the keyboard. Thus, a program in an "infinite loop” can be interrupted.

&5

Chapter B

Structured Control Statements

B-1 What is Meant by Control

"Control” means the manner in which statements are selected for execution.
Normally, statements are executed one at a time in the order in which they occur in
the program. Thus, after one statement is executed, the next statement to be executed
is normally the statement following the one just executed.

Certain statements cause the normal sequential progression of control to be
altered. These statements may cause control to be altered from the next statement to
another statement in the program. Consider the following program to print the squares
of integers from 10 to 20.

86 Chapter B

(1) integer Value
(2) Value =10
(3) while Value < = 20

@) print, Value, Value * Value
&) Value = Value + 1

(6) endloop

(7 end

The parenthesized numbers to the left of the program are not part of the program and
are used only for reference purposes in this manual. When the program is executed,
lines (4) and (5) will be repeated 11 times. For each repetition, the variable VALUE
will have a different value, starting with 10 and increasing by 1. Thus, when the
statement on line (4) is executed each time, the current value of Value and the square
of that value are printed.

The sample program illustrates a loop. The bounds of the loop are defined by the
statements at line (3) and at line (6) respectively. The WHILE statement at line (3)
specifies that the body of the loop (lines (4) and (5)) is to be executed while the value
of Value is less than or equal to 20. As long as this condition is evaluated as true,
control will pass to the statement following the WHILE statement. When the
condition is evaluated as false, control will pass to the next statement following the
ENDLOOP statement. Whenever the ENDLOOP statement is executed, control
passes to the WHILE statement in order to test if the loop is to be repeated again.

The preceding example was intended to illustrate how the normal sequential flow
of execution can be altered by certain FORTRAN statements. The remainder of this
chapter describes some of the statements which can be used in this way. We have
classified these statements as structured control statements.

It has been theoretically proven that the only necessary constructs required to
write programs are the normal sequential flow of control, a way to program loops and
a way to select different sequences of statements for execution. The first two
mechanisms have already been illustrated in part. Programs that are written using
only these mechanisms are usually called "Structured Programs”. Consequently, we
have termed the statements which are used to control program execution in this
manner, "Structured Control Statements”.

There also exist, primarily for historical reasons, other methods of altering
control from the next sequential statement. Although they are not strictly required in
the FORTRAN language, they have been included so that existing FORTRAN
programs may be executed (see MISCELLANEOUS STATEMENTS).

Structured Control Statements 87

B-2 Conditions

Several of the structured control statements to be discussed cause control to be
altered depending upon the evaluation of a numeric expression called a condition.
The condition is said to be false when the evaluation of the expression produces a
result of zero; otherwise, the condition is said to be true. Several examples of
conditions are:

X>4
(PageCount > 55) .or. (FirstTime)
(SEX = 'F’) .and. (SALARY > 5000.00)

In the syntactic descriptions to follow, "condition” is used to indicate a condition.

B-3 Loops with WHILE or LOOP

Syntax: LOOP
or WHILE condition
....(body of loop)

ENDLOOP
or ENDWHILE
or UNTIL

Loops have three parts: a statement (WHILE or LOOP) to mark the start of the
loop; a number of FORTRAN statements to form the body of the loop; and a
statement (ENDLOOP, ENDWHILE or UNTIL) to mark the end of the loop. The
body of the loop is repeated while the numeric expression is non-zero at the start of
the loop (WHILE statement) and/or the numeric expression is zero at the end of the
loop (UNTIL statement). When the loop begins with a WHILE statement, an
ENDWHILE statement may be used to mark the end of the loop, as an alternative to
the ENDLOOP statement.

In the preceding section we have already seen an example of a loop using a
WHILE statement to start a loop and a ENDLOOP statement to terminate the loop.
When a WHILE statement is used to start a loop, an ENDWHILE statement may be
used as an alternative for the ENDLOOP statement to mark the end of the loop. An
equivalent program is as follows:

88 Chapter B

(1) integer Value
(2) Value = 10

3 loop

(C)) print, Value, Value * Value
&) Value = Value + 1

(6) until Value > 20

(7 end

In this case the loop was programmed with a LOOP statement to start the loop and an
UNTIL statement to terminate a loop.

Depending on the data involved in the expression associated with a WHILE
statement, a WHILE-ENDLOOP loop may have the body of the loop executed zero
times. This will be the situation when the expression associated with the WHILE
statement is initially false (zero). A LOOP-UNTIL loop, however, will always
execute the beginning of the body of the loop at least once. This is because the
WHILE statement is executed at the start of each iteration of a loop and because the
UNTIL statement is executed at the completion of each iteration of a loop.

It is also possible to program WHILE-UNTIL loops. These loops are controlled
by both the WHILE statement at the start of the loop and the UNTIL statement at the
end of the loop. Consider the following program:

(1) integer Value

(2) real Sum

(3) Value= 0

@4 Sum =0

(5) while Sum < 1000

(6) Value = Value + 1
) Sum = Sum + Value
(8) until Value > = 99

(9 print, Value, Sum

(10) end

The preceding program may be used to determine the first two-digit integer for which
the sum of the positive integers to that number exceeds one thousand. If no such
integer exists, the sum of the integers from one to ninety-nine is printed.

Structured Control Statements 89
It is also possible to program LOOP-ENDLOOP loops. In this case a statement in
the body of the loop must be used to terminate the loop (see QUIT statement).

The body of a loop may itself contain a loop. In this case the inner loop is said to
be nested inside the outer loop. Consider the following program:

(1) integer Year, Month
(2) real Rate, Principal
(3) Rate = .015

(4) Principal = 1.00

(5 Year=1

(6) while Year <2

U] print, ‘Year = ', Year

(¢))] Month = 1

) while Month <= 12

(10) Principal = Principal * (1. + Rate)
an Print, Month, Principal
(12) Month = Month + 1
(13) endloop

14) Year = Year + 1

(15) endwhile

(16) end

The preceding program shows how a principal of one dollar appreciates in value at a
rate of 1.5% computed monthly over a two-year period. Note the inner loop, lines (9)
to (13), nested inside the outer loop, lines (6) to (15).

It is considered good programming practice to indent the body of loops. In this
way, the program becomes more readable as the repeated sequences of statements are
clearly marked by the indentation level.

90 Chapter B

B-4 Structured DO Loop

Syntax: DO var = first, last
or DO var = first, last, increment
.... (body of loop)
ENDDO

A structured DO loop specifies a loop which is repeated with a control variable
"var” assigned a number of values starting with the value of the expression "first”. At
the end of each iteration of the loop, the value of the expression “increment” is added
to the variable "var”.

Before each iteration of the loop, the control variable is tested to determine if the
body of the loop is executed another time. The repetition terminates, and control
continues at the statement following the ENDDO when:

° if the increment is positive, when the value of "var’ exceeds the value of
"last”

° if the increment is negative, when the value of "var” precedes the value of
’Ilastll

. It is an error for "increment” to have a value of zero.

It should be noted that a DO loop may be executed zero times.

The values of "first”, "last”, and "increment” are calculated immediately before
any repetitions of the loop are performed and are not recalculated at each repetition. If
an expression for “increment” is not specified, then a value of 1 is used as the
increment. Thus, the number of iterations of the loop is established before the loop is
executed and any change to variables involved in the calculation of "first”, "last”, or
"increment” will not alter this number of iterations.

The program in the preceding section can be rewritten as follows:

Structured Control Statements 91

(1) integer Year, Month
(2) real Rate, Principal
(3) Rate = .015

(4) Principal = 1.00
(5 doYear=1,2

6) print, "Year = ", Year

@) do Month = 1, 12

(8) Principal = Principal * (1 + Rate)
©)] print, Month, Principal

(10) enddo

(11) enddo

(12) end

Note the convenience of DO loops for the loops in question.

When the control variable is an INTEGER variable, the expressions are treated as
integer expressions by truncating any fractional parts of their values when necessary.

It is an error to assign a value to the control variable while executing the body of a
DO loop using that variable.

B-5 IF, ELSEIF, ELSE, ENDIF Statements

Syntax: IF condition

ELSEIF condition (optional)

. (optional)
ELSEIF condition (optional)
cees (optional)
ELSE (optional)
(optional)

ENDIF

The IF statement and its associated statements are used to execute different
sequences of statements, depending upon the alternatives in the data. Consider the
following sequence of FORTRAN statements:

92 Chapter B

(I) if ColourCode = 19

(2) Colour = 'red’

(3) elseif ColourCode = 23

@) Colour = 'blue’

(5) else

©) Colour = "unknown colour’
(7) endif

The execution of this sequence will cause a CHARACTER variable Colour to be
assigned a value of ‘red’, 'blue’, or 'unknown colour’ depending on the value of the
variable ColourCode. Thus, the example illustrates a three-way choice, based upon
the current value of the variable ColourCode.

The general form of an IF-group is shown by the syntax at the start of this section.
An IF-group must start with an IF statement and must be terminated with an ENDIF
statement. The simplest form is illustrated in the following example:

(1) if SexCode = "male”

) MaleCount = MaleCount + 1
) MaleWages = MaleWages + Salary
@) endif

In this case, the expression associated with the IF is evaluated. If the result is true
(non-zero), then the statements following the IF are executed. Otherwise, control
passes to the statement following the ENDIF statement.

A second form of the IF may be used to distinguish between two alternatives.

(1) if Salary > 5000

) Type = 'executive’

3) ManagementCount = ManagementCount + 1
4) else

(5 Type = 'worker’

6) WorkerCount = WorkerCount + 1

(7) endif

In this situation one of two sequences of statements is selected. When the expression

Structured Control Statements 93

in the IF statement evaluates as true (non-zero), the first sequence (2-3) is selected
and then control passes to the statement following the ENDIF statement. When the
expression in the IF statement is false (zero), the second sequence of code (5-6) is
selected and then control passes to the statement following the ENDIF statement.

When several alternatives are possible, the ELSEIF statement can be used to
select one of a number of alternatives.

(1) if Code = ’'add’

....statements for add processing
(2) elseif Code = 'chg’

....statements for change processing
(3) elseif Code = ‘dIt’

....statements for deletion processing
4) else

....statements for error processing
(5) endif

The preceding example illustrates a selection of one of four alternatives. The actual
statements to do the processing for each of the alternatives have been left out for
clarity. The value of the CHARACTER variable Code is used to select which of the
alternatives is to be executed:

- when the expression in statement (1) is true (non-zero), the statements between
statements (1) and (2) are executed and then control passes to the statement
following the ENDIF statement.

- otherwise, if the expression in statement (2) is true (non-zero), the statements
between statements (2) and (3) are executed and then control passes to the
statement following the ENDIF statement.

- otherwise, if the expression in statement (3) is true (non-zero), the statements
between (3) and (4) are executed and then control passes to the statement
following the ENDIF statement.

- otherwise, the statements between (4) and (5) are executed and then contro!
passes to the statement following the ENDIF statement.

As many ELSEIF statements as required can be associated with an IF statement.
The ELSE statement, if present, must follow the ELSEIF statements for an IF group.
When the ELSE statement is not included and all the expressions in the IF statement

94 Chapter B

and all ELSEIF statements are false, then none of the alternative sequences of
statements are executed and control continues at the statement following the ENDIF
statement.

It is a good idea to use the same indentation for each of the IF, ELSEIF, ELSE
and ENDIF statements and to indent the alternative sequences of code. In this way the
program becomes more readable.

B-6 Nesting Loops and IF-Groups

A program in Waterloo FORTRAN may be viewed as a number of "blocks” of
statements. A block can be defined to be a program, the body of a loop, the
alternatives in an IF-group, the body of a function or subroutine definition (see
FUNCTIONS), or the alternatives in a GUESS/ADMIT).

A block can be nested inside another block, but cannot overlap only part of
another block. Thus, loops can be nested inside loops, an IF group can be nested
inside a loop, and a loop can exist inside one of the alternatives of an IF group.
Consider the following example:

Nest-level
(1) while 1
ceee 2
) if 2
ceee 3
€)] else 2
ceee 3
4@ loop 3
ceee 4
(5) until 3
..... 3
©) endif 2
..... 2
D while 2
ceen 3
® endloop 2
ceee 2
(9 endloop 1

Structured Control Statements 95

The example illustrates a loop (1-9) which contains an IF group (2-6) and another
loop (7-8). One of the alternatives (3-6) of the IF group contains a loop (4-5).

The following example illustrates an illegal nesting of blocks:

1 if

@ loop
3) els; ;
@ il
(5) endif

The loop (2-4) neither contains nor is contained in the two alternatives (1-3, 3-5)
of the IF group (1-5). In such situations, Waterloo FORTRAN will display an error
message diagnosing the error.

B-7 QUIT and QUITIF Statements

Syntax: QUIT
QUITIF condition

It is possible to exit from an IF, LOOP, WHILE, or DO block by using the QUIT
or QUITIF statements. Consider the following example:

(1) integer i, Sum

2 Sum=90

3) doi=1, 100

@) Sum = Sum + i
(5) quitif Sum > 500
(6) print, i, Sum

(7) enddo

8 end

96 Chapter B

The example will print the sums of the integers 1,2,... until the sum exceeds 500. The
QUITIF statement (line 5) causes control to continue following the end of the block
(line 7) when the associated expression evaluates as true.

In general, the QUIT or QUITIF statements may cause control to continue
following the statement which makes the end of the associated block. The QUIT
statement causes this to occur unconditionally; the QUITIF causes control to continue
in this way only when the associated condition is true (non-zero). When used with
block identifiers (described in the next section), the QUIT and QUITIF statements
may be used to exit outer blocks when the statements are contained in nested blocks.

B-8 Block Identifiers

Syntax: : name

It is often useful to name a block. This provides not only a documentation aid, but
also a means of exiting from within nested blocks.

(1) integer i, Sum

2 Sum =20

(3) doi=1,100 : SumLoop
@) Sum = Sum + i

&) quitif Sum > 500 : SumLoop
(6) print, i, Sum

(7) enddo : SumLoop
(8) end

The preceding example is identical to the one in the preceding section except that the
loop has been given a block identifier “SumLoop”. This name is also referenced in the
QUITIF statement (line 5). Names of blocks are formed according to the same rules
as apply to variable names (see VARIABLE NAME). A block should not have the
same name as a variable within the same program unit.

A block identifier, if specified on the first statement in a block, may be specified
on any of the other statements which mark boundaries in that block. Of course, the
same name must be used on each of these statements. In this way, IF-groups, loops,
structured DO loops, and GUESS-groups may be named.

Structured Control Statements 97

Another advantage of block identifiers is their use in conjunction with QUIT or
QUITIF statements. Consider the following example:

(1) integer Year, Month

(2) real Principal, Rate

(3) Rate = .015

(4) Year = 1

(5) Principal = 1.00

(6) loop :YearLoop
(7) doMonth = 1, 12

®) Principal = Principal * (1. + Rate)

)] quitif Principal > 2.0000 :YearLoop

(10) enddo

(11) Year = Year + 1

(12) endloop :YearLoop
(13) print, year, month

(14) end

The program determines the year and month when a single dollar will double in value
as it appreciates in value at a rate of 1.5% each month. The QUITIF statement (line 9)
causes control to continue following the outer loop (lines 6-12) when the value of
Principal exceeds 2. If the block identifiers had not been used, control would continue
after the ENDDO, which is not the desired effect.

B-9 GUESS and ADMIT Statements

Syntax: GUESS [: block identifier]
ADMIT [: block identifier]
ADMIT [: block identifier]
ENlSéijESS [: block identifier]

It is sometimes convenient to have a more advanced control structure than that
supplied by IF-groups or loops. A GUESS-group defines a number of blocks of
statements. Each block is separated from the next one by an ADMIT statement. This
structure is useful because a QUIT or QUITIF statement can cause control to continue

98 Chapter B

at the next block (not following the ENDGUESS unless the QUIT or QUITIF is in the
last block). Consider the following sequence of statements:

(1) real Start, Ending, Increment, x

(2) guess

€)] read, Start

@ read, Ending

5) quitif Start >= Ending

6) read, Increment

Q) quitif Increment <= 0

(8) quitif Increment > (Ending - Start)
¢S] do x = Start, Ending, Increment
(10) print, x, x ** 2

an enddo

(12) admit

(13) print, "table parameters in error”

(14) endguess

The example will read (lines 3, 4, 6) three values from the terminal to be used to
display a table of squares. The first two describe the starting value and ending value
for the table, and the last specifies the steps used to create the table. The sequence of
statements will detect three errors:

L] starting value greater than ending value
° increment non-positive
L] increment larger than table

In each case, a QUITIF statement (lines 5, 7, 8) is used to exit from the first block in
the GUESS group. When the condition associated with these statements is TRUE,
control continues at the start of the next block (line 13).

The terms "guess” and "admit” are used to emphasize the structure of the program.
In the example, the first block of statements represents the “guess” that the values to
be read are error-free and the table will be displayed. When an error is detected, the
second block must be executed ("admit” that the "guess” was not correct for the data in
question).

Structured Control Statements 99

In general, a GUESS group consists of one or more blocks, separated by ADMIT
statements, and ending with an ENDGUESS statement. The execution of a QUIT
statement or a QUITIF statement in which the condition is TRUE causes control to
continue at the start of the next block in the GUESS group. When these statements are
found in the last block in the GUESS group, control continues following the
ENDGUESS statement. Similarly, after the last statement in a block has been
executed, control continues following the ENDGUESS statement.

101

Chapter C

Remote Blocks

C-1 Imntroduction

In any non-trivial program it is imperative to organize the program into sections
or modules, each of which performs a distinct, well-defined activity. Remote blocks
may be used to effect this organization. Consider the following program:

102 Chapter C

(1) integer Year, Month
(2) real Rate, Principal
(3) Rate = 0.015

(4 Principal = 1.00
(5) doYear=1,2

©) execute ComputeYearBalances
(7) enddo
®

(9) remote block ComputeYearBalances
(10) print, ‘Year = ", Year
(an do Month = 1, 12

(12) Principal = Principal * (1 + Rate)
(13) print, Month, Principal

(14 enddo

(15) endblock

(16)

(17) end

The program is a variation of one introduced in the preceding chapter. It displays how
one dollar appreciates in value over a two-year period when interest is calculated at
1.5% monthly.

The remote block "ComputeYearBalances” specifies a sequence of statements to
be executed whenever an EXECUTE statement which references that block is
encountered. Control automatically continues following the EXECUTE statement
that invoked the remote block. Consequently, the execution of the program proceeds
as if the body of the remote block was substituted for the EXECUTE statement
indicating that block.

C-2 Execute Statement

Syntax: EXECUTE remoteblock

The EXECUTE statement causes a remote block to be invoked. Once the
statements in the remote block have completed execution, control continues at the
next statement following the EXECUTE statement.

Remote Blocks 103

EXECUTE statements may be placed within remote blocks as illustrated in the
following example:

(1) integer Year, Month
(2) real Rate, Principal
(3) Rate = 0.015

(4) Principal = 1.00
(5) doYear=1,2

(6) execute ComputeYearBalances
(7) enddo
@

(9 remote block ComputeYearBalances
(10) print, "Year = ", Year
an do Month = 1, 12

(12) execute ComputeMonthBalance
(13) enddo

(14) endblock

(15

(16) remote block ComputeMonthBalance
17) Principal = Principal * (1 + Rate)
(18) print, Month, Principal

(19) endblock

(20

(21) end

Note the EXECUTE statement (line 12) within the remote block
"ComputeYearBalances”.

C-3 Remote Blocks

Syntax: REMOTE BLOCK name
.... (body of remote block)
ENDBLOCK

A remote block defines a group of statements to be executed when an EXECUTE
statement, which references the name of the remote block, is executed. When a
remote block is invoked, the system "remembers” the EXECUTE statement which
caused the block to be activated so control can continue following that EXECUTE

104 Chapter C

statement when the execution of a remote block is complete.

When the remote block begins execution, the first statement to be executed is the
one following the REMOTE BLOCK statement. Control continues in the normal way
within the remote block until the ENDBLOCK statement is encountered. At this
point, the execution of the remote block is complete and control continues following
the EXECUTE statement which invoked the remote block in question.

Additional Rules About Remote Blocks:

a The names of remote blocks are formed according to the same rules as apply
to variable names (see Variable Names). An error will be detected if a
remote block name is also used as a variable name.

) Remote blocks must be defined in the same program unit (main program,
subroutine, or function) as the EXECUTE statements which reference them.

3) All variables used in a remote block may be used elsewhere in the program
unit (main program, subroutine, or function). Similarly, all variables used
elsewhere in a program unit may be used in a remote block.

()] The definition of a remote block cannot occur as part of the body of another
remote block definition, although a remote block may include EXECUTE
statements.

&) The definition of a remote block cannot occur within a loop, IF-group, or

GUESS/ADMIT group. Any such groups defined in a remote block must be
completely defined in the remote block.

©) It is an error to use a GOTO statement to branch into the body of a remote
block or to branch out of the body of a remote block.

@))] When a remote block is encountered as the next sequential statement during
the execution of a program, then control continues at the statement following
the ENDBLOCK statement for the remote block. In other words, the
statements in a remote block are skipped if a remote block is encountered
without execution of an EXECUTE statement.

® It is permissible to recursively activate remote blocks.

Notes

107

Chapter D

Arrays

D-1 Introduction

An array is a collection of numbers or character strings which can be referenced
and manipulated either individually or jointly. The statement

INTEGER Product(100)

may be used to define an array of 100 INTEGER values. These values could be
referenced in a program as Product(1), Product(2),..., Product(100) and used
anywhere in a program that a simple INTEGER variable could be used.

Consider the following program which displays, in reverse order, the sums of the
positive integer values, up to 30.

108 Chapter D

(1 integer SumOflInteger(30)
@3] SumOfInteger(l) = 1
3) doi= 2,30

4) SumOflInteger(i) = i + SumOflnteger(i-1)
(&)} enddo

(6) doi=30,1,-1

) print, i, SumOfinteger(i)

(8) enddo

)] end

In line (1), any array SumOfInteger is defined to contain 30 INTEGER elements. The
first of these numbers is assigned a value of 1 in line (2). The loop, lines (3) to (5),
will cause the remainder of the array to be assigned values in such a way that the i-th
element contains the sum 1+2+...+(i-1)+i. The loop, lines (6) to (8), will cause the
array values to be displayed, starting with the 30-th and proceeding to the first.

The program illustrates the use of a subscript to reference an element in an array.
This subscript is a numeric expression, enclosed in parentheses, following the array
name. The particular element to be referenced is located by evaluating the subscript
expression. Thus, when i has a value 17, SumOflnteger(i-1) refers to the 16-th
element in the array SumOfInteger.

D-2 Defining Arrays

Syntax: INTEGER array(dim,dim,...),array(dim,dim,...)
REAL array(dim,dim,...),array(dim,dim,...)
CHARACTER array(dim,dim,...),array(dim,dim,...)

Arrays are defined using one of the type statements INTEGER, REAL, or
CHARACTER. The type statement specifies the type of all elements in the array. The
number of elements in the array is determined by the list of dimensions (INTEGER
constants) enclosed in parentheses and separated by commas. The product of these
dimensions specifies the number of elements in the array.

CHARACTER Name(100,3),Label(5,4,2)

In the preceding example, Name is declared to have 300 elements and Label is
declared to consist of 40 elements.

Arrays 109

Additional Rules:

n Array names are specified in the same manner as other variable names (see
Variable Names).

2) A maximum of seven dimensions may be specified. Discretion should be
used when specifying multiple dimensions. Since the memory in a computer
is finite, there may not be sufficient space to store all the elements of a large
array. In this circumstance, an error message diagnosing "memory overflow”
will be issued.

3 Arrays may be passed as parameters to subroutines or functions. Additional
rules (see Array Parameters) apply for the declaration of these arrays in the
invoked subroutine or function.

C)] As with simple variables, all elements in an array are initially said to have
"undefined values”. An error will be detected should an array element be
referenced in an expression before it is assigned a value.

D-3 Subscripts

As has been introduced, subscripts are used to reference individual elements in
arrays. In general, the same number of subscript expressions must be specified as
there are dimensions in the array. The subscript expressions are enclosed in
parentheses and separated by commas, following the array name. Consider the
following array specifications:

real Sales(10,20,5)
character Name(100)

The following example illustrates several valid subscripted variables for the
preceding array definitions:

Sales(region-100, salesman, product)
Name(43)
Name(salesman)

As the program executes, the subscript expressions are evaluated and the resultant
values are used in order to calculate the actual element to be referenced. It is illegal
for subscripts to be non-positive or to exceed the associated dimension specification.

110 Chapter D

A subscripted variable may be used wherever a simple variable is allowed. For
example, a subscripted variable may be used in expressions, assigned values, or
displayed with a PRINT statement.

When a subscript expression produces a REAL result, the value is truncated to
become an integral value. Thus, ARR(7.9999) refers to the 7-th element of the array
ARR.

D-4 Substring with Character Arrays

A substring of a character array element is referenced by specifying the substring
information following the array subscript.

character name (20,3)
name(7,2)(4:6) = 'xxx’

In the example, 'xxx’ is assigned to positions 4 to 6 in the element name(7,2).

D-5 Storage Order of Arrays

In many circumstances it is necessary to know the order of storage of the elements
of an array. For example, a PRINT statement will display the elements of an array in
the order in which they are stored.

Elements are stored by varying the first subscripts before the subscripts which
follow them. For an array A(3,2), the elements would be stored as follows:

A(l,D, A(2,]), A(3,1), A(1,2), A(2,2), A(3,2)
Similarly, an array A(2,3,2) would be stored in the following order:

A(1,1,1), A2,1,1), A(1,2,1),
A(2,2,1), A(1,3,1), A(2,3,1),
A(1,1,2), A(2,1,2), A(1,2,2),
AQ2,2,2), A(1,3,2), A(2,3,2)

Notes

113

Chapter E

Functions and Subroutines

E-1 Program Units

A FORTRAN program consists of a number of program units: main program,
functions, and subroutines. Each program must have exactly one main program and
may have any number of functions or subroutines.

When a program begins execution, the main program receives control. A
subroutine is invoked using a CALL statement. This causes that subroutine to receive
control. When a RETURN or END statement is encountered in the subroutine,
control returns to the invoking program unit, immediately following the CALL
statement used to invoke the subroutine.

A function is invoked when the function name is encountered during the
evaluation of an expression. Control is then passed to the function. When an END or
RETURN statement is encountered, the return value computed by the function is then
used to continue evaluation of the original expression. Thus, functions and
subroutines are similar, with the major differences being the manner in which they are
invoked and the capability to return a value from a function.

114 Chapter E

Each program unit is considered to be self-contained in that the definitions of
FORTRAN entities are only locally known in each unit. Thus, a variable X, declared
in one unit, is not able to be directly referenced in another program unit. If a second
program unit declared a variable X, this second variable is considered to be a distinct
variable from the first. Consequently, it may be given a different type and usage in
the second program unit. Other FORTRAN entities having this local scope include
names of remote blocks and statement numbers. Each variable declared in a program
unit has an undefined value when the program unit is invoked.

Values are communicated between program units by the use of parameters. As is
described in following sections, parameters may be used to pass values to an invoked
program unit and, in the right circumstances, to return values to the invoking program
unit.

As part of the FORTRAN system, there are a number of supplied or intrinsic
functions to perform well-known calculations (e.g., to compute trigonometric SINE).
These functions are invoked in the same way as functions located in the program.

E-2 Main Program

When a program is placed into execution, the main program receives control.
Consequently, each FORTRAN program must contain exactly one main program.

The main program has the following format:
(a) an optional PROGRAM statement
(b) the FORTRAN statements to be executed
(c) an END statement

The program statement has the following syntax:

PROGRAM name

The name should be a meaningful name for the program and must not be identical to a
name of a subroutine or function used in the program.

Functions and Subroutines 115

E-3 Parameters in General

In general, parameters are used to pass values between program units. These
items are termed arguments in the invoking routine and are symbolically represented
by parameters (which look like simple variables) in the invoked routine. Because of
the flexibility with which parameters may be passed, several sections deal with the
various aspects of parameters. These sections are found following the sections
dealing with subroutines and functions, and will apply to both these kinds of program
units.

E-4 Subroutines
Subroutines are invoked using a call statement:

CALL name(argument, argument, ...)

Arguments and parameters (described subsequently) may be optionally used to
communicate between the invoking program unit and the invoked subroutine.

The format of a subroutine is as follows:

(a) a SUBROUTINE statement
(b) the FORTRAN statements to be executed
(c) an END statement

A SUBROUTINE statement has the following syntactic format:

SUBROUTINE name(parameter, parameter, ...)
or SUBROUTINE name()
or SUBROUTINE name

The statement is used to specify the start of the subroutine. The name of this
subroutine must be distinct from the name in the optional PROGRAM statement and
from the names of other functions or subroutines used in the program. It is also an
error to use the subroutine name as a variable within that subroutine.

116

The following program illustrates a simple use of subroutines:

Chapter E

¢y
2
3
G
&)
©
)]
®
9
10
an
(12)
(13)
(14)
15)
(16)

program Ilustrate
call Greatest(5,7,3)
call Greatest(6,2,9)
end

subroutine Greatest(a,b,c)
integer a,b,c,g
g=a
ifg<b
g=>b
endif
ifg<c
g=c
endif
print, g
end

The subroutine Greatest is passed three INTEGER arguments. The main program,
Illustrate, causes the subroutine to be invoked twice and the following to be

displayed:

7
9

Within the subroutine, three parameters (a,b,c) are used, in the same manner as
simple variables, with the argument values appropriately assigned to them.

E-5 Functions

A function is used to compute a value to be returned. The function is invoked by
referencing it in an expression. The returned value is subsequently used to calculate
the value of the expression. Consider the following program:

Functions and Subroutines 117

(1) program Ilustrate

) integer Greatest

3) print, Greatest(5,7,3)
4) print, Greatest(6,2,9)
(5) end

(6)

(7) integer function Greatest(a,b,c)
S integer a,b,c,g

©) g=a

(10) ifg<b

11 g=b

(12) endif

(13) fg<c

(14) g=c

(15) endif

(16) Greatest = g

(17) end

The function Greatest returns an INTEGER value equal to the largest of the three
arguments passed to it. This is accomplished by assigning to the function name the
greatest of the three parameters.

The general format of a function is as follows:

(a) a FUNCTION statement
(b) the FORTRAN statements to be executed
(c) an END statement

The FUNCTION statement has the following syntactic definition:

type FUNCTION name
or type FUNCTION name()
or type FUNCTION name(parameter, parameter, ...)
or FUNCTION name
or FUNCTION name()
or FUNCTION name(parameter, parameter, ...)

where "type” is one of INTEGER, REAL, or CHARACTER and, if specified,
determines the type of value to be returned.

118 Chapter E

When the type of function is not specified in the FUNCTION statement, the type
of value to be returned is determined by the type of the function name, when used as a
variable in the program unit. In this case, the type is determined either by explicitly
declaring the type using an INTEGER, REAL or CHARACTER statement, or by the
default rules according to the first letter in the function name.

Each time a function is invoked, the return value must be assigned to the function
name. Otherwise, an undefined value will be returned causing an error to be detected.

E-6 Argument: simple variable

When a simple (unsubscripted) variable is passed as an argument, the
corresponding parameter in the invoked program unit must be declared as a simple
variable of the same type. If the original argument has been assigned a value, then the
corresponding parameter is given that value; otherwise, the parameter has an
"undefined value”.

The corresponding parameter may be used in the invoked program unit in the
same way as a simple variable. When the execution of the program unit completes,
the value of the corresponding parameter is assigned to the original simple variable
passed as an argument.

) program SimpleVariable

2) x=35

3) call Sub(x)
@) print, x

) end

© subroutine Sub(y)
) print, y

(3 y=y*2

) end

The program would cause the following output to be displayed:
5.0000000
10.000000

Functions and Subroutines 119

E-7 Argument: expression

When an expression is passed as an argument, the expression is evaluated and the
resultant value is assigned to the corresponding parameter. The parameter must be a
simple variable of the same type as the expression. The parameter may be used
anywhere in the invoked program unit as a simple variable.

The passing of an expression is illustrated by the following program:

¢ program Expression

) call sub(18)
3) end

@ subroutine Sub(y)
6)) print, y

(6) end

The following output would be displayed:

18.000000

E-8 Argument: substring of simple variable

When the argument passed to a program unit is a substring of a simple
CHARACTER variable, the corresponding parameter in the invoked program unit
must be declared as a CHARACTER variable. The substring argument must be
defined and that value is assigned to the corresponding parameter. The parameter may
be used anywhere in the invoked program unit as a simple variable. When the
execution of the invoked program unit is complete, the value of the parameter is
assigned to the substring argument according to the same rules as substring
assignment.

120 Chapter E

The passing of a substring argument is illustrated by the following program:

(1) program Substring

) character s

3) s = 'abcdefgh’
@ call sub(s(4:7))
) print, s

(6) end

(7) subroutine sub(t)
%) character t

(C)] print, t

(10) t = '123456’
(11) end

The following output would be displayed:

defg
abc1234h

E-9 Argument: array
When an array is passed as a parameter, it must be declared in the invoked

program unit as an array of the same type (INTEGER, REAL or CHARACTER).
This is illustrated in the following program:

Functions and Subroutines 121

(1) real ARR(10)
(2) doi=1,10

3) ARR(G) =i
(4 enddo

(5) call PrintArr(ARR)
(6) end

Q)]

(8) subroutine PrintArr(Array)
(9 real Array(10)

(10) doi= 1,10

an print, Array(i)

(12) enddo

(13) end

The subroutine PrintArr causes the array to be printed.

The array declared in the invoked program unit need not be dimensioned exactly
as the original argument. The only restriction is that the number of elements of the
corresponding parameter must not exceed the number of elements in the original
array. Consider the following program:

(1) real ARR(10)
2 doi= 1,10

3) ARRQ@) =i
(4) enddo

(5) call PrintArr(ARR)
(6) end

a

(8) subroutine PrintArr(Array)
(9) real Array(4,2)

(10) doj=1,2

an doi=1,4

(12) print, Array(i,j)
(13) enddo

(14) enddo

(15) end

The subroutine PrintArr causes the first 8 elements of the array to be printed.

122 Chapter E

More flexibility is possible, if the array dimensions are passed as arguments. This
is illustrated in the following program.

(1) real ARR(9,2)

2) doi=1,9

A3) doj=1,2

@) ARR(,j) =i* 10 + j
&) enddo

(6) enddo

(7) call PrintAmr(ARR,5)

(8) end

®

(10) subroutine PrintArr(Array,n)
(11) real Array(n)

(12) doi=1,n

(13) print,Array(i)

(14) enddo

(15) end

Execution of the preceding program will produce the following output:

11.000000
21.000000
31.000000
41.000000
51.000000

It should be noted that the array parameter Array is declared with a dimension
specified using another parameter. In general, any dimension for an array parameter
may be specified by a simple INTEGER parameter. The value of that simple
parameter is used to establish the dimension of the array.

When an array parameter is declared in an invoked routine, the resulting array
specifies a consecutive portion of the original argument array. When the original
array involves several dimensions, it is important to consider the order in which the
elements are stored in computer memory (see Array storage). Any modification of
values in the array parameter will be applied to the original array in the associated
position, immediately as they occur to the array parameter.

Functions and Subroutines

123

E-10 Argument: array element

When an array element is passed as an argument, it may be treated in the invoked
program unit as either a simple (unsubscripted) parameter or as an array parameter.
When the corresponding parameter is a simple variable, the parameter is treated
identically to the way a simple variable (see Argument: simple variable) is treated.

When the corresponding parameter is an array parameter, it is treated similarly to
an array argument, except that the first element in the array parameter is the element
passed as an argument.

M
€3
3
Q)
)
©
)
(®
)
10)
an
(12)
13)
(14)
15)

real ARR(9,2)
doi=1,9
doj=1,2
ARR(i,j) =i*10 + j
enddo
enddo
call PrintArr(ARR(2,2), 6)
end

subroutine PrintArr(Array, k)
real Array(k)
doi= 1,k
print, Array(i)
enddo
end

The preceding

22.000000
32.000000
42.000000
52.000000
62.000000
72.000000

program will cause the following to be displayed:

The resulting parameter Array represents consecutive positions in the array argument,
starting with the element passed as the array argument.

124 Chapter E

E-11 Argument: substring of array element

When a substring of a CHARACTER array element is passed as an argument, it is
treated identically to a simple variable passed as an argument (see Argument:
substring of single variable).

E-12 Argument: function and subroutine names

It is possible to pass a function or subroutine name as an argument to a program
unit. In this way, the invoked program unit can invoke the function or subroutine
supplied to it as a parameter. This is illustrated by the following program:

(1) program Tables

) external Square, Cube

(3) call PrintTable("Squares”, Square)
@ call PrintTable("Cubes”, Cube)
(5) end

©

(7) subroutine PrintTable(Title,fun)

8 character Title

9) real fun

(10) print, Title
an dox =0,1,.1

(12) print, x, fun(x)
(13) enddo

(14) end

(15)

(16) real function Square(x)
an real x

(18) Square = x ** 2
(19) end

(20)

(21) real function Cube(x)
(22) real x

(23) Cube = x ** 3
(24) end

The execution of the main program Tables causes the subroutine PrintTable to be
invoked with the functions Square and Cube as parameters. The external statement,
line (2), is required to order that these names not be treated as simple variables in the

Functions and Subroutines 125

main program. The subroutine PrintTable prints a title, passed as the first parameter,
and then 11 lines of output, for each function. In this way, PrintTable displays first a
table of squares and then a table of cubes.

In a similar way, a subroutine name could be passed to another program unit. This
subroutine could then be invoked using the CALL statement.
E-13 Recursion

A function or subroutine is said to be active if the program unit has been invoked
and a corresponding END or RETURN statement has not yet been executed for that
program unit. Recursive activation occurs when a program unit is invoked and it is

already active.

Consider the following fragment of a program:

(1) K = Factorial(3)

) integer function Factorial(N)

3) ifN>1

) Factorial = N * Factorial(N-1)
() else

6) Factorial = 1

@) endif

(8) end

The function Factorial computes the factorial (the factorial of a positive integer is the
product of all positive integers less than or equal to the number in question) of the
number passed to it. This is accomplished by returning 1 when the argument value
does not exceed 1; otherwise, Factorial is recursively invoked to calculate the
factorial of the number one less and that result is multiplied by the number. The
following sequence of statements would be executed:

126 Chapter E

(1) invoke Factorial(3)
(2) Factorial(3)
(4) invoke Factorial(2)
(2) invoke Factorial(l)
(4) invoke Factorial(1)
(2) Factorial(1)
(6) Factorial = 1
(8) return 1
(4) Factorial =2 * 1
(8) return 2
(4) Factorial = 3 *2
(8) return 6
(1) XK=6

In the preceding diagram, indentation has been used to illustrate the levels of function
activation.

One consequence of recursion is that each time a function occurs to the right of
the assignment operation (=), the function will be used in an expression in the same
way a variable is used.

(1) integer function Factorial(N)

(@) Factorial = 1

©)] doi=1,N

(C)) Factorial = Factorial * N
) enddo

6) end

The preceding example would be diagnosed as containing an error in line (4) because
there is an incorrect number of parameters in the invocation of Factorial.

In a similar way, subroutines may be invoked recursively. It is permissible to
CALL a subroutine which is already activated.

The variables declared within a subroutine or function are local to the activation
of that program unit. Thus, when a program unit is recursively invoked, all local
variables are initially undefined. An assignment to one of these variables will have no
effect on the local variables of any other activation of a program unit.

Functions and Subroutines 127

E-14 EXTERNAL Statement

Syntax: EXTERNAL name, name, ..., name

The EXTERNAL statement is used to declare the names in the list as external
names (functions or subroutines). It may be used to declare any external name in this
way.

An EXTERNAL statement must be used to define names as external when the
names would otherwise be considered as local variables. Two situations in which this
may occur are:

(1) When passing a function or subroutine name as an argument to another
program unit.

(2) When invoking a function which does not require a parameter list.

E-15 Intrinsic Functions

The intrinsic functions are included to perform several common computations. If
a function or subroutine is defined in the program by the same name, then the defined
program unit is referenced, not the intrinsic function.

Intrinsic functions are not required to be given explicit types in the program units
in which they are referenced. Thus, the CHAR intrinsic function may be used without
explicitly giving it a type in a CHARACTER statement.

A brief description of the intrinsic functions is given below:

ABS(X)

This function returns, as a REAL value, the absolute value of the REAL argument
X.

ACOSX)

This function returns, as a REAL value, the trigonometric ARCCOSINE (in
radians) of the REAL argument X, where —1 < X < 1 and 0 < ACOS(X) < PI.

128 Chapter E

AINT(X)

This function returns a REAL value representing the integral portion of the REAL
argument X. This value is obtained by truncating the fraction part of X.

ALOG(X)

This function returns, as a REAL value, the natural logarithm of the REAL
argument X. The argument must be greater than zero.

ALOGI0(X)

This function returns, as a REAL value, the logarithm (base 10) of the REAL
argument X. The argument must be greater than zero.

AMAXO(1, 12, ..., IN)

This function returns, as a REAL value, the maximum of the INTEGER
arguments I1, 12, ..., IN.

AMAXI(X1,X2, ..., XN)

This function returns, as a REAL value, the maximum of the REAL arguments
X1, X2, ..., XN.

AMINO(1,12, ..., IN)

This function returns, as a REAL value, the minimum of the INTEGER
arguments I1, 12, ..., IN.

AMINI(X1,X2, ..., XN)

This function returns, as a REAL value, the minimum of the REAL arguments
X1, X2, ..., XN.

AMOD(X1, X2)

This function returns, as a REAL value, the REAL modulus of X1, modulo X2,
computed as X1 — INT(X1/X2) * X2, X2 cannot be zero.

Functions and Subroutines 129

ANINT(X)

This function returns a REAL value representing the nearest integer value to the
REAL argument X.

ASIN(X)

This function returns, as a REAL value, the trigonometric ARCSINE (in radians)
of the REAL argument X, where —1 < X < 1 and —(PI/2) < ASIN(X) < (P1/2).

ATAN(X)

This function returns, as a REAL value, the ARCTANGENT (in radians) of the
REAL argument X, where —(PI/2) < ATAN(X) < (PI/2).

CHAR(l)

This function returns, as a single character, the I-th character in the collating
sequence of the computer. I is an INTEGER argument.

CNVC2I(C)

This function returns, as an INTEGER value, the number represented in the
CHARACTER argument C.

CNVC2R(C)

This function returns, as a REAL value, the number represented in the
CHARACTER argument C.

CNVH2I(C)

This function returns, as an INTEGER value, the number represented in the
CHARACTER argument C, interpretted as containing hexadecimal digits.

CNVI2C({)
This function returns, as a CHARACTER string, a representation of the

INTEGER argument I. The format of the character string is identical to that produced
by a PRINT statement without a FORMAT specification.

130 Chapter E

CNVI2H(I)

This function returns, as a CHARACTER string, a representation (in hexadecimal
format) of the INTEGER argument I.

CNVR2C(X)

This function returns, as a CHARACTER string, a representation of the REAL
argument X. The format of the character string is identical to that produced by a
PRINT statement without a FORMAT specification.

COSX)

This function returns, as a REAL value, the trigonometric COSINE of the REAL
argument X, where X is expressed in radians.

COSHX)

This function returns, as a REAL value, the hyperbolic COSINE of the REAL
argument X.

DATE()

This function returns a character string which represents the current date. The
format of the character string is dependent upon the system (see System
Dependencies).

DIM(X1, X2)

This function returns, as a REAL value, the positive difference between the
REAL arguments X1 and X2: if X1 > X2, then (X1 — X2) is returned; otherwise, 0
is returned.

EXP(X)

This function returns, as a REAL value, the mathematical constant e raised to the
power X. X is a REAL argument.

FLOAT(I)

This function returns, as a REAL value, the INTEGER argument I.

Functions and Subroutines 131

IABS(I)

This function returns, as an INTEGER value, the absolute value of the INTEGER
argument I.

ICHAR(C)

This function returns, as an INTEGER value, the position in the collating
sequence of the CHARACTER argument.

IDIM(l1, I2)

This function returns, as an INTEGER value, the position difference between the
INTEGER arguments 11 and 12: if I1 > I2, then (I1 — I2) is returned; otherwise, 0 is
returned.

IFIX(X)

This function returns, as a INTEGER value, the REAL argument X.
INDEX(CI, C2)

This function returns an INTEGER value representing the position that the
CHARACTER argument C2 first occurs in the CHARACTER argument C1. If the
contents of C2 are not found anywhere in C1, zero is returned.

INT(X)

This function returns, as an INTEGER value, the REAL argument X.

ISIGN({1, I2)

This function returns, as an INTEGER value, the absolute value of the second
INTEGER argument with the sign of the first INTEGER argument.

LEN(C)
This function returns, as an INTEGER value, the length of the character string C.
LGE(CI, C2)

This function returns, as an INTEGER value, 1 when C1 is greater than or equal
to C2; otherwise, 0 is returned. C1 and C2 are CHARACTER arguments.

132 Chapter E

LGT(CI, C2)

This function returns, as an INTEGER value, 1 when C1 is greater than C2;
otherwise, 0 is returned. Cl and C2 are CHARACTER arguments.

LLE(CI, C2)

This function returns, as an INTEGER value, 1 when C1 is less than or equal to
C2; otherwise, 0 is returned. C1 and C2 are CHARACTER arguments.

LLT(CI, C2)

This function returns, as an INTEGER value, 1 when C1 is less than C2;
otherwise, 0 is returned. C1 and C2 are CHARACTER arguments.

MAXo0({1, 12, ..., IN)

This function returns, as a INTEGER value, the maximum of the INTEGER
arguments I1, 12, ..., IN.

MAXI(X1, X2, ..., XN)

This function returns, as an INTEGER value, the maximum of the REAL
arguments X1, X2, ..., XN.

MINO(1, 12, ..., IN)

This function returns, as an INTEGER value, the minimum of the INTEGER
arguments I1, 12, ..., IN,

MINI(X1, X2, ..., XN)

This function returns, as an INTEGER value, the minimum of the REAL values
X1, X2, ..., XN.

MOD(l1, I2)

This function returns, as an INTEGER value, the modulus of I1, modulo 12,
computed as I1—-(11/12) * 12. 12 cannot be zero. 11 and 12 are INTEGER arguments.

Functions and Subroutines 133

NINT(X)

This function returns an INTEGER value representing the nearest integer value to
the REAL argument X.

PEEKI(I)

This function returns, as an INTEGER value, the contents of one byte of memory
located by the value of the INTEGER argument 1.

PEEK2(I)

This function returns, as an INTEGER value, the contents of two consecutive
bytes of memory located by the value of the INTEGER argument I.

POKEI(1,12)

This function causes the value of the INTEGER argument I2 to be stored at the
one-byte memory location located by the value of the INTEGER argument I1. The
function returns an INTEGER value representing the previous contents of that
memory location.

POKE2(11, 12)

This function causes the value of the INTEGER argument I2 to be stored at the
two-byte memory location located by the value of the INTEGER argument I1. The
function returns an INTEGER value representing the previous contents of that
memory location.

RNDX)

This function returns, as a REAL value, a random value between 0 and 1. This
value is predictably calculated from the value of the REAL argument X, unless this
value is 0. When 0 is passed, an unpredictable random number is returned.

RPT(C,I)

This function returns, as a CHARACTER value, the string obtained by repeating
the first CHARACTER argument the number of times indicated by the second
INTEGER argument. The second argument must be non-negative; when it is zero, a
null string is returned.

134 Chapter E

SIGN(XI, X2)

This function returns, as a REAL value, the value of the second REAL argument
with the sign of the first REAL argument.

SINX)

This function returns, as a REAL value, the trigonometric SINE of the REAL
argument X, where X is in radians.

SINH(X)

This function returns, as a REAL value, the hyperbolic SINE of the REAL
argument X.

SLEEP(X)

This function causes the program to pause for a period of time determined by the
REAL argument X. When the program resumes execution, the function returns the
current time of day in the same manner as the TOD intrinsic function. The values of
the return value and of the argument depends upon the system (see System
Dependencies).

SORT(X)

This function returns, as a REAL value, the square root of the REAL argument X.
The argument must be greater than or equal to zero.

SUBSTR(C, 11,12)

This function returns, as a CHARACTER value, the string obtained from the
CHARACTER string C, starting at the position indicated by the second INTEGER
argument, for a length indicated by the third INTEGER argument. This function
differs from the substring operation in the following ways:

L] the argument C may be an expression

° because the argument I2 is a length, a null string may result

] when argument I2 is negative, it is treated as having a value zero

Functions and Subroutines 135

] when argument I1 is non-positive, it is treated as having a value one

] when argument I1 is larger than the length of the string C, it is treated as
having that value

SYS{,4,4, ..., A)

This function is used to invoke a user-written routine that is present outside of the
FORTRAN environment (see System Dependencies).

TANX)

This function returns, as a REAL value, the trigonometric TANGENT of the
REAL argument X, where X is expressed in radians.

TANHX)

This function returns, as a REAL value, the hyperbolic TANGENT of the REAL
argument X.

TIME()

This function returns a character string which represents the current time. The
format of the character string is dependent upon the system (see System
Dependencies).

TOD()

This function returns, as a REAL number, a value representing the current time.
The value which is returned is dependent upon the system (see System
Dependencies).

VARPTR(V)

This function returns, as an INTEGER value, the address of the argument V. The
argument must be an item which is capable of being assigned a value.

WARNING: The implementation of character strings permits the addresses of these
elements to change during the execution of a program. Consequently, the
use of this function with character data is not advised.

137

Chapter F

Input,Output

F-1 Introduction to Files

Data is transmitted to and from FORTRAN programs using files. A file is a
collection of records, where each record is a contiguous stream of characters. One
advantage of using files is that information can be processed one record at a time.
Another advantage is that several programs can access the same information when
that information is stored in a file. These programs could be written in different
languages. For these and other reasons, it is very common to store information in files
using diskettes or other media.

In FORTRAN, an OPEN statement is used to connect a file with a unit number.
This unit number is referenced in data-transmission statements (READ, WRITE and
PRINT) in order to transmit records of information to and from programs. When the
data transmission is complete, a CLOSE statement may be used to disconnect that file
from the unit. Strictly speaking, it is never necessary to open or close a unit, since
defaults apply for all options in these statements. In order to access particular files, it
is necessary to open a unit referencing that file.

Data occurs in FORTRAN programs in variables and arrays. This data is
transformed into records according to specifications in the program (formatted

138 Chapter F

input/output) using FORMAT or by using default specifications (list-directed
input/output). The following chapter describes FORMAT specifications.

The records in a file may be accessed in the order they were originally written
(sequential input/output) or may be accessed in any order (direct input/output) by
specifying the number of the record to be accessed. This topic is discussed in more
detail in following sections.

Because there is no guarantee that an input/output operation will always succeed,
there are various facilities available for error detection. These are described
subsequently.

F-2 Sequential Input/Output

The records in each file are stored consecutively in the order in which they are
originally written. When records are read (READ statement) sequentially, they are
encountered in this order, starting with the first one written. The REC option is never
used when reading or writing records sequentially.

F-3 Direct Input/Output

Direct input or output may be used on an existing file to read or write records in
any order. The REC option is used to specify the number of the record to be read. By
convention, this numbering starts with zero (0) for the first record originally written
on the file. Each additional record originally written has a number one larger than that
for the preceding record written for that file.

F-4 Error Handling

FORTRAN provides error-handling facilities in a number of ways. It is often
necessary to use these capabilities in production systems since there is always the
possibility of a hardware error. It is also convenient to use the error-detection
mechanisms in order to detect the end of files. The microFORTRAN system will
display error messages when an input/output error is detected, and no error facility is
specified to handle the error.

In order to detect the kind of input/output error which may occur, the IOSTAT
option can be used in the FORTRAN input/output statements. This option specifies
an INTEGER variable that is assigned a value which indicates the status of the
associated input/output operation. A value of zero indicates that the operation was

Input/Output 139

successful. Other values (see Input/Output Error Codes) are used to indicate the
various error conditions which may occur.

When reading a file, an attempt to read beyond the end of the file may be handled
by the END option. This option specifies the number of a statement to which control
is transferred when attempting to read beyond the end of the file. It should be noted
that an attempt to read beyond the end of a file is not treated as an input/output error.

An input/output error can be detected by using the ERR option. Like the END

option, a transfer to the statement, with the statement number indicated, will occur if
an input/output error occurs.

F-5 OPEN Statement

Syntax: OPEN (option, option, ..., option)

where option is one of:

(@ unit = int

(b)y file = char

(¢) access= char

(d recd = int

(e) iostat = variable

and "int” is an INTEGER expression and "char” is a character expression.

The OPEN statement is used to connect a file to a unit number. The UNIT option
must be specified. If it is the first option, it is necessary only to supply the INTEGER
expression giving the number of the unit.

The FILE option, if specified, indicates the name of the file (see File Names) to
be connected. If this option is not specified, the default file name "FTNx" is used,
where "x" is the character representation of the unit number. Thus, a reference to unit
8, without a FILE option, refers to a file named "FTN8". An exception to this rule is
the default file for units 5 and 6. These units are connected, by default, to the
terminal.

The ACCESS option is used to specify whether the file will be accessed
sequentially or directly. If omitted, it is assumed that the file will be accessed
sequentially. To specify sequential or direct access, the associated character

140 Chapter F

expression should be evaluated as either "SEQUENTIAL" or "DIRECT",
respectively.

The RECL option is used to specify the maximum size of a record which can
occur in the file. If omitted, the maximum size is assumed to be 80 characters.

The IOSTAT option is used to specify an INTEGER variable to which will be
assigned a value indicating the status of the OPEN operation.

F-6 CLOSE Statement

Syntax: CLOSE (unit=int)

where "int” is an INTEGER expression.
The CLOSE statement disconnects a unit number from a specific file. The

required UNIT option indicates which unit is to be disconnected. It is necessary only
to supply the expression specifying the unit to be disconnected.

F-7 READ Statement

Syntax: READ (option, ..., option) item, item, ... item
READ fmt-spec, item, item, ... item
or READ, item, item, ... item

where “option” is one of

(a) unit = int

(b) fmt = fmt-spec
(c) rec = int

(d err = stmnt

(¢) end = stmnt

(f) iostat = variable

and where

Input/Output 141

(@) "int" is an INTEGER expression
(b) "stmnt” is a statement number
(c) "variable” is a variable or array element
(d) "fmt-spec” is either the statement number of a
FORMAT statement, a CHARACTER expression or '*’

and where "item” is one of:

(a) a variable, array element, or array name

(b) alist (item, ..., item, var = exp, exp), or
a list (item, ..., item, var = exp, exp, exp) in
which "var” is a variable and "exp” is an expression

The READ statement is used to transmit data from a file to a FORTRAN
program. When the option list is not present, unit 5 (by default, the terminal) is used
for input and a line entered is treated as a record. Otherwise, the option list is used to
determine the unit to be referenced. The absence of an option list also causes
list-directed input to be used.

When an option list is present, the options have the following effect. If the UNIT
option is present, the associated INTEGER expression is used to determine the unit
number. When the FMT option is not present or specified as "*", list-directed input is
used. When the FMT option is present and not specified as "*", the input is converted
from its representation on a record and assigned to data items according to the
FORMAT specification. The FORMAT specifications are given either in the
associated CHARACTER expression or by the FORMAT statement with the
statement number given in the FMT option. When the REC option is omitted, the
next record to be read is the one following the one accessed in the last input/output
operation for that unit. When the REC option is given, the associated INTEGER
expression is evaluated and the resultant value is used as the number of the next
record to be read. The END, ERR and IOSTAT options are used to handle errors as
described previously in this chapter.

When the UNIT option is specified first, only the unit number need be specified.
When there are no items in this list, a record is read from the input file although no
transmission to variables occurs. When the UNIT option is first and the FMT option
is second, only the unit number and the FORMAT specification need be specified

read(unit=7,fmt=900)a,b,c
read(7,fmt=900)a,b,c,
read(7,900)a,b,c

The preceding READ statements are equivalent.

142 Chapter F

Following the optional options list is the list of items to which data is to be
transmitted. Data items to which data is transmitted are allowed to be any of the
following:

(a) simple variable: a data value is assigned to the variable

(b) substring operation with either a simple variable or an array element: the
indicated substring is assigned a character value

(c) array: assignment of values occurs as if the array elements were listed,
separated by commas, in the order in which they occur in the array (see
Array Storage)

Thus,

integer a(3,2)
read,a

is equivalent to

integer a(3,2)
read,a(1,1),a(2,1),a(3,1),a(1,2),a(2,2),a(3,2)

When a parenthesized list of the forms

(item, ..., item, var = exp, exp), or
(item, ..., item, var = exp, exp, exp)

is present, the list of items is processed a number of times, with the variable "var”
assigned values according to the manner described with DO loops. This is called an
implied DO.

read, (a(i), i= 4,7)
read, a(4), a(5), a(6), a(7)

The two preceding statements are equivalent. An array A with two dimensions N and
M may be read, by rows, with the following statement:

read, ((A(i,)),j=1,M),i=1,N)

Input/Output 143

List-directed Input:

List-directed input is used when the FMT option is not specified, or when it is
given as "*'. In this case, each record is treated as a number of zones, delimited by
commas and by the end of the record. As each item is processed in the input list, the
next zone is selected and its contents are used to determine the value to be assigned.
When another input item is to be processed, and all zones from a record have been
processed, the next record in the file is automatically read and used for input.

When a character item is to be assigned a value, the input zone is assigned to the
character item.

When a numeric item is to be assigned a value, the numeric value is interpreted in
the same way as if it were used in an assignment statement in the program.

Format-directed Input:

Format-directed input is used when the FMT option is specified and is not given
as '*'. In this case, the contents of the FORMAT string are used to direct the
conversion of values from the record to the input data items. These FORMAT items
are described in the following chapter.

144 Chapter F

F-8 PRINT and WRITE Statements

Syntax: WRITE (option,...,option) item, item, ..., item
PRINT fmt-spec, item, item, ..., item
PRINT, item, item,, item

where "option” is one of

(a) unit = int

(b) fmt = fmt-spec
(c) rec =int

(d) err = stmnt
(¢) end = stmnt
(f) iostat = variable

and where

(@ "int" is an INTEGER expression

(b) "stmnt’ is a statement number

(¢c) "variable” is a variable or array element

(d) "fmt-spec” is either the statement number of a FORMAT
statement, a CHARACTER expression or '*’

and where "item” is one of

(@) an expression

(b) alist (item, ..., item, var = exp, exp), or
a list (item, ..., item, var = exp, exp, €xp)
in which "var” is a variable and "exp” is an
expression

The PRINT statement is equivalent to a WRITE statement in which the options
list specifies unit 6 and an optional format specification. Consequently, only the
WRITE statement is described.

At least one option must be present in the options list for the WRITE statement. If
the UNIT option is not specified, then unit 6 (the terminal) is used; otherwise, the
associated INTEGER expression is used to determine the unit number. When the
FMT option is not present or is given as '*’, list-directed output is used. When the
option is present and not specified as '*’, the data values are converted from their
internal representation to the representation on a record according to the FORMAT

Input/Output 145

specification. The FORMAT specifications are given either in the associated
CHARACTER expression or by the FORMAT statement with the statement number
given in the FMT option. When the REC option is omitted, the next record to be
written is the one following the one accessed in the last input/output operation for that
unit. When the REC option is given, the associated INTEGER expression is
evaluated and the resultant value is used as the number of the next record to be
written. The END, ERR, and IOSTAT options are used to handle errors as described
previously in this chapter.

When the UNIT option is specified first, only the unit number need be specified.
When the UNIT option is first and the FMT option is second, only the unit number
and the FORMAT specification need be specified.

write(unit=9,fmt=1037)a,b

write(9,fmt=1037)a,b

write(9,1037)a,b
The preceding WRITE statements are equivalent.

Following the optional options list is the list of items to be transmitted. These
items are either expressions (the value is transmitted) or an array (the values of the
array elements, in order, are transmitted).

Thus,

integer a(3,2)
write(6) a

is equivalent to

integer a(3,2)
write(6) a(1,1),a(2,1),a(3,1),a(1,2),a(2,2),a(3,2)

When a parenthesized list of the forms

(item, ..., item, var = exp, exp), or
(item, ..., item, var = exp, exp, exp)

is present, the list of items is processed a number of times, with the variable "var”
assigned values according to the manner described with DO loops. This is called an
implied DO.

146 Chapter F

write(6) (a(i),i=4,7)
write(6) a(4),a(5),a(6),a(7)

The two preceding statements are equivalent. When no output items are specified, a
blank record is written.

List-directed Output:

Each record produced by list-directed output has a space character automatically
inserted in the first position. In this way, devices which support carriage control are
automatically supplied with an appropriate default value.

With list-directed output, the format of items on records is determined by the type
of value to be transmitted:

(a) CHARACTER data: the data is directly transferred to the record.

(b) INTEGER data: the number is converted to character format and transferred
to the record right-justified in a zone 6 characters wide.

©) REAL data: if the absolute value of the number is between 99999999 and
.00000001 then the number is converted to a fractional number with 8 digits
and transferred to a zone 10 characters wide. Otherwise, the number is
displayed in scientific notation with 8 significant digits in a zone 15
characters wide.

When the space remaining on a record is too small to contain the zone for an item, the
current record is transmitted to the file and a new record is constructed. Once all items
have been transmitted to a record, the record is written to the file. When there are no
items in the output list, a blank record is written to the file.

Format-directed Output:

Format-directed output proceeds as described with list-directed output, except
that the conversion of items to the record is according to the specifications in the
FORMAT given. In this way, the format of the records is controlled by the program,
rather than using the default formatting of list-directed output. When a record is
transmitted to a device with carriage control, the first character in the record is used as
the control character.

Input/Output 147

F-9 Carriage Control

The first character in an output record to be displayed on the terminal screen is
used for positioning purposes. It is not visible in the line displayed. The following
characters have the indicated effect:

" This causes the screen to be cleared and the associated line to be displayed
at the top of the screen.

This causes the associated line to be displayed at the position indicated by
the terminal cursor.

"0”" This causes a blank line to be displayed at the position indicated by the
terminal cursor, followed by the line to be displayed.

"4+" This causes the current record to be displayed one line upwards on the
screen from the position indicated by the cursor.

n This causes two blank lines to be displayed before the display of the
record.

When a line is written, the cursor is placed at the line following the displayed line.
When the line is written on the bottom row of the screen, the screen will "scroll”
upwards one line leaving the cursor positioned on the first position of the bottom row.
This bottom row will be blank.

When the PRINT or WRITE statement is executed with format-directed output,
the record contents (and consequently the first character in the record) are completely
determined by the program. When list-directed output is used, a space character is
appended as the first character in a record.

F-10 REWIND statement

Syntax: REWIND (unit = int)

where "int" is an INTEGER expression indicating the unit to be accessed.

This statement causes the positioning of a file to be as it was when the file was
first opened. Thus, the next record to be read sequentially from the file will be the
first record and the next record written will be the first record.

149

Chapter G

Format

G-1 Introduction

Format specifications are used to control the transmission of data in READ,
WRITE and PRINT statements. The FMT option specifies either a CHARACTER
expression or the statement number of 2 FORMAT statement in which the format
specification is given. For example,

I=5

PRINT 20,I,I*I
20 FORMAT(14,15)

END

would cause the following line to be transmitted
bbb5bbb25
where a "b"” indicates the space character. The format directives I4 and IS5 specify that

an INTEGER value is to be displayed in a zone four and five characters wide,
respectively. The program could have been written equivalently as:

150 Chapter G

I=5
PRINT "I4,15",1,1*1
END

This program differs from the preceding example in that the format specification is
given by a CHARACTER expression.

In general, the format specification is processed an item at a time, from left to
right. When a data-transmission item (A,LF,E) is encountered, the next item in the
input/output list causes data to be transmitted.

(a) InaREAD statement, the data-transmission item causes the information in
the zone of the record specified by the data-transmission item to be
transmitted to the input item.

(b) In a WRITE or PRINT statement, the value of the output item is
transmitted to a zone of the record in a format specified by the
data-transmission item.

When a data-transmission item is encountered and no more input/output items are
present in the input/output statement, the processing of the format specifications is
complete. Similarly, if the end of the format specification is encountered and no more
input/output items are present, the processing of format specifications is complete. At
the completion of processing of the format specification, the current record is
transmitted to the file when a WRITE or PRINT statement is being executed.

When the end of a format specification is encountered and more input/ output
items remain to be processed, the next record is obtained:

(a) the next record is read in a READ statement
(b) the current record is written in a PRINT or WRITE
statement

The next record is then processed, starting at the beginning of the record. The format
specification is then reused according to the rules described in a formatting section
(see FORMAT, Reuse).

The next record in a file may also be read or written if there is insufficient space in
the current record for the zone associated with a format item. In this case, the next
record is then processed, starting at the beginning of it and the processing of the
format list continues.

Format 151

It is an error for a format item to specify a zone larger than the length of a record.
On input, the input record read must be at least as large as the zone for the format
item; on output, the maximum record size for the file must be as large as the zone.

G-2 FORMAT Statement

Syntax: number FORMAT (format-specification)

Each FORMAT statement contains a format specification enclosed in parentheses.
The statement must have a statement number before the FORMAT keyword. The
format specification is detailed in the following sections.

G-3 Format Specifications Generally

In its simplest form, a format specification is a list of format items separated by
commas:

10 format(4x, 3i2, £7.3)
20 format(’ PAGE', I3)

The items cause one of the following to occur

(a) data to be transmitted to or from a record
(b) data to be inserted or skipped on a record
(¢) arecord to be written or read

Some items may be preceded by a repetition factor, in which case the format
specification is treated as if the item occurred as many times as given by the repetition
factor. Thus, 3i2 is equivalent to writing i2,i2,i2.

An item can also be a parenthesized list of items, optionally preceded by a
repetition factor. The following FORMAT statements are equivalent (except for reuse
of format):

10 format(3x,2(13,4X))
10 format(3x,13,4X,13,4X)

Thus, one use of a parenthesized list is to compactly specify repeated format. It is
possible to imbed a parenthesized list as an item in a parenthesized list.

152 Chapter G

Reuse of format

When the end of a format specification is encountered and more input/output
items exist in the READ, WRITE or PRINT statement being executed, the format
specification is reused. When no parenthesized lists exist within the format
specification, the entire format specification is reused. Otherwise, the following rules
are used to locate the point in the format specification where it is re-used.

(1) The last closing parenthesis in the format specification is located (this does
not include the enclosing parentheses in a FORMAT statement).

(2) The matching open parenthesis is then located.

(3) Processing of the format specification continues with the parenthesized list
located. If a repetition factor exists for that list, it is also processed.

Consider the following format specification:
i8,2(5X,14),3(5X,4(12,2X)),i2

The format specification is reused at the character "3".

G-4 Data Transmission Items

The following items are used to cause data to be transmitted either from a record
(READ) or to a record (WRITE and PRINT).

@) A or a : transmit CHARACTER data
(ii) I ori: transmit INTEGER data
(iii) F or f : transmit REAL data (fixed format)

@iv) E or e : transmit REAL data (scientific format)

These are described in the following subsections.

Format 153

A-Format
Syntax: TA
or A
or TrAn
or An

where "r" (repetition factor) and “n” (length) are integer constants.

A repetition factor of one is used when the repetition factor is not specified. A
Iength of one is used when "n” is not specified, a READ statement is being processed,
and the CHARACTER element is undefined; otherwise the length to be transmitted is
the length of the CHARACTER item.

When a PRINT or WRITE statement is being executed, the A format item causes
the contents of the associated CHARACTER value to be transmitted directly to the
record. When the length is less than the length of the CHARACTER value, it is
truncated to the proper size. Space characters are concatenated to the value when the
size of the value is smaller than the indicated length.

When a READ statement is executed, the associated input item is assigned a
CHARACTER value obtained by extracting the indicated number of characters from
the record.

I-Format

Syntax: rIn
or In

where " (repetition factor) and "n” (Iength) are integer constants.

A repetition factor of one is used when the repetition factor is not specified. The
Iength must always be specified.

When a WRITE or PRINT statement is being executed, the value of the
associated INTEGER input/output item is converted to a character string of size "n".
This string is transmitted to the record. When the converted character string exceeds

the length "n", "n" asterisks (*) are transmitted.

154 Chapter G

When a READ statement is being executed, "n” characters on the input record are
treated as an INTEGER constant whose value is assigned to the associated input item.
A conversion error will result when these "n” characters are not a valid INTEGER
constant. Any space characters in the zone are treated as if these characters were '0’
digits.

F-Format

Syntax: rFw.d
or Fw.d

where “r” (repetition factor), "w” (width) and "d” (decimal places) are integer
constants.

A repetition factor of one is used when the repetition is not specified. The width
and number of decimal places must always be specified. The width must exceed the
number of decimal places on output and must not be less than the number of decimal
places on input.

On input, the width establishes a zone in the record. When the zone consists only
of space characters, the value of the number to be transmitted is zero. Otherwise, the
leading space characters in the zone are ignored. In the following description, it will
be assumed that there are no leading space characters in the zone. Once a non-space
character has been encountered, all successive space characters are treated as zero
digits.

The zone may be considered to be given in two parts: a mantissa (real value)
followed by an exponent. The optional exponent part begins with one of the
characters e, E, + or -. When none of these are present, the zone consists only of a
mantissa. The mantissa portion consists of an optional sign followed by a sequence of
digits in which a single decimal point may be embedded. When the decimal point is
present, the fractional part of the number is established by the decimal point. When
the decimal point is not present, the right-most “d” digits in the mantissa position are
considered fractional. Leading zeros are added to the left when less than "d” digits are
present in the mantissa.

The exponent part consists of an optional "e” or "E” followed by an optionally
signed INTEGER constant. When the exponent portion is present, the value to be
transmitted is the value of the mantissa, multiplied by ten raised to the power of the
INTEGER constant.

Format 155

The following examples, for F8.4 format, illustrate how various input zones are
interpretted to produce values ("b” stands for a space character).

zone value
bbbbbbbb 0
12345678 1234.5678
bb345678 34.5678
bb3bbb7b 30.007
b-bb5678 -.5678
bb34E+02 34
bb34E+1b 34000000
b-3bb-bl -.003

On output, the number is printed right-justified in the zone with a decimal point
preceding the decimal places indicated. Leading space characters are inserted if the
printed number is shorter than the zone. When the number is negative, it is preceded
by a minus sign (-). When there is insufficient space to display the number, the zone
is filled with asterisk (*) characters.

E-Format

Syntax: rEw.d
or Ewd

where "r" (repetition factor), "w” (width), and “d” (number of decimal places) are
integer constants.

A repetition factor of one is used when the repetition factor is not specified. The
width of the field and the number of decimal places must always be given. The width
must exceed the number of decimal places on output and must not be less than the
number of decimal places on input.

On input, the data value to be transmitted is obtained in the manner described in
F-Format.

On output, the number is printed in the zone in scientific format "w” characters
long with “d” decimal places and the exponent (including the E) given in four places.
If the number is negative, a minus sign (-) precedes the number. When there is
insufficient space to display the number, the zone is filled with asterisk (*) characters.

156 Chapter G

G-5 Insertion Items

The insertion directives cause data to be inserted into an output record or cause
data to be skipped on an input record. In the input case, the length of the format item
determines the number of characters skipped. The following subsections describe
only the output formatting.

X-Format

Syntax: X

where "r" (repetition factor) is an integer constant. A repetition factor must be
specified.

This format item causes the processing position in the record to be advanced one
position. The position advanced past has a space character inserted if the position has
not yet been filled.

Character Constant

Syntax: .

or " ”

where the periods (.) indicate the contents of the character constant.

This format item causes the CHARACTER constant to be inserted into the output
record.

T-Format

Syntax: Tp

where "p” (position) is an integer constant.

This format item causes the current processing position of the record to be "p”.

n_in

This causes spaces to be inserted if "p" positions have not yet been filled on an output
record.

Format 157

TL-Format

Syntax: TLp

where "p” (position) is an integer constant.

This format item causes the current processing position of the record to be "p”
characters to the left of the current position. On input, this enables part of the current
record to be reprocessed. On output, this may cause characters already transmitted to
be replaced. An attempt to advance beyond the first position of the record causes the
first position in the record to become the current processing position.

TR-Format

Syntax: TRp

where "p” (position) is an INTEGER constant.

This format item causes the current processing position of the record to be “p”
characters to the right of the current position. On input, this enables part of the current
record to be skipped. On output, space characters are inserted in positions to which
data has not yet been transmitted. The last position in the record becomes the current
processing position when an attempt is made to tab beyond the record.

G-6 Other Items

These items affect the transmission of data values to and from records. It is not
necessary to separate them from other format items with comma (,) characters.

| format item
On input, this item causes the next record in the file to be read and processing to

continue at the start of the new record. On output, the current record is written and
processing of the next record in the file commences.

158 Chapter G

: format item

The processing of the format specifications for READ, WRITE, or PRINT
statement is completed when this item is encountered and no more items remain to be
processed in the current input/output list.

Notes

161

Chapter H

Miscellaneous Statements

H-1 Introduction

This chapter describes several miscellaneous statements which are not described
elsewhere.

H-2 END Statement

Syntax: END

The END statement is used to mark the end of a program unit (main program,
function or subroutine). It must be the last statement in each program unit.

When an END statement is encountered while executing the main program,
execution of the program terminates. When an END statement is encountered in a
function or subroutine, control is returned to the program unit which invoked the
function or subroutine in question.

162 Chapter H

H-3 STOP Statement

Syntax: STOP

The execution of a STOP statement causes the execution of the program to terminate.

H-4 PAUSE Statement

Syntax: PAUSE

The execution of a PAUSE statement causes the execution of a program to be
suspended and the FORTRAN Debugger to be activated (see Debugging). When the
debugging command CONTINUE is issued, program execution will continue with
the statement following the PAUSE statement in question.

H-5 GOTO Statement

Syntax: GOTO stmnt
or GO TO stmnt

The execution of a GOTO statement causes control to be transferred to the
statement (the target statement) with the statement number indicated in the GOTO
statement. The target statement must be present in the same program unit as the
GOTO statement. It is illegal for the target statement to be located in a structured
loop, DO-loop, IF-group, GUESS-group or remote block in which the GOTO
statement is not also found. It is legal to transfer control from one of these structures
to a target statement outside the bounds of the structure.

Miscellaneous Statements 163

H-6 Computed GOTO Statement

Syntax: GOTO (number, ..., number), expression
GOTO (number, ..., number) expression
GO TO (number, ..., number), expression
GO TO (number, ..., number) expression

The computed GOTO statement specifies a parenthesized list of statement
numbers, followed by a numeric expression. The execution of this statement causes
the expression to be evaluated. When the result is REAL it is truncated to be an
INTEGER value. When the result is non-positive or larger than the number of
statement numbers in the list, control continues at the statement following the
computed GOTO statement. Otherwise, control continues at the statement indicated
by the K-th statement number in the list, where K is the result of the evaluation of the
expression.

The target statements must all be present in the same program unit. It is illegal for
a target statement to be located in a structured loop, DO-loop, IF-group,
GUESS-block, or remote block, unless the IF statement is also contained in that
structure. It is legal to transfer control from one of these structures to a target
staternent outside the bounds of the structure, except in the case of a remote block.

H-7 RETURN Statement

Syntax: RETURN

The execution of a RETURN statement causes control to be returned from the
current program unit to the program unit which invoked the current program unit. It is
illegal to execute a RETURN statement in the main program.

164 Chapter H

H-8 Logical IF Statement

Syntax: IF (expression) THEN statement
IF (expression) statement

The execution of this statement causes the parenthesized expression to be
evaluated. When the result is false (zero), execution continues with the statement
following the IF statement. When the result is true (non-zero), the statement
following the optional THEN keyword is executed and then execution continues with
the statement following the IF statement. The statement following the IF statement
must be executable and cannot be any of the following statements; IF, FORMAT,
END, INTEGER, REAL, CHARACTER, EXTERNAL, LOOP, WHILE, DO,
GUESS, ELSE, ELSEIF, ADMIT, ENDIF, ENDLOOP, UNTIL, ENDGUESS,
QUITIF, SUBROUTINE, FUNCTION, REMOTE BLOCK or END BLOCK.

H-9 Arithmetic IF statement

Syntax: IF (expression) number, number, number

The arithmetic IF statement contains a parenthesized numeric expression,
followed by three statement numbers. The execution of the statement causes the
expression to be evaluated. When the result is negative, control is passed to the
statement at the first statement number; when the result is zero, control is passed to
the statement at the second statement number; and, when the result is positive, control
is passed to the statement at the third statement number.

The target statements must all be present in the same program unit. It is illegal for
a target statement to be located in a structured loop, DO-loop, IF-group,
GUESS-block, or remote block, unless the IF statement is also contained in that
structure. It is legal to transfer control from one of these structures to a target
statement outside the bounds of the structure, except for a remote block.

Miscellaneous Statements 165

H-10 DO Statement

Syntax: DO stmnt var = expr, expr
or DO stmnt var = expr, expr, eXpr
.... body of DO loop
stmnt Statement

where "expr” is a numeric expression, "var” is a simple (unsubscripted) variable and
"stmnt” is a statement number.

The DO is similar to a structured DO loop (see DO loop, structured), except for
the manner in which the body of the loop is specified. The DO statement specifies a
statement number giving the last statement in the loop. In the structured case, the
ENDDO keyword is used to make the end of the loop. In all other manners, the DO is
equivalent to the structured DO.

It should be noted that this definition of a DO statement is different from those
found in earlier versions of FORTRAN, e.g., FORTRAN IV. Noteably, the body of
the DO in FORTRAN IV was always executed at least once; in Waterloo
microFORTRAN and FORTRAN-77 the body may not be executed as the
termination criteria are tested prior to executing the loop for the first time.

The statement referenced by the DO statement may not be one of the following
statements: structured IF, ELSEIF, ELSE, ENDIF, LOOP, WHILE, ENDLOOP,
UNTIL, GUESS, ADMIT, ENDGUESS, DO, PROGRAM, FORMAT,
SUBROUTINE, FUNCTION, INTEGER, REAL, CHARACTER, EXTERNAL.
The structured statements QUITIF and QUIT may be used in DO loops in the same
way as they are used in structured loops.

Several nested DO-loops may apparently terminate in the same statement by all
specifying the same statement number. In this case, the statement actually is part of
only the innermost loop. Another iteration of the outer loop occurs when the adjacent
inner loop completes. As a consequence of this situation, it is illegal to use a GOTO
statement to transfer control to the statement at the end of the loop, unless the GOTO
is located in the innermost loop.

166 Chapter H

H-11 CONTINUE statement

Syntax: CONTINUE

This statement has no effect on the execution of a program. It is commonly used,
in conjunction with a statement number, as the last statement in a DO loop.

167

Chapter I

FORTRAN Debugger

1-1 Introduction

Most programs have errors embedded within them when they are first entered into
the computer. Sometimes these errors are logic errors introduced by the programmer;
in other cases, the errors are clerical in nature and caused by incorrectly entering a
program. Such errors are commonly termed “bugs” and the process by which they are
removed is often called "debugging”. The purpose of the FORTRAN Debugger is to
facilitate the removal of these bugs.

The Debugger is a subsystem which is invoked whenever an error is encountered
during the program execution, when a PAUSE statement is executed or when the
"RUN STOP” key is depressed. The facilities of the Debugger can then be used to
inspect contents of variables, test program units, continue or retry execution, or
terminate execution completely and return to the editing subsystem.

The following sections describe the various commands which can be issued in the
Debugger. All commands are entered as a single letter; for example, the CONTINUE
command is entered as the letter "c”.

168 Chapter 1

I-2 CONTINUE (¢)

The CONTINUE command causes the execution of the program to continue.
When the Debugger was entered by executing a PAUSE statement, execution
continues following that PAUSE statement. When an error caused the Debugger to be
entered, the CONTINUE command will cause execution to resume at the statement in
which the error was detected.

I3 QUIT ()

The QUIT command causes execution to be terminated and the editing subsystem
to be invoked.

1-4 EXECUTE (e)

Syntax: e statement

This command causes a FORTRAN statement to be executed, as if that statement
were inserted into the program (followed by a PAUSE statement) immediately before
the statement which caused the Debugger to be invoked. The following statements
may be executed in this way: OPEN, CLOSE, PRINT, READ, WRITE, REWIND,
GOTO, EXECUTE, CALL and assignment. The specified statement cannot have a
statement number preceding it. The successful execution of a GOTO statement causes
the Debugger to be terminated and execution to continue normally at the target
statement.

This statement has many powerful uses when debugging programs. For example,
the contents of variables may be inspected by executing a PRINT statement:

e print,Xx,y

The preceding example will cause the contents of variables x and y to be displayed. A
subroutine may be tested by executing a CALL statement and a function may be
invoked by executing a function reference in an expression. In these ways, it is often
possible to quickly determine the causes of errors.

Sometimes the error may be temporarily corrected by executing a statement. For
example, an attempt to use an undefined value might be corrected by executing an
assignment statement placing the correct value in appropriate data item. In other

FORTRAN Debugger 169

cases, the Debugger should be terminated (see QUIT command) and the program
should be changed and re-executed.

It is possible that an error may arise while executing a statement with the
EXECUTE command. In this case, the error is diagnosed and the state of the
Debugger is returned to the environment that existed before the execution of the
statement from the Debugger. Thus, the suspended statement is the one at which the
Debugger was originally invoked.

The implementation of Waterloo microFORTRAN prohibits the introduction of a
symbol name not already used in the program. When an attempt to use a new name
occurs, an error message diagnosing the attempt is displayed.

I-5 WHERE-AM-I (w)

When the Debugger is entered, the statement that caused the entry is displayed.
The WHERE command is used to obtain a display of the program units that are
currently active. In this way, the flow of control can be analyzed to determine where
and how the indicated statement was encountered.

I-6 STEP (s)

This command causes the program to execute the single statement at which the
Debugger has suspended execution. Depressing the RETURN key another time
causes the next statement to execute. In some implementations, keeping the
RETURN key depressed causes the program to execute with each line to be executed
displayed immediately before it is executed. In this way, the flow of control may be
precisely viewed.

171

Chapter J

System Dependencies

J-1 Introduction

Broadly speaking, system dependencies are introduced by the hardware used to
execute a FORTRAN program and by the system programs (for example, a file
system) used by the FORTRAN processors. Thus, the precision and the maximum or
minimum magnitude of numeric quantities may vary from computer to computer.
Similarly, the format of file names may be different on various systems. In this
chapter, these system dependencies arc outlined.

J-2 System Dependencies for Commodore SuperPET

This section deals with the system dependencies for the Commodore SuperPET
computer.
REAL Numbers

REAL numbers are represented internally in five bytes, the first of which contains
a sign and the exponent. The latter four bytes are the binary fraction (normalized).

172 Chapter J

This representation permits approximately nine digits of accuracy and allows
non-zero positive numbers to fall in the approximate range 10**-38 to 10**38.

INTEGER Numbers

INTEGER numbers are represented internally in two bytes. This representation
permits integer values in the range -32768 to 32767.

File Names

For a description of file names and devices attached to the Commodore SuperPET
see the System Overview Manual.

ERROR CODES

The following error codes are placed in the INTEGER variable in the IOSTAT
option associated with input/output statements.

code meaning

0 operation was successful
2 end of file recognized
3 input/output error

SYS Intrinsic Function

The SYS intrinsic function may have from one to nine arguments. The first,
mandatory argument must be an INTEGER value which is the address of a routine to
be invoked. The other arguments are passed to the invoked routine as arguments in
the following manner:

(a) INTEGER arguments are passed as two-byte integers.

®) REAL arguments are copied to a temporary memory location and the address
of the memory location is passed.

©) CHARACTER arguments are copied to a temporary memory location, an
extra character with hexadecimal value O is appended to the string, and the
address of the memory location is passed.

()] All other arguments are illegal. The arguments to be passed to the invoked
routine are pushed on the the stack, in order, starting with the last and
proceeding to the second. The first argument to be passed is loaded into the

System Dependencies 173
A and B registers of the Motorola 6809.
When the invoked routine returns to the mcroFORTRAN system, the contents of

the A and B registers are returned to the program as an INTEGER value.

These conventions are compatible with the Waterloo Library. The library is
described in the manual for the 6809 Assembler.

TIME Intrinsic Function

This function returns a character string in the format "HH:MM:SS.SS" to
represent the hours (HH), minutes (MM) and sixtieths of a second (SS.SS) of the
current time.

DATE Intrinsic Function

The format of the character string returned by this function is identical to that
entered using the DATE command in the Waterloo microEditor.

TOD and SLEEP Intrinsic Functions

The REAL values used as arguments and return values in these functions
represent times in 60-ths of a second.

J-3 System Dependencies for VM/CMS:

This section deals with the system dependencies for the IBM VM/CMS operating
system.

REAL Numbers

REAL numbers are represented internally in eight bytes, the first of which
contains a sign and an exponent. The latter seven bytes consist of the hexadecimal
fraction. This representation permits approximately fourteen digits of accuracy and
allows non-zero positive numbers in the approximate range 10**-76 to 10**76.

INTEGER Numbers

INTEGER numbers are represented internally in two bytes. This representation
permits integer values in the range -32768 to 32767.

174 Chapter J

File Names
A file name is given as
name type mode (option option)

where "name” is required and "type” and "mode” are optional. "Name” and "type” may
be arbitrary 8-character names and "mode” is a two-character specification (default is
"A1"). Any CMS option for the file may be specified. The most useful are:

¢} RECFM is used to specify the format of the file. A type F is fixed format, a
type V is variable format, and a type A means that ASA control characters
are contained on each record. Records are stored with varying lengths in
V-format files.

2) LRECL is used to specify the logical record length. For V-Format files, this
attribute defines the maximum record length.

Some examples of file names are:

MYFILE
MYFILE DATA Al (RECFM F LRECL 100)
MYFILE DATA A2 (RECFM FA)

Index

ACCESS option, 139
addition, 79
ADMIT
statement, 97
AND, 80
argument, 115
array, 120
array element, 123
expression, 119
function, 124
simple variable, 118
subroutine, 124
substring, 119, 124
arithmetic IF, 164
array, 107
defining, 108
dimension, 108

input, 142
order, 110
output, 145

subscript, 109
assignment statement, 72

block
identifier, 96
remote, 101

carriage control, 146
CHARACTER
constant, 76
data, 73,76
statement, 74, 108, 118
substring, 81, 110
CLOSE
statement, 140
comment statement, 71
comparison, 79-80
computed GOTO, 163
concatenation, 80
conditions, 86
constant, 75-76
CHARACTER, 76
INTEGER, 75

175

REAL, 75
CONTINUE

statement, 166
continued statement, 71
control execution, 85

data
CHARACTER, 76
INTEGER, 75, 172-173
numeric, 74
REAL, 74, 171, 173
transmission, 137, 141, 144
data type, 73
debugging, 167
default type, 73
direct
input, 138
output, 138
division, 78
DO
implied, 142, 145
loop, 165
nesting, 165
statement, 165
DO loop, 90
structured, 90

ELSE

statement, 91
ELSEIF

statement, 91
END

statement, 71, 114-115, 117,

161

END option, 139-140, 144
ENDGUESS

statement, 97
ENDIF

statement, 91
ENDLOOP

statement, 87
ERR option, 139-140, 144
error

176

codes, 172

file, 138
errors, 167
EXECUTE

statement, 102
execution

interrupting, 83
exponentiation, 78
expression, 76

example, 82
EXTERNAL

statement, 127

file, 137
connection, 139-140
name, 172,174

FILE option, 139

FMT option, 140, 144

FORMAT, 149
/, 157
:, 158
A, 153
constant, 156
E, 155
F, 154
I, 153
repetition, 151
reuse, 150-151
statement, 151
T, 156
TL, 156
TR, 157
X, 156

format-directed
input, 149
output, 143, 146, 149

function, 113, 116
ABS, 127
ACOS, 127
AINT, 128
ALOG, 128
ALOGI10, 128
AMAXO0, 128

Index

AMAXI1, 128
AMINO, 128
AMINI1, 128
AMOD, 128
ANINT, 129
ASIN, 129
ATAN, 129
CHAR, 129
CNVC2I, 129
CNVC2R, 129
CNVH2I, 129
CNVI2C, 129
CNVI2H, 130
CNVR2C, 130
COSs, 130
COSH, 130
DATE, 130, 173
DIM, 130
EXP, 130
FLOAT, 130
IABS, 131
ICHAR, 131
IDIM, 131
IFIX, 131
INDEX, 131
INT, 131
intrinsic, 114, 127
ISIGN, 131
LEN, 131
LGE, 131
LGT, 132
LLE, 132
LLT, 132
MAXO0, 132
MAX1, 132
MINO, 132
MIN1, 132
MOD, 132
NINT, 133
PEEK1, 133
PEEK2, 133
POKE1, 133
POKE2, 133

RND, 133
RPT, 133
SIGN, 134
SIN, 134
SINH, 134
SLEEP, 134, 173
SQRT, 134
statement, 117
SUBSTR, 134
SYS, 135,172
TAN, 135
TANH, 135
TIME, 135,173
TOD, 135,173
VARPTR, 135

GOTO
computed, 163
statement, 104, 162-163
GUESS
block, 97
statement, 97

arithmetic, 164

group, 92

logical, 164

statement, 91, 164

structured, 91
implied DO, 142, 145
infinite loop, 83
input, 137, 141

array, 142

direct, 138

€error, 138

sequential, 138
INTEGER

data, 73, 75, 172-173

statement, 74, 108, 118
intrinsic

function, 114, 127
IOSTAT option, 138, 140, 144

Index

177

keyword, 73

list-directed
input, 143
output, 146

loop, 87,90
DO, 165
statement, 87
UNTIL, 87
WHILE, 87

main program, 113-114
matrix, 107
multiplication, 78

nesting, 165
nesting block, 94
NOT, 81

null line, 71
null string, 76
numeric data, 74

OPEN
statement, 139

operators, 76

OR, 80

output, 137, 144
array, 145
direct, 138
error, 138
format-directed, 146
list-directed, 146
sequential, 138

parameters, 115
PAUSE

statement, 162
PRINT

statement, 144, 150
priority, 76
PROGRAM

statement, 114
program unit, 113

178

QUIT

statement, 95, 97
QUITIF

statement, 95
READ

statement, 140, 150
REAL

constant, 75

data, 73-74, 171, 173

statement, 74, 108, 118
REC option, 140, 144
RECL option, 140
record, 137
recursion, 104, 125
remote block, 101, 103
reserved word, 73
RETURN

statement,
REWIND

statement, 147
RUN STOP, 83

163

scientific notation, 75

sequential
input, 138
output, 138

spaces, 70

statement
ADMIT, 97

assignment, 72
CHARACTER, 74, 108, 118
CLOSE, 140

comment, 71
CONTINUE, 166
continued, 71

DO, 165

ELSE, 91

ELSEIF, 91

END, 114-115, 117, 161
ENDGUESS, 97
ENDIF, 91
ENDLOOP, 87

Index

EXECUTE, 102
EXTERNAL, 127
FORMAT, 151
FUNCTION, 117
GOTO, 104, 162-163
GUESS, 97
IF, 91, 164
INTEGER, 74, 108, 118
LOOP, 87
null, 71
OPEN, 139
PAUSE, 162
PRINT, 144, 150
PROGRAM, 114
QUIT, 95,97
QUITIF, 95
READ, 140, 150
REAL, 74, 108, 118
RETURN, 163
REWIND, 147
STOP, 161
SUBROUTINE, 115
UNTIL, 87
WHILE, 87
WRITE, 144, 150
STOP
statement,
storage
order,
structured
DO loop, 90
IF, 91
structured IF, 91
subroutine, 113, 115
statement, 115
subscript, 109
substring, 81, 110, 134
assignment, 81
subtraction, 79
System
dependencies, 171
system dependencies
Commodore

161

110

SuperPET, 171

type
default, 73

unary minus, 79

unary plus, 79
undefined

variable, 113

undefined value, 73
UNIT option, 139-140, 144

UNTIL
statement,

87

Index

value
undefined, 73
variable, 73
variable
name, 72
undefined, 73, 113

WHILE
loop, 87
statement, 87
WRITE

statement, 144, 150

179

Commodore Magazine

This bi-monthly magazine, published by Commodore, provides a vehicle for sharing the
latest product information on Commodore systems, programming techniques, hardware
interfacing, and applications for the CBM, PET, SuperPET, and VIC Systems. Each issue
contains user application features, columns by leading experts, the latest news on user
clubs, a question/answer hotline column, and reviews of the latest books and software.

The subscription fee is $15.00 for six issues per year within the U.S. and its possessions,
and $25.00 for Canada and Mexico. Make checks payable to COMMODORE BUSINESS
MACHINES, and send to:

Editor, Commodore Magazine
Commodore Business Machines, inc.
681 Moore Road

King of Prussia, PA 19406

The Transactor

The Transactor, which is a monthly publication of Commodore-Canada, is primarily a
technical periodical, containing pertinent hardware and software information for the
CBM, PET, VIC, and SuperPET systems. Each issue features product reviews, hardware
and software evaluations, and programming tips from the finest technical experts on
Commodore products. Additionally, The Transactor contains general information such
as product updates and trade show reports.

The subscription fee is $10.00 for six issues within Canada and the United States, and
$13.00 for all foreign countries. Make checks payable to COMMODORE BUSINESS
MACHINES, INC. and send to:

Editor, The Transactor
Commodore Business Machines, inc.
3370 Pharmacy Avenue
Agincourt, Ontario, Canada M1W 2K4

Waterloo microFORTRAN is a dialect of FORTRAN designed to
be used in research and educational environments. The language
includes many of the features of FORTRAN-77, augmented with
extensions to facilitate programming. Some important aspects of the
system include:

B INTEGER, REAL and CHARACTER data types are
supported

B CHARACTER data type is more extensive than that specified
in FORTRAN-77

B Names are not restricted to six characters; both upper- and
lower-case letters may be used in names

B An extensive collection of Structured Programming statements
has been added; they are modelled after those used in the
WATFIV-S compiler

W Statements may be entered without regard to columns

B An interactive debugging facility is available

B Sequential and random-access input/ output is supported
B Anextensive FORMAT capability has been implemented
|

The capability to access files on large main-frame computers is
an integral part of the system

B A full-screen editor may be used to enter and update programs

This book is divided into two major components:

B A collection of tutorial examples may be used to obtain the
“flavor™ of the language.

B The reference manual provides the comprehensive details of
the language

DISTRIBUTED BY
Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

$10.95/21904 ISBN: 0-672-21904-2

