
FLTK 1.3.0 Programming Manual

Revision 9 by F. Costantini, D. Gibson, M. Melcher,
A. Schlosser, B. Spitzak and M. Sweet.

Copyright 1998-2009 by Bill Spitzak and others.

Generated by Doxygen 1.5.7.1

April 11, 2010

Contents

1 FLTK Programming Manual 1

2 Preface 3

2.1 Organization . 4

2.2 Conventions . 5

2.3 Abbreviations . 5

2.4 Copyrights and Trademarks . 5

3 Introduction to FLTK 7

3.1 History of FLTK . 8

3.2 Features . 8

3.3 Licensing . 9

3.4 What Does "FLTK" Mean? . 9

3.5 Building and Installing FLTK Under UNIX and MacOS X 10

3.6 Building FLTK Under Microsoft Windows . 11

3.7 Building FLTK Under OS/2 . 12

3.8 Internet Resources . 12

3.9 Reporting Bugs . 13

4 FLTK Basics 15

4.1 Writing Your First FLTK Program . 16

4.2 Compiling Programs with Standard Compilers . 18

4.3 Compiling Programs with Makefiles . 19

4.4 Compiling Programs with Microsoft Visual C++ . 20

4.5 Naming . 20

4.6 Header Files . 20

5 Common Widgets and Attributes 23

5.1 Buttons . 24

5.2 Text . 25

ii CONTENTS

5.3 Valuators . 25

5.4 Groups . 26

5.5 Setting the Size and Position of Widgets . 27

5.6 Colors . 27

5.7 Box Types . 28

5.8 Labels and Label Types . 30

5.9 Callbacks . 33

5.10 Shortcuts . 34

6 Designing a Simple Text Editor 35

6.1 Determining the Goals of the Text Editor . 36

6.2 Designing the Main Window . 36

6.3 Variables . 36

6.4 Menubars and Menus . 37

6.5 Editing the Text . 37

6.6 The Replace Dialog . 38

6.7 Callbacks . 38

6.8 Other Functions . 43

6.9 The main() Function . 44

6.10 Compiling the Editor . 44

6.11 The Final Product . 45

6.12 Advanced Features . 45

7 Drawing Things in FLTK 51

7.1 When Can You Draw Things in FLTK? . 52

7.2 Drawing Functions . 52

7.3 Colors . 54

7.4 Drawing Images . 63

8 Handling Events 67

8.1 The FLTK Event Model . 68

8.2 Mouse Events . 68

8.3 Focus Events . 69

8.4 Keyboard Events . 69

8.5 Widget Events . 70

8.6 Clipboard Events . 70

8.7 Drag and Drop Events . 71

8.8 Fl::event_∗() methods . 71

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

CONTENTS iii

8.9 Event Propagation . 72

8.10 FLTK Compose-Character Sequences . 73

9 Adding and Extending Widgets 75

9.1 Subclassing . 76

9.2 Making a Subclass of Fl_Widget . 76

9.3 The Constructor . 76

9.4 Protected Methods of Fl_Widget . 77

9.5 Handling Events . 79

9.6 Drawing the Widget . 80

9.7 Resizing the Widget . 81

9.8 Making a Composite Widget . 81

9.9 Cut and Paste Support . 83

9.10 Drag And Drop Support . 83

9.11 Making a subclass of Fl_Window . 83

10 Using OpenGL 85

10.1 Using OpenGL in FLTK . 86

10.2 Making a Subclass of Fl_Gl_Window . 86

10.3 Using OpenGL in Normal FLTK Windows . 88

10.4 OpenGL Drawing Functions . 89

10.5 Speeding up OpenGL . 90

10.6 Using OpenGL Optimizer with FLTK . 90

11 Programming with FLUID 93

11.1 What is FLUID? . 94

11.2 Running FLUID Under UNIX . 96

11.3 Running FLUID Under Microsoft Windows . 96

11.4 Compiling .fl files . 96

11.5 A Short Tutorial . 97

11.6 FLUID Reference . 104

11.7 GUI Attributes . 112

11.8 Selecting and Moving Widgets . 119

11.9 Image Labels . 119

11.10Internationalization with FLUID . 121

11.11Known limitations . 123

12 Advanced FLTK 125

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

iv CONTENTS

12.1 Multithreading . 126

13 Unicode and UTF-8 Support 129

13.1 About Unicode, ISO 10646 and UTF-8 . 130

13.2 Unicode in FLTK . 131

13.3 FLTK Unicode and UTF8 functions . 132

13.4 FLTK Unicode versions of system calls . 135

14 FLTK Enumerations 137

14.1 Version Numbers . 138

14.2 Events . 138

14.3 Callback "When" Conditions . 139

14.4 Fl::event_button() Values . 139

14.5 Fl::event_key() Values . 140

14.6 Fl::event_state() Values . 141

14.7 Alignment Values . 141

14.8 Fonts . 142

14.9 Colors . 142

14.10Cursors . 144

14.11FD "When" Conditions . 144

14.12Damage Masks . 144

15 GLUT Compatibility 145

15.1 Using the GLUT Compatibility Header File . 146

15.2 Known Problems . 146

15.3 Mixing GLUT and FLTK Code . 147

15.4 class Fl_Glut_Window . 147

16 Forms Compatibility 151

16.1 Importing Forms Layout Files . 152

16.2 Using the Compatibility Header File . 152

16.3 Problems You Will Encounter . 152

16.4 Additional Notes . 154

17 Operating System Issues 157

17.1 Accessing the OS Interfaces . 158

17.2 The UNIX (X11) Interface . 158

17.3 The Windows (WIN32) Interface . 164

17.4 The Mac OS Interface . 166

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

CONTENTS v

18 Migrating Code from FLTK 1.0 to 1.1 169

18.1 Color Values . 170

18.2 Cut and Paste Support . 170

18.3 File Chooser . 170

18.4 Function Names . 170

18.5 Image Support . 171

18.6 Keyboard Navigation . 171

19 Migrating Code from FLTK 1.1 to 1.3 173

19.1 Migrating From FLTK 1.0 . 174

19.2 Fl_Scroll Widget . 174

19.3 Unicode (UTF-8) . 174

19.4 Widget Coordinate Representation . 174

20 Developer Information 175

20.1 Non-ASCII characters . 178

20.2 Document Structure . 179

20.3 Creating Links . 179

20.4 Paragraph Layout . 180

20.5 Hack for missing "tiny.gif" file . 181

20.6 Navigation Elements . 181

21 Software License 183

22 Example Source Code 191

22.1 Example Applications . 192

23 Deprecated List 201

24 Todo List 203

25 Module Index 213

25.1 Modules . 213

26 Class Index 215

26.1 Class Hierarchy . 215

27 Class Index 219

27.1 Class List . 219

28 File Index 223

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

vi CONTENTS

28.1 File List . 223

29 Module Documentation 229

29.1 Callback function typedefs . 229

29.2 Windows handling functions . 231

29.3 Events handling functions . 234

29.4 Selection & Clipboard functions . 246

29.5 Screen functions . 249

29.6 Color & Font functions . 251

29.7 Drawing functions . 260

29.8 Multithreading support functions . 280

29.9 Safe widget deletion support functions . 282

29.10Cairo support functions and classes . 286

29.11Unicode and UTF-8 functions . 288

29.12Mac OS X-specific functions . 295

29.13Common Dialogs classes and functions . 296

29.14File names and URI utility functions . 304

30 Class Documentation 309

30.1 Fl Class Reference . 309

30.2 Fl_Abstract_Printer Class Reference . 331

30.3 Fl_Adjuster Class Reference . 337

30.4 Fl_Bitmap Class Reference . 340

30.5 Fl_BMP_Image Class Reference . 343

30.6 Fl_Box Class Reference . 344

30.7 Fl_Browser Class Reference . 346

30.8 Fl_Browser_ Class Reference . 368

30.9 Fl_Button Class Reference . 385

30.10Fl_Cairo_State Class Reference . 390

30.11Fl_Cairo_Window Class Reference . 391

30.12Fl_Chart Class Reference . 393

30.13FL_CHART_ENTRY Struct Reference . 399

30.14Fl_Check_Browser Class Reference . 400

30.15Fl_Check_Button Class Reference . 404

30.16Fl_Choice Class Reference . 406

30.17Fl_Clock Class Reference . 410

30.18Fl_Clock_Output Class Reference . 413

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

CONTENTS vii

30.19Fl_Color_Chooser Class Reference . 417

30.20Fl_Counter Class Reference . 422

30.21Fl_Device Class Reference . 426

30.22Fl_Device_Plugin Class Reference . 446

30.23Fl_Dial Class Reference . 447

30.24Fl_Display Class Reference . 450

30.25Fl_Double_Window Class Reference . 451

30.26Fl_End Class Reference . 454

30.27Fl_File_Browser Class Reference . 455

30.28Fl_File_Chooser Class Reference . 458

30.29Fl_File_Icon Class Reference . 467

30.30Fl_File_Input Class Reference . 473

30.31Fl_Fill_Dial Class Reference . 476

30.32Fl_Fill_Slider Class Reference . 477

30.33Fl_Float_Input Class Reference . 478

30.34Fl_Font_Descriptor Class Reference . 479

30.35Fl_FormsBitmap Class Reference . 480

30.36Fl_FormsPixmap Class Reference . 482

30.37Fl_Free Class Reference . 484

30.38Fl_GDI_Display Class Reference . 487

30.39Fl_GIF_Image Class Reference . 488

30.40Fl_Gl_Window Class Reference . 489

30.41Fl_Glut_Bitmap_Font Struct Reference . 497

30.42Fl_Glut_Window Class Reference . 498

30.43Fl_Group Class Reference . 501

30.44Fl_Help_Dialog Class Reference . 511

30.45Fl_Help_Font_Style Struct Reference . 515

30.46Fl_Help_Link Struct Reference . 516

30.47Fl_Help_Target Struct Reference . 517

30.48Fl_Help_View Class Reference . 518

30.49Fl_Hold_Browser Class Reference . 527

30.50Fl_Image Class Reference . 528

30.51Fl_Input Class Reference . 533

30.52Fl_Input_ Class Reference . 537

30.53Fl_Input_Choice Class Reference . 554

30.54Fl_Int_Input Class Reference . 558

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

viii CONTENTS

30.55Fl_JPEG_Image Class Reference . 559

30.56Fl_Label Struct Reference . 561

30.57Fl_Light_Button Class Reference . 563

30.58Fl_Menu_ Class Reference . 566

30.59Fl_Menu_Bar Class Reference . 577

30.60Fl_Menu_Button Class Reference . 580

30.61Fl_Menu_Item Struct Reference . 583

30.62Fl_Menu_Window Class Reference . 595

30.63Fl_Multi_Browser Class Reference . 598

30.64Fl_Multiline_Input Class Reference . 599

30.65Fl_Multiline_Output Class Reference . 600

30.66Fl_Native_File_Chooser Class Reference . 601

30.67Fl_Output Class Reference . 607

30.68Fl_Overlay_Window Class Reference . 609

30.69Fl_Pack Class Reference . 612

30.70Fl_Pixmap Class Reference . 614

30.71Fl_Plugin Class Reference . 618

30.72Fl_Plugin_Manager Class Reference . 620

30.73Fl_PNG_Image Class Reference . 622

30.74Fl_PNM_Image Class Reference . 623

30.75Fl_Positioner Class Reference . 624

30.76Fl_Preferences Class Reference . 628

30.77Fl_Preferences::Name Class Reference . 642

30.78Fl_Printer Class Reference . 644

30.79Fl_Progress Class Reference . 651

30.80Fl_PSfile_Device Class Reference . 653

30.81Fl_Quartz_Display Class Reference . 656

30.82Fl_Repeat_Button Class Reference . 657

30.83Fl_Return_Button Class Reference . 659

30.84Fl_RGB_Image Class Reference . 662

30.85Fl_Roller Class Reference . 666

30.86Fl_Round_Button Class Reference . 669

30.87Fl_Round_Clock Class Reference . 671

30.88Fl_Scroll Class Reference . 672

30.89Fl_Scrollbar Class Reference . 678

30.90Fl_Secret_Input Class Reference . 682

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

CONTENTS ix

30.91Fl_Select_Browser Class Reference . 683

30.92Fl_Shared_Image Class Reference . 684

30.93Fl_Simple_Counter Class Reference . 689

30.94Fl_Single_Window Class Reference . 690

30.95Fl_Slider Class Reference . 692

30.96Fl_Spinner Class Reference . 696

30.97Fl_Sys_Menu_Bar Class Reference . 701

30.98Fl_Table Class Reference . 704

30.99Fl_Table_Row Class Reference . 719

30.100Fl_Tabs Class Reference . 723

30.101Fl_Text_Buffer Class Reference . 727

30.102Fl_Text_Display Class Reference . 754

30.103Fl_Text_Display::Style_Table_Entry Struct Reference . 771

30.104Fl_Text_Editor Class Reference . 772

30.105Fl_Text_Editor::Key_Binding Struct Reference . 779

30.106Fl_Text_Selection Class Reference . 780

30.107Fl_Tile Class Reference . 785

30.108Fl_Tiled_Image Class Reference . 788

30.109Fl_Timer Class Reference . 791

30.110Fl_Toggle_Button Class Reference . 794

30.111Fl_Tooltip Class Reference . 795

30.112Fl_Tree Class Reference . 799

30.113Fl_Tree_Item Class Reference . 813

30.114Fl_Tree_Item_Array Class Reference . 822

30.115Fl_Tree_Prefs Class Reference . 825

30.116Fl_Valuator Class Reference . 830

30.117Fl_Value_Input Class Reference . 836

30.118Fl_Value_Output Class Reference . 842

30.119Fl_Value_Slider Class Reference . 846

30.120Fl_Widget Class Reference . 849

30.121Fl_Widget_Tracker Class Reference . 883

30.122Fl_Window Class Reference . 885

30.123Fl_Wizard Class Reference . 898

30.124Fl_XBM_Image Class Reference . 900

30.125Fl_Xlib_Display Class Reference . 901

30.126Fl_XPM_Image Class Reference . 902

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

x CONTENTS

31 File Documentation 903

31.1 Enumerations.H File Reference . 903

31.2 Fl_Abstract_Printer.cxx File Reference . 917

31.3 Fl_Abstract_Printer.H File Reference . 918

31.4 fl_arc.cxx File Reference . 919

31.5 fl_arci.cxx File Reference . 920

31.6 fl_boxtype.cxx File Reference . 921

31.7 fl_color.cxx File Reference . 923

31.8 Fl_Color_Chooser.H File Reference . 925

31.9 fl_curve.cxx File Reference . 926

31.10Fl_Device.H File Reference . 927

31.11fl_draw.H File Reference . 929

31.12fl_line_style.cxx File Reference . 937

31.13Fl_Printer.H File Reference . 938

31.14fl_rect.cxx File Reference . 939

31.15Fl_Tree.H File Reference . 940

31.16Fl_Tree_Item.H File Reference . 941

31.17Fl_Tree_Item_Array.H File Reference . 942

31.18Fl_Tree_Prefs.H File Reference . 943

31.19fl_types.h File Reference . 945

31.20fl_utf8.h File Reference . 946

31.21fl_vertex.cxx File Reference . 948

31.22gl.h File Reference . 950

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 1

FLTK Programming Manual

FLTK 1.3.0 Programming Manual

Revision 9 by F. Costantini, D. Gibson,
M. Melcher, A. Schlosser, B. Spitzak and

M. Sweet.

Copyright 1998-2010 by Bill Spitzak and others.

This software and manual are provided under the terms of the GNU Library General Public License.
Permission is granted to reproduce this manual or any portion for any purpose, provided this copyright
and permission notice are preserved.

2 FLTK Programming Manual

Preface
Introduction to FLTK
FLTK Basics
Common Widgets and Attributes

• Colors

• Box Types

• Labels and Label Types

• Drawing Images

Designing a Simple Text Editor
Drawing Things in FLTK
Handling Events

• Fl::event_∗() methods

• Event Propagation

Adding and Extending Widgets
Using OpenGL
Programming with FLUID

• GUI Attributes

• Selecting and Moving Widgets

• Image Labels

Advanced FLTK
Unicode and UTF-8 Support

Appendices:

• FLTK Enumerations

• GLUT Compatibility

– class Fl_Glut_Window

• Forms Compatibility

• Operating System Issues

• Migrating Code from FLTK 1.0 to 1.1

• Migrating Code from FLTK 1.1 to 1.3

• Developer Information

• Software License

• Example Source Code

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 2

Preface

4 Preface

This manual describes the Fast Light Tool Kit ("FLTK") version 1.3.0, a C++ Graphical User Interface
("GUI") toolkit for UNIX, Microsoft Windows and MacOS.

Each of the chapters in this manual is designed as a tutorial for using FLTK, while the appendices provide
a convenient reference for all FLTK widgets, functions, and operating system interfaces.

This manual may be printed, modified, and/or used under the terms of the FLTK license provided in
Software License.

2.1 Organization

This manual is organized into the following chapters and appendices:

• Introduction to FLTK

• FLTK Basics

• Common Widgets and Attributes

• Designing a Simple Text Editor

• Drawing Things in FLTK

• Handling Events

• Adding and Extending Widgets

• Using OpenGL

• Programming with FLUID

• Advanced FLTK

• Unicode and UTF-8 Support

• FLTK Enumerations

• GLUT Compatibility

• Forms Compatibility

• Operating System Issues

• Migrating Code from FLTK 1.0 to 1.1

• Migrating Code from FLTK 1.1 to 1.3

• Developer Information

• Software License

• Example Source Code

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

2.2 Conventions 5

2.2 Conventions

This manual was generated using Doxygen (see http://www.stack.nl/∼dimitri/doxygen/)
to process the source code itself, special comments in the code, and additional documentation files. In
general, Doxygen recognizes and denotes the following entities as shown:

• classes, such as Fl_Widget,

• methods, such as Fl_Widget::callback(Fl_Callback∗ cb, void∗ p),

• functions, such as fl_draw(const char ∗str, int x, int y),

• internal links, such as Conventions,

• external links, such as http://www.stack.nl/∼dimitri/doxygen/

Other code samples and commands are shown in regular courier type.

2.3 Abbreviations

The following abbreviations are used in this manual:

X11

The X Window System version 11.

Xlib

The X Window System interface library.

WIN32

The Microsoft Windows 32-bit Application Programmer’s Interface.

MacOS

The Apple Macintosh OS 8.6 and later, including OS X.

2.4 Copyrights and Trademarks

FLTK is Copyright 1998-2009 by Bill Spitzak and others. Use and distribution of FLTK is governed by the
GNU Library General Public License with 4 exceptions, located in Software License.

UNIX is a registered trademark of the X Open Group, Inc. Microsoft and Windows are registered trade-
marks of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics, Inc. Apple,
Macintosh, MacOS, and Mac OS X are registered trademarks of Apple Computer, Inc.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

6 Preface

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 3

Introduction to FLTK

8 Introduction to FLTK

The Fast Light Tool Kit ("FLTK", pronounced "fulltick") is a cross-platform C++ GUI toolkit for
UNIX®/Linux®(X11), Microsoft®Windows®, and MacOS®X.

FLTK provides modern GUI functionality without the bloat and supports 3D graphics via OpenGL®and
its built-in GLUT emulation. It was originally developed by Mr. Bill Spitzak and is currently maintained
by a small group of developers across the world with a central repository in the US.

3.1 History of FLTK

It has always been Bill’s belief that the GUI API of all modern systems is much too high level. Toolkits
(even FLTK) are not what should be provided and documented as part of an operating system. The system
only has to provide arbitrary shaped but featureless windows, a powerful set of graphics drawing calls, and
a simple unalterable method of delivering events to the owners of the windows. NeXT (if you ignored
NextStep) provided this, but they chose to hide it and tried to push their own baroque toolkit instead.

Many of the ideas in FLTK were developed on a NeXT (but not using NextStep) in 1987 in a C toolkit Bill
called "views". Here he came up with passing events downward in the tree and having the handle routine
return a value indicating whether it used the event, and the table-driven menus. In general he was trying to
prove that complex UI ideas could be entirely implemented in a user space toolkit, with no knowledge or
support by the system.

After going to film school for a few years, Bill worked at Sun Microsystems on the (doomed) NeWS
project. Here he found an even better and cleaner windowing system, and he reimplemented "views" atop
that. NeWS did have an unnecessarily complex method of delivering events which hurt it. But the designers
did admit that perhaps the user could write just as good of a button as they could, and officially exposed
the lower level interface.

With the death of NeWS Bill realized that he would have to live with X. The biggest problem with X is
the "window manager", which means that the toolkit can no longer control the window borders or drag the
window around.

At Digital Domain Bill discovered another toolkit, "Forms". Forms was similar to his work, but provided
many more widgets, since it was used in many real applications, rather than as theoretical work. He decided
to use Forms, except he integrated his table-driven menus into it. Several very large programs were created
using this version of Forms.

The need to switch to OpenGL and GLX, portability, and a desire to use C++ subclassing required a rewrite
of Forms. This produced the first version of FLTK. The conversion to C++ required so many changes it
made it impossible to recompile any Forms objects. Since it was incompatible anyway, Bill decided to
incorporate his older ideas as much as possible by simplifying the lower level interface and the event
passing mechanism.

Bill received permission to release it for free on the Internet, with the GNU general public license. Re-
sponse from Internet users indicated that the Linux market dwarfed the SGI and high-speed GL market, so
he rewrote it to use X for all drawing, greatly speeding it up on these machines. That is the version you
have now.

Digital Domain has since withdrawn support for FLTK. While Bill is no longer able to actively develop it,
he still contributes to FLTK in his free time and is a part of the FLTK development team.

3.2 Features

FLTK was designed to be statically linked. This was done by splitting it into many small objects and
designing it so that functions that are not used do not have pointers to them in the parts that are used, and
thus do not get linked in. This allows you to make an easy-to-install program or to modify FLTK to the

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

3.3 Licensing 9

exact requirements of your application without worrying about bloat. FLTK works fine as a shared library,
though, and is now included with several Linux distributions.

Here are some of the core features unique to FLTK:

• sizeof(Fl_Widget) == 64 to 92.

• The "core" (the "hello" program compiled & linked with a static FLTK library using gcc on a 486
and then stripped) is 114K.

• The FLUID program (which includes every widget) is 538k.

• Written directly atop core libraries (Xlib, WIN32 or Carbon) for maximum speed, and carefully
optimized for code size and performance.

• Precise low-level compatibility between the X11, WIN32 and MacOS versions - only about 10% of
the code is different.

• Interactive user interface builder program. Output is human-readable and editable C++ source code.

• Support for overlay hardware, with emulation if none is available.

• Very small & fast portable 2-D drawing library to hide Xlib, WIN32, or QuickDraw.

• OpenGL/Mesa drawing area widget.

• Support for OpenGL overlay hardware on both X11 and WIN32, with emulation if none is available.

• Text widgets with Emacs key bindings, X cut & paste, and foreign letter compose!

• Compatibility header file for the GLUT library.

• Compatibility header file for the XForms library.

3.3 Licensing

FLTK comes with complete free source code. FLTK is available under the terms of the GNU Library
General Public License with exceptions that allow for static linking. Contrary to popular belief, it can be
used in commercial software - even Bill Gates could use it!

3.4 What Does "FLTK" Mean?

FLTK was originally designed to be compatible with the Forms Library written for SGI machines. In that
library all the functions and structures started with "fl_". This naming was extended to all new methods
and widgets in the C++ library, and this prefix was taken as the name of the library. It is almost impossible
to search for "FL" on the Internet, due to the fact that it is also the abbreviation for Florida. After much
debating and searching for a new name for the toolkit, which was already in use by several people, Bill
came up with "FLTK", including a bogus excuse that it stands for "The Fast Light Toolkit".

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

10 Introduction to FLTK

3.5 Building and Installing FLTK Under UNIX and MacOS X

In most cases you can just type "make". This will run configure with the default of no options and then
compile everything.

FLTK uses GNU autoconf to configure itself for your UNIX platform. The main things that the configure
script will look for are the X11 and OpenGL (or Mesa) header and library files. If these cannot be found
in the standard include/library locations you’ll need to define the CFLAGS, CXXFLAGS, and LDFLAGS
environment variables. For the Bourne and Korn shells you’d use:

CFLAGS=-Iincludedir; export CFLAGS
CXXFLAGS=-Iincludedir; export CXXFLAGS
LDFLAGS=-Llibdir; export LDFLAGS

For C shell and tcsh, use:

setenv CFLAGS "-Iincludedir"
setenv CXXFLAGS "-Iincludedir"
setenv LDFLAGS "-Llibdir"

By default configure will look for a C++ compiler named CC, c++, g++, or gcc in that order. To use
another compiler you need to set the CXX environment variable:

CXX=xlC; export CXX
setenv CXX "xlC"

The CC environment variable can also be used to override the default C compiler (cc or gcc), which is
used for a few FLTK source files.

You can run configure yourself to get the exact setup you need. Type "./configure <options>", where
options are:

–enable-cygwin

Enable the Cygwin libraries under WIN32

–enable-debug

Enable debugging code & symbols

–disable-gl

Disable OpenGL support

–enable-shared

Enable generation of shared libraries

–enable-threads

Enable multithreading support

–enable-xdbe

Enable the X double-buffer extension

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

3.6 Building FLTK Under Microsoft Windows 11

–enable-xft

Enable the Xft library for anti-aliased fonts under X11

–enable-x11

When targeting cygwin, build with X11 GUI instead of windows GDI

–bindir=/path

Set the location for executables [default = $prefix/bin]

–datadir=/path

Set the location for data files. [default = $prefix/share]

–libdir=/path

Set the location for libraries [default = $prefix/lib]

–includedir=/path

Set the location for include files. [default = $prefix/include]

–mandir=/path

Set the location for man pages. [default = $prefix/man]

–prefix=/dir

Set the directory prefix for files [default = /usr/local]

When the configure script is done you can just run the "make" command. This will build the library, FLUID
tool, and all of the test programs.

To install the library, become root and type "make install". This will copy the "fluid" executable to "bindir",
the header files to "includedir", and the library files to "libdir".

3.6 Building FLTK Under Microsoft Windows

There are three ways to build FLTK under Microsoft Windows. The first is to use the Visual C++ 5.0
project files under the "visualc" directory. Just open (or double-click on) the "fltk.dsw" file to get the whole
shebang.

The second method is to use the configure script included with the FLTK software; this has only been
tested with the Cygwin tools:

sh configure --prefix=C:/FLTK
make

The final method is to use a GNU-based development tool with the files in the "makefiles" directory.
To build using one of these tools simply copy the appropriate makeinclude and config files to the main
directory and do a make:

copy makefiles\Makefile.<env> Makefile
make

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

12 Introduction to FLTK

3.6.1 Using the Visual C++ DLL Library

The "fltkdll.dsp" project file builds a DLL-version of the FLTK library. Because of name mangling differ-
ences between PC compilers (even between different versions of Visual C++!) you can only use the DLL
that is generated with the same version compiler that you built it with.

When compiling an application or DLL that uses the FLTK DLL, you will need to define the FL_DLL
preprocessor symbol to get the correct linkage commands embedded within the FLTK header files.

3.7 Building FLTK Under OS/2

The current OS/2 build requires XFree86 for OS/2 to work. A native Presentation Manager version has not
been implemented yet (volunteers are welcome!).

The current set of Makefiles/configuration failes assumes that EMX 0.9d and libExt (from
http://posix2.sourceforge.net) is installed.

To build the XFree86 version of FLTK for OS/2, copy the appropriate makeinclude and config files to the
main directory and do a make:

copy makefiles\Makefile.os2x Makefile
make

3.8 Internet Resources

FLTK is available on the ’net in a bunch of locations:

WWW

http://www.fltk.org/
http://www.fltk.org/str.php [for reporting bugs]
http://www.fltk.org/software.php [source code]

FTP

http://ftp.easysw.com/pub/fltk [California, USA, via http]
ftp://ftp.easysw.com/pub/fltk [California, USA via ftp]
ftp://ftp2.easysw.com/pub/fltk [Maryland, USA]
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk [Espoo, Finland]
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
[Germany]
ftp://gd.tuwien.ac.at/hci/fltk [Austria]

EMail

fltk@fltk.org [see instructions below]
fltk-bugs@fltk.org [for reporting bugs]

NNTP Newsgroups

news.easysw.com

To send a message to the FLTK mailing list ("fltk@fltk.org") you must first join the list. Non-member
submissions are blocked to avoid problems with unsolicited email.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://posix2.sourceforge.net
http://www.fltk.org/
http://www.fltk.org/str.php
http://www.fltk.org/software.php
http://ftp.easysw.com/pub/fltk
ftp://ftp.easysw.com/pub/fltk
ftp://ftp2.easysw.com/pub/fltk
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
ftp://gd.tuwien.ac.at/hci/fltk
mailto:fltk@fltk.org
mailto:fltk-bugs@fltk.org

3.9 Reporting Bugs 13

To join the FLTK mailing list, send a message to "majordomo@fltk.org" with "subscribe fltk" in the mes-
sage body. A digest of this list is available by subscribing to the "fltk-digest" mailing list.

3.9 Reporting Bugs

To report a bug in FLTK, send an email to "fltk-bugs@fltk.org". Please include the FLTK version, operating
system & version, and compiler that you are using when describing the bug or problem. We will be unable
to provide any kind of help without that basic information.

Bugs can also be reported to the "fltk.bugs" newsgroup or on the SourceForge bug tracker pages.

For general support and questions, please use the FLTK mailing list at "fltk@fltk.org" or one of the news-
groups.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

14 Introduction to FLTK

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 4

FLTK Basics

16 FLTK Basics

This chapter teaches you the basics of compiling programs that use FLTK.

4.1 Writing Your First FLTK Program

All programs must include the file <FL/Fl.H>. In addition the program must include a header file for
each FLTK class it uses. Listing 1 shows a simple "Hello, World!" program that uses FLTK to display the
window.

Listing 1 - "hello.cxx"

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Box.H>

int main(int argc, char **argv) {
Fl_Window *window = new Fl_Window(300,180);
Fl_Box *box = new Fl_Box(20,40,260,100,"Hello, World!");
box->box(FL_UP_BOX);
box->labelsize(36);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labeltype(FL_SHADOW_LABEL);
window->end();
window->show(argc, argv);
return Fl::run();

}

After including the required header files, the program then creates a window. All following widgets will
automatically be children of this window.

Fl_Window *window = new Fl_Window(300,180);

Then we create a box with the "Hello, World!" string in it. FLTK automatically adds the new box to
window, the current grouping widget.

Fl_Box *box = new Fl_Box(20,40,260,100,"Hello, World!");

Next, we set the type of box and the size, font, and style of the label:

box->box(FL_UP_BOX);
box->labelsize(36);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labeltype(FL_SHADOW_LABEL);

We tell FLTK that we will not add any more widgets to window.

window->end();

Finally, we show the window and enter the FLTK event loop:

window->show(argc, argv);
return Fl::run();

The resulting program will display the window in Figure 2-1. You can quit the program by closing the
window or pressing the ESCape key.

Figure 4.1: The Hello, World! Window

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

4.1 Writing Your First FLTK Program 17

4.1.1 Creating the Widgets

The widgets are created using the C++ new operator. For most widgets the arguments to the constructor
are:

Fl_Widget(x, y, width, height, label)

The x and y parameters determine where the widget or window is placed on the screen. In FLTK the top
left corner of the window or screen is the origin (i.e. x = 0, y = 0) and the units are in pixels.

The width and height parameters determine the size of the widget or window in pixels. The maximum
widget size is typically governed by the underlying window system or hardware.

label is a pointer to a character string to label the widget with or NULL. If not specified the label defaults
to NULL. The label string must be in static storage such as a string constant because FLTK does not make
a copy of it - it just uses the pointer.

4.1.2 Creating Widget hierarchies

Widgets are commonly ordered into functional groups, which in turn may be grouped again, creating a
hierarchy of widgets. FLTK makes it easy to fill groups by automatically adding all widgets that are
created between a myGroup->begin() and myGroup->end(). In this example, myGroup would
be the current group.

Newly created groups and their derived widgets implicitly call begin() in the constructor, effectively
adding all subsequently created widgets to itself until end() is called.

Setting the current group to NULLwill stop automatic hierarchies. New widgets can now be added manually
using Fl_Group::add(...) and Fl_Group::insert(...).

4.1.3 Get/Set Methods

box->box(FL_UP_BOX) sets the type of box the Fl_Box draws, changing it from the default of FL_-
NO_BOX, which means that no box is drawn. In our "Hello, World!" example we use FL_UP_BOX, which
means that a raised button border will be drawn around the widget. More details are available in the Box
Types section.

You could examine the boxtype in by doing box->box(). FLTK uses method name overloading to
make short names for get/set methods. A "set" method is always of the form "void name(type)", and a
"get" method is always of the form "type name() const".

4.1.4 Redrawing After Changing Attributes

Almost all of the set/get pairs are very fast, short inline functions and thus very efficient. However, the "set"
methods do not call redraw() - you have to call it yourself. This greatly reduces code size and execution
time. The only common exceptions are value() which calls redraw() and label() which calls
redraw_label() if necessary.

4.1.5 Labels

All widgets support labels. In the case of window widgets, the label is used for the label in the title bar.
Our example program calls the labelfont(), labelsize(), and labeltype() methods.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

18 FLTK Basics

The labelfont() method sets the typeface and style that is used for the label, which for this example
we are using FL_BOLD and FL_ITALIC. You can also specify typefaces directly.

The labelsize() method sets the height of the font in pixels.

The labeltype()method sets the type of label. FLTK supports normal, embossed, and shadowed labels
internally, and more types can be added as desired.

A complete list of all label options can be found in the section on Labels and Label Types.

4.1.6 Showing the Window

The show() method shows the widget or window. For windows you can also provide the command-line
arguments to allow users to customize the appearance, size, and position of your windows.

4.1.7 The Main Event Loop

All FLTK applications (and most GUI applications in general) are based on a simple event processing
model. User actions such as mouse movement, button clicks, and keyboard activity generate events that
are sent to an application. The application may then ignore the events or respond to the user, typically by
redrawing a button in the "down" position, adding the text to an input field, and so forth.

FLTK also supports idle, timer, and file pseudo-events that cause a function to be called when they occur.
Idle functions are called when no user input is present and no timers or files need to be handled - in short,
when the application is not doing anything. Idle callbacks are often used to update a 3D display or do other
background processing.

Timer functions are called after a specific amount of time has expired. They can be used to pop up a
progress dialog after a certain amount of time or do other things that need to happen at more-or-less regular
intervals. FLTK timers are not 100% accurate, so they should not be used to measure time intervals, for
example.

File functions are called when data is ready to read or write, or when an error condition occurs on a file.
They are most often used to monitor network connections (sockets) for data-driven displays.

FLTK applications must periodically check (Fl::check()) or wait (Fl::wait()) for events or use the Fl::run()
method to enter a standard event processing loop. Calling Fl::run() is equivalent to the following code:

while (Fl::wait());

Fl::run() does not return until all of the windows under FLTK control are closed by the user or your program.

4.2 Compiling Programs with Standard Compilers

Under UNIX (and under Microsoft Windows when using the GNU development tools) you will probably
need to tell the compiler where to find the header files. This is usually done using the -I option:

CC -I/usr/local/include ...
gcc -I/usr/local/include ...

The fltk-config script included with FLTK can be used to get the options that are required by your
compiler:

CC ‘fltk-config --cxxflags‘ ...

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

4.3 Compiling Programs with Makefiles 19

Similarly, when linking your application you will need to tell the compiler to use the FLTK library:

CC ... -L/usr/local/lib -lfltk -lXext -lX11 -lm
gcc ... -L/usr/local/lib -lfltk -lXext -lX11 -lm

Aside from the "fltk" library, there is also a "fltk_forms" library for the XForms compatibility classes,
"fltk_gl" for the OpenGL and GLUT classes, and "fltk_images" for the image file classes, Fl_Help_Dialog
widget, and system icon support.

Note:

The libraries are named "fltk.lib", "fltkgl.lib", "fltkforms.lib", and "fltkimages.lib", respectively under
Windows.

As before, the fltk-config script included with FLTK can be used to get the options that are required
by your linker:

CC ... ‘fltk-config --ldflags‘

The forms, GL, and images libraries are included with the "–use-foo" options, as follows:

CC ... ‘fltk-config --use-forms --ldflags‘
CC ... ‘fltk-config --use-gl --ldflags‘
CC ... ‘fltk-config --use-images --ldflags‘
CC ... ‘fltk-config --use-forms --use-gl --use-images --ldflags‘

Finally, you can use the fltk-config script to compile a single source file as a FLTK program:

fltk-config --compile filename.cpp
fltk-config --use-forms --compile filename.cpp
fltk-config --use-gl --compile filename.cpp
fltk-config --use-images --compile filename.cpp
fltk-config --use-forms --use-gl --use-images --compile filename.cpp

Any of these will create an executable named filename.

4.3 Compiling Programs with Makefiles

The previous section described how to use fltk-config to build a program consisting of a single source
file from the command line, and this is very convenient for small test programs. But fltk-config can
also be used to set the compiler and linker options as variables within a Makefile that can be used to
build programs out of multiple source files:

CXX = $(shell fltk-config --cxx)
DEBUG = -g
CXXFLAGS = $(shell fltk-config --use-gl --use-images --cxxflags) -I.
LDFLAGS = $(shell fltk-config --use-gl --use-images --ldflags)
LDSTATIC = $(shell fltk-config --use-gl --use-images --ldstaticflags)
LINK = $(CXX)

TARGET = cube
OBJS = CubeMain.o CubeView.o CubeViewUI.o
SRCS = CubeMain.cxx CubeView.cxx CubeViewUI.cxx

.SUFFIXES: .o .cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

20 FLTK Basics

%.o: %.cxx
$(CXX) $(CXXFLAGS) $(DEBUG) -c $<

all: $(TARGET)
$(LINK) -o $(TARGET) $(OBJS) $(LDSTATIC)

$(TARGET): $(OBJS)
CubeMain.o: CubeMain.cxx CubeViewUI.h
CubeView.o: CubeView.cxx CubeView.h CubeViewUI.h
CubeViewUI.o: CubeViewUI.cxx CubeView.h

clean: $(TARGET) $(OBJS)
rm -f *.o 2> /dev/null
rm -f $(TARGET) 2> /dev/null

4.4 Compiling Programs with Microsoft Visual C++

In Visual C++ you will need to tell the compiler where to find the FLTK header files. This can be done
by selecting "Settings" from the "Project" menu and then changing the "Preprocessor" settings under the
"C/C++" tab. You will also need to add the FLTK (FLTK.LIB or FLTKD.LIB), the Windows Common
Controls (COMCTL32.LIB), and WinSock2 (WS2_32.LIB) libraries to the "Link" settings.

You can build your Microsoft Windows applications as Console or WIN32 applications. If you want to use
the standard C main() function as the entry point, FLTK includes a WinMain() function that will call
your main() function for you.

Note: The Visual C++ 5.0 optimizer is known to cause problems with many programs. We only recommend
using the "Favor Small Code" optimization setting. The Visual C++ 6.0 optimizer seems to be much better
and can be used with the "optimized for speed" setting.

4.5 Naming

All public symbols in FLTK start with the characters ’F’ and ’L’:

• Functions are either Fl::foo() or fl_foo().

• Class and type names are capitalized: Fl_Foo.

• Constants and enumerations are uppercase: FL_FOO.

• All header files start with <FL/...>.

4.6 Header Files

The proper way to include FLTK header files is:

#include <FL/Fl_xyz.H>

Note:

Case is significant on many operating systems, and the C standard uses the forward slash (/) to separate
directories. Do not use any of the following include lines:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

4.6 Header Files 21

#include <FL\Fl_xyz.H>
#include <fl/fl_xyz.h>
#include <Fl/fl_xyz.h>

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

22 FLTK Basics

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 5

Common Widgets and Attributes

24 Common Widgets and Attributes

This chapter describes many of the widgets that are provided with FLTK and covers how to query and set
the standard attributes.

5.1 Buttons

FLTK provides many types of buttons:

• Fl_Button - A standard push button.

• Fl_Check_Button - A button with a check box.

• Fl_Light_Button - A push button with a light.

• Fl_Repeat_Button - A push button that repeats when held.

• Fl_Return_Button - A push button that is activated by the Enter key.

• Fl_Round_Button - A button with a radio circle.

Figure 5.1: FLTK Button Widgets

All of these buttons just need the corresponding <FL/Fl_xyz_Button.H> header file. The constructor
takes the bounding box of the button and optionally a label string:

Fl_Button *button = new Fl_Button(x, y, width, height, "label");
Fl_Light_Button *lbutton = new Fl_Light_Button(x, y, width, height);
Fl_Round_Button *rbutton = new Fl_Round_Button(x, y, width, height, "label");

Each button has an associated type() which allows it to behave as a push button, toggle button, or radio
button:

button->type(FL_NORMAL_BUTTON);
lbutton->type(FL_TOGGLE_BUTTON);
rbutton->type(FL_RADIO_BUTTON);

For toggle and radio buttons, the value() method returns the current button state (0 = off, 1 = on). The
set() and clear()methods can be used on toggle buttons to turn a toggle button on or off, respectively.
Radio buttons can be turned on with the setonly() method; this will also turn off other radio buttons in
the same group.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

5.2 Text 25

5.2 Text

FLTK provides several text widgets for displaying and receiving text:

• Fl_Input - A one-line text input field.

• Fl_Output - A one-line text output field.

• Fl_Multiline_Input - A multi-line text input field.

• Fl_Multiline_Output - A multi-line text output field.

• Fl_Text_Display - A multi-line text display widget.

• Fl_Text_Editor - A multi-line text editing widget.

• Fl_Help_View - A HTML text display widget.

The Fl_Output and Fl_Multiline_Output widgets allow the user to copy text from the output field but not
change it.

The value() method is used to get or set the string that is displayed:

Fl_Input *input = new Fl_Input(x, y, width, height, "label");
input->value("Now is the time for all good men...");

The string is copied to the widget’s own storage when you set the value() of the widget.

The Fl_Text_Display and Fl_Text_Editor widgets use an associated Fl_Text_Buffer class for the value,
instead of a simple string.

5.3 Valuators

Unlike text widgets, valuators keep track of numbers instead of strings. FLTK provides the following
valuators:

• Fl_Counter - A widget with arrow buttons that shows the current value.

• Fl_Dial - A round knob.

• Fl_Roller - An SGI-like dolly widget.

• Fl_Scrollbar - A standard scrollbar widget.

• Fl_Slider - A scrollbar with a knob.

• Fl_Value_Slider - A slider that shows the current value.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

26 Common Widgets and Attributes

Figure 5.2: FLTK valuator widgets

The value() method gets and sets the current value of the widget. The minimum() and maximum()
methods set the range of values that are reported by the widget.

5.4 Groups

The Fl_Group widget class is used as a general purpose "container" widget. Besides grouping radio buttons,
the groups are used to encapsulate windows, tabs, and scrolled windows. The following group classes are
available with FLTK:

• Fl_Double_Window - A double-buffered window on the screen.

• Fl_Gl_Window - An OpenGL window on the screen.

• Fl_Group - The base container class; can be used to group any widgets together.

• Fl_Pack - A collection of widgets that are packed into the group area.

• Fl_Scroll - A scrolled window area.

• Fl_Tabs - Displays child widgets as tabs.

• Fl_Tile - A tiled window area.

• Fl_Window - A window on the screen.

• Fl_Wizard - Displays one group of widgets at a time.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

5.5 Setting the Size and Position of Widgets 27

5.5 Setting the Size and Position of Widgets

The size and position of widgets is usually set when you create them. You can access them with the x(),
y(), w(), and h() methods.

You can change the size and position by using the position(), resize(), and size() methods:

button->position(x, y);
group->resize(x, y, width, height);
window->size(width, height);

If you change a widget’s size or position after it is displayed you will have to call redraw() on the
widget’s parent.

5.6 Colors

FLTK stores the colors of widgets as an 32-bit unsigned number that is either an index into a color palette
of 256 colors or a 24-bit RGB color. The color palette is not the X or WIN32 colormap, but instead is an
internal table with fixed contents.

There are symbols for naming some of the more common colors:

• FL_BLACK

• FL_RED

• FL_GREEN

• FL_YELLOW

• FL_BLUE

• FL_MAGENTA

• FL_CYAN

• FL_WHITE

• FL_WHITE

These symbols are the default colors for all FLTK widgets. They are explained in more detail under Colors
in FLTK Enumerations.

• FL_FOREGROUND_COLOR

• FL_BACKGROUND_COLOR

• FL_INACTIVE_COLOR

• FL_SELECTION_COLOR

RGB colors can be set using the fl_rgb_color() function:

Fl_Color c = fl_rgb_color(85, 170, 255);

The widget color is set using the color() method:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

28 Common Widgets and Attributes

button->color(FL_RED);

Similarly, the label color is set using the labelcolor() method:

button->labelcolor(FL_WHITE);

5.7 Box Types

The type Fl_Boxtype stored and returned in Fl_Widget::box() is an enumeration defined in Enumera-
tions.H.

Figure 3-3 shows the standard box types included with FLTK.

Figure 5.3: FLTK box types

FL_NO_BOX means nothing is drawn at all, so whatever is already on the screen remains. The FL_..._-
FRAME types only draw their edges, leaving the interior unchanged. The blue color in Figure 3-3 is the
area that is not drawn by the frame types.

5.7.1 Making Your Own Boxtypes

You can define your own boxtypes by making a small function that draws the box and adding it to the table
of boxtypes.

Note:
This interface has changed in FLTK 2.0!

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

5.7 Box Types 29

The Drawing Function

The drawing function is passed the bounding box and background color for the widget:

void xyz_draw(int x, int y, int w, int h, Fl_Color c) {
...
}

A simple drawing function might fill a rectangle with the given color and then draw a black outline:

void xyz_draw(int x, int y, int w, int h, Fl_Color c) {
fl_color(c);
fl_rectf(x, y, w, h);
fl_color(FL_BLACK);
fl_rect(x, y, w, h);

}

Fl_Boxtype fl_down(Fl_Boxtype b)

fl_down() returns the "pressed" or "down" version of a box. If no "down" version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

Fl_Boxtype fl_frame(Fl_Boxtype b)

fl_frame() returns the unfilled, frame-only version of a box. If no frame version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

Fl_Boxtype fl_box(Fl_Boxtype b)

fl_box() returns the filled version of a frame. If no filled version of a given frame exists, the behavior
of this function is undefined and some random box or frame is returned. See Drawing Functions for
more details.

Adding Your Box Type

The Fl::set_boxtype() method adds or replaces the specified box type:

#define XYZ_BOX FL_FREE_BOXTYPE

Fl::set_boxtype(XYZ_BOX, xyz_draw, 1, 1, 2, 2);

The last 4 arguments to Fl::set_boxtype() are the offsets for the x, y, width, and height values that
should be subtracted when drawing the label inside the box.

A complete box design contains four box types in this order: a filled, neutral box (UP_BOX), a filled,
depressed box (DOWN_BOX), and the same as outlines only (UP_FRAME and DOWN_FRAME). The function
fl_down(Fl_Boxtype) expects the neutral design on a boxtype with a numerical value evenly dividable by
two. fl_frame(Fl_Boxtype) expects the UP_BOX design at a value dividable by four.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30 Common Widgets and Attributes

5.8 Labels and Label Types

The label(), align(), labelfont(), labelsize(), labeltype(), image(), and
deimage() methods control the labeling of widgets.

label()

The label() method sets the string that is displayed for the label. Symbols can be included with the
label string by escaping them using the "@" symbol - "@@" displays a single at sign. Figure 3-4 shows
the available symbols.

Figure 5.4: FLTK label symbols

The @ sign may also be followed by the following optional "formatting" characters, in this order:

• ’#’ forces square scaling, rather than distortion to the widget’s shape.

• +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.

• ’$’ flips the symbol horizontally, ” flips it vertically.

• [0-9] - rotates by a multiple of 45 degrees. ’5’ and ’6’ do no rotation while the others point in the
direction of that key on a numeric keypad. ’0’, followed by four more digits rotates the symbol by
that amount in degrees.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

5.8 Labels and Label Types 31

Thus, to show a very large arrow pointing downward you would use the label string "@+92→ ".

align()

The align() method positions the label. The following constants are defined and may be OR’d together
as needed:

• FL_ALIGN_CENTER - center the label in the widget.

• FL_ALIGN_TOP - align the label at the top of the widget.

• FL_ALIGN_BOTTOM - align the label at the bottom of the widget.

• FL_ALIGN_LEFT - align the label to the left of the widget.

• FL_ALIGN_RIGHT - align the label to the right of the widget.

• FL_ALIGN_INSIDE - align the label inside the widget.

• FL_ALIGN_CLIP - clip the label to the widget’s bounding box.

• FL_ALIGN_WRAP - wrap the label text as needed.

• FL_TEXT_OVER_IMAGE - show the label text over the image.

• FL_IMAGE_OVER_TEXT - show the label image over the text (default).

labeltype()

The labeltype() method sets the type of the label. The following standard label types are included:

• FL_NORMAL_LABEL - draws the text.

• FL_NO_LABEL - does nothing.

• FL_SHADOW_LABEL - draws a drop shadow under the text.

• FL_ENGRAVED_LABEL - draws edges as though the text is engraved.

• FL_EMBOSSED_LABEL - draws edges as thought the text is raised.

• FL_ICON_LABEL - draws the icon associated with the text.

image() and deimage()

The image() and deimage() methods set an image that will be displayed with the widget. The
deimage()method sets the image that is shown when the widget is inactive, while the image()method
sets the image that is shown when the widget is active.

To make an image you use a subclass of Fl_Image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

32 Common Widgets and Attributes

Making Your Own Label Types

Label types are actually indexes into a table of functions that draw them. The primary purpose of this is to
use this to draw the labels in ways inaccessible through the fl_font() mechanism (e.g. FL_ENGRAVED_-
LABEL) or with program-generated letters or symbology.

Note:
This interface has changed in FLTK 2.0!

Label Type Functions

To setup your own label type you will need to write two functions: one to draw and one to measure the
label. The draw function is called with a pointer to a Fl_Label structure containing the label information,
the bounding box for the label, and the label alignment:

void xyz_draw(const Fl_Label *label, int x, int y, int w, int h, Fl_Align align) {
...
}

The label should be drawn inside this bounding box, even if FL_ALIGN_INSIDE is not enabled. The
function is not called if the label value is NULL.

The measure function is called with a pointer to a Fl_Label structure and references to the width and height:

void xyz_measure(const Fl_Label *label, int &w, int &h) {
...
}

The function should measure the size of the label and set w and h to the size it will occupy.

Adding Your Label Type

The Fl::set_labeltype() method creates a label type using your draw and measure functions:

#define XYZ_LABEL FL_FREE_LABELTYPE

Fl::set_labeltype(XYZ_LABEL, xyz_draw, xyz_measure);

The label type number n can be any integer value starting at the constant FL_FREE_LABELTYPE. Once
you have added the label type you can use the labeltype() method to select your label type.

The Fl::set_labeltype() method can also be used to overload an existing label type such as FL_NORMAL_-
LABEL.

Making your own symbols

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

5.9 Callbacks 33

It is also possible to define your own drawings and add them to the symbol list, so they can be rendered as
part of any label.

To create a new symbol, you implement a drawing function void drawit(Fl_Color c) which typi-
cally uses the functions described in Drawing Complex Shapes to generate a vector shape inside a two-by-
two units sized box around the origin. This function is then linked into the symbols table using fl_add_-
symbol():

int fl_add_symbol(const char *name, void (*drawit)(Fl_Color), int scalable)

name is the name of the symbol without the "@"; scalable must be set to 1 if the symbol is generated
using scalable vector drawing functions.

int fl_draw_symbol(const char *name,int x,int y,int w,int h,Fl_Color col)

This function draws a named symbol fitting the given rectangle.

5.9 Callbacks

Callbacks are functions that are called when the value of a widget changes. A callback function is sent a
Fl_Widget pointer of the widget that changed and a pointer to data that you provide:

void xyz_callback(Fl_Widget *w, void *data) {
...
}

The callback() method sets the callback function for a widget. You can optionally pass a pointer to
some data needed for the callback:

int xyz_data;

button->callback(xyz_callback, &xyz_data);

Normally callbacks are performed only when the value of the widget changes. You can change this using
the Fl_Widget::when() method:

button->when(FL_WHEN_NEVER);
button->when(FL_WHEN_CHANGED);
button->when(FL_WHEN_RELEASE);
button->when(FL_WHEN_RELEASE_ALWAYS);
button->when(FL_WHEN_ENTER_KEY);
button->when(FL_WHEN_ENTER_KEY_ALWAYS);
button->when(FL_WHEN_CHANGED | FL_WHEN_NOT_CHANGED);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

34 Common Widgets and Attributes

Note:
You cannot delete a widget inside a callback, as the widget may still be accessed by FLTK after your
callback is completed. Instead, use the Fl::delete_widget() method to mark your widget for deletion
when it is safe to do so.
Hint:
Many programmers new to FLTK or C++ try to use a non-static class method instead of a static class
method or function for their callback. Since callbacks are done outside a C++ class, the this pointer
is not initialized for class methods.
To work around this problem, define a static method in your class that accepts a pointer to the class,
and then have the static method call the class method(s) as needed. The data pointer you provide to the
callback() method of the widget can be a pointer to the instance of your class.

class Foo {
void my_callback(Fl_Widget *w);
static void my_static_callback(Fl_Widget *w, void *f) { ((Foo *)f)->my_callback(w); }
...

}

...

w->callback(my_static_callback, (void *)this);

5.10 Shortcuts

Shortcuts are key sequences that activate widgets such as buttons or menu items. The shortcut()
method sets the shortcut for a widget:

button->shortcut(FL_Enter);
button->shortcut(FL_SHIFT + ’b’);
button->shortcut(FL_CTRL + ’b’);
button->shortcut(FL_ALT + ’b’);
button->shortcut(FL_CTRL + FL_ALT + ’b’);
button->shortcut(0); // no shortcut

The shortcut value is the key event value - the ASCII value or one of the special keys described in
Fl::event_key() Values combined with any modifiers like Shift , Alt , and Control.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 6

Designing a Simple Text Editor

36 Designing a Simple Text Editor

This chapter takes you through the design of a simple FLTK-based text editor.

6.1 Determining the Goals of the Text Editor

Since this will be the first big project you’ll be doing with FLTK, lets define what we want our text editor
to do:

1. Provide a menubar/menus for all functions.

2. Edit a single text file, possibly with multiple views.

3. Load from a file.

4. Save to a file.

5. Cut/copy/delete/paste functions.

6. Search and replace functions.

7. Keep track of when the file has been changed.

6.2 Designing the Main Window

Now that we’ve outlined the goals for our editor, we can begin with the design of our GUI. Obviously the
first thing that we need is a window, which we’ll place inside a class called EditorWindow:

class EditorWindow : public Fl_Double_Window {
public:

EditorWindow(int w, int h, const char* t);
~EditorWindow();

Fl_Window *replace_dlg;
Fl_Input *replace_find;
Fl_Input *replace_with;
Fl_Button *replace_all;
Fl_Return_Button *replace_next;
Fl_Button *replace_cancel;

Fl_Text_Editor *editor;
char search[256];

};

6.3 Variables

Our text editor will need some global variables to keep track of things:

int changed = 0;
char filename[256] = "";
Fl_Text_Buffer *textbuf;

The textbuf variable is the text editor buffer for our window class described previously. We’ll cover the
other variables as we build the application.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.4 Menubars and Menus 37

6.4 Menubars and Menus

The first goal requires us to use a menubar and menus that define each function the editor needs to perform.
The Fl_Menu_Item structure is used to define the menus and items in a menubar:

Fl_Menu_Item menuitems[] = {
{ "&File", 0, 0, 0, FL_SUBMENU },

{ "&New File", 0, (Fl_Callback *)new_cb },
{ "&Open File...", FL_CTRL + ’o’, (Fl_Callback *)open_cb },
{ "&Insert File...", FL_CTRL + ’i’, (Fl_Callback *)insert_cb, 0, FL_MENU_DIVIDER },
{ "&Save File", FL_CTRL + ’s’, (Fl_Callback *)save_cb },
{ "Save File &As...", FL_CTRL + FL_SHIFT + ’s’, (Fl_Callback *)saveas_cb, 0, FL_MENU_DIVIDER },
{ "New &View", FL_ALT + ’v’, (Fl_Callback *)view_cb, 0 },
{ "&Close View", FL_CTRL + ’w’, (Fl_Callback *)close_cb, 0, FL_MENU_DIVIDER },
{ "E&xit", FL_CTRL + ’q’, (Fl_Callback *)quit_cb, 0 },
{ 0 },

{ "&Edit", 0, 0, 0, FL_SUBMENU },
{ "&Undo", FL_CTRL + ’z’, (Fl_Callback *)undo_cb, 0, FL_MENU_DIVIDER },
{ "Cu&t", FL_CTRL + ’x’, (Fl_Callback *)cut_cb },
{ "&Copy", FL_CTRL + ’c’, (Fl_Callback *)copy_cb },
{ "&Paste", FL_CTRL + ’v’, (Fl_Callback *)paste_cb },
{ "&Delete", 0, (Fl_Callback *)delete_cb },
{ 0 },

{ "&Search", 0, 0, 0, FL_SUBMENU },
{ "&Find...", FL_CTRL + ’f’, (Fl_Callback *)find_cb },
{ "F&ind Again", FL_CTRL + ’g’, find2_cb },
{ "&Replace...", FL_CTRL + ’r’, replace_cb },
{ "Re&place Again", FL_CTRL + ’t’, replace2_cb },
{ 0 },

{ 0 }
};

Once we have the menus defined we can create the Fl_Menu_Bar widget and assign the menus to it with:

Fl_Menu_Bar *m = new Fl_Menu_Bar(0, 0, 640, 30);
m->copy(menuitems);

We’ll define the callback functions later.

6.5 Editing the Text

To keep things simple our text editor will use the Fl_Text_Editor widget to edit the text:

w->editor = new Fl_Text_Editor(0, 30, 640, 370);
w->editor->buffer(textbuf);

So that we can keep track of changes to the file, we also want to add a "modify" callback:

textbuf->add_modify_callback(changed_cb, w);
textbuf->call_modify_callbacks();

Finally, we want to use a mono-spaced font like FL_COURIER:

w->editor->textfont(FL_COURIER);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

38 Designing a Simple Text Editor

6.6 The Replace Dialog

We can use the FLTK convenience functions for many of the editor’s dialogs, however the replace dialog
needs its own custom window. To keep things simple we will have a "find" string, a "replace" string, and
"replace all", "replace next", and "cancel" buttons. The strings are just Fl_Input widgets, the "replace all"
and "cancel" buttons are Fl_Button widgets, and the "replace next " button is a Fl_Return_Button widget:

Figure 6.1: The search and replace dialog

Fl_Window *replace_dlg = new Fl_Window(300, 105, "Replace");
Fl_Input *replace_find = new Fl_Input(70, 10, 200, 25, "Find:");
Fl_Input *replace_with = new Fl_Input(70, 40, 200, 25, "Replace:");
Fl_Button *replace_all = new Fl_Button(10, 70, 90, 25, "Replace All");
Fl_Button *replace_next = new Fl_Button(105, 70, 120, 25, "Replace Next");
Fl_Button *replace_cancel = new Fl_Button(230, 70, 60, 25, "Cancel");

6.7 Callbacks

Now that we’ve defined the GUI components of our editor, we need to define our callback functions.

6.7.1 changed_cb()

This function will be called whenever the user changes any text in the editor widget:

void changed_cb(int, int nInserted, int nDeleted,int, const char*, void* v) {
if ((nInserted || nDeleted) && !loading) changed = 1;
EditorWindow *w = (EditorWindow *)v;
set_title(w);
if (loading) w->editor->show_insert_position();

}

The set_title() function is one that we will write to set the changed status on the current file. We’re
doing it this way because we want to show the changed status in the window’s title bar.

6.7.2 copy_cb()

This callback function will call Fl_Text_Editor::kf_copy() to copy the currently selected text to the clip-
board:

void copy_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
Fl_Text_Editor::kf_copy(0, e->editor);

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.7 Callbacks 39

6.7.3 cut_cb()

This callback function will call Fl_Text_Editor::kf_cut() to cut the currently selected text to the clipboard:

void cut_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
Fl_Text_Editor::kf_cut(0, e->editor);

}

6.7.4 delete_cb()

This callback function will call Fl_Text_Buffer::remove_selection() to delete the currently selected text to
the clipboard:

void delete_cb(Fl_Widget*, void* v) {
textbuf->remove_selection();

}

6.7.5 find_cb()

This callback function asks for a search string using the fl_input() convenience function and then calls the
find2_cb() function to find the string:

void find_cb(Fl_Widget* w, void* v) {
EditorWindow* e = (EditorWindow*)v;
const char *val;

val = fl_input("Search String:", e->search);
if (val != NULL) {

// User entered a string - go find it!
strcpy(e->search, val);
find2_cb(w, v);

}

6.7.6 find2_cb()

This function will find the next occurrence of the search string. If the search string is blank then we want
to pop up the search dialog:

void find2_cb(Fl_Widget* w, void* v) {
EditorWindow* e = (EditorWindow*)v;
if (e->search[0] == ’\0’) {

// Search string is blank; get a new one...
find_cb(w, v);
return;

}

int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, e->search, &pos);
if (found) {

// Found a match; select and update the position...
textbuf->select(pos, pos+strlen(e->search));
e->editor->insert_position(pos+strlen(e->search));
e->editor->show_insert_position();

}
else fl_alert("No occurrences of \’%s\’ found!", e->search);

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

40 Designing a Simple Text Editor

If the search string cannot be found we use the fl_alert() convenience function to display a message to that
effect.

6.7.7 new_cb()

This callback function will clear the editor widget and current filename. It also calls the check_save()
function to give the user the opportunity to save the current file first as needed:

void new_cb(Fl_Widget*, void*) {
if (!check_save()) return;

filename[0] = ’\0’;
textbuf->select(0, textbuf->length());
textbuf->remove_selection();
changed = 0;
textbuf->call_modify_callbacks();

}

6.7.8 open_cb()

This callback function will ask the user for a filename and then load the specified file into the input widget
and current filename. It also calls the check_save() function to give the user the opportunity to save
the current file first as needed:

void open_cb(Fl_Widget*, void*) {
if (!check_save()) return;

char *newfile = fl_file_chooser("Open File?", "*", filename);
if (newfile != NULL) load_file(newfile, -1);

}

We call the load_file() function to actually load the file.

6.7.9 paste_cb()

This callback function will call Fl_Text_Editor::kf_paste() to paste the clipboard at the current position:

void paste_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
Fl_Text_Editor::kf_paste(0, e->editor);

}

6.7.10 quit_cb()

The quit callback will first see if the current file has been modified, and if so give the user a chance to save
it. It then exits from the program:

void quit_cb(Fl_Widget*, void*) {
if (changed && !check_save())

return;

exit(0);
}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.7 Callbacks 41

6.7.11 replace_cb()

The replace callback just shows the replace dialog:

void replace_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
e->replace_dlg->show();

}

6.7.12 replace2_cb()

This callback will replace the next occurrence of the replacement string. If nothing has been entered for
the replacement string, then the replace dialog is displayed instead:

void replace2_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
const char *find = e->replace_find->value();
const char *replace = e->replace_with->value();

if (find[0] == ’\0’) {
// Search string is blank; get a new one...
e->replace_dlg->show();
return;

}

e->replace_dlg->hide();

int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, find, &pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select(pos, pos+strlen(find));
textbuf->remove_selection();
textbuf->insert(pos, replace);
textbuf->select(pos, pos+strlen(replace));
e->editor->insert_position(pos+strlen(replace));
e->editor->show_insert_position();

}
else fl_alert("No occurrences of \’%s\’ found!", find);

}

6.7.13 replall_cb()

This callback will replace all occurrences of the search string in the file:

void replall_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
const char *find = e->replace_find->value();
const char *replace = e->replace_with->value();

find = e->replace_find->value();
if (find[0] == ’\0’) {

// Search string is blank; get a new one...
e->replace_dlg->show();
return;

}

e->replace_dlg->hide();

e->editor->insert_position(0);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

42 Designing a Simple Text Editor

int times = 0;

// Loop through the whole string
for (int found = 1; found;) {

int pos = e->editor->insert_position();
found = textbuf->search_forward(pos, find, &pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select(pos, pos+strlen(find));
textbuf->remove_selection();
textbuf->insert(pos, replace);
e->editor->insert_position(pos+strlen(replace));
e->editor->show_insert_position();
times++;

}
}

if (times) fl_message("Replaced %d occurrences.", times);
else fl_alert("No occurrences of \’%s\’ found!", find);

}

6.7.14 replcan_cb()

This callback just hides the replace dialog:

void replcan_cb(Fl_Widget*, void* v) {
EditorWindow* e = (EditorWindow*)v;
e->replace_dlg->hide();

}

6.7.15 save_cb()

This callback saves the current file. If the current filename is blank it calls the "save as" callback:

void save_cb(void) {
if (filename[0] == ’\0’) {

// No filename - get one!
saveas_cb();
return;

}
else save_file(filename);

}

The save_file() function saves the current file to the specified filename.

6.7.16 saveas_cb()

This callback asks the user for a filename and saves the current file:

void saveas_cb(void) {
char *newfile;

newfile = fl_file_chooser("Save File As?", "*", filename);
if (newfile != NULL) save_file(newfile);

}

The save_file() function saves the current file to the specified filename.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.8 Other Functions 43

6.8 Other Functions

Now that we’ve defined the callback functions, we need our support functions to make it all work:

6.8.1 check_save()

This function checks to see if the current file needs to be saved. If so, it asks the user if they want to save
it:

int check_save(void) {
if (!changed) return 1;

int r = fl_choice("The current file has not been saved.\n"
"Would you like to save it now?",
"Cancel", "Save", "Discard");

if (r == 1) {
save_cb(); // Save the file...
return !changed;

}

return (r == 2) ? 1 : 0;
}

6.8.2 load_file()

This function loads the specified file into the textbuf variable:

int loading = 0;
void load_file(char *newfile, int ipos) {

loading = 1;
int insert = (ipos != -1);
changed = insert;
if (!insert) strcpy(filename, "");
int r;
if (!insert) r = textbuf->loadfile(newfile);
else r = textbuf->insertfile(newfile, ipos);
if (r)

fl_alert("Error reading from file \’%s\’:\n%s.", newfile, strerror(errno));
else

if (!insert) strcpy(filename, newfile);
loading = 0;
textbuf->call_modify_callbacks();

}

When loading the file we use the Fl_Text_Buffer::loadfile() method to "replace" the text in the buffer, or
the Fl_Text_Buffer::insertfile() method to insert text in the buffer from the named file.

6.8.3 save_file()

This function saves the current buffer to the specified file:

void save_file(char *newfile) {
if (textbuf->savefile(newfile))

fl_alert("Error writing to file \’%s\’:\n%s.", newfile, strerror(errno));
else

strcpy(filename, newfile);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

44 Designing a Simple Text Editor

changed = 0;
textbuf->call_modify_callbacks();

}

6.8.4 set_title()

This function checks the changed variable and updates the window label accordingly:

void set_title(Fl_Window* w) {
if (filename[0] == ’\0’) strcpy(title, "Untitled");
else {

char *slash;
slash = strrchr(filename, ’/’);

#ifdef WIN32
if (slash == NULL) slash = strrchr(filename, ’\\’);

#endif
if (slash != NULL) strcpy(title, slash + 1);
else strcpy(title, filename);

}

if (changed) strcat(title, " (modified)");

w->label(title);
}

6.9 The main() Function

Once we’ve created all of the support functions, the only thing left is to tie them all together with the
main() function. The main() function creates a new text buffer, creates a new view (window) for the
text, shows the window, loads the file on the command-line (if any), and then enters the FLTK event loop:

int main(int argc, char **argv) {
textbuf = new Fl_Text_Buffer;

Fl_Window* window = new_view();

window->show(1, argv);

if (argc > 1) load_file(argv[1], -1);

return Fl::run();
}

6.10 Compiling the Editor

The complete source for our text editor can be found in the test/editor.cxx source file. Both the
Makefile and Visual C++ workspace include the necessary rules to build the editor. You can also compile
it using a standard compiler with:

CC -o editor editor.cxx -lfltk -lXext -lX11 -lm

or by using the fltk-config script with:

fltk-config --compile editor.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.11 The Final Product 45

As noted in Compiling Programs with Standard Compilers, you may need to include compiler and linker
options to tell them where to find the FLTK library. Also, the CC command may also be called gcc or c++
on your system.

Congratulations, you’ve just built your own text editor!

6.11 The Final Product

The final editor window should look like the image in Figure 4-2.

Figure 6.2: The completed editor window

6.12 Advanced Features

Now that we’ve implemented the basic functionality, it is time to show off some of the advanced features
of the Fl_Text_Editor widget.

6.12.1 Syntax Highlighting

The Fl_Text_Editor widget supports highlighting of text with different fonts, colors, and sizes. The imple-
mentation is based on the excellent NEdit text editor core, from http://www.nedit.org/, which
uses a parallel "style" buffer which tracks the font, color, and size of the text that is drawn.

Styles are defined using the Fl_Text_Display::Style_Table_Entry structure defined in <FL/Fl_Text_-
Display.H>:

struct Style_Table_Entry {

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.nedit.org/
http://www.nedit.org/,

46 Designing a Simple Text Editor

Fl_Color color;
Fl_Font font;
int size;
unsigned attr;

};

The color member sets the color for the text, the font member sets the FLTK font index to use, and the
size member sets the pixel size of the text. The attr member is currently not used.

For our text editor we’ll define 7 styles for plain code, comments, keywords, and preprocessor directives:

Fl_Text_Display::Style_Table_Entry styletable[] = { // Style table
{ FL_BLACK, FL_COURIER, FL_NORMAL_SIZE }, // A - Plain
{ FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // B - Line comments
{ FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // C - Block comments
{ FL_BLUE, FL_COURIER, FL_NORMAL_SIZE }, // D - Strings
{ FL_DARK_RED, FL_COURIER, FL_NORMAL_SIZE }, // E - Directives
{ FL_DARK_RED, FL_COURIER_BOLD, FL_NORMAL_SIZE }, // F - Types
{ FL_BLUE, FL_COURIER_BOLD, FL_NORMAL_SIZE } // G - Keywords

};

You’ll notice that the comments show a letter next to each style - each style in the style buffer is referenced
using a character starting with the letter ’A’.

You call the highlight_data() method to associate the style data and buffer with the text editor
widget:

Fl_Text_Buffer *stylebuf;

w->editor->highlight_data(stylebuf, styletable,
sizeof(styletable) / sizeof(styletable[0]),
’A’, style_unfinished_cb, 0);

Finally, you need to add a callback to the main text buffer so that changes to the text buffer are mirrored in
the style buffer:

textbuf->add_modify_callback(style_update, w->editor);

The style_update() function, like the change_cb() function described earlier, is called whenever
text is added or removed from the text buffer. It mirrors the changes in the style buffer and then updates
the style data as necessary:

//
// ’style_update()’ - Update the style buffer...
//

void
style_update(int pos, // I - Position of update

int nInserted, // I - Number of inserted chars
int nDeleted, // I - Number of deleted chars
int nRestyled, // I - Number of restyled chars
const char *deletedText, // I - Text that was deleted
void *cbArg) { // I - Callback data

int start, // Start of text
end; // End of text

char last, // Last style on line

*style, // Style data

*text; // Text data

// If this is just a selection change, just unselect the style buffer...

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.12 Advanced Features 47

if (nInserted == 0 && nDeleted == 0) {
stylebuf->unselect();
return;

}

// Track changes in the text buffer...
if (nInserted > 0) {

// Insert characters into the style buffer...
style = new char[nInserted + 1];
memset(style, ’A’, nInserted);
style[nInserted] = ’\0’;

stylebuf->replace(pos, pos + nDeleted, style);
delete[] style;

} else {
// Just delete characters in the style buffer...
stylebuf->remove(pos, pos + nDeleted);

}

// Select the area that was just updated to avoid unnecessary
// callbacks...
stylebuf->select(pos, pos + nInserted - nDeleted);

// Re-parse the changed region; we do this by parsing from the
// beginning of the line of the changed region to the end of
// the line of the changed region... Then we check the last
// style character and keep updating if we have a multi-line
// comment character...
start = textbuf->line_start(pos);
end = textbuf->line_end(pos + nInserted - nDeleted);
text = textbuf->text_range(start, end);
style = stylebuf->text_range(start, end);
last = style[end - start - 1];

style_parse(text, style, end - start);

stylebuf->replace(start, end, style);
((Fl_Text_Editor *)cbArg)->redisplay_range(start, end);

if (last != style[end - start - 1]) {
// The last character on the line changed styles, so reparse the
// remainder of the buffer...
free(text);
free(style);

end = textbuf->length();
text = textbuf->text_range(start, end);
style = stylebuf->text_range(start, end);

style_parse(text, style, end - start);

stylebuf->replace(start, end, style);
((Fl_Text_Editor *)cbArg)->redisplay_range(start, end);

}

free(text);
free(style);

}

The style_parse() function scans a copy of the text in the buffer and generates the necessary style
characters for display. It assumes that parsing begins at the start of a line:

//
// ’style_parse()’ - Parse text and produce style data.
//

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

48 Designing a Simple Text Editor

void
style_parse(const char *text,

char *style,
int length) {

char current;
int col;
int last;
char buf[255],

*bufptr;
const char *temp;

for (current = *style, col = 0, last = 0; length > 0; length --, text ++) {
if (current == ’A’) {

// Check for directives, comments, strings, and keywords...
if (col == 0 && *text == ’#’) {

// Set style to directive
current = ’E’;

} else if (strncmp(text, "//", 2) == 0) {
current = ’B’;

} else if (strncmp(text, "/*", 2) == 0) {
current = ’C’;

} else if (strncmp(text, "\\\"", 2) == 0) {
// Quoted quote...

*style++ = current;

*style++ = current;
text ++;
length --;
col += 2;
continue;

} else if (*text == ’\"’) {
current = ’D’;

} else if (!last && islower(*text)) {
// Might be a keyword...
for (temp = text, bufptr = buf;

islower(*temp) && bufptr < (buf + sizeof(buf) - 1);

*bufptr++ = *temp++);

if (!islower(*temp)) {

*bufptr = ’\0’;

bufptr = buf;

if (bsearch(&bufptr, code_types,
sizeof(code_types) / sizeof(code_types[0]),
sizeof(code_types[0]), compare_keywords)) {

while (text < temp) {

*style++ = ’F’;
text ++;
length --;
col ++;

}

text --;
length ++;
last = 1;
continue;

} else if (bsearch(&bufptr, code_keywords,
sizeof(code_keywords) / sizeof(code_keywords[0]),
sizeof(code_keywords[0]), compare_keywords)) {

while (text < temp) {

*style++ = ’G’;
text ++;
length --;
col ++;

}

text --;

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

6.12 Advanced Features 49

length ++;
last = 1;
continue;

}
}

}
} else if (current == ’C’ && strncmp(text, "*/", 2) == 0) {

// Close a C comment...

*style++ = current;

*style++ = current;
text ++;
length --;
current = ’A’;
col += 2;
continue;

} else if (current == ’D’) {
// Continuing in string...
if (strncmp(text, "\\\"", 2) == 0) {

// Quoted end quote...

*style++ = current;

*style++ = current;
text ++;
length --;
col += 2;
continue;

} else if (*text == ’\"’) {
// End quote...

*style++ = current;
col ++;
current = ’A’;
continue;

}
}

// Copy style info...
if (current == ’A’ && (*text == ’{’ || *text == ’}’)) *style++ = ’G’;
else *style++ = current;
col ++;

last = isalnum(*text) || *text == ’.’;

if (*text == ’\n’) {
// Reset column and possibly reset the style
col = 0;
if (current == ’B’ || current == ’E’) current = ’A’;

}
}

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

50 Designing a Simple Text Editor

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 7

Drawing Things in FLTK

52 Drawing Things in FLTK

This chapter covers the drawing functions that are provided with FLTK.

7.1 When Can You Draw Things in FLTK?

There are only certain places you can execute drawing code in FLTK. Calling these functions at other
places will result in undefined behavior!

• The most common place is inside the virtual Fl_Widget::draw() method. To write code here, you
must subclass one of the existing Fl_Widget classes and implement your own version of draw().

• You can also create custom boxtypes and labeltypes. These involve writing small procedures that
can be called by existing Fl_Widget::draw() methods. These "types" are identified by an 8-bit index
that is stored in the widget’s box(), labeltype(), and possibly other properties.

• You can call Fl_Window::make_current() to do incremental update of a widget. Use Fl_-
Widget::window() to find the window.

7.2 Drawing Functions

To use the drawing functions you must first include the <FL/fl_draw.H> header file. FLTK provides the
following types of drawing functions:

• Boxes

• Clipping

• Colors

• Line Dashes and Thickness

• Drawing Fast Shapes

• Drawing Complex Shapes

• Drawing Text

• Fonts

• Character Encoding

• Drawing Overlays

• Drawing Images

• Direct Image Drawing

• Direct Image Reading

• Image Classes

• Offscreen Drawing

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.2 Drawing Functions 53

7.2.1 Boxes

FLTK provides three functions that can be used to draw boxes for buttons and other UI controls. Each
function uses the supplied upper-lefthand corner and width and height to determine where to draw the box.

void fl_draw_box(Fl_Boxtype b, int x, int y, int w, int h, Fl_Color c);

The fl_draw_box() function draws a standard boxtype b in the specified color c.

void fl_frame(const char ∗s, int x, int y, int w, int h)

void fl_frame2(const char ∗s, int x, int y, int w, int h)

The fl_frame() and fl_frame2() functions draw a series of line segments around the given box.
The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and ’X’ is white. The results of calling these functions with a string that is not a multiple
of 4 characters in length are undefined.

The only difference between fl_frame() and fl_frame2() is the order of the line segments:

• For fl_frame() the order of each set of 4 characters is: top, left, bottom, right.

• For fl_frame2() the order of each set of 4 characters is: bottom, right, top, left.

Note that fl_frame(Fl_Boxtype b) is described in the Box Types section.

7.2.2 Clipping

You can limit all your drawing to a rectangular region by calling fl_push_clip(), and put the drawings
back by using fl_pop_clip(). This rectangle is measured in pixels and is unaffected by the current
transformation matrix.

In addition, the system may provide clipping when updating windows which may be more complex than a
simple rectangle.

void fl_push_clip(int x, int y, int w, int h)

void fl_clip(int x, int y, int w, int h)

Intersect the current clip region with a rectangle and push this new region onto the stack.

The fl_clip() version is deprecated and will be removed from future releases.

void fl_push_no_clip()

Pushes an empty clip region on the stack so nothing will be clipped.

void fl_pop_clip()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

54 Drawing Things in FLTK

Restore the previous clip region.

Note: You must call fl_pop_clip() once for every time you call fl_push_clip(). If you return
to FLTK with the clip stack not empty unpredictable results occur.

int fl_not_clipped(int x, int y, int w, int h)

Returns non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t
have to draw the object.

Note: Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip
region.

int fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersect the rectangle x,y,w,h with the current clip region and returns the bounding box of the
result in X,Y,W,H. Returns non-zero if the resulting rectangle is different than the original. This
can be used to limit the necessary drawing to a rectangle. W and H are set to zero if the rectangle is
completely outside the region.

void fl_clip_region(Fl_Region r)

Fl_Region fl_clip_region()

Replace the top of the clip stack with a clipping region of any shape. Fl_Region is an operating system
specific type. The second form returns the current clipping region.

7.3 Colors

FLTK manages colors as 32-bit unsigned integers. Values from 0 to 255 represent colors from the FLTK
1.0.x standard colormap and are allocated as needed on screens without TrueColor support. The Fl_Color
enumeration type defines the standard colors and color cube for the first 256 colors. All of these are named
with symbols in <FL/Enumerations.H>.

Color values greater than 255 are treated as 24-bit RGB values. These are mapped to the closest color
supported by the screen, either from one of the 256 colors in the FLTK 1.3.x colormap or a direct RGB
value on TrueColor screens. You can generate 24-bit RGB color values using the fl_rgb_color(uchar r,
uchar b, uchar c) and fl_rgb_color(uchar grayscale) functions.

void fl_color(Fl_Color c)

void fl_color(int c)

Sets the color for all subsequent drawing operations. Please use the first form: the second form is only
provided for back compatibility.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.3 Colors 55

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use
a color. If the colormap fills up then a least-squares algorithm is used to find the closest color.

Fl_Color fl_color()

Returns the last color that was set using fl_color(). This can be used for state save/restore.

void fl_color(uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations. The closest possible match to the RGB color is
used. The RGB color is used directly on TrueColor displays. For colormap visuals the nearest index
in the gray ramp or color cube is used.

7.3.1 Line Dashes and Thickness

FLTK supports drawing of lines with different styles and widths. Full functionality is not available under
Windows 95, 98, and Me due to the reduced drawing functionality these operating systems provide.

void fl_line_style(int style, int width, char∗ dashes)

Set how to draw lines (the "pen"). If you change this it is your responsibility to set it back to the default
with fl_line_style(0).

Note: Because of how line styles are implemented on WIN32 systems, you must set the line style after
setting the drawing color. If you set the color after the line style you will lose the line style settings!

style is a bitmask which is a bitwise-OR of the following values. If you don’t specify a dash type
you will get a solid line. If you don’t specify a cap or join type you will get a system-defined default
of whatever value is fastest.

• FL_SOLID -----

• FL_DASH - - - -

• FL_DOT

• FL_DASHDOT - . - .

• FL_DASHDOTDOT - .. -

• FL_CAP_FLAT

• FL_CAP_ROUND

• FL_CAP_SQUARE (extends past end point 1/2 line width)

• FL_JOIN_MITER (pointed)

• FL_JOIN_ROUND

• FL_JOIN_BEVEL (flat)

width is the number of pixels thick to draw the lines. Zero results in the system-defined default,
which on both X and Windows is somewhat different and nicer than 1.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

56 Drawing Things in FLTK

dashes is a pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated with a
zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array sizes are not
supported and result in undefined behavior.

Note: The dashes array does not work under Windows 95, 98, or Me, since those operating systems
do not support complex line styles.

7.3.2 Drawing Fast Shapes

These functions are used to draw almost all the FLTK widgets. They draw on exact pixel boundaries and
are as fast as possible. Their behavior is duplicated exactly on all platforms FLTK is ported. It is undefined
whether these are affected by the transformation matrix, so you should only call these while the matrix is
set to the identity matrix (the default).

void fl_point(int x, int y)

Draw a single pixel at the given coordinates.

void fl_rectf(int x, int y, int w, int h)

void fl_rectf(int x, int y, int w, int h)

Color a rectangle that exactly fills the given bounding box.

void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r,g,b color. On screens with less than 24 bits of color
this is done by drawing a solid-colored block using fl_draw_image() so that the correct color shade is
produced.

void fl_rect(int x, int y, int w, int h)

void fl_rect(int x, int y, int w, int h, Fl_Color c)

Draw a 1-pixel border inside this bounding box.

void fl_line(int x, int y, int x1, int y1)

void fl_line(int x, int y, int x1, int y1, int x2, int y2)

Draw one or two lines between the given points.

void fl_loop(int x, int y, int x1, int y1, int x2, int y2)

void fl_loop(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.3 Colors 57

Outline a 3 or 4-sided polygon with lines.

void fl_polygon(int x, int y, int x1, int y1, int x2, int y2)

void fl_polygon(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)

Fill a 3 or 4-sided polygon. The polygon must be convex.

void fl_xyline(int x, int y, int x1)

void fl_xyline(int x, int y, int x1, int y2)

void fl_xyline(int x, int y, int x1, int y2, int x3)

Draw horizontal and vertical lines. A horizontal line is drawn first, then a vertical, then a horizontal.

void fl_yxline(int x, int y, int y1)

void fl_yxline(int x, int y, int y1, int x2)

void fl_yxline(int x, int y, int y1, int x2, int y3)

Draw vertical and horizontal lines. A vertical line is drawn first, then a horizontal, then a vertical.

void fl_arc(int x, int y, int w, int h, double a1, double a2)

void fl_pie(int x, int y, int w, int h, double a1, double a2)

Draw ellipse sections using integer coordinates. These functions match the rather limited circle draw-
ing code provided by X and WIN32. The advantage over using fl_arc() with floating point coordinates
is that they are faster because they often use the hardware, and they draw much nicer small circles,
since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured
in degrees counterclockwise from 3’oclock and are the starting and ending angle of the arc, a2 must
be greater or equal to a1.

fl_arc() draws a series of lines to approximate the arc. Notice that the integer version of fl_arc()
has a different number of arguments to the other fl_arc() function described later in this chapter.

fl_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by fl_arc(); to
avoid this use w-1 and h-1.

Todo

add an Fl_Draw_Area_Cb typedef to allow fl_scroll(...) to be doxygenated?

void fl_scroll(int X, int Y, int W, int H, int dx, int dy, void (∗draw_area)(void∗, int,int,int,int), void∗ data)

Scroll a rectangle and draw the newly exposed portions. The contents of the rectangular area is first
shifted by dx and dy pixels. The callback is then called for every newly exposed rectangular area,

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

58 Drawing Things in FLTK

7.3.3 Drawing Complex Shapes

The complex drawing functions let you draw arbitrary shapes with 2-D linear transformations. The func-
tionality matches that found in the Adobe®PostScript™language. The exact pixels that are filled are less
defined than for the fast drawing functions so that FLTK can take advantage of drawing hardware. On
both X and WIN32 the transformed vertices are rounded to integers before drawing the line segments: this
severely limits the accuracy of these functions for complex graphics, so use OpenGL when greater accuracy
and/or performance is required.

void fl_push_matrix()

void fl_pop_matrix()

Save and restore the current transformation. The maximum depth of the stack is 4.

void fl_scale(double x,double y)

void fl_scale(double x)

void fl_translate(double x,double y)

void fl_rotate(double d)

void fl_mult_matrix(double a,double b,double c,double d,double x,double y)

Concatenate another transformation onto the current one. The rotation angle is in degrees (not radians)
and is counter-clockwise.

double fl_transform_x(double x, double y)

double fl_transform_y(double x, double y)

double fl_transform_dx(double x, double y)

double fl_transform_dy(double x, double y)

void fl_transformed_vertex(double xf, double yf)

Transform a coordinate or a distance using the current transformation matrix. After transforming
a coordinate pair, it can be added to the vertex list without any further translations using fl_-
transformed_vertex().

void fl_begin_points()

void fl_end_points()

Start and end drawing a list of points. Points are added to the list with fl_vertex().

void fl_begin_line()

void fl_end_line()

Start and end drawing lines.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.3 Colors 59

void fl_begin_loop()

void fl_end_loop()

Start and end drawing a closed sequence of lines.

void fl_begin_polygon()

void fl_end_polygon()

Start and end drawing a convex filled polygon.

void fl_begin_complex_polygon()

void fl_gap()

void fl_end_complex_polygon()

Start and end drawing a complex filled polygon. This polygon may be concave, may have holes in it,
or may be several disconnected pieces. Call fl_gap() to separate loops of the path. It is unnecessary
but harmless to call fl_gap() before the first vertex, after the last one, or several times in a row.

fl_gap() should only be called between fl_begin_complex_polygon() and fl_end_-
complex_polygon(). To outline the polygon, use fl_begin_loop() and replace each fl_-
gap() with a fl_end_loop();fl_begin_loop() pair.

Note: For portability, you should only draw polygons that appear the same whether "even/odd" or
"non-zero" winding rules are used to fill them. Holes should be drawn in the opposite direction of the
outside loop.

void fl_vertex(double x,double y)

Add a single vertex to the current path.

void fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double
Y3)

Add a series of points on a Bezier curve to the path. The curve ends (and two of the points) are at
X0,Y0 and X3,Y3.

void fl_arc(double x, double y, double r, double start, double end)

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using
scale and rotate before calling fl_arc(). The center of the circle is given by x and y, and r is its
radius. fl_arc() takes start and end angles that are measured in degrees counter-clockwise from
3 o’clock. If end is less than start then it draws the arc in a clockwise direction.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

60 Drawing Things in FLTK

void fl_circle(double x, double y, double r)

fl_circle(...) is equivalent to fl_arc(...,0,360) but may be faster. It must be the only thing in the
path: if you want a circle as part of a complex polygon you must use fl_arc().

Note: fl_circle() draws incorrectly if the transformation is both rotated and non-square scaled.

7.3.4 Drawing Text

All text is drawn in the current font. It is undefined whether this location or the characters are modified by
the current transformation.

void fl_draw(const char ∗, int x, int y)

void fl_draw(const char ∗, int n, int x, int y)

Draw a nul-terminated string or an array of n characters starting at the given location. Text is aligned
to the left and to the baseline of the font. To align to the bottom, subtract fl_descent() from y.
To align to the top, subtract fl_descent() and add fl_height(). This version of fl_draw()
provides direct access to the text drawing function of the underlying OS. It does not apply any special
handling to control characters.

void fl_draw(const char∗ str, int x, int y, int w, int h, Fl_Align align, Fl_Image∗ img, int draw_symbols)

Fancy string drawing function which is used to draw all the labels. The string is formatted and aligned
inside the passed box. Handles ’\t’ and ’\n’, expands all other control characters to ∧X, and aligns
inside or against the edges of the box described by x, y, w and h. See Fl_Widget::align() for values
for align. The value FL_ALIGN_INSIDE is ignored, as this function always prints inside the box.

If img is provided and is not NULL, the image is drawn above or below the text as specified by the
align value.

The draw_symbols argument specifies whether or not to look for symbol names starting with the
"@" character.

The text length is limited to 1024 characters per line.

void fl_measure(const char ∗str, int& w, int& h, int draw_symbols)

Measure how wide and tall the string will be when printed by the fl_draw(...align) function. If the
incoming w is non-zero it will wrap to that width.

int fl_height()

Recommended minimum line spacing for the current font. You can also just use the value of size
passed to fl_font().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.3 Colors 61

int fl_descent()

Recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

double fl_width(const char∗ txt)

double fl_width(const char∗ txt, int n)

double fl_width(Fl_Unichar)

Return the pixel width of a nul-terminated string, a sequence of n characters, or a single character in
the current font.

const char∗ fl_shortcut_label(int shortcut)

Unparse a shortcut value as used by Fl_Button or Fl_Menu_Item into a human-readable string like
"Alt+N". This only works if the shortcut is a character key or a numbered function key. If the shortcut
is zero an empty string is returned. The return value points at a static buffer that is overwritten with
each call.

7.3.5 Fonts

FLTK supports a set of standard fonts based on the Times, Helvetica/Arial, Courier, and Symbol typefaces,
as well as custom fonts that your application may load. Each font is accessed by an index into a font table.

Initially only the first 16 faces are filled in. There are symbolic names for them: FL_HELVETICA, FL_-
TIMES, FL_COURIER, and modifier values FL_BOLD and FL_ITALIC which can be added to these, and
FL_SYMBOL and FL_ZAPF_DINGBATS. Faces greater than 255 cannot be used in Fl_Widget labels,
since Fl_Widget stores the index as a byte.

void fl_font(int face, int size)

Set the current font, which is then used by the routines described above. You may call this outside a
draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not
"points". Lines should be spaced size pixels apart or more.

int fl_font()

int fl_size()

Returns the face and size set by the most recent call to fl_font(a,b). This can be used to
save/restore the font.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

62 Drawing Things in FLTK

7.3.6 Character Encoding

Todo

Rework the Character Encoding section for UTF-8

FLTK 1 supports western character sets using the eight bit encoding of the user-selected global code page.
For MS Windows and X11, the code page is assumed to be Windows-1252/Latin1, a superset to ISO 8859-
1. On Mac OS X, we assume MacRoman.

FLTK provides the functions fl_latin1_to_local(), fl_local_to_latin1(), fl_mac_roman_to_local(), and fl_-
local_to_mac_roman() to convert strings between both encodings. These functions are only required if
your source code contains "C"-strings with international characters and if this source will be compiled on
multiple platforms.

Assuming that the following source code was written on MS Windows, this example will output the
correct label on OS X and X11 as well. Without the conversion call, the label on OS X would read
Fahrvergn¸gen with a deformed umlaut u ("cedille", html "¸").

btn = new Fl_Button(10, 10, 300, 25);
btn->copy_label(fl_latin1_to_local("Fahrvergnügen"));

Note:

If your application uses characters that are not part of both encodings, or it will be used in areas that
commonly use different code pages, you might consider upgrading to FLTK 2 which supports UTF-8
encoding.

Todo

drawing.dox: I fixed the above encoding problem of these ¸ and umlaut characters, but this text
is obsoleted by FLTK 1.3 with UTF-8 encoding, or must be rewritten accordingly: How to use native
(e.g. Windows "ANSI", or ISO-8859-x) encoding in embedded strings for labels, error messages and
more. Please check this (UTF-8) encoding on different OS’es and with different language and font
environments.

For more information about character encodings, see the chapter on Unicode and UTF-8 Support.

7.3.7 Drawing Overlays

These functions allow you to draw interactive selection rectangles without using the overlay hardware.
FLTK will XOR a single rectangle outline over a window.

void fl_overlay_rect(int x, int y, int w, int h);

void fl_overlay_clear();

fl_overlay_rect() draws a selection rectangle, erasing any previous rectangle by XOR’ing it
first. fl_overlay_clear() will erase the rectangle without drawing a new one.

Using these functions is tricky. You should make a widget with both a handle() and draw()
method. draw() should call fl_overlay_clear() before doing anything else. Your handle()
method should call window()->make_current() and then fl_overlay_rect() after FL_-
DRAG events, and should call fl_overlay_clear() after a FL_RELEASE event.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.4 Drawing Images 63

7.4 Drawing Images

To draw images, you can either do it directly from data in your memory, or you can create a Fl_Image
object. The advantage of drawing directly is that it is more intuitive, and it is faster if the image data
changes more often than it is redrawn. The advantage of using the object is that FLTK will cache translated
forms of the image (on X it uses a server pixmap) and thus redrawing is much faster.

7.4.1 Direct Image Drawing

The behavior when drawing images when the current transformation matrix is not the identity is not defined,
so you should only draw images when the matrix is set to the identity.

void fl_draw_image(const uchar ∗buf,int X,int Y,int W,int H,int D,int L)

void fl_draw_image_mono(const uchar ∗buf,int X,int Y,int W,int H,int D,int L)

Draw an 8-bit per color RGB or luminance image. The pointer points at the "r" data of the top-left
pixel. Color data must be in r,g,b order. The top left corner is given by X and Y and the size of
the image is given by W and H. D is the delta to add to the pointer between pixels, it may be any value
greater or equal to 3, or it can be negative to flip the image horizontally. L is the delta to add to the
pointer between lines (if 0 is passed it uses W∗D). and may be larger than W∗D to crop data, or negative
to flip the image vertically.

It is highly recommended that you put the following code before the first show() of any window in
your program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1-channel) images may be drawn. This is done if abs(D) is less than 3, or by calling
fl_draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with differ-
ent numbers of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let
you display one channel of a color image.

Note: The X version does not support all possible visuals. If FLTK cannot draw the image in the
current visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor
visuals up to 32 bits.

typedef void (∗Fl_Draw_Image_Cb)(void ∗data,int x,int y,int w,uchar ∗buf)

void fl_draw_image(Fl_Draw_Image_Cb cb,void ∗data,int X,int Y,int W,int H,int D)

void fl_draw_image_mono(Fl_Draw_Image_Cb cb,void ∗data,int X,int Y,int W,int H,int D)

Call the passed function to provide each scan line of the image. This lets you generate the image as
it is being drawn, or do arbitrary decompression of stored data, provided it can be decompressed to
individual scan lines easily.

The callback is called with the void∗ user data pointer which can be used to point at a structure of
information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

64 Drawing Things in FLTK

upper-left corner of the image, not X,Y. A pointer to a buffer to put the data into is passed. You must
copy w pixels from scanline y, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first
y may be greater than zero, and w may be less than W. The buffer is long enough to store the entire
W∗D pixels, this is for convenience with some decompression schemes where you must decompress
the entire line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the
x’th pixel is at the start of the buffer.

You can assume the y’s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

int fl_draw_pixmap(char∗ const∗ data, int x, int y, Fl_Color bg)

int fl_draw_pixmap(const char∗ const∗ cdata, int x, int y, Fl_Color bg)

Draws XPM image data, with the top-left corner at the given position. The image is dithered on 8-
bit displays so you won’t lose color space for programs displaying both images and pixmaps. This
function returns zero if there was any error decoding the XPM data.

To use an XPM, do:

#include "foo.xpm"
...
fl_draw_pixmap(foo, X, Y);

Transparent colors are replaced by the optional Fl_Color argument. To draw with true transparency
you must use the Fl_Pixmap class.

int fl_measure_pixmap(char∗ const∗ data, int &w, int &h)

int fl_measure_pixmap(const char∗ const∗ cdata, int &w, int &h)

An XPM image contains the dimensions in its data. This function finds and returns the width and
height. The return value is non-zero if the dimensions were parsed ok and zero if there was any
problem.

7.4.2 Direct Image Reading

FLTK provides a single function for reading from the current window or off-screen buffer into a RGB(A)
image buffer.

uchar∗ fl_read_image(uchar ∗p, int X, int Y, int W, int H, int alpha)

Read a RGB(A) image from the current window or off-screen buffer. The p argument points to a buffer
that can hold the image and must be at least W∗H∗3 bytes when reading RGB images and W∗H∗4 bytes
when reading RGBA images. If NULL, fl_read_image() will create an array of the proper size
which can be freed using delete[].

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

7.4 Drawing Images 65

The alpha parameter controls whether an alpha channel is created and the value that is placed in the
alpha channel. If 0, no alpha channel is generated.

7.4.3 Image Classes

FLTK provides a base image class called Fl_Image which supports creating, copying, and drawing images
of various kinds, along with some basic color operations. Images can be used as labels for widgets using
the image() and deimage() methods or drawn directly.

The Fl_Image class does almost nothing by itself, but is instead supported by three basic image types:

• Fl_Bitmap

• Fl_Pixmap

• Fl_RGB_Image

The Fl_Bitmap class encapsulates a mono-color bitmap image. The draw() method draws the image
using the current drawing color.

The Fl_Pixmap class encapsulates a colormapped image. The draw() method draws the image using the
colors in the file, and masks off any transparent colors automatically.

The Fl_RGB_Image class encapsulates a full-color (or grayscale) image with 1 to 4 color components.
Images with an even number of components are assumed to contain an alpha channel that is used for
transparency. The transparency provided by the draw() method is either a 24-bit blend against the existing
window contents or a "screen door" transparency mask, depending on the platform and screen color depth.

char fl_can_do_alpha_blending()

fl_can_do_alpha_blending() will return 1, if your platform supports true alpha blending for
RGBA images, or 0, if FLTK will use screen door transparency.

FLTK also provides several image classes based on the three standard image types for common file formats:

• Fl_GIF_Image

• Fl_JPEG_Image

• Fl_PNG_Image

• Fl_PNM_Image

• Fl_XBM_Image

• Fl_XPM_Image

Each of these image classes load a named file of the corresponding format. The Fl_Shared_Image class
can be used to load any type of image file - the class examines the file and constructs an image of the
appropriate type.

Finally, FLTK provides a special image class called Fl_Tiled_Image to tile another image object in the
specified area. This class can be used to tile a background image in a Fl_Group widget, for example.

virtual void Fl_Tiled_Image::copy();

virtual Fl_Image∗ Fl_Tiled_Image::copy(int w, int h);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

66 Drawing Things in FLTK

The copy() method creates a copy of the image. The second form specifies the new size of the image
- the image is resized using the nearest-neighbor algorithm.

void Fl_Tiled_Image::draw(int x, int y, int w, int h, int ox, int oy);

The draw() method draws the image object. x,y,w,h indicates a destination rectangle.
ox,oy,w,h is a source rectangle. This source rectangle is copied to the destination. The source
rectangle may extend outside the image, i.e. ox and oy may be negative and w and h may be bigger
than the image, and this area is left unchanged.

void Fl_Tiled_Image::draw(int x, int y)

Draws the image with the upper-left corner at x,y. This is the same as doing draw(x,y,img->w(),img-
>h(),0,0).

7.4.4 Offscreen Drawing

Todo

Doxygenate the offscreen drawing functions.

Sometimes it can be very useful to generate a complex drawing in memory first and copy it to the screen at
a later point in time. This technique can significantly reduce the amount of repeated drawing. Fl_Double_-
Window uses offscreen rendering to avoid flickering on systems that don’t support double-buffering na-
tively.

Fl_Offscreen fl_create_offscreen(int w, int h)

Create an RGB offscreen buffer with w∗h pixels.

void fl_delete_offscreen(Fl_Offscreen)

Delete a previously created offscreen buffer. All drawings are lost.

void fl_begin_offscreen(Fl_Offscreen)

Send all subsequent drawing commands to this offscreen buffer. FLTK can draw into a buffer at any
time. There is no need to wait for an Fl_Widget::draw() to occur.

void fl_end_offscreen()

Quit sending drawing commands to this offscreen buffer.

void fl_copy_offscreen(int x, int y, int w, int h, Fl_Offscreen osrc, int srcx, int srcy)

Copy a rectangular area of the size w∗h from srcx,srcy in the offscreen buffer into the current buffer
at x,y.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 8

Handling Events

68 Handling Events

This chapter discusses the FLTK event model and how to handle events in your program or widget.

8.1 The FLTK Event Model

Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application. Events can also come from other programs like the window manager.

Events are identified by the integer argument passed to a handle() method that overrides the Fl_-
Widget::handle() virtual method. Other information about the most recent event is stored in static locations
and acquired by calling the Fl::event_∗() methods. This static information remains valid until the next
event is read from the window system, so it is ok to look at it outside of the handle() method.

Event numbers can be converted to their actual names using the fl_eventnames[] array defined in #include
<FL/names.h>; see next chapter for details.

In the next chapter, the MyClass::handle() example shows how to override the Fl_Widget::handle() method
to accept and process specific events.

8.2 Mouse Events

8.2.1 FL_PUSH

A mouse button has gone down with the mouse pointing at this widget. You can find out what button by
calling Fl::event_button(). You find out the mouse position by calling Fl::event_x() and Fl::event_y().

A widget indicates that it "wants" the mouse click by returning non-zero from its handle() method, as
in the MyClass::handle() example. It will then become the Fl::pushed() widget and will get FL_DRAG and
the matching FL_RELEASE events. If handle() returns zero then FLTK will try sending the FL_PUSH
to another widget.

8.2.2 FL_DRAG

The mouse has moved with a button held down. The current button state is in Fl::event_state(). The mouse
position is in Fl::event_x() and Fl::event_y().

In order to receive FL_DRAG events, the widget must return non-zero when handling FL_PUSH.

8.2.3 FL_RELEASE

A mouse button has been released. You can find out what button by calling Fl::event_button().

In order to receive the FL_RELEASE event, the widget must return non-zero when handling FL_PUSH.

8.2.4 FL_MOVE

The mouse has moved without any mouse buttons held down. This event is sent to the Fl::belowmouse()
widget.

In order to receive FL_MOVE events, the widget must return non-zero when handling FL_ENTER.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

8.3 Focus Events 69

8.2.5 FL_MOUSEWHEEL

The user has moved the mouse wheel. The Fl::event_dx() and Fl::event_dy() methods can be used to find
the amount to scroll horizontally and vertically.

8.3 Focus Events

8.3.1 FL_ENTER

The mouse has been moved to point at this widget. This can be used for highlighting feedback. If a widget
wants to highlight or otherwise track the mouse, it indicates this by returning non-zero from its handle()
method. It then becomes the Fl::belowmouse() widget and will receive FL_MOVE and FL_LEAVE events.

8.3.2 FL_LEAVE

The mouse has moved out of the widget.

In order to receive the FL_LEAVE event, the widget must return non-zero when handling FL_ENTER.

8.3.3 FL_FOCUS

This indicates an attempt to give a widget the keyboard focus.

If a widget wants the focus, it should change itself to display the fact that it has the focus, and return
non-zero from its handle() method. It then becomes the Fl::focus() widget and gets FL_KEYDOWN,
FL_KEYUP, and FL_UNFOCUS events.

The focus will change either because the window manager changed which window gets the focus, or
because the user tried to navigate using tab, arrows, or other keys. You can check Fl::event_key() to figure
out why it moved. For navigation it will be the key pressed and interaction with the window manager it
will be zero.

8.3.4 FL_UNFOCUS

This event is sent to the previous Fl::focus() widget when another widget gets the focus or the window
loses focus.

8.4 Keyboard Events

8.4.1 FL_KEYDOWN, FL_KEYUP

A key was pressed or released. The key can be found in Fl::event_key(). The text that the key should
insert can be found with Fl::event_text() and its length is in Fl::event_length(). If you use the key, then
handle() should return 1. If you return zero then FLTK assumes you ignored the key and will then
attempt to send it to a parent widget. If none of them want it, it will change the event into a FL_SHORTCUT
event.

To receive FL_KEYBOARD events you must also respond to the FL_FOCUS and FL_UNFOCUS events.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

70 Handling Events

If you are writing a text-editing widget you may also want to call the Fl::compose() function to translate
individual keystrokes into foreign characters.

FL_KEYUP events are sent to the widget that currently has focus. This is not necessarily the same widget
that received the corresponding FL_KEYDOWN event because focus may have changed between events.

8.4.2 FL_SHORTCUT

If the Fl::focus() widget is zero or ignores an FL_KEYBOARD event then FLTK tries sending this
event to every widget it can, until one of them returns non-zero. FL_SHORTCUT is first sent to the
Fl::belowmouse() widget, then its parents and siblings, and eventually to every widget in the window,
trying to find an object that returns non-zero. FLTK tries really hard to not to ignore any keystrokes!

You can also make "global" shortcuts by using Fl::add_handler(). A global shortcut will work no matter
what windows are displayed or which one has the focus.

8.5 Widget Events

8.5.1 FL_DEACTIVATE

This widget is no longer active, due to deactivate() being called on it or one of its parents. Please note
that although active() may still return true for this widget after receiving this event, it is only truly active if
active() is true for both it and all of its parents. (You can use active_r() to check this).

8.5.2 FL_ACTIVATE

This widget is now active, due to activate() being called on it or one of its parents.

8.5.3 FL_HIDE

This widget is no longer visible, due to hide() being called on it or one of its parents, or due to a parent
window being minimized. Please note that although visible() may still return true for this widget after
receiving this event, it is only truly visible if visible() is true for both it and all of its parents. (You can use
visible_r() to check this).

8.5.4 FL_SHOW

This widget is visible again, due to show() being called on it or one of its parents, or due to a parent window
being restored. A child Fl_Window will respond to this by actually creating the window if not done already,
so if you subclass a window, be sure to pass FL_SHOW to the base class handle() method!

8.6 Clipboard Events

8.6.1 FL_PASTE

You should get this event some time after you call Fl::paste(). The contents of Fl::event_text() is the text to
insert and the number of characters is in Fl::event_length().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

8.7 Drag and Drop Events 71

8.6.2 FL_SELECTIONCLEAR

The Fl::selection_owner() will get this event before the selection is moved to another widget. This indicates
that some other widget or program has claimed the selection. Motif programs used this to clear the selection
indication. Most modern programs ignore this.

8.7 Drag and Drop Events

FLTK supports drag and drop of text and files from any application on the desktop. Text is transfered using
the current code page. Files are received as a list of full path and file names, separated by newline. On
some platforms, path names are prepended with file://.

The drag and drop data is available in Fl::event_text() at the concluding FL_PASTE. On some platforms,
the event text is also available for the FL_DND_∗ events, however application must not depend on that
behavior because it depends on the protocol used on each platform.

FL_DND_∗ events cannot be used in widgets derived from Fl_Group or Fl_Window.

8.7.1 FL_DND_ENTER

The mouse has been moved to point at this widget. A widget that is interested in receiving drag’n’drop data
must return 1 to receive FL_DND_DRAG, FL_DND_LEAVE and FL_DND_RELEASE events.

8.7.2 FL_DND_DRAG

The mouse has been moved inside a widget while dragging data. A widget that is interested in receiving
drag’n’drop data should indicate the possible drop position.

8.7.3 FL_DND_LEAVE

The mouse has moved out of the widget.

8.7.4 FL_DND_RELEASE

The user has released the mouse button dropping data into the widget. If the widget returns 1, it will receive
the data in the immediately following FL_PASTE event.

8.8 Fl::event_∗() methods

FLTK keeps the information about the most recent event in static storage. This information is good until
the next event is processed. Thus it is valid inside handle() and callback() methods.

These are all trivial inline functions and thus very fast and small:

• Fl::event_button()

• Fl::event_clicks()

• Fl::event_dx()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

72 Handling Events

• Fl::event_dy()

• Fl::event_inside()

• Fl::event_is_click()

• Fl::event_key()

• Fl::event_length()

• Fl::event_state()

• Fl::event_text()

• Fl::event_x()

• Fl::event_x_root()

• Fl::event_y()

• Fl::event_y_root()

• Fl::get_key()

• Fl::get_mouse()

• Fl::test_shortcut()

8.9 Event Propagation

Widgets receive events via the virtual handle() function. The argument indicates the type of event that
can be handled. The widget must indicate if it handled the event by returning 1. FLTK will then remove
the event and wait for further events from the host. If the widget’s handle function returns 0, FLTK may
redistribute the event based on a few rules.

Most events are sent directly to the handle()method of the Fl_Window that the window system says they
belong to. The window (actually the Fl_Group that Fl_Window is a subclass of) is responsible for sending
the events on to any child widgets. To make the Fl_Group code somewhat easier, FLTK sends some events
(FL_DRAG, FL_RELEASE, FL_KEYBOARD, FL_SHORTCUT, FL_UNFOCUS, and FL_LEAVE) directly
to leaf widgets. These procedures control those leaf widgets:

• Fl::add_handler()

• Fl::belowmouse()

• Fl::focus()

• Fl::grab()

• Fl::modal()

• Fl::pushed()

• Fl::release()

• Fl_Widget::take_focus()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

8.10 FLTK Compose-Character Sequences 73

FLTK propagates events along the widget hierarchy depending on the kind of event and the status of the
UI. Some events are injected directly into the widgets, others may be resent as new events to a different
group of receivers.

Mouse click events are first sent to the window that caused them. The window then forwards the event
down the hierarchy until it reaches the widget that is below the click position. If that widget uses the given
event, the widget is marked "pushed" and will receive all following mouse motion (FL_DRAG) events until
the mouse button is released.

Todo

Is this correct? IMHO, mouse motion (FL_MOVE) events are sent to the belowmouse() widget, i.e. the
widget that returned 1 on an FL_ENTER event. The pushed() widget will usually get an FL_FOCUS
event and becomes the focus() widget if it returns 1 on FL_FOCUS, and will then get keyboard events
(see below).

Mouse wheel events are sent to the window that caused the event. The window propagates the event down
the tree, first to the widget that is below the mouse pointer, and if that does not succeed, to all other
widgets in the group. This ensures that scroll widgets work as expected with the widget furthest down in
the hierarchy getting the first opportunity to use the wheel event, but also giving scroll bars, that are not
directly below the mouse a chance.

Keyboard events are sent directly to the widget that has keyboard focus. If the focused widget rejects the
event, it is resent as a shortcut event, first to the top-most window, then to the widget below the mouse
pointer, propagating up the hierarchy to all its parents. Those send the event also to all widgets that are
not below the mouse pointer. Now if that did not work out, the shortcut is sent to all registered shortcut
handlers.

If we are still unsuccessful, the event handler flips the case of the shortcut letter and starts over. Finally, if
the key is "escape", FLTK sends a close event to the top-most window.

All other events are pretty much sent right away to the window that created the event.

Widgets can "grab" events. The grabbing window gets all events exclusively, but usually by the same rules
as described above.

Windows can also request exclusivity in event handling by making the window modal.

8.10 FLTK Compose-Character Sequences

Todo

Does Fltk Compose Character Sequences text need updating after the addition of UTF-8 handling to
FLTK-1.3.x ?

The foreign-letter compose processing done by the Fl_Input widget’s compose key handler is provided in
a function that you can call if you are writing your own text editor widget.

FLTK uses its own compose processing to allow "preview" of the partially composed sequence, which is
impossible with the usual "dead key" processing.

Although currently only characters in the ISO-8859-1 character set are handled, you should call this in
case any enhancements to the processing are done in the future. The interface has been designed to handle
arbitrary UTF-8 encoded text.

The following methods are provided for character composition:

• Fl::compose()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

74 Handling Events

• Fl::compose_reset()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 9

Adding and Extending Widgets

76 Adding and Extending Widgets

This chapter describes how to add your own widgets or extend existing widgets in FLTK.

9.1 Subclassing

New widgets are created by subclassing an existing FLTK widget, typically Fl_Widget for controls and
Fl_Group for composite widgets.

A control widget typically interacts with the user to receive and/or display a value of some sort.

A composite widget holds a list of child widgets and handles moving, sizing, showing, or hiding them as
needed. Fl_Group is the main composite widget class in FLTK, and all of the other composite widgets
(Fl_Pack, Fl_Scroll, Fl_Tabs, Fl_Tile, and Fl_Window) are subclasses of it.

You can also subclass other existing widgets to provide a different look or user-interface. For example, the
button widgets are all subclasses of Fl_Button since they all interact with the user via a mouse button click.
The only difference is the code that draws the face of the button.

9.2 Making a Subclass of Fl_Widget

Your subclasses can directly descend from Fl_Widget or any subclass of Fl_Widget. Fl_Widget has only
four virtual methods, and overriding some or all of these may be necessary.

9.3 The Constructor

The constructor should have the following arguments:

MyClass(int x, int y, int w, int h, const char *label = 0);

This will allow the class to be used in FLUID without problems.

The constructor must call the constructor for the base class and pass the same arguments:

MyClass::MyClass(int x, int y, int w, int h, const char *label)
: Fl_Widget(x, y, w, h, label) {
// do initialization stuff...
}

Fl_Widget’s protected constructor sets x(), y(), w(), h(), and label() to the passed values and
initializes the other instance variables to:

type(0);
box(FL_NO_BOX);
color(FL_BACKGROUND_COLOR);
selection_color(FL_BACKGROUND_COLOR);
labeltype(FL_NORMAL_LABEL);
labelstyle(FL_NORMAL_STYLE);
labelsize(FL_NORMAL_SIZE);
labelcolor(FL_FOREGROUND_COLOR);
align(FL_ALIGN_CENTER);
callback(default_callback,0);
flags(ACTIVE|VISIBLE);
image(0);
deimage(0);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

9.4 Protected Methods of Fl_Widget 77

9.4 Protected Methods of Fl_Widget

The following methods are provided for subclasses to use:

• clear_visible()

• damage()

• draw_box()

• draw_focus()

• draw_label()

• set_flag()

• set_visible()

• test_shortcut()

• type()

void Fl_Widget::damage(uchar mask)

void Fl_Widget::damage(uchar mask, int x, int y, int w, int h)

uchar Fl_Widget::damage()

The first form indicates that a partial update of the object is needed. The bits in mask are OR’d into
damage(). Your draw() routine can examine these bits to limit what it is drawing. The public method
Fl_Widget::redraw() simply does Fl_Widget::damage(FL_DAMAGE_ALL), but the implemen-
tation of your widget can call the public damage(n).

The second form indicates that a region is damaged. If only these calls are done in a window (no calls
to damage(n)) then FLTK will clip to the union of all these calls before drawing anything. This
can greatly speed up incremental displays. The mask bits are OR’d into damage() unless this is a
Fl_Window widget.

The third form returns the bitwise-OR of all damage(n) calls done since the last draw().

When redrawing your widgets you should look at the damage bits to see what parts of your widget
need redrawing. The handle() method can then set individual damage bits to limit the amount of
drawing that needs to be done:

MyClass::handle(int event) {
...
if (change_to_part1) damage(1);
if (change_to_part2) damage(2);
if (change_to_part3) damage(4);

}

MyClass::draw() {
if (damage() & FL_DAMAGE_ALL) {

... draw frame/box and other static stuff ...
}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

78 Adding and Extending Widgets

if (damage() & (FL_DAMAGE_ALL | 1)) draw_part1();
if (damage() & (FL_DAMAGE_ALL | 2)) draw_part2();
if (damage() & (FL_DAMAGE_ALL | 4)) draw_part3();

}

Todo

Clarify Fl_Window::damage(n) handling - seems confused/wrong? ORing value doesn’t match setting
behaviour in FL_Widget.H!

void Fl_Widget::draw_box() const

void Fl_Widget::draw_box(Fl_Boxtype t, Fl_Color c) const

The first form draws this widget’s box(), using the dimensions of the widget. The second form uses
t as the box type and c as the color for the box.

void Fl_Widget::draw_focus()

void Fl_Widget::draw_focus(Fl_Boxtype t, int x, int y, int w, int h) const

Draws a focus box inside the widget’s bounding box. The second form allows you to specify a different
bounding box.

void Fl_Widget::draw_label() const

void Fl_Widget::draw_label(int x, int y, int w, int h) const

void Fl_Widget::draw_label(int x, int y, int w, int h, Fl_Align align) const

The first form is the usual function for a draw() method to call to draw the widget’s label. It does
not draw the label if it is supposed to be outside the box (on the assumption that the enclosing group
will draw those labels).

The second form uses the passed bounding box instead of the widget’s bounding box. This is useful
so "centered" labels are aligned with some feature, like a moving slider.

The third form draws the label anywhere. It acts as though FL_ALIGN_INSIDE has been forced on
so the label will appear inside the passed bounding box. This is designed for parent groups to draw
labels with.

void Fl_Widget::set_flag(int c)

Calling set_flag(SHORTCUT_LABEL) modifies the behavior of draw_label() so that ’&’ charac-
ters cause an underscore to be printed under the next letter.

void Fl_Widget::set_visible()

void Fl_Widget::clear_visible()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

9.5 Handling Events 79

Fast inline versions of Fl_Widget::hide() and Fl_Widget::show(). These do not send the FL_HIDE
and FL_SHOW events to the widget.

int Fl_Widget::test_shortcut()

static int Fl_Widget::test_shortcut(const char ∗s)

The first version tests Fl_Widget::label() against the current event (which should be a FL_SHORTCUT
event). If the label contains a ’&’ character and the character after it matches the keypress, this returns
true. This returns false if the SHORTCUT_LABEL flag is off, if the label is NULL, or does not have a
’&’ character in it, or if the keypress does not match the character.

The second version lets you do this test against an arbitrary string.

Todo

Clarify Fl_Widget::test_shortcut() explanations. Fl_Widget.h says Internal Use only, but subclassing
chapter gives details!

uchar Fl_Widget::type() const

void Fl_Widget::type(uchar t)

The property Fl_Widget::type() can return an arbitrary 8-bit identifier, and can be set with the protected
method type(uchar t). This value had to be provided for Forms compatibility, but you can use it
for any purpose you want. Try to keep the value less than 100 to not interfere with reserved values.

FLTK does not use RTTI (Run Time Typing Information), to enhance portability. But this may change
in the near future if RTTI becomes standard everywhere.

If you don’t have RTTI you can use the clumsy FLTK mechanism, by having type() use a unique
value. These unique values must be greater than the symbol FL_RESERVED_TYPE (which is 100)
and less than FL_WINDOW (unless you make a subclass of Fl_Window). Look through the header files
for FL_RESERVED_TYPE to find an unused number. If you make a subclass of Fl_Window you must
use FL_WINDOW + n (where n must be in the range 1 to 7).

9.5 Handling Events

The virtual method Fl_Widget::handle(int event) is called to handle each event passed to the widget. It can:

• Change the state of the widget.

• Call Fl_Widget::redraw() if the widget needs to be redisplayed.

• Call Fl_Widget::damage(uchar c) if the widget needs a partial-update (assuming you provide support
for this in your draw() method).

• Call Fl_Widget::do_callback() if a callback should be generated.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

80 Adding and Extending Widgets

• Call Fl_Widget::handle() on child widgets.

Events are identified by the integer argument. Other information about the most recent event is stored in
static locations and acquired by calling the Fl::event_∗() methods. This information remains valid until
another event is handled.

Here is a sample handle() method for a widget that acts as a pushbutton and also accepts the keystroke
’x’ to cause the callback:

int MyClass::handle(int event) {
switch(event) {

case FL_PUSH:
highlight = 1;
redraw();
return 1;

case FL_DRAG: {
int t = Fl::event_inside(this);
if (t != highlight) {

highlight = t;
redraw();

}
}
return 1;

case FL_RELEASE:
if (highlight) {

highlight = 0;
redraw();
do_callback();
// never do anything after a callback, as the callback
// may delete the widget!

}
return 1;

case FL_SHORTCUT:
if (Fl::event_key() == ’x’) {

do_callback();
return 1;

}
return 0;

default:
return Fl_Widget::handle(event);

}
}

You must return non-zero if your handle() method uses the event. If you return zero, the parent widget
will try sending the event to another widget.

For debugging purposes, event numbers can be printed as their actual event names using the fl_-
eventnames[] array, e.g.:

#include <FL/names.h> // defines fl_eventnames[]
[..]
int MyClass::handle(int e) {

printf("Event was %s (%d)\n", fl_eventnames[e], e); // e.g. "Event was FL_PUSH (1)"
[..]

9.6 Drawing the Widget

The draw() virtual method is called when FLTK wants you to redraw your widget. It will be called if
and only if damage() is non-zero, and damage() will be cleared to zero after it returns. The draw()
method should be declared protected so that it can’t be called from non-drawing code.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

9.7 Resizing the Widget 81

The damage() value contains the bitwise-OR of all the damage(n) calls to this widget since it was last
drawn. This can be used for minimal update, by only redrawing the parts whose bits are set. FLTK will
turn on the FL_DAMAGE_ALL bit if it thinks the entire widget must be redrawn, e.g. for an expose event.

Expose events (and the damage(mask,x,y,w,h) function described above) will cause draw() to be called
with FLTK’s clipping turned on. You can greatly speed up redrawing in some cases by testing fl_not_-
clipped(x,y,w,h) or fl_clip_box() and skipping invisible parts.

Besides the protected methods described above, FLTK provides a large number of basic drawing functions,
which are described in the chapter Drawing Things in FLTK.

9.7 Resizing the Widget

The resize(x,y,w,h) method is called when the widget is being resized or moved. The arguments
are the new position, width, and height. x(), y(), w(), and h() still remain the old size. You must call
resize() on your base class with the same arguments to get the widget size to actually change.

This should not call redraw(), at least if only the x() and y() change. This is because composite
widgets like Fl_Scroll may have a more efficient way of drawing the new position.

9.8 Making a Composite Widget

A "composite" widget contains one or more "child" widgets. To make a composite widget you should
subclass Fl_Group. It is possible to make a composite object that is not a subclass of Fl_Group, but you’ll
have to duplicate the code in Fl_Group anyways.

Instances of the child widgets may be included in the parent:

class MyClass : public Fl_Group {
Fl_Button the_button;
Fl_Slider the_slider;
...

};

The constructor has to initialize these instances. They are automatically added to the group, since the
Fl_Group constructor does Fl_Group::begin(). Don’t forget to call Fl_Group::end() or use the Fl_End
pseudo-class:

MyClass::MyClass(int x, int y, int w, int h) :
Fl_Group(x, y, w, h),
the_button(x + 5, y + 5, 100, 20),
the_slider(x, y + 50, w, 20)

{
...(you could add dynamically created child widgets here)...
end(); // don’t forget to do this!

}

The child widgets need callbacks. These will be called with a pointer to the children, but the widget itself
may be found in the parent() pointer of the child. Usually these callbacks can be static private methods,
with a matching private method:

void MyClass::static_slider_cb(Fl_Widget* v, void *) { // static method
((MyClass*)(v->parent())->slider_cb();

}
void MyClass::slider_cb() { // normal method

use(the_slider->value());
}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

82 Adding and Extending Widgets

If you make the handle() method, you can quickly pass all the events to the children using the Fl_-
Group::handle() method. You don’t need to override handle() if your composite widget does nothing
other than pass events to the children:

int MyClass::handle(int event) {
if (Fl_Group::handle(event)) return 1;
... handle events that children don’t want ...

}

If you override draw() you need to draw all the children. If redraw() or damage() is called on a
child, damage(FL_DAMAGE_CHILD) is done to the group, so this bit of damage() can be used to
indicate that a child needs to be drawn. It is fastest if you avoid drawing anything else in this case:

int MyClass::draw() {
Fl_Widget *const*a = array();
if (damage() == FL_DAMAGE_CHILD) { // only redraw some children

for (int i = children(); i --; a ++) update_child(**a);
} else { // total redraw

... draw background graphics ...
// now draw all the children atop the background:
for (int i = children_; i --; a ++) {

draw_child(**a);
draw_outside_label(**a); // you may not need to do this

}
}

}

Fl_Group provides some protected methods to make drawing easier:

• draw_child()

• draw_children()

• draw_outside_label()

• update_child()

void Fl_Group::draw_child(Fl_Widget &widget) const

This will force the child’s damage() bits all to one and call draw() on it, then clear the damage().
You should call this on all children if a total redraw of your widget is requested, or if you draw some-
thing (like a background box) that damages the child. Nothing is done if the child is not visible()
or if it is clipped.

void Fl_Group::draw_children()

A convenience function that draws all children of the group. This is useful if you derived a widget
from Fl_Group and want to draw a special border or background. You can call draw_children()
from the derived draw() method after drawing the box, border, or background.

void Fl_Group::draw_outside_label(const Fl_Widget &widget) const

Draw the labels that are not drawn by draw_label(). If you want more control over the label positions
you might want to call child->draw_label(x,y,w,h,a).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

9.9 Cut and Paste Support 83

void Fl_Group::update_child(Fl_Widget& widget) const

Draws the child only if its damage() is non-zero. You should call this on all the children if your own
damage is equal to FL_DAMAGE_CHILD. Nothing is done if the child is not visible() or if it is
clipped.

9.9 Cut and Paste Support

FLTK provides routines to cut and paste 8-bit text (in the future this may be UTF-8) between applications:

• Fl::paste()

• Fl::selection()

• Fl::selection_owner()

It may be possible to cut/paste non-text data by using Fl::add_handler(). Note that handling events beyond
those provided by FLTK may be operating system specific. See Operating System Issues for more details.

9.10 Drag And Drop Support

FLTK provides routines to drag and drop 8-bit text between applications:

Drag’n’drop operations are initiated by copying data to the clipboard and calling the function Fl::dnd().

Drop attempts are handled via the following events, already described under Drag and Drop Events in a
previous chapter:

• FL_DND_ENTER

• FL_DND_DRAG

• FL_DND_LEAVE

• FL_DND_RELEASE

• FL_PASTE

9.11 Making a subclass of Fl_Window

You may want your widget to be a subclass of Fl_Window, Fl_Double_Window, or Fl_Gl_Window. This
can be useful if your widget wants to occupy an entire window, and can also be used to take advantage of
system-provided clipping, or to work with a library that expects a system window ID to indicate where to
draw.

Subclassing Fl_Window is almost exactly like subclassing Fl_Group, and in fact you can easily switch a
subclass back and forth. Watch out for the following differences:

1. Fl_Window is a subclass of Fl_Group so make sure your constructor calls end() unless you actually
want children added to your window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

84 Adding and Extending Widgets

2. When handling events and drawing, the upper-left corner is at 0,0, not x(),y() as in other Fl_-
Widget’s. For instance, to draw a box around the widget, call draw_box(0,0,w(),h()), rather
than draw_box(x(),y(),w(),h()).

You may also want to subclass Fl_Window in order to get access to different visuals or to change other
attributes of the windows. See the Operating System Issues chapter for more information.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 10

Using OpenGL

86 Using OpenGL

This chapter discusses using FLTK for your OpenGL applications.

10.1 Using OpenGL in FLTK

The easiest way to make an OpenGL display is to subclass Fl_Gl_Window. Your subclass must imple-
ment a draw() method which uses OpenGL calls to draw the display. Your main program should call
redraw() when the display needs to change, and (somewhat later) FLTK will call draw().

With a bit of care you can also use OpenGL to draw into normal FLTK windows. This allows you to
use Gouraud shading for drawing your widgets. To do this you use the gl_start() and gl_finish() functions
around your OpenGL code.

You must include FLTK’s <FL/gl.h> header file. It will include the file <GL/gl.h>, define some
extra drawing functions provided by FLTK, and include the <windows.h> header file needed by WIN32
applications.

10.2 Making a Subclass of Fl_Gl_Window

To make a subclass of Fl_Gl_Window, you must provide:

• A class definition.

• A draw() method.

• A handle() method if you need to receive input from the user.

If your subclass provides static controls in the window, they must be redrawn whenever the FL_DAMAGE_-
ALL bit is set in the value returned by damage(). For double-buffered windows you will need to surround
the drawing code with the following code to make sure that both buffers are redrawn:

#ifndef MESA
glDrawBuffer(GL_FRONT_AND_BACK);
#endif // !MESA
... draw stuff here ...
#ifndef MESA
glDrawBuffer(GL_BACK);
#endif // !MESA

Note:
If you are using the Mesa graphics library, the call to glDrawBuffer() is not required and will
slow down drawing considerably. The preprocessor instructions shown above will optimize your code
based upon the graphics library used.

10.2.1 Defining the Subclass

To define the subclass you just subclass the Fl_Gl_Window class:

class MyWindow : public Fl_Gl_Window {
void draw();
int handle(int);

public:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

10.2 Making a Subclass of Fl_Gl_Window 87

MyWindow(int X, int Y, int W, int H, const char *L)
: Fl_Gl_Window(X, Y, W, H, L) {}

};

The draw() and handle() methods are described below. Like any widget, you can include additional
private and public data in your class (such as scene graph information, etc.)

10.2.2 The draw() Method

The draw() method is where you actually do your OpenGL drawing:

void MyWindow::draw() {
if (!valid()) {

... set up projection, viewport, etc ...

... window size is in w() and h().

... valid() is turned on by FLTK after draw() returns
}
... draw ...

}

10.2.3 The handle() Method

The handle() method handles mouse and keyboard events for the window:

int MyWindow::handle(int event) {
switch(event) {
case FL_PUSH:

... mouse down event ...

... position in Fl::event_x() and Fl::event_y()
return 1;

case FL_DRAG:
... mouse moved while down event ...
return 1;

case FL_RELEASE:
... mouse up event ...
return 1;

case FL_FOCUS :
case FL_UNFOCUS :

... Return 1 if you want keyboard events, 0 otherwise
return 1;

case FL_KEYBOARD:
... keypress, key is in Fl::event_key(), ascii in Fl::event_text()
... Return 1 if you understand/use the keyboard event, 0 otherwise...
return 1;

case FL_SHORTCUT:
... shortcut, key is in Fl::event_key(), ascii in Fl::event_text()
... Return 1 if you understand/use the shortcut event, 0 otherwise...
return 1;

default:
// pass other events to the base class...
return Fl_Gl_Window::handle(event);

}
}

When handle() is called, the OpenGL context is not set up! If your display changes, you should
call redraw() and let draw() do the work. Don’t call any OpenGL drawing functions from inside
handle()!

You can call some OpenGL stuff like hit detection and texture loading functions by doing:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

88 Using OpenGL

case FL_PUSH:
make_current(); // make OpenGL context current
if (!valid()) {

... set up projection exactly the same as draw ...

valid(1); // stop it from doing this next time
}
... ok to call NON-DRAWING OpenGL code here, such as hit
detection, loading textures, etc...

Your main program can now create one of your windows by doing new MyWindow(...).

You can also use your new window class in FLUID by:

1. Putting your class definition in a MyWindow.H file.

2. Creating a Fl_Box widget in FLUID.

3. In the widget panel fill in the "class" field with MyWindow. This will make FLUID produce con-
structors for your new class.

4. In the "Extra Code" field put #include "MyWindow.H", so that the FLUID output file will
compile.

You must put glwindow->show() in your main code after calling show() on the window containing
the OpenGL window.

10.3 Using OpenGL in Normal FLTK Windows

You can put OpenGL code into the draw() method, as described in Drawing the Widget in the previous
chapter, or into the code for a boxtype or other places with some care.

Most importantly, before you show any windows, including those that don’t have OpenGL drawing, you
must initialize FLTK so that it knows it is going to use OpenGL. You may use any of the symbols described
for Fl_Gl_Window::mode() to describe how you intend to use OpenGL:

Fl::gl_visual(FL_RGB);

You can then put OpenGL drawing code anywhere you can draw normally by surrounding it with gl_start()
and gl_finish() to set up, and later release, an OpenGL context with an orthographic projection so that 0,0
is the lower-left corner of the window and each pixel is one unit. The current clipping is reproduced with
OpenGL glScissor() commands. These functions also synchronize the OpenGL graphics stream with
the drawing done by other X, WIN32, or FLTK functions.

gl_start();
... put your OpenGL code here ...
gl_finish();

The same context is reused each time. If your code changes the projection transformation or anything else
you should use glPushMatrix() and glPopMatrix() functions to put the state back before calling
gl_finish().

You may want to use Fl_Window::current()->h() to get the drawable height so that you can flip
the Y coordinates.

Unfortunately, there are a bunch of limitations you must adhere to for maximum portability:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

10.4 OpenGL Drawing Functions 89

• You must choose a default visual with Fl::gl_visual().

• You cannot pass FL_DOUBLE to Fl::gl_visual().

• You cannot use Fl_Double_Window or Fl_Overlay_Window.

Do not call gl_start() or gl_finish() when drawing into an Fl_Gl_Window !

10.4 OpenGL Drawing Functions

FLTK provides some useful OpenGL drawing functions. They can be freely mixed with any OpenGL
calls, and are defined by including <FL/gl.h> which you should include instead of the OpenGL header
<GL/gl.h>.

void gl_color(Fl_Color)

Sets the current OpenGL color to a FLTK color. For color-index modes it will use fl_xpixel(c),
which is only right if this window uses the default colormap!

void gl_rect(int x, int y, int w, int h)

void gl_rectf(int x, int y, int w, int h)

Outlines or fills a rectangle with the current color. If Fl_Gl_Window::ortho() has been called, then the
rectangle will exactly fill the pixel rectangle passed.

void gl_font(Fl_Font fontid, int size)

Sets the current OpenGL font to the same font you get by calling fl_font().

int gl_height()

int gl_descent()

float gl_width(const char ∗s)

float gl_width(const char ∗s, int n)

float gl_width(uchar c)

Returns information about the current OpenGL font.

void gl_draw(const char ∗s)

void gl_draw(const char ∗s, int n)

Draws a nul-terminated string or an array of n characters in the current OpenGL font at the current
raster position.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

90 Using OpenGL

void gl_draw(const char ∗s, int x, int y)

void gl_draw(const char ∗s, int n, int x, int y)

void gl_draw(const char ∗s, float x, float y)

void gl_draw(const char ∗s, int n, float x, float y)

Draws a nul-terminated string or an array of n characters in the current OpenGL font at the given
position.

void gl_draw(const char ∗s, int x, int y, int w, int h, Fl_Align)

Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed
to ∧X, and aligned with the edges or center. Exactly the same output as fl_draw().

10.5 Speeding up OpenGL

Performance of Fl_Gl_Window may be improved on some types of OpenGL implementations, in particular
MESA and other software emulators, by setting the GL_SWAP_TYPE environment variable. This variable
declares what is in the backbuffer after you do a swapbuffers.

• setenv GL_SWAP_TYPE COPY

This indicates that the back buffer is copied to the front buffer, and still contains its old data. This
is true of many hardware implementations. Setting this will speed up emulation of overlays, and
widgets that can do partial update can take advantage of this as damage() will not be cleared to -1.

• setenv GL_SWAP_TYPE NODAMAGE

This indicates that nothing changes the back buffer except drawing into it. This is true of MESA and
Win32 software emulation and perhaps some hardware emulation on systems with lots of memory.

• All other values for GL_SWAP_TYPE, and not setting the variable, cause FLTK to assume that the
back buffer must be completely redrawn after a swap.

This is easily tested by running the gl_overlay demo program and seeing if the display is correct when you
drag another window over it or if you drag the window off the screen and back on. You have to exit and
run the program again for it to see any changes to the environment variable.

10.6 Using OpenGL Optimizer with FLTK

OpenGL Optimizer is a scene graph toolkit for OpenGL available from Silicon Graphics for IRIX and
Microsoft Windows. It allows you to view large scenes without writing a lot of OpenGL code.

OptimizerWindow Class Definition

To use OpenGL Optimizer with FLTK you’ll need to create a subclass of Fl_Gl_Widget that in-
cludes several state variables:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.sgi.com/software/optimizer
http://www.sgi.com/software/optimizer

10.6 Using OpenGL Optimizer with FLTK 91

class OptimizerWindow : public Fl_Gl_Window {
csContext *context_; // Initialized to 0 and set by draw()...
csDrawAction *draw_action_; // Draw action...
csGroup *scene_; // Scene to draw...
csCamara *camera_; // Viewport for scene...

void draw();

public:
OptimizerWindow(int X, int Y, int W, int H, const char *L)

: Fl_Gl_Window(X, Y, W, H, L) {
context_ = (csContext *)0;
draw_action_ = (csDrawAction *)0;
scene_ = (csGroup *)0;
camera_ = (csCamera *)0;

}

void scene(csGroup *g) { scene_ = g; redraw(); }

void camera(csCamera *c) {
camera_ = c;
if (context_) {

draw_action_->setCamera(camera_);
camera_->draw(draw_action_);
redraw();

}
}

};

The camera() Method

The camera() method sets the camera (projection and viewpoint) to use when drawing the scene.
The scene is redrawn after this call.

The draw() Method

The draw() method performs the needed initialization and does the actual drawing:

void OptimizerWindow::draw() {
if (!context_) {

// This is the first time we’ve been asked to draw; create the
// Optimizer context for the scene...

#ifdef WIN32
context_ = new csContext((HDC)fl_getHDC());
context_->ref();
context_->makeCurrent((HDC)fl_getHDC());

#else
context_ = new csContext(fl_display, fl_visual);
context_->ref();
context_->makeCurrent(fl_display, fl_window);

#endif // WIN32

... perform other context setup as desired ...

// Then create the draw action to handle drawing things...

draw_action_ = new csDrawAction;
if (camera_) {

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

92 Using OpenGL

draw_action_->setCamera(camera_);
camera_->draw(draw_action_);

}
} else {

#ifdef WIN32
context_->makeCurrent((HDC)fl_getHDC());

#else
context_->makeCurrent(fl_display, fl_window);

#endif // WIN32
}

if (!valid()) {
// Update the viewport for this context...
context_->setViewport(0, 0, w(), h());

}

// Clear the window...
context_->clear(csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR,

0.0f, // Red
0.0f, // Green
0.0f, // Blue
1.0f); // Alpha

// Then draw the scene (if any)...
if (scene_)

draw_action_->apply(scene_);
}

The scene() Method

The scene() method sets the scene to be drawn. The scene is a collection of 3D objects in a
csGroup. The scene is redrawn after this call.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 11

Programming with FLUID

94 Programming with FLUID

This chapter shows how to use the Fast Light User-Interface Designer ("FLUID") to create your GUIs.

Subchapters:

• What is FLUID?

• Running FLUID Under UNIX

• Running FLUID Under Microsoft Windows

• Compiling .fl files

• A Short Tutorial

• FLUID Reference

• Internationalization with FLUID

• Known limitations

11.1 What is FLUID?

The Fast Light User Interface Designer, or FLUID, is a graphical editor that is used to produce FLTK
source code. FLUID edits and saves its state in .fl files. These files are text, and you can (with care) edit
them in a text editor, perhaps to get some special effects.

FLUID can "compile" the .fl file into a .cxx and a .h file. The .cxx file defines all the objects from the
.fl file and the .h file declares all the global ones. FLUID also supports localization (Internationalization)
of label strings using message files and the GNU gettext or POSIX catgets interfaces.

A simple program can be made by putting all your code (including a main() function) into the .fl file
and thus making the .cxx file a single source file to compile. Most programs are more complex than this,
so you write other .cxx files that call the FLUID functions. These .cxx files must #include the .h
file or they can #include the .cxx file so it still appears to be a single source file.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.1 What is FLUID? 95

Figure 11.1: FLUID organization

Normally the FLUID file defines one or more functions or classes which output C++ code. Each function
defines a one or more FLTK windows, and all the widgets that go inside those windows.

Widgets created by FLUID are either "named", "complex named" or "unnamed". A named widget has
a legal C++ variable identifier as its name (i.e. only alphanumeric and underscore). In this case FLUID
defines a global variable or class member that will point at the widget after the function defining it is called.
A complex named object has punctuation such as ’.’ or ’->’ or any other symbols in its name. In this
case FLUID assigns a pointer to the widget to the name, but does not attempt to declare it. This can be
used to get the widgets into structures. An unnamed widget has a blank name and no pointer is stored.

Widgets may either call a named callback function that you write in another source file, or you can supply
a small piece of C++ source and FLUID will write a private callback function into the .cxx file.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

96 Programming with FLUID

11.2 Running FLUID Under UNIX

To run FLUID under UNIX, type:

fluid filename.fl &

to edit the .fl file filename.fl. If the file does not exist you will get an error pop-up, but if you
dismiss it you will be editing a blank file of that name. You can run FLUID without any name, in which
case you will be editing an unnamed blank setup (but you can use save-as to write it to a file).

You can provide any of the standard FLTK switches before the filename:

-display host:n.n
-geometry WxH+X+Y
-title windowtitle
-name classname
-iconic
-fg color
-bg color
-bg2 color
-scheme schemename

Changing the colors may be useful to see what your interface will look at if the user calls it with the
same switches. Similarly, using "-scheme plastic" will show how the interface will look using the "plastic"
scheme.

In the current version, if you don’t put FLUID into the background with ’&’ then you will be able to abort
FLUID by typing CTRL-C on the terminal. It will exit immediately, losing any changes.

11.3 Running FLUID Under Microsoft Windows

To run FLUID under WIN32, double-click on the FLUID.exe file. You can also run FLUID from the
Command Prompt window. FLUID always runs in the background under WIN32.

11.4 Compiling .fl files

FLUID can also be called as a command-line "compiler" to create the .cxx and .h file from a .fl file.
To do this type:

fluid -c filename.fl

This will read the filename.fl file and write filename.cxx and filename.h. Any leading di-
rectory on filename.fl will be stripped, so they are always written to the current directory. If there are
any errors reading or writing the files, FLUID will print the error and exit with a non-zero code. You can
use the following lines in a makefile to automate the creation of the source and header files:

my_panels.h my_panels.cxx: my_panels.fl
fluid -c my_panels.fl

Most versions of make support rules that cause .fl files to be compiled:

.SUFFIXES: .fl .cxx .h

.fl.h .fl.cxx:
fluid -c $<

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.5 A Short Tutorial 97

11.5 A Short Tutorial

FLUID is an amazingly powerful little program. However, this power comes at a price as it is not always
obvious how to accomplish seemingly simple tasks with it. This tutorial will show you how to generate a
complete user interface class with FLUID that is used for the CubeView program provided with FLTK.

Figure 11.2: CubeView demo

The window is of class CubeViewUI, and is completely generated by FLUID, including class member
functions. The central display of the cube is a separate subclass of Fl_Gl_Window called CubeView.
CubeViewUI manages CubeView using callbacks from the various sliders and rollers to manipulate the
viewing angle and zoom of CubeView.

At the completion of this tutorial you will (hopefully) understand how to:

1. Use FLUID to create a complete user interface class, including constructor and any member functions
necessary.

2. Use FLUID to set callbacks member functions of a custom widget classes.

3. Subclass an Fl_Gl_Window to suit your purposes.

11.5.1 The CubeView Class

The CubeView class is a subclass of Fl_Gl_Window. It has methods for setting the zoom, the x and y pan,
and the rotation angle about the x and y axes.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

98 Programming with FLUID

You can safely skip this section as long as you realize the CubeView is a sublass of Fl_Gl_Window and
will respond to calls from CubeViewUI, generated by FLUID.

The CubeView Class Definition

Here is the CubeView class definition, as given by its header file "test/CubeView.h":

class CubeView : public Fl_Gl_Window {
public:

CubeView(int x,int y,int w,int h,const char *l=0);
// this value determines the scaling factor used to draw the cube.
double size;
/* Set the rotation about the vertical (y) axis.

This function is called by the horizontal roller in CubeViewUI
and the initialize button in CubeViewUI.

*/
void v_angle(float angle){vAng=angle;};
// Return the rotation about the vertical (y) axis.
float v_angle(){return vAng;};
/* Set the rotation about the horizontal (x) axis.

This function is called by the vertical roller in CubeViewUI
and the

initialize button in CubeViewUI.

*/
void h_angle(float angle){hAng=angle;};
// the rotation about the horizontal (x) axis.
float h_angle(){return hAng;};
/* Sets the x shift of the cube view camera.

This function is called by the slider in CubeViewUI and the
initialize button in CubeViewUI.

*/
void panx(float x){xshift=x;};
/* Sets the y shift of the cube view camera.

This function is called by the slider in CubeViewUI and the
initialize button in CubeViewUI.

*/
void pany(float y){yshift=y;};
/* The widget class draw() override.

The draw() function initialize Gl for another round of
drawing then calls specialized functions for drawing each
of the entities displayed in the cube view.

*/
void draw();

private:
/* Draw the cube boundaries

Draw the faces of the cube using the boxv[] vertices, using
GL_LINE_LOOP for the faces. The color is #defined by
CUBECOLOR.

*/
void drawCube();

float vAng,hAng; float xshift,yshift;

float boxv0[3];float boxv1[3]; float boxv2[3];float boxv3[3];
float boxv4[3];float boxv5[3]; float boxv6[3];float boxv7[3];

};

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.5 A Short Tutorial 99

The CubeView Class Implementation

Here is the CubeView implementation. It is very similar to the "cube" demo included with FLTK.

#include "CubeView.h"
#include <math.h>

CubeView::CubeView(int x,int y,int w,int h,const char *l)
: Fl_Gl_Window(x,y,w,h,l)

{
vAng = 0.0; hAng=0.0; size=10.0;
/* The cube definition. These are the vertices of a unit cube

centered on the origin.*/
boxv0[0] = -0.5; boxv0[1] = -0.5; boxv0[2] = -0.5; boxv1[0] = 0.5;
boxv1[1] = -0.5; boxv1[2] = -0.5; boxv2[0] = 0.5; boxv2[1] = 0.5;
boxv2[2] = -0.5; boxv3[0] = -0.5; boxv3[1] = 0.5; boxv3[2] = -0.5;
boxv4[0] = -0.5; boxv4[1] = -0.5; boxv4[2] = 0.5; boxv5[0] = 0.5;
boxv5[1] = -0.5; boxv5[2] = 0.5; boxv6[0] = 0.5; boxv6[1] = 0.5;
boxv6[2] = 0.5; boxv7[0] = -0.5; boxv7[1] = 0.5; boxv7[2] = 0.5;

};

// The color used for the edges of the bounding cube.
#define CUBECOLOR 255,255,255,255

void CubeView::drawCube() {
/* Draw a colored cube */
#define ALPHA 0.5

glShadeModel(GL_FLAT);

glBegin(GL_QUADS);
glColor4f(0.0, 0.0, 1.0, ALPHA);
glVertex3fv(boxv0);
glVertex3fv(boxv1);
glVertex3fv(boxv2);
glVertex3fv(boxv3);

glColor4f(1.0, 1.0, 0.0, ALPHA);
glVertex3fv(boxv0);
glVertex3fv(boxv4);
glVertex3fv(boxv5);
glVertex3fv(boxv1);

glColor4f(0.0, 1.0, 1.0, ALPHA);
glVertex3fv(boxv2);
glVertex3fv(boxv6);
glVertex3fv(boxv7);
glVertex3fv(boxv3);

glColor4f(1.0, 0.0, 0.0, ALPHA);
glVertex3fv(boxv4);
glVertex3fv(boxv5);
glVertex3fv(boxv6);
glVertex3fv(boxv7);

glColor4f(1.0, 0.0, 1.0, ALPHA);
glVertex3fv(boxv0);
glVertex3fv(boxv3);
glVertex3fv(boxv7);
glVertex3fv(boxv4);

glColor4f(0.0, 1.0, 0.0, ALPHA);
glVertex3fv(boxv1);
glVertex3fv(boxv5);
glVertex3fv(boxv6);
glVertex3fv(boxv2);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

100 Programming with FLUID

glEnd();

glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINES);

glVertex3fv(boxv0);
glVertex3fv(boxv1);

glVertex3fv(boxv1);
glVertex3fv(boxv2);

glVertex3fv(boxv2);
glVertex3fv(boxv3);

glVertex3fv(boxv3);
glVertex3fv(boxv0);

glVertex3fv(boxv4);
glVertex3fv(boxv5);

glVertex3fv(boxv5);
glVertex3fv(boxv6);

glVertex3fv(boxv6);
glVertex3fv(boxv7);

glVertex3fv(boxv7);
glVertex3fv(boxv4);

glVertex3fv(boxv0);
glVertex3fv(boxv4);

glVertex3fv(boxv1);
glVertex3fv(boxv5);

glVertex3fv(boxv2);
glVertex3fv(boxv6);

glVertex3fv(boxv3);
glVertex3fv(boxv7);

glEnd();
};//drawCube

void CubeView::draw() {
if (!valid()) {

glLoadIdentity(); glViewport(0,0,w(),h());
glOrtho(-10,10,-10,10,-20000,10000); glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

}

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix(); glTranslatef(xshift, yshift, 0);
glRotatef(hAng,0,1,0); glRotatef(vAng,1,0,0);
glScalef(float(size),float(size),float(size)); drawCube();
glPopMatrix();

};

11.5.2 The CubeViewUI Class

We will completely construct a window to display and control the CubeView defined in the previous section
using FLUID.

Defining the CubeViewUI Class

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.5 A Short Tutorial 101

Once you have started FLUID, the first step in defining a class is to create a new class within FLUID using
the New->Code->Class menu item. Name the class "CubeViewUI" and leave the subclass blank. We do
not need any inheritance for this window. You should see the new class declaration in the FLUID browser
window.

Figure 11.3: FLUID file for CubeView

Adding the Class Constructor

Click on the CubeViewUI class in the FLUID window and add a new method by selecting New->Code-
>Function/Method. The name of the function will also be CubeViewUI. FLUID will understands that
this will be the constructor for the class and will generate the appropriate code. Make sure you declare the
constructor public.

Then add a window to the CubeViewUI class. Highlight the name of the constructor in the FLUID browser
window and click on New->Group->Window. In a similar manner add the following to the CubeViewUI
constructor:

• A horizontal roller named hrot

• A vertical roller named vrot

• A horizontal slider named xpan

• A vertical slider named ypan

• A horizontal value slider named zoom

None of these additions need be public. And they shouldn’t be unless you plan to expose them as part of
the interface for CubeViewUI.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

102 Programming with FLUID

When you are finished you should have something like this:

Figure 11.4: FLUID window containing CubeView demo

We will talk about the show() method that is highlighted shortly.

Adding the CubeView Widget

What we have is nice, but does little to show our cube. We have already defined the CubeView class and
we would like to show it within the CubeViewUI.

The CubeView class inherits the Fl_Gl_Window class, which is created in the same way as a Fl_Box
widget. Use New->Other->Box to add a square box to the main window. This will be no ordinary box,
however.

The Box properties window will appear. The key to letting CubeViewUI display CubeView is to enter
CubeView in the Class: text entry box. This tells FLUID that it is not an Fl_Box, but a similar widget with
the same constructor.

In the Extra Code: field enter #include "CubeView.h"

This #include is important, as we have just included CubeView as a member of CubeViewUI, so any
public CubeView methods are now available to CubeViewUI.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.5 A Short Tutorial 103

Figure 11.5: CubeView methods

Defining the Callbacks

Each of the widgets we defined before adding CubeView can have callbacks that call CubeView methods.
You can call an external function or put in a short amount of code in the Callback field of the widget panel.
For example, the callback for the ypan slider is:

cube->pany(((Fl_Slider *)o)->value());
cube->redraw();

We call cube->redraw() after changing the value to update the CubeView window. CubeView could
easily be modified to do this, but it is nice to keep this exposed in the case where you may want to do more
than one view change only redrawing once saves a lot of time.

There is no reason no wait until after you have added CubeView to enter these callbacks. FLUID assumes
you are smart enough not to refer to members or functions that don’t exist.

Adding a Class Method

You can add class methods within FLUID that have nothing to do with the GUI. An an example add a show
function so that CubeViewUI can actually appear on the screen.

Make sure the top level CubeViewUI is selected and select New->Code->Function/Method. Just use the
name show(). We don’t need a return value here, and since we will not be adding any widgets to this
method FLUID will assign it a return type of void.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

104 Programming with FLUID

Figure 11.6: CubeView constructor

Once the new method has been added, highlight its name and select New->Code->Code. Enter the
method’s code in the code window.

11.5.3 Adding Constructor Initialization Code

If you need to add code to initialize class, for example setting initial values of the horizontal and vertical
angles in the CubeView, you can simply highlight the Constructor and select New->Code->Code. Add
any required code.

11.5.4 Generating the Code

Now that we have completely defined the CubeViewUI, we have to generate the code. There is one last
trick to ensure this all works. Open the preferences dialog from Edit->Preferences.

At the bottom of the preferences dialog box is the key: "Include Header from Code". Select that op-
tion and set your desired file extensions and you are in business. You can include the CubeViewUI.h (or
whatever extension you prefer) as you would any other C++ class.

11.6 FLUID Reference

The following sections describe each of the windows in FLUID.

11.6.1 The Widget Browser

The main window shows a menu bar and a scrolling browser of all the defined widgets. The name of the
.fl file being edited is shown in the window title.

The widgets are stored in a hierarchy. You can open and close a level by clicking the "triangle" at the left
of a widget. The leftmost widgets are the parents, and all the widgets listed below them are their children.
Parents don’t have to have any children.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.6 FLUID Reference 105

The top level of the hierarchy is composed of functions and classes. Each of these will produce a single
C++ public function or class in the output .cxx file. Calling the function or instantiating the class will
create all of the child widgets.

The second level of the hierarchy contains the windows. Each of these produces an instance of class Fl_-
Window.

Below that are either widgets (subclasses of Fl_Widget) or groups of widgets (including other groups).
Plain groups are for layout, navigation, and resize purposes. Tab groups provide the well-known file-card
tab interface.

Widgets are shown in the browser by either their name (such as "main_panel" in the example), or by their
type and label (such as "Button "the green"").

You select widgets by clicking on their names, which highlights them (you can also select widgets from
any displayed window). You can select many widgets by dragging the mouse across them, or by using
Shift+Click to toggle them on and off. To select no widgets, click in the blank area under the last widget.
Note that hidden children may be selected even when there is no visual indication of this.

You open widgets by double-clicking on them, or (to open several widgets you have picked) by typing the
F1 key. A control panel will appear so you can change the widget(s).

11.6.2 Menu Items

The menu bar at the top is duplicated as a pop-up menu on any displayed window. The shortcuts for all the
menu items work in any window. The menu items are:

File/Open... (Ctrl+o)

Discards the current editing session and reads in a different .fl file. You are asked for confirmation
if you have changed the current file.

FLUID can also read .fd files produced by the Forms and XForms "fdesign" programs. It is best to
File/Merge them instead of opening them. FLUID does not understand everything in a .fd file, and
will print a warning message on the controlling terminal for all data it does not understand. You will
probably need to edit the resulting setup to fix these errors. Be careful not to save the file without
changing the name, as FLUID will write over the .fd file with its own format, which fdesign cannot
read!

File/Insert... (Ctrl+i)

Inserts the contents of another .fl file, without changing the name of the current .fl file. All the
functions (even if they have the same names as the current ones) are added, and you will have to use
cut/paste to put the widgets where you want.

File/Save (Ctrl+s)

Writes the current data to the .fl file. If the file is unnamed then FLUID will ask for a filename.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

106 Programming with FLUID

File/Save As... (Ctrl+Shift+S)

Asks for a new filename and saves the file.

File/Write Code (Ctrl+Shift+C)

"Compiles" the data into a .cxx and .h file. These are exactly the same as the files you get when you
run FLUID with the -c switch.

The output file names are the same as the .fl file, with the leading directory and trailing ".fl" stripped,
and ".h" or ".cxx" appended.

File/Write Strings (Ctrl+Shift+W)

Writes a message file for all of the text labels defined in the current file.

The output file name is the same as the .fl file, with the leading directory and trailing ".fl" stripped,
and ".txt", ".po", or ".msg" appended depending on the Internationalization Mode.

File/Quit (Ctrl+q)

Exits FLUID. You are asked for confirmation if you have changed the current file.

Edit/Undo (Ctrl+z)

This isn’t implemented yet. You should do save often so you can recover from any mistakes you make.

Edit/Cut (Ctrl+x)

Deletes the selected widgets and all of their children. These are saved to a "clipboard" file and can be
pasted back into any FLUID window.

Edit/Copy (Ctrl+c)

Copies the selected widgets and all of their children to the "clipboard" file.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.6 FLUID Reference 107

Edit/Paste (Ctrl+c)

Pastes the widgets from the clipboard file.

If the widget is a window, it is added to whatever function is selected, or contained in the current
selection.

If the widget is a normal widget, it is added to whatever window or group is selected. If none is, it is
added to the window or group that is the parent of the current selection.

To avoid confusion, it is best to select exactly one widget before doing a paste.

Cut/paste is the only way to change the parent of a widget.

Edit/Select All (Ctrl+a)

Selects all widgets in the same group as the current selection.

If they are all selected already then this selects all widgets in that group’s parent. Repeatedly typing
Ctrl+a will select larger and larger groups of widgets until everything is selected.

Edit/Open... (F1 or double click)

Displays the current widget in the attributes panel. If the widget is a window and it is not visible then
the window is shown instead.

Edit/Sort

Sorts the selected widgets into left to right, top to bottom order. You need to do this to make navigation
keys in FLTK work correctly. You may then fine-tune the sorting with "Earlier" and "Later". This does
not affect the positions of windows or functions.

Edit/Earlier (F2)

Moves all of the selected widgets one earlier in order among the children of their parent (if possible).
This will affect navigation order, and if the widgets overlap it will affect how they draw, as the later
widget is drawn on top of the earlier one. You can also use this to reorder functions, classes, and
windows within functions.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

108 Programming with FLUID

Edit/Later (F3)

Moves all of the selected widgets one later in order among the children of their parent (if possible).

Edit/Group (F7)

Creates a new Fl_Group and make all the currently selected widgets children of it.

Edit/Ungroup (F8)

Deletes the parent group if all the children of a group are selected.

Edit/Overlays on/off (Ctrl+Shift+O)

Toggles the display of the red overlays off, without changing the selection. This makes it easier to see
box borders and how the layout looks. The overlays will be forced back on if you change the selection.

Edit/Project Settings... (Ctrl+p)

Displays the project settings panel. The output filenames control the extensions or names of the files
the are generated by FLUID. If you check the "Include .h from .cxx" button the code file will include
the header file automatically.

The internationalization options are described later in this chapter.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.6 FLUID Reference 109

Figure 11.7: FLUID Preferences Window

Edit/GUI Settings... (Shift+Ctrl+p)

Displays the GUI settings panel. This panel is used to control the user interface settings.

New/Code/Function

Creates a new C function. You will be asked for a name for the function. This name should be a legal
C++ function template, without the return type. You can pass arguments which can be referred to by
code you type into the individual widgets.

If the function contains any unnamed windows, it will be declared as returning a Fl_Window pointer.
The unnamed window will be returned from it (more than one unnamed window is useless). If the
function contains only named windows, it will be declared as returning nothing (void).

It is possible to make the .cxx output be a self-contained program that can be compiled and executed.
This is done by deleting the function name so main(argc,argv) is used. The function will call
show() on all the windows it creates and then call Fl::run(). This can also be used to test resize
behavior or other parts of the user interface.

You can change the function name by double-clicking on the function.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

110 Programming with FLUID

New/Window

Creates a new Fl_Window widget. The window is added to the currently selected function, or to the
function containing the currently selected item. The window will appear, sized to 100x100. You can
resize it to whatever size you require.

The widget panel will also appear and is described later in this chapter.

New/...

All other items on the New menu are subclasses of Fl_Widget. Creating them will add them to the
currently selected group or window, or the group or window containing the currently selected widget.
The initial dimensions and position are chosen by copying the current widget, if possible.

When you create the widget you will get the widget’s control panel, which is described later in this
chapter.

Layout/Align/...

Align all selected widgets to the first widget in the selection.

Layout/Space Evenly/...

Space all selected widgets evenly inside the selected space. Widgets will be sorted from first to last.

Layout/Make Same Size/...

Make all selected widgets the same size as the first selected widget.

Layout/Center in Group/...

Center all selected widgets relative to their parent widget

Layout/Grid... (Ctrl+g)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.6 FLUID Reference 111

Displays the grid settings panel. This panel controls the grid that all widgets snap to when you move
and resize them, and for the "snap" which is how far a widget has to be dragged from its original
position to actually change.

Shell/Execute Command... (Alt+x)

Displays the shell command panel. The shell command is commonly used to run a ’make’ script to
compile the FLTK output.

Shell/Execute Again (Alt+g)

Run the shell command again.

Help/About FLUID

Pops up a panel showing the version of FLUID.

Help/On FLUID

Shows this chapter of the manual.

Help/Manual

Shows the contents page of the manual

11.6.3 The Widget Panel

When you double-click on a widget or a set of widgets you will get the "widget attribute panel".

When you change attributes using this panel, the changes are reflected immediately in the window. It is
useful to hit the "no overlay" button (or type Ctrl+Shift+O) to hide the red overlay so you can see the
widgets more accurately, especially when setting the box type.

If you have several widgets selected, they may have different values for the fields. In this case the value for
one of the widgets is shown. But if you change this value, all of the selected widgets are changed to the
new value.

Hitting "OK" makes the changes permanent. Selecting a different widget also makes the changes perma-
nent. FLUID checks for simple syntax errors such as mismatched parenthesis in any code before saving
any text.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

112 Programming with FLUID

"Revert" or "Cancel" put everything back to when you last brought up the panel or hit OK. However in the
current version of FLUID, changes to "visible" attributes (such as the color, label, box) are not undone by
revert or cancel. Changes to code like the callbacks are undone, however.

Figure 11.8: The FLUID widget GUI attributes

11.7 GUI Attributes

Label (text field)

String to print next to or inside the button. You can put newlines into the string to make multiple lines.
The easiest way is by typing Ctrl+j.

Symbols can be added to the label using the at sign ("@").

Label (pull down menu)

How to draw the label. Normal, shadowed, engraved, and embossed change the appearance of the text.

Image

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.7 GUI Attributes 113

The active image for the widget. Click on the Browse... button to pick an image file using the file
chooser.

Inactive

The inactive image for the widget. Click on the Browse... button to pick an image file using the file
chooser.

Alignment (buttons)

Where to draw the label. The arrows put it on that side of the widget, you can combine the to put it in
the corner. The "box" button puts the label inside the widget, rather than outside.

The clip button clips the label to the widget box, the wrap button wraps any text in the label, and the
text image button puts the text over the image instead of under the image.

Position (text fields)

The position fields show the current position and size of the widget box. Enter new values to move
and/or resize a widget.

Values (text fields)

The values and limits of the current widget. Depending on the type of widget, some or all of these
fields may be inactive.

Shortcut

The shortcut key to activate the widget. Click on the shortcut button and press any key sequence to set
the shortcut.

Attributes (buttons)

The Visible button controls whether the widget is visible (on) or hidden (off) initially. Don’t change
this for windows or for the immediate children of a Tabs group.

The Active button controls whether the widget is activated (on) or deactivated (off) initially. Most
widgets appear greyed out when deactivated.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

114 Programming with FLUID

The Resizable button controls whether the window is resizeable. In addition all the size changes of
a window or group will go "into" the resizable child. If you have a large data display surrounded by
buttons, you probably want that data area to be resizable. You can get more complex behavior by
making invisible boxes the resizable widget, or by using hierarchies of groups. Unfortunately the only
way to test it is to compile the program. Resizing the FLUID window is not the same as what will
happen in the user program.

The Hotspot button causes the parent window to be positioned with that widget centered on the mouse.
This position is determined when the FLUID function is called, so you should call it immediately
before showing the window. If you want the window to hide and then reappear at a new position, you
should have your program set the hotspot itself just before show().

The Border button turns the window manager border on or off. On most window managers you will
have to close the window and reopen it to see the effect.

X Class (text field)

The string typed into here is passed to the X window manager as the class. This can change the icon or
window decorations. On most (all?) window managers you will have to close the window and reopen
it to see the effect.

Figure 11.9: The FLUID widget Style attributes

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.7 GUI Attributes 115

11.7.1 Style Attributes

Label Font (pulldown menu)

Font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. Your program can change the
actual font used by these "slots" in case you want some font other than the 16 provided.

Label Size (pulldown menu)

Pixel size (height) for the font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. To see
the result without dismissing the panel, type the new number and then Tab.

Label Color (button)

Color to draw the label. Ignored by pixmaps (bitmaps, however, do use this color as the foreground
color).

Box (pulldown menu)

The boxtype to draw as a background for the widget.

Many widgets will work, and draw faster, with a "frame" instead of a "box". A frame does not draw
the colored interior, leaving whatever was already there visible. Be careful, as FLUID may draw this
ok but the real program may leave unwanted stuff inside the widget.

If a window is filled with child widgets, you can speed up redrawing by changing the window’s box
type to "NO_BOX". FLUID will display a checkerboard for any areas that are not colored in by boxes.
Note that this checkerboard is not drawn by the resulting program. Instead random garbage will be
displayed.

Down Box (pulldown menu)

The boxtype to draw when a button is pressed or for some parts of other widgets like scrollbars and
valuators.

Color (button)

The color to draw the box with.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

116 Programming with FLUID

Select Color (button)

Some widgets will use this color for certain parts. FLUID does not always show the result of this: this
is the color buttons draw in when pushed down, and the color of input fields when they have the focus.

Text Font, Size, and Color

Some widgets display text, such as input fields, pull-down menus, and browsers.

Figure 11.10: The FLUID widget C++ attributes

11.7.2 C++ Attributes

Class

This is how you use your own subclasses of Fl_Widget. Whatever identifier you type in here will be
the class that is instantiated.

In addition, no #include header file is put in the .h file. You must provide a #include line as the
first line of the "Extra Code" which declares your subclass.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.7 GUI Attributes 117

The class must be similar to the class you are spoofing. It does not have to be a subclass. It is sometimes
useful to change this to another FLTK class. Currently the only way to get a double-buffered window
is to change this field for the window to "Fl_Double_Window" and to add

#include <FL/Fl_Double_Window.h>

to the extra code.

Type (upper-right pulldown menu)

Some classes have subtypes that modify their appearance or behavior. You pick the subtype off of this
menu.

Name (text field)

Name of a variable to declare, and to store a pointer to this widget into. This variable will be of type
"<class>∗". If the name is blank then no variable is created.

You can name several widgets with "name[0]", "name[1]", "name[2]", etc. This will cause FLUID to
declare an array of pointers. The array is big enough that the highest number found can be stored. All
widgets that in the array must be the same type.

Public (button)

Controls whether the widget is publicly accessible. When embedding widgets in a C++ class, this
controls whether the widget is public or private in the class. Otherwise is controls whether the
widget is declared static or global (extern).

Extra Code (text fields)

These four fields let you type in literal lines of code to dump into the .h or .cxx files.

If the text starts with a # or the word extern then FLUID thinks this is an "include" line, and it is
written to the .h file. If the same include line occurs several times then only one copy is written.

All other lines are "code" lines. The current widget is pointed to by the local variable o. The window
being constructed is pointed to by the local variable w. You can also access any arguments passed to
the function here, and any named widgets that are before this one.

FLUID will check for matching parenthesis, braces, and quotes, but does not do much other error
checking. Be careful here, as it may be hard to figure out what widget is producing an error in the
compiler. If you need more than four lines you probably should call a function in your own .cxx
code.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

118 Programming with FLUID

Callback (text field)

This can either be the name of a function, or a small snippet of code. If you enter anything other than
letters, numbers, and the underscore then FLUID treats it as code.

A name refers to a function in your own code. It must be declared as void
name(<class>∗,void∗).

A code snippet is inserted into a static function in the .cxx output file. The function prototype is
void name(class ∗o, void ∗v) so that you can refer to the widget as o and the user_-
data() as v. FLUID will check for matching parenthesis, braces, and quotes, but does not do much
other error checking. Be careful here, as it may be hard to figure out what widget is producing an error
in the compiler.

If the callback is blank then no callback is set.

User Data (text field)

This is a value for the user_data() of the widget. If blank the default value of zero is used. This
can be any piece of C code that can be cast to a void pointer.

Type (text field)

The void∗ in the callback function prototypes is replaced with this. You may want to use long for
old XForms code. Be warned that anything other than void∗ is not guaranteed to work! However on
most architectures other pointer types are ok, and long is usually ok, too.

When (pulldown menu)

When to do the callback. This can be Never, Changed, Release, or Enter Key. The value of Enter
Key is only useful for text input fields.

There are other rare but useful values for the when() field that are not in the menu. You should use
the extra code fields to put these values in.

No Change (button)

The No Change button means the callback is done on the matching event even if the data is not
changed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.8 Selecting and Moving Widgets 119

11.8 Selecting and Moving Widgets

Double-clicking a window name in the browser will display it, if not displayed yet. From this display you
can select widgets, sets of widgets, and move or resize them. To close a window either double-click it or
type ESC.

To select a widget, click it. To select several widgets drag a rectangle around them. Holding down shift
will toggle the selection of the widgets instead.

You cannot pick hidden widgets. You also cannot choose some widgets if they are completely overlapped
by later widgets. Use the browser to select these widgets.

The selected widgets are shown with a red "overlay" line around them. You can move the widgets by
dragging this box. Or you can resize them by dragging the outer edges and corners. Hold down the Alt key
while dragging the mouse to defeat the snap-to-grid effect for fine positioning.

If there is a tab box displayed you can change which child is visible by clicking on the file tabs. The child
you pick is selected.

The arrow, tab, and shift+tab keys "navigate" the selection. Left, right, tab, or shift+tab move to the next
or previous widgets in the hierarchy. Hit the right arrow enough and you will select every widget in the
window. Up/down widgets move to the previous/next widgets that overlap horizontally. If the navigation
does not seem to work you probably need to "Sort" the widgets. This is important if you have input fields,
as FLTK uses the same rules when using arrow keys to move between input fields.

To "open" a widget, double click it. To open several widgets select them and then type F1 or pick
"Edit/Open" off the pop-up menu.

Type Ctrl+o to temporarily toggle the overlay off without changing the selection, so you can see the widget
borders.

You can resize the window by using the window manager border controls. FLTK will attempt to round the
window size to the nearest multiple of the grid size and makes it big enough to contain all the widgets (it
does this using illegal X methods, so it is possible it will barf with some window managers!). Notice that
the actual window in your program may not be resizable, and if it is, the effect on child widgets may be
different.

The panel for the window (which you get by double-clicking it) is almost identical to the panel for any
other Fl_Widget. There are three extra items:

11.9 Image Labels

The contents of the image files in the Image and Inactive text fields are written to the .cxx file. If many
widgets share the same image then only one copy is written. Since the image data is embedded in the
generated source code, you need only distribute the C++ code and not the image files themselves.

However, the filenames are stored in the .fl file so you will need the image files as well to read the .fl
file. Filenames are relative to the location of the .fl file and not necessarily the current directory. We
recommend you either put the images in the same directory as the .fl file, or use absolute path names.

Notes for All Image Types

FLUID runs using the default visual of your X server. This may be 8 bits, which will give you dithered
images. You may get better results in your actual program by adding the code "Fl::visual(FL_RGB)"
to your code right before the first window is displayed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

120 Programming with FLUID

All widgets with the same image on them share the same code and source X pixmap. Thus once you
have put an image on a widget, it is nearly free to put the same image on many other widgets.

If you edit an image at the same time you are using it in FLUID, the only way to convince FLUID to
read the image file again is to remove the image from all widgets that are using it or re-load the .fl
file.

Don’t rely on how FLTK crops images that are outside the widget, as this may change in future ver-
sions! The cropping of inside labels will probably be unchanged.

To more accurately place images, make a new "box" widget and put the image in that as the label.

XBM (X Bitmap) Files

FLUID reads X bitmap files which use C source code to define a bitmap. Sometimes they are stored
with the ".h" or ".bm" extension rather than the standard ".xbm" extension.

FLUID writes code to construct an Fl_Bitmap image and use it to label the widget. The ’1’ bits in the
bitmap are drawn using the label color of the widget. You can change this color in the FLUID widget
attributes panel. The ’0’ bits are transparent.

The program "bitmap" on the X distribution does an adequate job of editing bitmaps.

XPM (X Pixmap) Files

FLUID reads X pixmap files as used by the libxpm library. These files use C source code to define a
pixmap. The filenames usually have the ".xpm" extension.

FLUID writes code to construct an Fl_Pixmap image and use it to label the widget. The label color
of the widget is ignored, even for 2-color images that could be a bitmap. XPM files can mark a single
color as being transparent, and FLTK uses this information to generate a transparency mask for the
image.

We have not found any good editors for small iconic pictures. For pixmaps we have used XPaint and
the KDE icon editor.

BMP Files

FLUID reads Windows BMP image files which are often used in WIN32 applications for icons. FLUID
converts BMP files into (modified) XPM format and uses a Fl_BMP_Image image to label the widget.
Transparency is handled the same as for XPM files. All image data is uncompressed when written to
the source file, so the code may be much bigger than the .bmp file.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://home.worldonline.dk/~torsten/xpaint/index.html

11.10 Internationalization with FLUID 121

GIF Files

FLUID reads GIF image files which are often used in HTML documents to make icons. FLUID
converts GIF files into (modified) XPM format and uses a Fl_GIF_Image image to label the widget.
Transparency is handled the same as for XPM files. All image data is uncompressed when written to
the source file, so the code may be much bigger than the .gif file. Only the first image of an animated
GIF file is used.

JPEG Files

If FLTK is compiled with JPEG support, FLUID can read JPEG image files which are often used for
digital photos. FLUID uses a Fl_JPEG_Image image to label the widget, and writes uncompressed
RGB or grayscale data to the source file.

PNG (Portable Network Graphics) Files

If FLTK is compiled with PNG support, FLUID can read PNG image files which are often used in
HTML documents. FLUID uses a Fl_PNG_Image image to label the widget, and writes uncompressed
RGB or grayscale data to the source file. PNG images can provide a full alpha channel for partial
transparency, and FLTK supports this as best as possible on each platform.

11.10 Internationalization with FLUID

FLUID supports internationalization (I18N for short) of label strings used by widgets. The preferences
window (Ctrl+p) provides access to the I18N options.

11.10.1 I18N Methods

FLUID supports three methods of I18N: use none, use GNU gettext, and use POSIX catgets. The "use
none" method is the default and just passes the label strings as-is to the widget constructors.

The "GNU gettext" method uses GNU gettext (or a similar text-based I18N library) to retrieve a localized
string before calling the widget constructor.

The "POSIX catgets" method uses the POSIX catgets function to retrieve a numbered message from a
message catalog before calling the widget constructor.

11.10.2 Using GNU gettext for I18N

FLUID’s code support for GNU gettext is limited to calling a function or macro to retrieve the localized
label; you still need to call setlocale() and textdomain() or bindtextdomain() to select the
appropriate language and message file.

To use GNU gettext for I18N, open the preferences window and choose "GNU gettext" from the Use:
chooser. Two new input fields will then appear to control the include file and function/macro name to use
when retrieving the localized label strings.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

122 Programming with FLUID

Figure 11.11: Internationalization using GNU gettext

The #include field controls the header file to include for I18N; by default this is <libintl.h>, the standard
I18N file for GNU gettext.

The Function: field controls the function (or macro) that will retrieve the localized message; by default
the gettext function will be called.

11.10.3 Using POSIX catgets for I18N

FLUID’s code support for POSIX catgets allows you to use a global message file for all interfaces or a file
specific to each .fl file; you still need to call setlocale() to select the appropriate language.

To use POSIX catgets for I18N, open the preferences window and choose "POSIX catgets" from the Use:
chooser. Three new input fields will then appear to control the include file, catalog file, and set number for
retrieving the localized label strings.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

11.11 Known limitations 123

Figure 11.12: Internationalization using POSIX catgets

The #include field controls the header file to include for I18N; by default this is <nl_types.h>, the standard
I18N file for POSIX catgets.

The File: field controls the name of the catalog file variable to use when retrieving localized messages;
by default the file field is empty which forces a local (static) catalog file to be used for all of the windows
defined in your .fl file.

The Set: field controls the set number in the catalog file. The default set is 1 and rarely needs to be changed.

11.11 Known limitations

Declaration Blocks can be used to temporarily block out already designed code using #if 0 and #endif
type construction. This will effectively avoid compilation of blocks of code. However, static code and data
generated by this segment (menu items, images, include statements, etc.) will still be generated and likely
cause compile-time warnings.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

124 Programming with FLUID

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 12

Advanced FLTK

126 Advanced FLTK

This chapter explains advanced programming and design topics that will help you to get the most out of
FLTK.

12.1 Multithreading

FLTK supports multithreaded application using a locking mechanism based on "pthreads". We do not pro-
vide a threading interface as part of the library. However a simple example how threads can be implemented
for all supported platforms can be found in test/threads.h and test/threads.cxx.

To use the locking mechanism, FLTK must be compiled with -enable-threads set during the
configure process. IDE-based versions of FLTK are automatically compiled with locking enabled
if possible.

In main(), call Fl::lock() before Fl::run() or Fl::wait() to start the runtime multithreading support for your
program. All callbacks and derived functions like handle() and draw() will now be properly locked:

int main() {
Fl::lock();
/* run thread */
while (Fl::wait() > 0) {

if (Fl::thread_message()) {
/* process your data */

}
}

}

You can now start as many threads as you like. From within a thread (other than the main thread) FLTK
calls must be wrapped with calls to Fl::lock() and Fl::unlock():

Fl::lock(); // avoid conflicting calls
... // your code here
Fl::unlock(); // allow other threads to access FLTK again

You can send messages from child threads to the main thread using Fl::awake(void∗ message):

void *msg; // "msg" is a pointer to your message
Fl::awake(msg); // send "msg" to main thread

You can also tell the main thread to call a function for you as soon as possible by using Fl::awake(Fl_-
Awake_Handler cb, void∗ userdata):

void do_something(void *userdata) {
// running with the main thread

}

// running in another thread
void *data; // "data" is a pointer to your user data
Fl::awake(do_something, data); // call something in main thread

FLTK supports multiple platforms, some of which allow only the the main thread to handle system events
and open or close windows. The safe thing to do is to adhere to the following rules for threads on all
operating systems:

• Don’t show() or hide() anything that contains widgets derived from Fl_Window, including di-
alogs, file choosers, subwindows or those using Fl_Gl_Window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

12.1 Multithreading 127

• Don’t call Fl::wait(), Fl::flush() or any related methods that will handle system messages

• Don’t start or cancel timers

• Don’t change window decorations or titles

• The make_current() method may or may not work well for regular windows, but should al-
ways work for a Fl_Gl_Window to allow for high speed rendering on graphics cards with multiple
pipelines

See also: Fl::awake(void∗ message), Fl::lock(), Fl::thread_message(), Fl::unlock().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

128 Advanced FLTK

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 13

Unicode and UTF-8 Support

130 Unicode and UTF-8 Support

This chapter explains how FLTK handles international text via Unicode and UTF-8.

Unicode support was only recently added to FLTK and is still incomplete. This chapter is Work in Progress,
reflecting the current state of Unicode support.

13.1 About Unicode, ISO 10646 and UTF-8

The summary of Unicode, ISO 10646 and UTF-8 given below is deliberately brief, and provides just
enough information for the rest of this chapter. For further information, please see:

• http://www.unicode.org

• http://www.iso.org

• http://en.wikipedia.org/wiki/Unicode

• http://www.cl.cam.ac.uk/∼mgk25/unicode.html

The Unicode Standard

The Unicode Standard was originally developed by a consortium of mainly US computer manufacturers
and developers of multi-lingual software. It has now become a defacto standard for character encoding,
and is supported by most of the major computing companies in the world.

Before Unicode, many different systems, on different platforms, had been developed for encoding charac-
ters for different languages, but no single encoding could satisfy all languages. Unicode provides access to
over 100,000 characters used in all the major languages written today, and is independent of platform and
language.

Unicode also provides higher-level concepts needed for text processing and typographic publishing sys-
tems, such as algorithms for sorting and comparing text, composite character and text rendering, right-to-
left and bi-directional text handling.

There are currently no plans to add this extra functionality to FLTK.

ISO 10646

The International Organisation for Standardization (ISO) had also been trying to develop a single unified
character set. Although both ISO and the Unicode Consortium continue to publish their own standards,
they have agreed to coordinate their work so that specific versions of the Unicode and ISO 10646 standards
are compatible with each other.

The international standard ISO 10646 defines the Universal Character Set (UCS) which contains the char-
acters required for almost all known languages. The standard also defines three different implementation
levels specifying how these characters can be combined.

There are currently no plans for handling the different implementation levels or the combining characters
in FLTK.

In UCS, characters have a unique numerical code and an official name, and are usually shown using ’U+’
and the code in hexadecimal, e.g. U+0041 is the "Latin capital letter A". The UCS characters U+0000 to
U+007F correspond to US-ASCII, and U+0000 to U+00FF correspond to ISO 8859-1 (Latin1). The UCS
also defines various methods of encoding characters as a sequence of bytes.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.unicode.org
http://www.iso.org
http://en.wikipedia.org/wiki/Unicode
http://www.cl.cam.ac.uk/~mgk25/unicode.html

13.2 Unicode in FLTK 131

UCS-2 encodes Unicode characters into two bytes, which is wasteful if you are only dealing with ASCII
or Latin1 text, and insufficient if you need characters above U+00FFFF. UCS-4 uses four bytes, which lets
it handle higher characters, but this is even more wasteful for ASCII or Latin1.

UTF-8

The Unicode standard defines various UCS Transformation Formats. UTF-16 and UTF-32 are based on
units of two and four bytes.

UTF-8 encodes all Unicode characters into variable length sequences of bytes. Unicode characters in the
7-bit ASCII range map to the same value and are represented as a single byte, making the transformation
to Unicode quick and easy.

All UCS characters above U+007F are encoded as a sequence of several bytes. The top bits of the first byte
are set to show the length of the byte sequence, and subseqent bytes are always in the range 0x80 to 8x8F.
This combination provides some level of synchronisation and error detection.

Unicode range Byte sequences
U+00000000 - U+0000007F 0xxxxxxx
U+00000080 - U+000007FF 110xxxxx 10xxxxxx
U+00000800 - U+0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U+00010000 - U+001FFFFF 11110xxx 10xxxxxx 10xxxxxx

10xxxxxx
U+00200000 - U+03FFFFFF 111110xx 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx
U+04000000 - U+7FFFFFFF 1111110x 10xxxxxx 10xxxxxx

10xxxxxx 10xxxxxx 10xxxxxx

Moving from ASCII encoding to Unicode will allow all new FLTK applications to be easily internation-
alized and used all over the world. By choosing UTF-8 encoding, FLTK remains largely source-code
compatible to previous iteration of the library.

13.2 Unicode in FLTK

FLTK will be entirely converted to Unicode in UTF-8 encoding. If a different encoding is required by the
underlying operatings system, FLTK will convert string as needed.

It is important to note that the initial implementation of Unicode and UTF-8 in FLTK involves three impor-
tant areas:

• provision of Unicode character tables and some simple related functions;

• conversion of char∗ variables and function parameters from single byte per character representation
to UTF-8 variable length characters;

• modifications to the display font interface to accept general Unicode character or UCS code numbers
instead of just ASCII or Latin1 characters.

The current implementation of Unicode / UTF-8 in FLTK will impose the following limitations:

• An implementation note in the code says that all functions are LIMITED to 24 bit Unicode values,
but also says that only 16 bits are really used under linux and win32.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

132 Unicode and UTF-8 Support

• FLTK will only handle single characters, so composed characters consisting of a base character and
floating accent characters will be treated as multiple characters;

• FLTK will only compare or sort strings on a byte by byte basis and not on a general Unicode character
basis;

• FLTK will not handle right-to-left or bi-directional text;

Todo

Verify 16/24 bit Unicode limit for different character sets? OksiD’s code appears limited to 16-bit
whereas the FLTK2 code appears to handle a wider set. What about illegal characters? See comments
in fl_utf8fromwc() and fl_utf8toUtf16().

13.3 FLTK Unicode and UTF8 functions

This section currently provides a brief overview of the functions. For more details, consult the main text
for each function via its link.

int fl_utf8locale() FLTK2

fl_utf8locale() returns true if the "locale" seems to indicate that UTF-8 encoding is used.

It is highly recommended that your change your system so this does return true!

int fl_utf8test(const char ∗src, unsigned len) FLTK2

fl_utf8test() examines the first len bytes of src. It returns 0 if there are any illegal UTF-8
sequences; 1 if src contains plain ASCII or if len is zero; or 2, 3 or 4 to indicate the range of
Unicode characters found.

int fl_utf_nb_char(const unsigned char ∗buf, int len) OksiD

Returns the number of UTF-8 character in the first len bytes of buf.

int fl_unichar_to_utf8_size(Fl_Unichar)

int fl_utf8bytes(unsigned ucs)

Returns the number of bytes needed to encode ucs in UTF-8.

int fl_utf8len(char c) OksiD

If c is a valid first byte of a UTF-8 encoded character sequence, fl_utf8len() will return the
number of bytes in that sequence. It returns -1 if c is not a valid first byte.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

13.3 FLTK Unicode and UTF8 functions 133

unsigned int fl_nonspacing(unsigned int ucs) OksiD

Returns true if ucs is a non-spacing character. [What are non-spacing characters?]

const char∗ fl_utf8back(const char ∗p, const char ∗start, const char ∗end) FLTK2

const char∗ fl_utf8fwd(const char ∗p, const char ∗start, const char ∗end) FLTK2

If p already points to the start of a UTF-8 character sequence, these functions will return p. Otherwise
fl_utf8back() searches backwards from p and fl_utf8fwd() searches forwards from p, within
the start and end limits, looking for the start of a UTF-8 character.

unsigned int fl_utf8decode(const char ∗p, const char ∗end, int ∗len) FLTK2

int fl_utf8encode(unsigned ucs, char ∗buf) FLTK2

fl_utf8decode() attempts to decode the UTF-8 character that starts at p and may not extend past
end. It returns the Unicode value, and the length of the UTF-8 character sequence is returned via
the len argument. fl_utf8encode() writes the UTF-8 encoding of ucs into buf and returns the
number of bytes in the sequence. See the main documentation for the treatment of illegal Unicode and
UTF-8 sequences.

unsigned int fl_utf8froma(char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen) FLTK2

unsigned int fl_utf8toa(const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen) FLTK2

fl_utf8froma() converts a character string containing single bytes per character (i.e. ASCII or
ISO-8859-1) into UTF-8. If the src string contains only ASCII characters, the return value will be
the same as srclen.

fl_utf8toa() converts a string containing UTF-8 characters into single byte characters. UTF-8
characters do not correspond to ASCII or ISO-8859-1 characters below 0xFF are replaced with ’?’.

Both functions return the number of bytes that would be written, not counting the null terminator.
destlen provides a means of limiting the number of bytes written, so setting destlen to zero is a
means of measuring how much storage would be needed before doing the real conversion.

char∗ fl_utf2mbcs(const char ∗src) OksiD

converts a UTF-8 string to a local multi-byte character string. [More info required here!]

unsigned int fl_utf8fromwc(char ∗dst, unsigned dstlen, const wchar_t ∗src, unsigned srclen) FLTK2

unsigned int fl_utf8towc(const char ∗src, unsigned srclen, wchar_t ∗dst, unsigned dstlen) FLTK2

unsigned int fl_utf8toUtf16(const char ∗src, unsigned srclen, unsigned short ∗dst, unsigned dstlen) FLTK2

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

134 Unicode and UTF-8 Support

These routines convert between UTF-8 and wchar_t or "wide character" strings. The difficulty lies
in the fact sizeof(wchar_t) is 2 on Windows and 4 on Linux and most other systems. There-
fore some "wide characters" on Windows may be represented as "surrogate pairs" of more than one
wchar_t.

fl_utf8fromwc() converts from a "wide character" string to UTF-8. Note that srclen is the
number of wchar_t elements in the source string and on Windows and this might be larger than the
number of characters. dstlen specifies the maximum number of bytes to copy, including the null
terminator.

fl_utf8towc() converts a UTF-8 string into a "wide character" string. Note that on Windows, some
"wide characters" might result in "surrogate pairs" and therefore the return value might be more than
the number of characters. dstlen specifies the maximum number of wchar_t elements to copy,
including a zero terminating element. [Is this all worded correctly?]

fl_utf8toUtf16() converts a UTF-8 string into a "wide character" string using UTF-16 encoding
to handle the "surrogate pairs" on Windows. dstlen specifies the maximum number of wchar_t
elements to copy, including a zero terminating element. [Is this all worded correctly?]

These routines all return the number of elements that would be required for a full conversion of the
src string, including the zero terminator. Therefore setting dstlen to zero is a way of measuring
how much storage would be needed before doing the real conversion.

unsigned int fl_utf8from_mb(char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen) FLTK2

unsigned int fl_utf8to_mb(const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen) FLTK2

These functions convert between UTF-8 and the locale-specific multi-byte encodings used on some
systems for filenames, etc. If fl_utf8locale() returns true, these functions don’t do anything useful. [Is
this all worded correctly?]

int fl_tolower(unsigned int ucs) OksiD

int fl_toupper(unsigned int ucs) OksiD

int fl_utf_tolower(const unsigned char ∗str, int len, char ∗buf) OksiD

int fl_utf_toupper(const unsigned char ∗str, int len, char ∗buf) OksiD

fl_tolower() and fl_toupper() convert a single Unicode character from upper to lower case,
and vice versa. fl_utf_tolower() and fl_utf_toupper() convert a string of bytes, some of
which may be multi-byte UTF-8 encodings of Unicode characters, from upper to lower case, and vice
versa.

Warning: to be safe, buf length must be at least 3∗len [for 16-bit Unicode]

int fl_utf_strcasecmp(const char ∗s1, const char ∗s2) OksiD

int fl_utf_strncasecmp(const char ∗s1, const char ∗s2, int n) OksiD

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

13.4 FLTK Unicode versions of system calls 135

fl_utf_strcasecmp() is a UTF-8 aware string comparison function that converts the strings to
lower case Unicode as part of the comparison. flt_utf_strncasecmp() only compares the first
n characters [bytes?]

13.4 FLTK Unicode versions of system calls

• int fl_access(const char∗ f, int mode) OksiD

• int fl_chmod(const char∗ f, int mode) OksiD

• int fl_execvp(const char∗ file, char∗ const∗ argv) OksiD

• FILE∗ fl_fopen(cont char∗ f, const char∗ mode) OksiD

• char∗ fl_getcwd(char∗ buf, int maxlen) OksiD

• char∗ fl_getenv(const char∗ name) OksiD

• char fl_make_path(const char∗ path) - returns char ? OksiD

• void fl_make_path_for_file(const char∗ path) OksiD

• int fl_mkdir(const char∗ f, int mode) OksiD

• int fl_open(const char∗ f, int o, ...) OksiD

• int fl_rename(const char∗ f, const char∗ t) OksiD

• int fl_rmdir(const char∗ f) OksiD

• int fl_stat(const char∗ path, struct stat∗ buffer) OksiD

• int fl_system(const char∗ f) OksiD

• int fl_unlink(const char∗ f) OksiD

TODO:

• more doc on unicode, add links

• write something about filename encoding on OS X...

• explain the fl_utf8_... commands

• explain issues with Fl_Preferences

• why FLTK has no Fl_String class

DONE:

• initial transfer of the Ian/O’ksi’D patch

• adapted Makefiles and IDEs for available platforms

• hacked some Unicode keyboard entry for OS X

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

136 Unicode and UTF-8 Support

ISSUES:

• IDEs:

– Makefile support: tested on Fedora Core 5 and OS X, but heaven knows on which platforms
this may fail

– Xcode: tested, seems to be working (but see comments below on OS X)

– VisualC (VC6): tested, test/utf8 works, but may have had some issues during merge. Some
additional work needed (imm32.lib)

– VisualStudio2005: tested, test/utf8 works, some addtl. work needed (imm32.lib)

– VisualCNet: sorry, I have no longer access to that IDE

– Borland and other compiler: sorry, I can’t update those

• Platforms:

– you will encounter problems on all platforms!

– X11: many characters are missing, but that may be related to bad fonts on my machine. I also
could not do any keyboard tests yet. Rendering seems to generally work ok.

– Win32: US and German keyboard worked ok, but no compositing was tested. Rendering looks
pretty good.

– OS X: redering looks good. Keyboard is completely messed up, even in US setting (with Alt
key)

– all: while merging I have seen plenty of places that are not entirley utf8-safe, particularly Fl_-
Input, Fl_Text_Editor, and Fl_Help_View. Keycodes from the keyboard conflict with Unicode
characters. Right-to-left rendered text can not be marked or edited, and probably much more.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 14

FLTK Enumerations

138 FLTK Enumerations

Note:

This file is not actively maintained any more, but is left here as a reference, until the doxygen docu-
mentation is completed.

See also:

FL/Enumerations.H.

This appendix lists the enumerations provided in the <FL/Enumerations.H> header file, organized by
section. Constants whose value are zero are marked with "(0)", this is often useful to know when program-
ming.

14.1 Version Numbers

The FLTK version number is stored in a number of compile-time constants:

• FL_MAJOR_VERSION - The major release number, currently 1.

• FL_MINOR_VERSION - The minor release number, currently 3.

• FL_PATCH_VERSION - The patch release number, currently 0.

• FL_VERSION - A combined floating-point version number for the major, minor, and patch release
numbers, currently 1.0300.

14.2 Events

Events are identified by an Fl_Event enumeration value. The following events are currently defined:

• FL_NO_EVENT - No event (or an event fltk does not understand) occurred (0).

• FL_PUSH - A mouse button was pushed.

• FL_RELEASE - A mouse button was released.

• FL_ENTER - The mouse pointer entered a widget.

• FL_LEAVE - The mouse pointer left a widget.

• FL_DRAG - The mouse pointer was moved with a button pressed.

• FL_FOCUS - A widget should receive keyboard focus.

• FL_UNFOCUS - A widget loses keyboard focus.

• FL_KEYBOARD - A key was pressed.

• FL_CLOSE - A window was closed.

• FL_MOVE - The mouse pointer was moved with no buttons pressed.

• FL_SHORTCUT - The user pressed a shortcut key.

• FL_DEACTIVATE - The widget has been deactivated.

• FL_ACTIVATE - The widget has been activated.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

14.3 Callback "When" Conditions 139

• FL_HIDE - The widget has been hidden.

• FL_SHOW - The widget has been shown.

• FL_PASTE - The widget should paste the contents of the clipboard.

• FL_SELECTIONCLEAR - The widget should clear any selections made for the clipboard.

• FL_MOUSEWHEEL - The horizontal or vertical mousewheel was turned.

• FL_DND_ENTER - The mouse pointer entered a widget dragging data.

• FL_DND_DRAG - The mouse pointer was moved dragging data.

• FL_DND_LEAVE - The mouse pointer left a widget still dragging data.

• FL_DND_RELEASE - Dragged data is about to be dropped.

14.3 Callback "When" Conditions

The following constants determine when a callback is performed:

• FL_WHEN_NEVER - Never call the callback (0).

• FL_WHEN_CHANGED - Do the callback only when the widget value changes.

• FL_WHEN_NOT_CHANGED - Do the callback whenever the user interacts with the widget.

• FL_WHEN_RELEASE - Do the callback when the button or key is released and the value changes.

• FL_WHEN_ENTER_KEY - Do the callback when the user presses the ENTER key and the value
changes.

• FL_WHEN_RELEASE_ALWAYS - Do the callback when the button or key is released, even if the
value doesn’t change.

• FL_WHEN_ENTER_KEY_ALWAYS - Do the callback when the user presses the ENTER key, even
if the value doesn’t change.

14.4 Fl::event_button() Values

The following constants define the button numbers for FL_PUSH and FL_RELEASE events:

• FL_LEFT_MOUSE - the left mouse button

• FL_MIDDLE_MOUSE - the middle mouse button

• FL_RIGHT_MOUSE - the right mouse button

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

140 FLTK Enumerations

14.5 Fl::event_key() Values

The following constants define the non-ASCII keys on the keyboard for FL_KEYBOARD and FL_-
SHORTCUT events:

• FL_Button - A mouse button; use Fl_Button + n for mouse button n.

• FL_BackSpace - The backspace key.

• FL_Tab - The tab key.

• FL_Enter - The enter key.

• FL_Pause - The pause key.

• FL_Scroll_Lock - The scroll lock key.

• FL_Escape - The escape key.

• FL_Home - The home key.

• FL_Left - The left arrow key.

• FL_Up - The up arrow key.

• FL_Right - The right arrow key.

• FL_Down - The down arrow key.

• FL_Page_Up - The page-up key.

• FL_Page_Down - The page-down key.

• FL_End - The end key.

• FL_Print - The print (or print-screen) key.

• FL_Insert - The insert key.

• FL_Menu - The menu key.

• FL_Num_Lock - The num lock key.

• FL_KP - One of the keypad numbers; use FL_KP + n for number n.

• FL_KP_Enter - The enter key on the keypad.

• FL_F - One of the function keys; use FL_F + n for function key n.

• FL_Shift_L - The lefthand shift key.

• FL_Shift_R - The righthand shift key.

• FL_Control_L - The lefthand control key.

• FL_Control_R - The righthand control key.

• FL_Caps_Lock - The caps lock key.

• FL_Meta_L - The left meta/Windows key.

• FL_Meta_R - The right meta/Windows key.

• FL_Alt_L - The left alt key.

• FL_Alt_R - The right alt key.

• FL_Delete - The delete key.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

14.6 Fl::event_state() Values 141

14.6 Fl::event_state() Values

The following constants define bits in the Fl::event_state() value:

• FL_SHIFT - One of the shift keys is down.

• FL_CAPS_LOCK - The caps lock is on.

• FL_CTRL - One of the ctrl keys is down.

• FL_ALT - One of the alt keys is down.

• FL_NUM_LOCK - The num lock is on.

• FL_META - One of the meta/Windows keys is down.

• FL_COMMAND - An alias for FL_CTRL on WIN32 and X11, or FL_META on MacOS X.

• FL_SCROLL_LOCK - The scroll lock is on.

• FL_BUTTON1 - Mouse button 1 is pushed.

• FL_BUTTON2 - Mouse button 2 is pushed.

• FL_BUTTON3 - Mouse button 3 is pushed.

• FL_BUTTONS - Any mouse button is pushed.

• FL_BUTTON(n) - Mouse button n (where n > 0) is pushed.

14.7 Alignment Values

The following constants define bits that can be used with Fl_Widget::alighn() to control the positioning of
the label:

• FL_ALIGN_CENTER - The label is centered (0).

• FL_ALIGN_TOP - The label is top-aligned.

• FL_ALIGN_BOTTOM - The label is bottom-aligned.

• FL_ALIGN_LEFT - The label is left-aligned.

• FL_ALIGN_RIGHT - The label is right-aligned.

• FL_ALIGN_CLIP - The label is clipped to the widget.

• FL_ALIGN_WRAP - The label text is wrapped as needed.

• FL_ALIGN_TOP_LEFT

• FL_ALIGN_TOP_RIGHT

• FL_ALIGN_BOTTOM_LEFT

• FL_ALIGN_BOTTOM_RIGHT

• FL_ALIGN_LEFT_TOP

• FL_ALIGN_RIGHT_TOP

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

142 FLTK Enumerations

• FL_ALIGN_LEFT_BOTTOM

• FL_ALIGN_RIGHT_BOTTOM

• FL_ALIGN_INSIDE - ’or’ this with other values to put label inside the widget.

14.8 Fonts

The following constants define the standard FLTK fonts:

• FL_HELVETICA - Helvetica (or Arial) normal (0).

• FL_HELVETICA_BOLD - Helvetica (or Arial) bold.

• FL_HELVETICA_ITALIC - Helvetica (or Arial) oblique.

• FL_HELVETICA_BOLD_ITALIC - Helvetica (or Arial) bold-oblique.

• FL_COURIER - Courier normal.

• FL_COURIER_BOLD - Courier bold.

• FL_COURIER_ITALIC - Courier italic.

• FL_COURIER_BOLD_ITALIC - Courier bold-italic.

• FL_TIMES - Times roman.

• FL_TIMES_BOLD - Times bold.

• FL_TIMES_ITALIC - Times italic.

• FL_TIMES_BOLD_ITALIC - Times bold-italic.

• FL_SYMBOL - Standard symbol font.

• FL_SCREEN - Default monospaced screen font.

• FL_SCREEN_BOLD - Default monospaced bold screen font.

• FL_ZAPF_DINGBATS - Zapf-dingbats font.

14.9 Colors

The Fl_Color enumeration type holds a FLTK color value. Colors are either 8-bit indexes into a virtual
colormap or 24-bit RGB color values. Color indices occupy the lower 8 bits of the value, while RGB
colors occupy the upper 24 bits, for a byte organization of RGBI.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

14.9 Colors 143

14.9.1 Color Constants

Constants are defined for the user-defined foreground and background colors, as well as specific colors and
the start of the grayscale ramp and color cube in the virtual colormap. Inline functions are provided to
retrieve specific grayscale, color cube, or RGB color values.

The following color constants can be used to access the user-defined colors:

• FL_BACKGROUND_COLOR - the default background color

• FL_BACKGROUND2_COLOR - the default background color for text, list, and valuator widgets

• FL_FOREGROUND_COLOR - the default foreground color (0) used for labels and text

• FL_INACTIVE_COLOR - the inactive foreground color

• FL_SELECTION_COLOR - the default selection/highlight color

The following color constants can be used to access the colors from the FLTK standard color cube:

• FL_BLACK

• FL_BLUE

• FL_CYAN

• FL_DARK_BLUE

• FL_DARK_CYAN

• FL_DARK_GREEN

• FL_DARK_MAGENTA

• FL_DARK_RED

• FL_DARK_YELLOW

• FL_GREEN

• FL_MAGENTA

• FL_RED

• FL_WHITE

• FL_YELLOW

The inline methods for getting a grayscale, color cube, or RGB color value are described in the Colors
section of the Drawing Things in FLTK chapter.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

144 FLTK Enumerations

14.10 Cursors

The following constants define the mouse cursors that are available in FLTK. The double-headed arrows
are bitmaps provided by FLTK on X, the others are provided by system-defined cursors.

• FL_CURSOR_DEFAULT - the default cursor, usually an arrow (0)

• FL_CURSOR_ARROW - an arrow pointer

• FL_CURSOR_CROSS - crosshair

• FL_CURSOR_WAIT - watch or hourglass

• FL_CURSOR_INSERT - I-beam

• FL_CURSOR_HAND - hand (uparrow on MSWindows)

• FL_CURSOR_HELP - question mark

• FL_CURSOR_MOVE - 4-pointed arrow

• FL_CURSOR_NS - up/down arrow

• FL_CURSOR_WE - left/right arrow

• FL_CURSOR_NWSE - diagonal arrow

• FL_CURSOR_NESW - diagonal arrow

• FL_CURSOR_NONE - invisible

14.11 FD "When" Conditions

• FL_READ - Call the callback when there is data to be read.

• FL_WRITE - Call the callback when data can be written without blocking.

• FL_EXCEPT - Call the callback if an exception occurs on the file.

14.12 Damage Masks

The following damage mask bits are used by the standard FLTK widgets:

• FL_DAMAGE_CHILD - A child needs to be redrawn.

• FL_DAMAGE_EXPOSE - The window was exposed.

• FL_DAMAGE_SCROLL - The Fl_Scroll widget was scrolled.

• FL_DAMAGE_OVERLAY - The overlay planes need to be redrawn.

• FL_DAMAGE_USER1 - First user-defined damage bit.

• FL_DAMAGE_USER2 - Second user-defined damage bit.

• FL_DAMAGE_ALL - Everything needs to be redrawn.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 15

GLUT Compatibility

146 GLUT Compatibility

This appendix describes the GLUT compatibility header file supplied with FLTK.

FLTK’s GLUT compatibility is based on the original GLUT 3.7 and the follow-on FreeGLUT 2.4.0 li-
braries.

15.1 Using the GLUT Compatibility Header File

You should be able to compile existing GLUT source code by including <FL/glut.H> instead of
<GL/glut.h>. This can be done by editing the source, by changing the -I switches to the compiler, or
by providing a symbolic link from GL/glut.h to FL/glut.H.

All files calling GLUT procedures must be compiled with C++. You may have to alter them slightly to get
them to compile without warnings, and you may have to rename them to get make to use the C++ compiler.

You must link with the FLTK library. Most of FL/glut.H is inline functions. You should take a look at it
(and maybe at test/glpuzzle.cxx in the FLTK source) if you are having trouble porting your GLUT
program.

This has been tested with most of the demo programs that come with the GLUT and FreeGLUT distribu-
tions.

15.2 Known Problems

The following functions and/or arguments to functions are missing, and you will have to replace them or
comment them out for your code to compile:

• glutGet(GLUT_ELAPSED_TIME)

• glutGet(GLUT_SCREEN_HEIGHT_MM)

• glutGet(GLUT_SCREEN_WIDTH_MM)

• glutGet(GLUT_WINDOW_NUM_CHILDREN)

• glutInitDisplayMode(GLUT_LUMINANCE)

• glutLayerGet(GLUT_HAS_OVERLAY)

• glutLayerGet(GLUT_LAYER_IN_USE)

• glutPushWindow()

• glutSetColor(), glutGetColor(), glutCopyColormap()

• glutVideoResize() missing.

• glutWarpPointer()

• glutWindowStatusFunc()

• Spaceball, buttonbox, dials, and tablet functions

Most of the symbols/enumerations have different values than GLUT uses. This will break code that relies
on the actual values. The only symbols guaranteed to have the same values are true/false pairs like GLUT_-
DOWN and GLUT_UP, mouse buttons GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLUT_-
RIGHT_BUTTON, and GLUT_KEY_F1 thru GLUT_KEY_F12.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

15.3 Mixing GLUT and FLTK Code 147

The strings passed as menu labels are not copied.

glutPostRedisplay() does not work if called from inside a display function. You must use
glutIdleFunc() if you want your display to update continuously.

glutSwapBuffers() does not work from inside a display function. This is on purpose, because FLTK
swaps the buffers for you.

glutUseLayer() does not work well, and should only be used to initialize transformations inside a
resize callback. You should redraw overlays by using glutOverlayDisplayFunc().

Overlays are cleared before the overlay display function is called. glutLayerGet(GLUT_OVERLAY_-
DAMAGED) always returns true for compatibility with some GLUT overlay programs. You must rewrite
your code so that gl_color() is used to choose colors in an overlay, or you will get random overlay
colors.

glutSetCursor(GLUT_CURSOR_FULL_CROSSHAIR) just results in a small crosshair.

The fonts used by glutBitmapCharacter() and glutBitmapWidth() may be different.

glutInit(argc,argv) will consume different switches than GLUT does. It accepts the switches
recognized by Fl::args(), and will accept any abbreviation of these switches (such as "-di" for "-display").

15.3 Mixing GLUT and FLTK Code

You can make your GLUT window a child of a Fl_Window with the following scheme. The biggest trick is
that GLUT insists on a call to show() the window at the point it is created, which means the Fl_Window
parent window must already be shown.

• Don’t call glutInit().

• Create your Fl_Window, and any FLTK widgets. Leave a blank area in the window for your GLUT
window.

• show() the Fl_Window. Perhaps call show(argc,argv).

• Call window->begin() so that the GLUT window will be automatically added to it.

• Use glutInitWindowSize() and glutInitWindowPosition() to set the location in the
parent window to put the GLUT window.

• Put your GLUT code next. It probably does not need many changes. Call window->end()
immediately after the glutCreateWindow()!

• You can call either glutMainLoop(), Fl::run(), or loop calling Fl::wait() to run the program.

15.4 class Fl_Glut_Window

15.4.1 Class Hierarchy

Fl_Gl_Window
|
+----Fl_Glut_Window

15.4.2 Include Files

#include <FL/glut.H>

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

148 GLUT Compatibility

15.4.3 Description

Each GLUT window is an instance of this class. You may find it useful to manipulate instances directly
rather than use GLUT window id’s. These may be created without opening the display, and thus can fit
better into FLTK’s method of creating windows.

The current GLUT window is available in the global variable glut_window.

new Fl_Glut_Window(...) is the same as glutCreateWindow() except it does not show()
the window or make the window current.

window->make_current() is the same as glutSetWindow(number). If the window has not
had show() called on it yet, some functions that assumme an OpenGL context will not work. If you do
show() the window, call make_current() again to set the context.

∼Fl_Glut_Window() is the same as glutDestroyWindow().

15.4.4 Members

The Fl_Glut_Window class contains several public members that can be altered directly:

member description
display A pointer to the function to call to draw the

normal planes.
entry A pointer to the function to call when the mouse

moves into or out of the window.
keyboard A pointer to the function to call when a regular

key is pressed.
menu[3] The menu to post when one of the mouse buttons

is pressed.
mouse A pointer to the function to call when a button is

pressed or released.
motion A pointer to the function to call when the mouse

is moved with a button down.
overlaydisplay A pointer to the function to call to draw the

overlay planes.
passivemotion A pointer to the function to call when the mouse

is moved with no buttons down.
reshape A pointer to the function to call when the window

is resized.
special A pointer to the function to call when a special

key is pressed.
visibility A pointer to the function to call when the window

is iconified or restored (made visible.)

15.4.5 Methods

Fl_Glut_Window::Fl_Glut_Window(int x, int y, int w, int h, const char ∗title = 0)

Fl_Glut_Window::Fl_Glut_Window(int w, int h, const char ∗title = 0)

The first constructor takes 4 int arguments to create the window with a preset position and size. The
second constructor with 2 arguments will create the window with a preset size, but the window manager
will choose the position according to it’s own whims.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

15.4 class Fl_Glut_Window 149

virtual Fl_Glut_Window::∼Fl_Glut_Window()

Destroys the GLUT window.

void Fl_Glut_Window::make_current()

Switches all drawing functions to the GLUT window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

150 GLUT Compatibility

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 16

Forms Compatibility

152 Forms Compatibility

This appendix describes the Forms compatibility included with FLTK.

Warning: The Forms compatility is deprecated and no longer maintained in FLTK1, and is likely to be
removed completely after the next official release.

16.1 Importing Forms Layout Files

FLUID can read the .fd files put out by all versions of Forms and XForms fdesign. However, it will
mangle them a bit, but it prints a warning message about anything it does not understand. FLUID cannot
write fdesign files, so you should save to a new name so you don’t write over the old one.

You will need to edit your main code considerably to get it to link with the output from FLUID. If
you are not interested in this you may have more immediate luck with the forms compatibility header,
<FL/forms.H>.

16.2 Using the Compatibility Header File

You should be able to compile existing Forms or XForms source code by changing the include directory
switch to your compiler so that the forms.h file supplied with FLTK is included. The forms.h file sim-
ply pulls in <FL/forms.H> so you don’t need to change your source code. Take a look at <FL/forms.H>
to see how it works, but the basic trick is lots of inline functions. Most of the XForms demo programs work
without changes.

You will also have to compile your Forms or XForms program using a C++ compiler. The FLTK library
does not provide C bindings or header files.

Although FLTK was designed to be compatible with the GL Forms library (version 0.3 or so), XForms has
bloated severely and it’s interface is X-specific. Therefore, XForms compatibility is no longer a goal of
FLTK. Compatibility was limited to things that were free, or that would add code that would not be linked
in if the feature is unused, or that was not X-specific.

To use any new features of FLTK, you should rewrite your code to not use the inline functions and instead
use "pure" FLTK. This will make it a lot cleaner and make it easier to figure out how to call the FLTK
functions. Unfortunately this conversion is harder than expected and even Digital Domain’s inhouse code
still uses forms.H a lot.

16.3 Problems You Will Encounter

Many parts of XForms use X-specific structures like XEvent in their interface. I did not emulate these!
Unfortunately these features (such as the "canvas" widget) are needed by most large programs. You will
need to rewrite these to use FLTK subclasses.

Fl_Free widgets emulate the old Forms "free" widget. It may be useful for porting programs that change
the handle() function on widgets, but you will still need to rewrite things.

Fl_Timer widgets are provided to emulate the XForms timer. These work, but are quite inefficient and
inaccurate compared to using Fl::add_timeout().

All instance variables are hidden. If you directly refer to the x, y, w, h, label, or other fields of your
Forms widgets you will have to add empty parenthesis after each reference. The easiest way to do this is
to globally replace " → x" with " → x()", etc. Replace "boxtype" with "box()".

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

16.3 Problems You Will Encounter 153

const char ∗ arguments to most FLTK methods are simply stored, while Forms would strdup()
the passed string. This is most noticable with the label of widgets. Your program must always pass static
data such as a string constant or malloc’d buffer to label(). If you are using labels to display program
output you may want to try the Fl_Output widget.

The default fonts and sizes are matched to the older GL version of Forms, so all labels will draw somewhat
larger than an XForms program does.

fdesign outputs a setting of a "fdui" instance variable to the main window. I did not emulate this because I
wanted all instance variables to be hidden. You can store the same information in the user_data() field
of a window. To do this, search through the fdesign output for all occurances of " → fdui" and edit to
use " → user_data()" instead. This will require casts and is not trivial.

The prototype for the functions passed to fl_add_timeout() and fl_set_idle_callback()
callback are different.

All the following XForms calls are missing:

• FL_REVISION, fl_library_version()

• FL_RETURN_DBLCLICK (use Fl::event_clicks())

• fl_add_signal_callback()

• fl_set_form_atactivate() fl_set_form_atdeactivate()

• fl_set_form_property()

• fl_set_app_mainform(), fl_get_app_mainform()

• fl_set_form_minsize(), fl_set_form_maxsize()

• fl_set_form_event_cmask(), fl_get_form_event_cmask()

• fl_set_form_dblbuffer(), fl_set_object_dblbuffer() (use an Fl_Double_-
Window instead)

• fl_adjust_form_size()

• fl_register_raw_callback()

• fl_set_object_bw(), fl_set_border_width()

• fl_set_object_resize(), fl_set_object_gravity()

• fl_set_object_shortcutkey()

• fl_set_object_automatic()

• fl_get_object_bbox() (maybe FLTK should do this)

• fl_set_object_prehandler(), fl_set_object_posthandler()

• fl_enumerate_fonts()

• Most drawing functions

• fl_set_coordunit() (FLTK uses pixels all the time)

• fl_ringbell()

• fl_gettime()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

154 Forms Compatibility

• fl_win∗() (all these functions)

• fl_initialize(argc,argv,x,y,z) ignores last 3 arguments

• fl_read_bitmapfile(), fl_read_pixmapfile()

• fl_addto_browser_chars()

• FL_MENU_BUTTON just draws normally

• fl_set_bitmapbutton_file(), fl_set_pixmapbutton_file()

• FL_CANVAS objects

• FL_DIGITAL_CLOCK (comes out analog)

• fl_create_bitmap_cursor(), fl_set_cursor_color()

• fl_set_dial_angles()

• fl_show_oneliner()

• fl_set_choice_shortcut(a,b,c)

• command log

• Only some of file selector is emulated

• FL_DATE_INPUT

• fl_pup∗() (all these functions)

• textbox object (should be easy but I had no sample programs)

• xyplot object

16.4 Additional Notes

These notes were written for porting programs written with the older IRISGL version of Forms. Most of
these problems are the same ones encountered when going from old Forms to XForms:

Does Not Run In Background

The IRISGL library always forked when you created the first window, unless "foreground()" was called.
FLTK acts like "foreground()" is called all the time. If you really want the fork behavior do "if (fork())
exit(0)" right at the start of your program.

You Cannot Use IRISGL Windows or fl_queue

If a Forms (not XForms) program if you wanted your own window for displaying things you would create
a IRISGL window and draw in it, periodically calling Forms to check if the user hit buttons on the panels.
If the user did things to the IRISGL window, you would find this out by having the value FL_EVENT
returned from the call to Forms.

None of this works with FLTK. Nor will it compile, the necessary calls are not in the interface.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

16.4 Additional Notes 155

You have to make a subclass of Fl_Gl_Window and write a draw() method and handle() method.
This may require anywhere from a trivial to a major rewrite.

If you draw into the overlay planes you will have to also write a draw_overlay() method and call
redraw_overlay() on the OpenGL window.

One easy way to hack your program so it works is to make the draw() and handle() methods on your
window set some static variables, storing what event happened. Then in the main loop of your program, call
Fl::wait() and then check these variables, acting on them as though they are events read from fl_queue.

You Must Use OpenGL to Draw Everything

The file <FL/gl.h> defines replacements for a lot of IRISGL calls, translating them to OpenGL. There are
much better translators available that you might want to investigate.

You Cannot Make Forms Subclasses

Programs that call fl_make_object or directly setting the handle routine will not compile. You have
to rewrite them to use a subclass of Fl_Widget. It is important to note that the handle() method is not
exactly the same as the handle() function of Forms. Where a Forms handle() returned non-zero, your
handle() must call do_callback(). And your handle() must return non-zero if it "understood"
the event.

An attempt has been made to emulate the "free" widget. This appears to work quite well. It may be quicker
to modify your subclass into a "free" widget, since the "handle" functions match.

If your subclass draws into the overlay you are in trouble and will have to rewrite things a lot.

You Cannot Use <device.h>

If you have written your own "free" widgets you will probably get a lot of errors about "getvaluator". You
should substitute:

Forms FLTK
MOUSE_X Fl::event_x_root()
MOUSE_Y Fl::event_y_root()
LEFTSHIFTKEY,RIGHTSHIFTKEY Fl::event_shift()
CAPSLOCKKEY Fl::event_capslock()
LEFTCTRLKEY,RIGHTCTRLKEY Fl::event_ctrl()
LEFTALTKEY,RIGHTALTKEY Fl::event_alt()
MOUSE1,RIGHTMOUSE Fl::event_state()
MOUSE2,MIDDLEMOUSE Fl::event_state()
MOUSE3,LEFTMOUSE Fl::event_state()

Anything else in getvaluator and you are on your own...

Font Numbers Are Different

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

156 Forms Compatibility

The "style" numbers have been changed because I wanted to insert bold-italic versions of the normal fonts.
If you use Times, Courier, or Bookman to display any text you will get a different font out of FLTK. If you
are really desperate to fix this use the following code:

fl_font_name(3,"*courier-medium-r-no*");
fl_font_name(4,"*courier-bold-r-no*");
fl_font_name(5,"*courier-medium-o-no*");
fl_font_name(6,"*times-medium-r-no*");
fl_font_name(7,"*times-bold-r-no*");
fl_font_name(8,"*times-medium-i-no*");
fl_font_name(9,"*bookman-light-r-no*");
fl_font_name(10,"*bookman-demi-r-no*");
fl_font_name(11,"*bookman-light-i-no*");

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 17

Operating System Issues

158 Operating System Issues

This appendix describes the operating system specific interfaces in FLTK.

17.1 Accessing the OS Interfaces

All programs that need to access the operating system specific interfaces must include the following header
file:

#include <FL/x.H>

Despite the name, this header file will define the appropriate interface for your environment. The pages
that follow describe the functionality that is provided for each operating system.

WARNING:
The interfaces provided by this header file may change radically in new FLTK releases. Use them only
when an existing generic FLTK interface is not sufficient.

17.2 The UNIX (X11) Interface

The UNIX interface provides access to the X Window System state information and data structures.

17.2.1 Handling Other X Events

void Fl::add_handler(int (∗f)(int))

Installs a function to parse unrecognized events. If FLTK cannot figure out what to do with an event,
it calls each of these functions (most recent first) until one of them returns non-zero. If none of them
returns non-zero then the event is ignored.

FLTK calls this for any X events it does not recognize, or X events with a window ID that FLTK does
not recognize. You can look at the X event in the fl_xevent variable.

The argument is the FLTK event type that was not handled, or zero for unrecognized X events. These
handlers are also called for global shortcuts and some other events that the widget they were passed to
did not handle, for example FL_SHORTCUT.

extern XEvent ∗fl_xevent

This variable contains the most recent X event.

extern ulong fl_event_time

This variable contains the time stamp from the most recent X event that reported it; not all events do.
Many X calls like cut and paste need this value.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

17.2 The UNIX (X11) Interface 159

Window fl_xid(const Fl_Window ∗)

Returns the XID for a window, or zero if not shown().

Fl_Window ∗fl_find(ulong xid)

Returns the Fl_Window that corresponds to the given XID, or NULL if not found. This function uses a
cache so it is slightly faster than iterating through the windows yourself.

int fl_handle(const XEvent &)

This call allows you to supply the X events to FLTK, which may allow FLTK to cooperate with another
toolkit or library. The return value is non-zero if FLTK understood the event. If the window does not
belong to FLTK and the add_handler() functions all return 0, this function will return false.

Besides feeding events your code should call Fl::flush() periodically so that FLTK redraws its windows.

This function will call the callback functions. It will not return until they complete. In particular, if
a callback pops up a modal window by calling fl_ask(), for instance, it will not return until the modal
function returns.

17.2.2 Drawing using Xlib

The following global variables are set before Fl_Widget::draw() is called, or by Fl_Window::make_-
current():

extern Display *fl_display;
extern Window fl_window;
extern GC fl_gc;
extern int fl_screen;
extern XVisualInfo *fl_visual;
extern Colormap fl_colormap;

You must use them to produce Xlib calls. Don’t attempt to change them. A typical X drawing call is written
like this:

XDrawSomething(fl_display, fl_window, fl_gc, ...);

Other information such as the position or size of the X window can be found by looking at Fl_-
Window::current(), which returns a pointer to the Fl_Window being drawn.

unsigned long fl_xpixel(Fl_Color i)

unsigned long fl_xpixel(uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given FLTK color index or RGB color. This is the X
pixel that fl_color() would use.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

160 Operating System Issues

int fl_parse_color(const char∗ p, uchar& r, uchar& g, uchar& b)

Convert a name into the red, green, and blue values of a color by parsing the X11 color names. On
other systems, fl_parse_color() can only convert names in hexadecimal encoding, for example
#ff8083.

extern XFontStruct ∗fl_xfont

Points to the font selected by the most recent fl_font(). This is not necessarily the current font of fl_-
gc, which is not set until fl_draw() is called. If FLTK was compiled with Xft support, fl_xfont
will usually be 0 and fl_xftfont will contain a pointer to the XftFont structure instead.

extern void ∗fl_xftfont

If FLTK was compiled with Xft support enabled, fl_xftfont points to the xft font selected by the
most recent fl_font(). Otherwise it will be 0. fl_xftfont should be cast to XftFont∗.

17.2.3 Changing the Display, Screen, or X Visual

FLTK uses only a single display, screen, X visual, and X colormap. This greatly simplifies its internal
structure and makes it much smaller and faster. You can change which it uses by setting global variables
before the first Fl_Window::show() is called. You may also want to call Fl::visual(), which is a portable
interface to get a full color and/or double buffered visual.

int Fl::display(const char ∗)

Set which X display to use. This actually does putenv("DISPLAY=...") so that child programs
will display on the same screen if called with exec(). This must be done before the display is opened.
This call is provided under MacOS and WIN32 but it has no effect.

extern Display ∗fl_display

The open X display. This is needed as an argument to most Xlib calls. Don’t attempt to change it!
This is NULL before the display is opened.

void fl_open_display()

Opens the display. Does nothing if it is already open. This will make sure fl_display is non-zero.
You should call this if you wish to do X calls and there is a chance that your code will be called before
the first show() of a window.

This may call Fl::abort() if there is an error opening the display.

void fl_close_display()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

17.2 The UNIX (X11) Interface 161

This closes the X connection. You do not need to call this to exit, and in fact it is faster to not do so! It
may be useful to call this if you want your program to continue without the X connection. You cannot
open the display again, and probably cannot call any FLTK functions.

extern int fl_screen

Which screen number to use. This is set by fl_open_display() to the default screen. You can
change it by setting this to a different value immediately afterwards. It can also be set by changing the
last number in the Fl::display() string to "host:0.#".

extern XVisualInfo ∗fl_visual

extern Colormap fl_colormap

The visual and colormap that FLTK will use for all windows. These are set by fl_open_-
display() to the default visual and colormap. You can change them before calling show() on
the first window. Typical code for changing the default visual is:

Fl::args(argc, argv); // do this first so $DISPLAY is set
fl_open_display();
fl_visual = find_a_good_visual(fl_display, fl_screen);
if (!fl_visual) Fl::abort("No good visual");
fl_colormap = make_a_colormap(fl_display, fl_visual->visual, fl_visual->depth);
// it is now ok to show() windows:
window->show(argc, argv);

17.2.4 Using a Subclass of Fl_Window for Special X Stuff

FLTK can manage an X window on a different screen, visual and/or colormap, you just can’t use FLTK’s
drawing routines to draw into it. But you can write your own draw() method that uses Xlib (and/or
OpenGL) calls only.

FLTK can also manage XID’s provided by other libraries or programs, and call those libraries when the
window needs to be redrawn.

To do this, you need to make a subclass of Fl_Window and override some of these virtual functions:

virtual void Fl_Window::show()

If the window is already shown() this must cause it to be raised, this can usually be done by calling
Fl_Window::show(). If not shown() your implementation must call either Fl_X::set_xid() or Fl_-
X::make_xid().

An example:

void MyWindow::show() {
if (shown()) {Fl_Window::show(); return;} // you must do this!
fl_open_display(); // necessary if this is first window
// we only calculate the necessary visual colormap once:
static XVisualInfo *visual;
static Colormap colormap;
if (!visual) {

visual = figure_out_visual();
colormap = XCreateColormap(fl_display, RootWindow(fl_display,fl_screen),

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

162 Operating System Issues

vis->visual, AllocNone);
}
Fl_X::make_xid(this, visual, colormap);

}

Fl_X ∗Fl_Xset_xid(Fl_Window∗, Window xid)

Allocate a hidden structure called an Fl_X, put the XID into it, and set a pointer to it from the Fl_-
Window. This causes Fl_Window::shown()to return true.

void Fl_X::make_xid(Fl_Window∗, XVisualInfo∗ = fl_visual, Colormap = fl_colormap)

This static method does the most onerous parts of creating an X window, including setting the label,
resize limitations, etc. It then does Fl_X::set_xid() with this new window and maps the window.

virtual void Fl_Window::flush()

This virtual function is called by Fl::flush() to update the window. For FLTK’s own windows it does
this by setting the global variables fl_window and fl_gc and then calling the draw() method.
For your own windows you might just want to put all the drawing code in here.

The X region that is a combination of all damage() calls done so far is in Fl_-
X::i(this)->region. If NULL then you should redraw the entire window. The undocumented
function fl_clip_region(XRegion) will initialize the FLTK clip stack with a region or NULL
for no clipping. You must set region to NULL afterwards as fl_clip_region() will own and
delete it when done.

If damage() & FL_DAMAGE_EXPOSE then only X expose events have happened. This may be
useful if you have an undamaged image (such as a backing buffer) around.

Here is a sample where an undamaged image is kept somewhere:

void MyWindow::flush() {
fl_clip_region(Fl_X::i(this)->region);
Fl_X::i(this)->region = 0;
if (damage() != 2) {... draw things into backing store ...}
... copy backing store to window ...

}

virtual void Fl_Window::hide()

Destroy the window server copy of the window. Usually you will destroy contexts, pixmaps, or other
resources used by the window, and then call Fl_Window::hide() to get rid of the main window identified
by xid(). If you override this, you must also override the destructor as shown:

void MyWindow::hide() {
if (mypixmap) {

XFreePixmap(fl_display,mypixmap);
mypixmap = 0;

}
Fl_Window::hide(); // you must call this

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

17.2 The UNIX (X11) Interface 163

virtual void Fl_Window::∼Fl_Window()

Because of the way C++ works, if you override hide() you must override the destructor as well
(otherwise only the base class hide() is called):

MyWindow::~MyWindow() {
hide();

}

17.2.5 Setting the Icon of a Window

FLTK currently supports setting a window’s icon before it is shown using the Fl_Window::icon() method.

void Fl_Window::icon(char ∗)

Sets the icon for the window to the passed pointer. You will need to cast the icon Pixmap to a char∗
when calling this method. To set a monochrome icon using a bitmap compiled with your application
use:

#include "icon.xbm"

fl_open_display(); // needed if display has not been previously opened

Pixmap p = XCreateBitmapFromData(fl_display, DefaultRootWindow(fl_display),
icon_bits, icon_width, icon_height);

window->icon((char *)p);

To use a multi-colored icon, the XPM format and library should be used as follows:

#include <X11/xpm.h>
#include "icon.xpm"

fl_open_display(); // needed if display has not been previously opened

Pixmap p, mask;

XpmCreatePixmapFromData(fl_display, DefaultRootWindow(fl_display),
icon_xpm, &p, &mask, NULL);

window->icon((char *)p);

When using the Xpm library, be sure to include it in the list of libraries that are used to link the
application (usually "-lXpm").

NOTE:
You must call Fl_Window::show(int argc, char∗∗ argv) for the icon to be used. The
Fl_Window::show() method does not bind the icon to the window.

17.2.6 X Resources

When the Fl_Window::show(int argc, char∗∗ argv) method is called, FLTK looks for the following X
resources:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

164 Operating System Issues

• background - The default background color for widgets (color).

• dndTextOps - The default setting for drag and drop text operations (boolean).

• foreground - The default foreground (label) color for widgets (color).

• scheme - The default scheme to use (string).

• selectBackground - The default selection color for menus, etc. (color).

• Text.background - The default background color for text fields (color).

• tooltips - The default setting for tooltips (boolean).

• visibleFocus - The default setting for visible keyboard focus on non-text widgets (boolean).

Resources associated with the first window’s Fl_Window::xclass() string are queried first, or if no class has
been specified then the class "fltk" is used (e.g. fltk.background). If no match is found, a global
search is done (e.g. ∗background).

17.3 The Windows (WIN32) Interface

The Windows interface provides access to the WIN32 GDI state information and data structures.

17.3.1 Handling Other WIN32 Messages

By default a single WNDCLASSEX called "FLTK" is created. All Fl_Window ’s are of this class unless
you use Fl_Window::xclass(). The window class is created the first time Fl_Window::show() is called.

You can probably combine FLTK with other libraries that make their own WIN32 window classes. The
easiest way is to call Fl::wait(), as it will call DispatchMessage() for all messages to the other win-
dows. If necessary you can let the other library take over as long as it calls DispatchMessage(),
but you will have to arrange for the function Fl::flush() to be called regularly so that widgets are updated,
timeouts are handled, and the idle functions are called.

extern MSG fl_msg

This variable contains the most recent message read by GetMessage(), which is called by Fl::wait().
This may not be the most recent message sent to an FLTK window, because silly WIN32 calls the
handle procedures directly for some events (sigh).

void Fl::add_handler(int (∗f)(int))

Installs a function to parse unrecognized messages sent to FLTK windows. If FLTK cannot figure out
what to do with a message, it calls each of these functions (most recent first) until one of them returns
non-zero. The argument passed to the functions is the FLTK event that was not handled or zero for
unknown messages. If all the handlers return zero then FLTK calls DefWindowProc().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

17.3 The Windows (WIN32) Interface 165

HWND fl_xid(const Fl_Window ∗)

Returns the window handle for a Fl_Window, or zero if not shown().

Fl_Window ∗fl_find(HWND xid)

Returns the Fl_Window that corresponds to the given window handle, or NULL if not found. This
function uses a cache so it is slightly faster than iterating through the windows yourself.

17.3.2 Drawing Things Using the WIN32 GDI

When the virtual function Fl_Widget::draw() is called, FLTK stores all the extra arguments you need to
make a proper GDI call in some global variables:

extern HINSTANCE fl_display;
extern HWND fl_window;
extern HDC fl_gc;
COLORREF fl_RGB();
HPEN fl_pen();
HBRUSH fl_brush();

These global variables are set before Fl_Widget::draw() is called, or by Fl_Window::make_current(). You
can refer to them when needed to produce GDI calls, but don’t attempt to change them. The functions
return GDI objects for the current color set by fl_color() and are created as needed and cached. A typical
GDI drawing call is written like this:

DrawSomething(fl_gc, ..., fl_brush());

It may also be useful to refer to Fl_Window::current() to get the window’s size or position.

17.3.3 Setting the Icon of a Window

FLTK currently supports setting a window’s icon ∗before∗ it is shown using the Fl_Window::icon() method.

void Fl_Window::icon(char ∗)

Sets the icon for the window to the passed pointer. You will need to cast the HICON handle to a char∗
when calling this method. To set the icon using an icon resource compiled with your application use:

window->icon((char *)LoadIcon(fl_display, MAKEINTRESOURCE(IDI_ICON)));

You can also use the LoadImage() and related functions to load specific resolutions or create the
icon from bitmap data.

NOTE:
You must call Fl_Window::show(int argc, char∗∗ argv) for the icon to be used. The
Fl_Window::show() method does not bind the icon to the window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

166 Operating System Issues

17.3.4 How to Not Get a MSDOS Console Window

WIN32 has a really stupid mode switch stored in the executables that controls whether or not to make a
console window.

To always get a console window you simply create a console application (the "/SUBSYSTEM:CONSOLE"
option for the linker). For a GUI-only application create a WIN32 application (the "/SUBSYS-
TEM:WINDOWS" option for the linker).

FLTK includes a WinMain() function that calls the ANSI standard main() entry point for you. This
function creates a console window when you use the debug version of the library.

WIN32 applications without a console cannot write to stdout or stderr, even if they are run from a
console window. Any output is silently thrown away. Additionally, WIN32 applications are run in the
background by the console, although you can use "start /wait program" to run them in the foreground.

17.3.5 Known WIN32 Bugs and Problems

The following is a list of known bugs and problems in the WIN32 version of FLTK:

• If a program is deactivated, Fl::wait() does not return until it is activated again, even though
many events are delivered to the program. This can cause idle background processes to stop unex-
pectedly. This also happens while the user is dragging or resizing windows or otherwise holding the
mouse down. We were forced to remove most of the efficiency FLTK uses for redrawing in order to
get windows to update while being moved. This is a design error in WIN32 and probably impossible
to get around.

• Fl_Gl_Window::can_do_overlay() returns true until the first time it attempts to draw an
overlay, and then correctly returns whether or not there is overlay hardware.

• SetCapture (used by Fl::grab()) doesn’t work, and the main window title bar turns gray
while menus are popped up.

• Compilation with gcc 3.4.4 and -Os exposes an optimisation bug in gcc. The symptom is that
when drawing filled circles only the perimeter is drawn. This can for instance be seen in the symbols
demo. Other optimisation options such as -O2 and -O3 seem to work OK. More details can be found
in STR#1656

17.4 The Mac OS Interface

FLTK supports Mac OS X using the Apple Cocoa library. Older versions of Mac OS are not supported.

Control, Option, and Command Modifier Keys

FLTK maps the Mac ’control’ key to FL_CTRL, the ’option’ key to FL_ALT and the ’Apple’ key to
FL_META. Furthermore, FL_COMMAND designates the ’Apple’ key on Mac OS X and the ’control’
key on other platforms. Keyboard events return the key name in Fl::event_key() and the keystroke
translation in Fl::event_text(). For example, typing Option-Y on a Mac US keyboard will set FL_ALT
in Fl::event_state(), set Fl::event_key() to ’y’ and return the Yen symbol in Fl::event_text().

Apple "Quit" Event

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

17.4 The Mac OS Interface 167

When the user presses Cmd-Q or requests a termination of the application, OS X will send a "Quit"
Apple Event. FLTK handles this event by sending an FL_CLOSE event to all open windows. If all
windows close, the application will terminate.

Apple "Open" Event

Whenever the user drops a file onto an application icon, OS X generates an Apple Event of the type
"Open". You can have FLTK notify you of an Open event by setting the fl_open_callback

Window fl_xid(const Fl_Window ∗)

Returns the window reference for an Fl_Window, or NULL if the window has not been shown. This
reference is a pointer to an instance of the subclass FLWindow of Cocoa’s NSWindow class.

Fl_Window ∗fl_find(Window xid)

Returns the Fl_Window that corresponds to the given window reference, or NULL if not found. FLTK
windows that are children of top-level windows share the Window of the top-level window.

void fl_open_callback(void (∗cb)(const char ∗))

cb will be called with a single Unix-style file name and path. If multiple files were dropped, fl_-
open_callback() will be called multiple times.

void fl_mac_set_about(Fl_Callback ∗cb, void ∗user_data, int shortcut)

Attaches the callback cb to the "About myprog" item of the system application menu. cb will be
called with NULL first argument and user_data second argument.

Fl_Sys_Menu_Bar class

The Fl_Sys_Menu_Bar class allows to build menu bars that, on Mac OS X, are placed in the system
menu bar (at top-left of display), and, on other platforms, at a user-chosen location of a user-chosen
window.

17.4.1 Drawing Things Using QuickDraw

When the virtual function Fl_Widget::draw() is called, FLTK has prepared the Window and CGrafPort for
drawing. Clipping and offsets are prepared to allow correct subwindow drawing.

17.4.2 Drawing Things Using Quartz

If the FLTK library was compiled using the configuration flag -enable-quartz, all code inside Fl_-
Widget::draw() is expected to call Quartz drawing functions instead of QuickDraw. The Quartz coordinate

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

168 Operating System Issues

system is flipped to match FLTK’s coordinate system. The origin for all drawing is in the top left corner of
the enclosing Fl_Window.

Fl_Double_Window

OS X double-buffers all windows automatically. On OS X, Fl_Window and Fl_Double_Window are han-
dled internally in the same way.

17.4.3 Mac File System Specifics

Resource Forks

FLTK does not access the resource fork of an application. However, a minimal resource fork must be
created for OS X applications

Caution:
When using UNIX commands to copy or move executables, OS X will NOT copy any resource forks!
For copying and moving use CpMac and MvMac respectively. For creating a tar archive, all
executables need to be stripped from their Resource Fork before packing, e.g. "DeRez fluid > fluid.r".
After unpacking the Resource Fork needs to be reattached, e.g. "Rez fluid.r -o fluid".

It is advisable to use the Finder for moving and copying and Mac archiving tools like Sit for distribution as
they will handle the Resource Fork correctly.

Mac File Paths

FLTK uses UNIX-style filenames and paths.

17.4.4 Known MacOS Bugs and Problems

The following is a list of known bugs and problems in the MacOS version of FLTK:

• Line styles are not well supported. This is due to limitations in the QuickDraw interface.

• Nested subwindows are not supported, i.e. you can have a Fl_Window widget inside a Fl_Window,
but not a Fl_Window inside a Fl_Window inside a Fl_Window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 18

Migrating Code from FLTK 1.0 to 1.1

170 Migrating Code from FLTK 1.0 to 1.1

This appendix describes the differences between the FLTK 1.0.x and FLTK 1.1.x functions and classes.

18.1 Color Values

Color values are now stored in a 32-bit unsigned integer instead of the unsigned character in 1.0.x. This
allows for the specification of 24-bit RGB values or 8-bit FLTK color indices.

FL_BLACK and FL_WHITE now remain black and white, even if the base color of the gray ramp is changed
using Fl::background(). FL_DARK3 and FL_LIGHT3 can be used instead to draw a very dark or a very
bright background hue.

Widgets use the new color symbols FL_FORGROUND_COLOR, FL_BACKGROUND_COLOR, FL_-
BACKGROUND2_COLOR, FL_INACTIVE_COLOR, and FL_SELECTION_COLOR. More details can be
found in the chapter FLTK Enumerations.

18.2 Cut and Paste Support

The FLTK clipboard is now broken into two parts - a local selection value and a cut-and-paste value. This
allows FLTK to support things like highlighting and replacing text that was previously cut or copied, which
makes FLTK applications behave like traditional GUI applications.

18.3 File Chooser

The file chooser in FLTK 1.1.x is significantly different than the one supplied with FLTK 1.0.x. Any code
that directly references the old FCB class or members will need to be ported to the new Fl_File_Chooser
class.

18.4 Function Names

Some function names have changed from FLTK 1.0.x to 1.1.x in order to avoid name space collisions. You
can still use the old function names by defining the FLTK_1_0_COMPAT symbol on the command-line
when you compile (-DFLTK_1_0_COMPAT) or in your source, e.g.:

#define FLTK_1_0_COMPAT
#include <FL/Fl.H>
#include <FL/Enumerations.H>
#include <FL/filename.H>

The following table shows the old and new function names:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

18.5 Image Support 171

Old 1.0.x Name New 1.1.x Name
contrast() fl_contrast()
down() fl_down()
filename_absolute() fl_filename_absolute()
filename_expand() fl_filename_expand()
filename_ext() fl_filename_ext()
filename_isdir() fl_filename_isdir()
filename_list() fl_filename_list()
filename_match() fl_filename_match()
filename_name() fl_filename_name()
filename_relative() fl_filename_relative()
filename_setext() fl_filename_setext()
frame() fl_frame()
inactive() fl_inactive()
numericsort() fl_numericsort()

18.5 Image Support

Image support in FLTK has been significantly revamped in 1.1.x. The Fl_Image class is now a proper
base class, with the core image drawing functionality in the Fl_Bitmap, Fl_Pixmap, and Fl_RGB_Image
classes.

BMP, GIF, JPEG, PNG, XBM, and XPM image files can now be loaded using the appropriate image classes,
and the Fl_Shared_Image class can be used to cache images in memory.

Image labels are no longer provided as an add-on label type. If you use the old label() methods on an
image, the widget’s image() method is called to set the image as the label.

Image labels in menu items must still use the old labeltype mechanism to preserve source compatibility.

18.6 Keyboard Navigation

FLTK 1.1.x now supports keyboard navigation and control with all widgets. To restore the old FLTK 1.0.x
behavior so that only text widgets get keyboard focus, call the Fl::visible_focus() method to disable it:

Fl::visible_focus(0);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

172 Migrating Code from FLTK 1.0 to 1.1

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 19

Migrating Code from FLTK 1.1 to 1.3

174 Migrating Code from FLTK 1.1 to 1.3

This appendix describes the differences between the FLTK 1.1.x and FLTK 1.3.x functions and classes.

19.1 Migrating From FLTK 1.0

If you want to migrate your code from FLTK 1.0 to FLTK 1.3, then you should first consult Appendix
Migrating Code from FLTK 1.0 to 1.1.

19.2 Fl_Scroll Widget

Fl_Scroll::scroll_to(int x, int y) replaces Fl_Scroll::position(int x, int y).

This change was needed because Fl_Scroll::position(int,int) redefined Fl_Widget::position(int,int), but with
a completely different function (moving the scrollbars instead of moving the widget).

Please be aware that you need to change your application’s code for all Fl_Scroll-derived widgets, if you
used Fl_Scroll::position(int x, int y) to position the scrollbars (not the widget itself).

The compiler will not detect any errors, because your calls to position(int x, int y) will be calling Fl_-
Widget::position(int x, int y).

19.3 Unicode (UTF-8)

FLTK 1.3 uses Unicode (UTF-8) encoding internally. If you are only using characters in the ASCII range
(32-127), there is a high probability that you don’t need to modify your code. However, if you use in-
ternational characters (128-255), encoded as e.g. Windows codepage 1252, ISO-8859-1, ISO-8859-15 or
any other encoding, then you will need to update your character string constants and widget input data
accordingly.

Please refer to the Unicode and UTF-8 Support chapter for more details.

Note:

It is important that, although your software uses only ASCII characters for input to FLTK widgets,
the user may enter non-ASCII characters, and FLTK will return these characters with utf-8 encoding
to your application, e.g. via Fl_Input::value(). You will need to re-encode them to your (non-utf-8)
encoding, otherwise you might see or print garbage in your data.

19.4 Widget Coordinate Representation

FLTK 1.3 changed all Widget coordinate variables and methods, e.g. Fl_Widget::x(), Fl_Widget::y(), Fl_-
Widget::w(), Fl_Widget::h(), from short (16-bit) to int (32-bit) representation. This should not affect any
existing code, but makes it possible to use bigger scroll areas (e.g. Fl_Scroll widget).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 20

Developer Information

176 Developer Information

This chapter describes FLTK development and documentation.

Note:

documentation with doxygen will be described here.

Example
Note:

In the following code example(s) "∗" will be replaced by "#" as a temporary solution.

/## \file
Fl_Clock, Fl_Clock_Output widgets . #/

/##
\class Fl_Clock_Output
\brief This widget can be used to display a program-supplied time.

The time shown on the clock is not updated. To display the current time,
use Fl_Clock instead.

\image html clock.gif
\image latex clock.eps "" width=10cm
\image html round_clock.gif
\image latex clock.eps "" width=10cm
\image html round_clock.eps "" width=10cm #/

/##
Returns the displayed time.
Returns the time in seconds since the UNIX epoch (January 1, 1970).
\see value(ulong)

#/
ulong value() const {return value_;}

/##
Set the displayed time.
Set the time in seconds since the UNIX epoch (January 1, 1970).
\param[in] v seconds since epoch
\see value()

#/
void Fl_Clock_Output::value(ulong v) {
[...]
}

/##
Create an Fl_Clock widget using the given position, size, and label string.
The default boxtype is \c FL_NO_BOX.
\param[in] X, Y, W, H position and size of the widget
\param[in] L widget label, default is no label

#/
Fl_Clock::Fl_Clock(int X, int Y, int W, int H, const char #L)

: Fl_Clock_Output(X, Y, W, H, L) {}

/##
Create an Fl_Clock widget using the given boxtype, position, size, and
label string.
\param[in] t boxtype
\param[in] X, Y, W, H position and size of the widget
\param[in] L widget label, default is no label

#/

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

177

Fl_Clock::Fl_Clock(uchar t, int X, int Y, int W, int H, const char #L)
: Fl_Clock_Output(X, Y, W, H, L) {
type(t);
box(t==FL_ROUND_CLOCK ? FL_NO_BOX : FL_UP_BOX);

}

Note:

From Duncan: (will be removed later, just for now as a reminder)

5. I’ve just added comments for the fl_color_chooser() functions, and in order to keep them and the general
Function Reference information for them together, I created a new doxygen group, and used \ingroup in
the three comment blocks. This creates a new Modules page (which may not be what we want) with links
to it from the File Members and Fl_Color_Chooser.H pages. It needs a bit more experimentation on my
part unless someone already knows how this should be handled. (Maybe we can add it to a functions.dox
file that defines a functions group and do that for all of the function documentation?)

Update: the trick is not to create duplicate entries in a new group, but to move the function information
into the doxygen comments for the class, and use the navigation links provided. Simply using \relatesalso
as the first doxygen command in the function’s comment puts it in the appropriate place. There is no need
to have \defgroup and \ingroup as well, and indeed they don’t work. So, to summarize:

Gizmo.H
/## \class Gizmo

A gizmo that does everything
#/

class Gizmo {
etc

};
extern int popup_gizmo(...);

Gizmo.cxx:
/## \relatesalso Gizmo

Pops up a gizmo dialog with a Gizmo in it
#/

int popup_gizmo(...);

Example comment:

You can use HTML comment statements to embed comments in doxygen comment blocks. These com-
ments will not be visible in the generated document.

The following text is a developer comment.

This will be visible again.

The following text is a developer comment.
<!-- *** This *** is *** invisible *** -->
This will be visible again.

Different Headlines:

<H1>Headline in big text (H1)</H1>
<H2>Headline in big text (H2)</H2>
<H3>Headline in big text (H3)</H3>
<H4>Headline in big text (H4)</H4>

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

178 Developer Information

Headline in big text (H1)

Headline in big text (H2)

Headline in big text (H3)

Headline in big text (H4)

20.1 Non-ASCII characters

if you came here from below: back to Creating Links

Doxygen understands many HTML quoting characters like
", ü, ç, Ç, but not all HTML quoting characters.

This will appear in the document:

Doxygen understands many HTML quoting characters like ", ü, ç, Ç, but not all HTML quoting characters.

For further informations about quoting see http://www.stack.nl/∼dimitri/doxygen/htmlcmds.html

Example with UTF-8 encoded text

<P>Assuming that the following source code was written on MS Windows,
this example will output the correct label on OS X and X11 as well.
Without the conversion call, the label on OS X would read
<tt>Fahrvergn¸gen</tt> with a deformed umlaut u ("cedille",
html "¸").
\#code

btn = new Fl_Button(10, 10, 300, 25);
btn->copy_label(fl_latin1_to_local("Fahrvergnügen"));

\#endcode

\note If your application uses characters that are not part of both
encodings, or it will be used in areas that commonly use different
code pages, you might consider upgrading to FLTK 2 which supports
UTF-8 encoding.

\todo This is an example todo entry, please ignore !

This will appear in the document:

Assuming that the following source code was written on MS Windows, this example will output the
correct label on OS X and X11 as well. Without the conversion call, the label on OS X would read
Fahrvergn¸gen with a deformed umlaut u ("cedille", html "¸"). #code btn = new Fl_Button(10,
10, 300, 25); btn->copy_label(fl_latin1_to_local("Fahrvergnügen")); #endcode

Note:

If your application uses characters that are not part of both encodings, or it will be used in areas that
commonly use different code pages, you might consider upgrading to FLTK 2 which supports UTF-8
encoding.

Todo

This is an example todo entry, please ignore !

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/htmlcmds.html

20.2 Document Structure 179

20.2 Document Structure

• \page creates a named page

• \section creates a named section within that page

• \subsection creates a named subsection within the current section

• \subsubsection creates a named subsubsection within the current subsection

All these statements take a "name" as their first argument, and a title as their second argument. The title
can contain spaces.

The page, section, and subsection titles are formatted in blue color and a size like "<H1>", "<H2>",
and "<H3>", and "<H4>", respectively.

By FLTK documentation convention, a file like this one with a doxygen documentation chapter has
the name "<chapter>.dox". The \page statement at the top of the page is "\page <chapter> This
is the title". Sections within a documentation page must be called "<chapter>_<section>", where
"<chapter>" is the name part of the file, and "<section>" is a unique section name within the page that
can be referenced in links. The same for subsections and subsubsections.

These doxygen page and section commands work only in special documentation chapters, not within nor-
mal source or header documentation blocks. However, links from normal (e.g. class) documentation to
documentation sections do work.

This page has

\page development I - Developer Information

at its top.

This section is

\section development_structure Document structure

The following section is

\section development_links Creating Links

20.3 Creating Links

Links to other documents and external links can be embedded with

• doxygen \ref links to other doxygen \page, \section, \subsection and \anchor locations

• HTML links without markup - doxygen creates "http://..." links automatically

• standard, non-Doxygen, HTML links

- see chapter \ref unicode creates a link to the named chapter
unicode that has been created with a \page statement.

- For further informations about quoting see
http://www.stack.nl/~dimitri/doxygen/htmlcmds.html

- see Nedit creates
a standard HTML link

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

180 Developer Information

appears as:

• see chapter Unicode and UTF-8 Support creates a link to the named chapter unicode that has been
created with a \page statement.

• For further informations about quoting see http://www.stack.nl/∼dimitri/doxygen/htmlcmds.html

• see Nedit creates a standard HTML link

20.4 Paragraph Layout

There is no real need to use HTML <P> and </P> tags within the text to tell doxygen to start or stop a
paragraph. In most cases, when doxygen encounters a blank line or some, but not all, \commands in the
text it knows that it as reached the start or end of a paragraph. Doxygen also offers the \par command
for special paragraph handling. It can be used to provide a paragraph title and also to indent a paragraph.
Unfortunately \par won’t do what you expect if you want to have doxygen links and sometimes html tags
don’t work either.

\par Normal Paragraph with title

This paragraph will have a title, but because there is a blank line
between the \par and the text, it will have the normal layout.

\par Indented Paragraph with title
This paragraph will also have a title, but because there is no blank
line between the \par and the text, it will be indented.

\par
It is also possible to have an indented paragraph without title.
This is how you indent subsequent paragraphs.

\par No link to Fl_Widget::draw()
Note that the paragraph title is treated as plain text.
Doxygen type links will not work.
HTML characters and tags may or may not work.

Fl_Widget::draw() links and "html" tags work

\par
Use a single line ending with
 for complicated paragraph titles.

The above code produces the following paragraphs:

Normal Paragraph with title

This paragraph will have a title, but because there is a blank line between the \par and the text, it will have
the normal layout.

Indented Paragraph with title

This paragraph will also have a title, but because there is no blank line between the \par and the text,
it will be indented.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/htmlcmds.html
http://www.nedit.org/

20.5 Hack for missing "tiny.gif" file 181

It is also possible to have an indented paragraph without title. This is how you indent subsequent
paragraphs.

No link to Fl_Widget::draw()

Note that the paragraph title is treated as plain text. Doxygen type links will not work. HTML charac-
ters and tags may or may not work.

Fl_Widget::draw() links and "html" tags work

Use a single line ending with
 for complicated paragraph titles.

20.5 Hack for missing "tiny.gif" file

Todo

HACK∗ : include image file for footer. Doxygen does not include the file "tiny.gif" from "html_footer"
in its output html dir. Find out, how this can be done, or avoid using an image in the HTML footer.

20.6 Navigation Elements

Each introduction (tutorial) page ends with navigation elements. These elements must only be included in
the html documentation, therefore they must be separated with \htmlonly and \endhtmlonly.

The following code gives the navigation bar at the bottom of this page:

\htmlonly
<hr>
<table summary="navigation bar" width="100%" border="0">
<tr>

<td width="45%" align="LEFT">

[Prev]
Migrating Code from FLTK 1.1 to 1.3

</td>
<td width="10%" align="CENTER">

[Index]
</td>
<td width="45%" align="RIGHT">

Software License
[Next]

</td>
</tr>
</table>
\endhtmlonly

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

182 Developer Information

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 21

Software License

184 Software License

December 11, 2001

The FLTK library and included programs are provided under the terms of the GNU Library General Public
License (LGPL) with the following exceptions:

1. Modifications to the FLTK configure script, config header file, and makefiles by themselves to sup-
port a specific platform do not constitute a modified or derivative work.

The authors do request that such modifications be contributed to the FLTK project - send all contri-
butions to "fltk-bugs@fltk.org".

2. Widgets that are subclassed from FLTK widgets do not constitute a derivative work.

3. Static linking of applications and widgets to the FLTK library does not constitute a derivative work
and does not require the author to provide source code for the application or widget, use the shared
FLTK libraries, or link their applications or widgets against a user-supplied version of FLTK.

If you link the application or widget to a modified version of FLTK, then the changes to FLTK must
be provided under the terms of the LGPL in sections 1, 2, and 4.

4. You do not have to provide a copy of the FLTK license with programs that are linked to the FLTK
library, nor do you have to identify the FLTK license in your program or documentation as required
by section 6 of the LGPL.

However, programs must still identify their use of FLTK. The following example statement can be
included in user documentation to satisfy this requirement:

[program/widget] is based in part on the work of the FLTK project (http://www.fltk.org).

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the
ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foun-
dation software, and to any other libraries whose authors decide to use it. You can use it for your libraries,
too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.fltk.org

185

service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients
all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you
link a program with the library, you must provide complete object files to the recipients so that they can
relink them with the library, after making changes to the library and recompiling it. And you must show
them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is
no warranty for this free library. If the library is modified by someone else and passed on, we want its
recipients to know that what they have is not the original version, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
companies distributing free software will individually obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License,
which was designed for utility programs. This license, the GNU Library General Public License, applies
to certain designated libraries. This license is quite different from the ordinary one; be sure to read it in
full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually
make between modifying or adding to a program and simply using it. Linking a program with a library,
without changing the library, is in some sense simply using the library, and is analogous to running a utility
program or application program. However, in a textual and legal sense, the linked executable is a combined
work, a derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effec-
tively promote software sharing, because most developers did not use the libraries. We concluded that
weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit
from the free status of the libraries themselves. This Library General Public License is intended to permit
developers of non-free programs to use free libraries, while preserving your freedom as a user of such
programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this
as regards changes in header files, but we have achieved it as regards changes in the actual functions of the
Library.) The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a "work based on the libary" and a "work that uses the library". The former contains
code derived from the library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by
this special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

186 Software License

holder or other authorized party saying it may be distributed under the terms of this Library General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation
in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program
is covered only if its contents constitute a work based on the Library (independent of the use of the Library
in a tool for writing it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based
on the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of
this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does not supply such function or table,
the facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function or
table used by this function must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

187

based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to
a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative
of the Library (because it contains portions of the Library), rather than a "work that uses the library". The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether
this is true is especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables containing this object code plus portions
of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses the Library"
with the Library to produce a work containing portions of the Library, and distribute that work under terms
of your choice, provided that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice for the Library among them,
as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

188 Software License

above); and, if the work is an executable linked with the Library, with the complete machine-readable
"work that uses the Library", as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user
a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and
the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

189

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this Li-
cense which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions
are incompatible with these, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHER-
WISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFT-
WARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

190 Software License

END OF TERMS AND CONDITIONS

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 22

Example Source Code

192 Example Source Code

March 19, 2005

The FLTK distribution contains over 60 sample applications written in, or ported to, FLTK. If the FLTK
archive you received does not contain a ’test’ directory, you can download the complete FLTK distribution
from http://fltk.org/software.php .

Most of the example programs were created while testing a group of widgets. They are not meant to be
great achievements in clean C++ programming, but merely a test platform to verify the functionality of the
FLTK library.

22.1 Example Applications

adjuster arc ask bitmap blocks boxtype
browser button buttons checkers clock colbrowser
color_chooser cube CubeView cursor curve demo
doublebuffer editor fast_slow file_chooser fluid fonts
forms fractals fullscreen gl_overlay glpuzzle hello
help iconize image inactive input input_choice
keyboard label line_style list_visuals mandelbrot menubar
message minimum navigation output overlay pack
pixmap_-
browser

pixmap preferences radio resizebox resize

scroll shape subwindow sudoku symbols tabs
threads tile tiled_image valuators

22.1.1 adjuster

adjuster shows a nifty little widget for quickly setting values in a great range.

22.1.2 arc

The arc demo explains how to derive your own widget to generate some custom drawings. The
sample drawings use the matrix based arc drawing for some fun effects.

22.1.3 ask

ask shows some of FLTK’s standard dialog boxes. Click the correct answers or you may end up in a
loop, or you may end up in a loop, or you... .

22.1.4 bitmap

This simple test shows the use of a single color bitmap as a label for a box widget. Bitmaps are stored
in the X11 ’.bmp’ file format and can be part of the source code.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://fltk.org/software.php

22.1 Example Applications 193

22.1.5 blocks

A wonderful and addictive game that shows the usage of FLTK timers, graphics, and how to implement
sound on all platforms. blocks is also a good example for the Mac OS X specific bundle format.

22.1.6 boxtype

boxtype gives an overview of readily available boxes and frames in FLTK. More types can be added
by the application programmer. When using themes, FLTK shuffles boxtypes around to give your
program a new look.

22.1.7 browser

browser shows the capabilities of the Fl_Browser widget. Important features tested are loading of
files, line formatting, and correct positioning of the browser data window.

22.1.8 button

The button test is a simple demo of push-buttons and callbacks.

22.1.9 buttons

buttons shows a sample of FLTK button types.

22.1.10 checkers

Written by Steve Poulsen in early 1979, checkers shows how to convert a VT100 text-terminal
based program into a neat application with a graphical UI. Check out the code that drags the pieces,
and how the pieces are drawn by layering. Then tell me how to beat the computer at Checkers.

22.1.11 clock

The clock demo shows two analog clocks. The innards of the Fl_Clock widget are pretty interesting,
explaining the use of timeouts and matrix based drawing.

22.1.12 colbrowser

colbrowser runs only on X11 systems. It reads /usr/lib/X11/rgb.txt to show the color representation
of every text entry in the file. This is beautiful, but only moderately useful unless your UI is written in
Motif .

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

194 Example Source Code

22.1.13 color_chooser

The color_chooser gives a short demo of FLTK’s palette based color chooser and of the RGB
based color wheel.

22.1.14 cube

The cube demo shows the speed of OpenGL. It also tests the ability to render two OpenGL buffers
into a single window, and shows OpenGL text.

22.1.15 CubeView

CubeView shows how to create a UI containing OpenGL with Fluid.

22.1.16 cursor

The cursor demo shows all mouse cursor shapes that come standard with FLTK. The fgcolor and
bgcolor sliders work only on few systems (some version of Irix for example).

22.1.17 curve

curve draws a nice Bezier curve into a custom widget. The points option for splines is not supported
on all platforms.

22.1.18 demo

This tool allows quick access to all programs in the test directory. demo is based on the visuals of
the IrixGL demo program. The menu tree can be changed by editing test/demo.menu.

22.1.19 doublebuffer

The doublebuffer demo shows the difference between a single buffered window, which may
flicker during a slow redraw, and a double buffered window, which never flickers, but uses twice the
amount of RAM. Some modern OS’s double buffer all windows automatically to allow transparency
and shadows on the desktop. FLTK is smart enough to not tripple buffer a window in that case.

22.1.20 editor

FLTK has two very different text input widgets. Fl_Input and derived classes are rather light weight,
however Fl_Text_Editor is a complete port of nedit (with permission). The editor test is almost a
full application, showing custom syntax highlighting and dialog creation.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

22.1 Example Applications 195

22.1.21 fast_slow

fast_slow shows how an application can use the Fl_Widget::when() setting to receive different
kinds of callbacks.

22.1.22 file_chooser

The standard FLTK file_chooser is the result of many iterations, trying to find a middle ground
between a complex browser and a fast light implementation.

22.1.23 fonts

fonts shows all available text fonts on the host system. If your machine still has some pixmap based
fonts, the supported sizes will be shown in bold face. Only the first 256 fonts will be listed.

22.1.24 forms

forms is an XForms program with very few changes. Search for "fltk" to find all changes necessary
to port to fltk. This demo shows the different boxtypes. Note that some boxtypes are not appropriate
for some objects.

22.1.25 fractals

fractals shows how to mix OpenGL, Glut and FLTK code. FLTK supports a rather large subset of
Glut, so that many Glut applications compile just fine.

22.1.26 fullscreen

This demo shows how to do many of the window manipulations that are popular for games. You
can toggle the border on/off, switch between single- and double-buffered rendering, and take over the
entire screen. More information in the source code.

22.1.27 gl_overlay

gl_overlay shows OpenGL overlay plane rendering. If no hardware overlay plane is available,
FLTK will simulate it for you.

22.1.28 glpuzzle

The glpuzzle test shows how most Glut source code compiles easily under FLTK.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

196 Example Source Code

22.1.29 hello

hello: Hello, World. Need I say more? Well, maybe. This tiny demo shows how little is needed to
get a functioning application running with FLTK. Quite impressive, I’d say.

22.1.30 help

help displays the built-in FLTK help browser. The Fl_Help_Dialog understands a subset of html and
renders various image formats. This widget makes it easy to provide help pages to the user without
depending on the operating system’s html browser.

22.1.31 iconize

iconize demonstrates the effect of the window functions hide(), iconize(), and show().

22.1.32 image

The image demo shows how an image can be created on the fly. This generated image contains an al-
pha (transparency) channel which lets previous renderings ’shine through’, either via true transparency
or by using screen door transparency (pixelation).

22.1.33 inactive

inactive tests the correct rendering of inactive widgets. To see the inactive version of images, you
can check out the pixmap or image test.

22.1.34 input

This tool shows and tests different types of text input fields based on Fl_Input_. The input program
also tests various settings of Fl_Input::when().

22.1.35 input_choice

input_choice tests the latest addition to FLTK1, a text input field with an attached pulldown menu.
Windows users will recognize similarities to the ’ComboBox’. input_choice starts up in ’plastic’
scheme, but the traditional scheme is also supported.

22.1.36 keyboard

FLTK unifies keyboard events for all platforms. The keyboard test can be used to check the return
values of Fl::event_key() and Fl::event_text(). It is also great to see the modifier buttons and the scroll
wheel at work. Quit this application by closing the window. The ESC key will not work.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

22.1 Example Applications 197

22.1.37 label

Every FLTK widget can have a label attached to it. The label demo shows alignment, clipping, and
wrapping of text labels. Labels can contain symbols at the start and end of the text, like @FLTK or
@circle uh-huh @square.

22.1.38 line_style

Advanced line drawing can be tested with line_style. Not all platforms support all line styles.

22.1.39 list_visuals

This little app finds all available pixel formats for the current X11 screen. But since you are now an
FLTK user, you don’t have to worry about any of this.

22.1.40 mandelbrot

mandelbrot shows two advanced topics in one test. It creates grayscale images on the fly, updating
them via the idle callback system. This is one of the few occasions where the idle callback is very
useful by giving all available processor time to the application without blocking the UI or other apps.

22.1.41 menubar

The menubar tests many aspects of FLTK’s popup menu system. Among the features are radio
buttons, menus taller than the screen, arbitrary sub menu depth, and global shortcuts.

22.1.42 message

message pops up a few of FLTK’s standard message boxes.

22.1.43 minimum

The minimum test program verifies that the update regions are set correctly. In a real life application,
the trail would be avoided by choosing a smaller label or by setting label clipping differently.

22.1.44 navigation

navigation demonstrates how the text cursor moves from text field to text field when using the
arrow keys, tab, and shift-tab.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

198 Example Source Code

22.1.45 output

output shows the difference between the single line and multi line mode of the Fl_Output widget.
Fonts can be selected from the FLTK standard list of fonts.

22.1.46 overlay

The overlay test app shows how easy an FLTK window can be layered to display cursor and ma-
nipulator style elements. This example derives a new class from Fl_Overlay_Window and provides a
new function to draw custom overlays.

22.1.47 pack

The pack test program demonstrates the resizing and repositioning of children of the Fl_Pack group.
Putting an Fl_Pack into an Fl_Scroll is a useful way to create a browser for large sets of data.

22.1.48 pixmap_browser

pixmap_browser tests the shared-image interface. When using the same image multiple times,
Fl_Shared_Image will keep it only once in memory.

22.1.49 pixmap

This simple test shows the use of a LUT based pixmap as a label for a box widget. Pixmaps are stored
in the X11 ’.xpm’ file format and can be part of the source code. Pixmaps support one transparent
color.

22.1.50 preferences

I do have my preferences in the morning, but sometimes I just can’t remember a thing. This is
where the Fl_Preferences come in handy. They remember any kind of data between program launches.

22.1.51 radio

The radio tool was created entirely with fluid. It shows some of the available button types and tests
radio button behavior.

22.1.52 resizebox

resizebox shows some possible ways of FLTK’s automatic resize behavior.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

22.1 Example Applications 199

22.1.53 resize

The resize demo tests size and position functions with the given window manager.

22.1.54 scroll

scroll shows how to scroll an area of widgets, one of them being a slow custom drawing. Fl_Scroll
uses clipping and smart window area copying to improve redraw speed. The buttons at the bottom of
the window control decoration rendering and updates.

22.1.55 shape

shape is a very minimal demo that shows how to create your own OpenGL rendering widget. Now
that you know that, go ahead and write that flight simulator you always dreamt of.

22.1.56 subwindow

The subwindow demo tests messaging and drawing between the main window and ’true’ sub win-
dows. A sub window is different to a group by resetting the FLTK coordinate system to 0, 0 in the top
left corner. On Win32 and X11, subwindows have their own operating system specific handle.

22.1.57 sudoku

Another highly addictive game - don’t play it, I warned you. The implementation shows how to create
application icons, how to deal with OS specifics, and how to generate sound.

22.1.58 symbols

symbols are a speciality of FLTK. These little vector drawings can be integrated into labels. They
scale and rotate, and with a little patience, you can define your own. The rotation number refers to 45
degree rotations if you were looking at a numeric keypad (2 is down, 6 is right, etc.).

22.1.59 tabs

The tabs tool was created with fluid. It tests correct hiding and redisplaying of tabs, navigation across
tabs, resize behavior, and no unneeded redrawing of invisible widgets.

The tabs application shows the Fl_Tabs widget on the left and the Fl_Wizard widget on the right side
for direct comparison of these two panel management widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

200 Example Source Code

22.1.60 threads

FLTK can be used in a multithreading environment. There are some limitations, mostly due to the
underlying operating system. threads shows how to use Fl::lock(), Fl::unlock(), and Fl::awake() in
secondary threads to keep FLTK happy. Although locking works on all platforms, this demo is not
available on every machine.

22.1.61 tile

The tile tool shows a nice way of using Fl_Tile. To test correct resizing of subwindows, the widget
for region 1 is created from an Fl_Window class.

22.1.62 tiled_image

The tiled_image demo uses an image as the background for a window by repeating it over the full
size of the widget. The window is resizable and shows how the image gets repeated.

22.1.63 valuators

valuators shows all of FLTK’s nifty widgets to change numeric values.

22.1.64 fluid

fluid is not only a big test program, but also a very useful visual UI designer. Many parts of fluid
were created using fluid. See the Fluid Tutorial for more details.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 23

Deprecated List

202 Deprecated List

Member Fl::release() Use Fl::grab(0) instead.

Member Fl::set_idle(Fl_Old_Idle_Handler cb) This method is obsolete - use the add_idle() method
instead.

Member Fl_Group::focus(Fl_Widget ∗W) This is for backwards compatibility only. You should use
W->take_focus() instead.

Member Fl_Menu_Item::check() .

Member Fl_Menu_Item::checked() const .

Member Fl_Menu_Item::uncheck() .

Member Fl_Spinner::maxinum() const

Member Fl_Spinner::mininum() const

Member Fl_Widget::color2(unsigned a) Use selection_color(unsigned) instead.

Member Fl_Widget::color2() const Use selection_color() instead.

Member Fl_Window::free_position() please use force_position(0) instead

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 24

Todo List

204 Todo List

Member Fl_Browser_::scrollbar_width(int width) This method should eventually be removed in 1.4+

Member Fl_Browser_::scrollbar_width() const This method should eventually be removed in 1.4+

Member Fl_Browser_::sort(int flags=0) Add a flag to ignore case

Class Fl_Button Refactor the doxygen comments for Fl_Button type() documentation.

Class Fl_Button Refactor the doxygen comments for Fl_Button when() documentation.

Class Fl_Chart Refactor Fl_Chart::type() information.

Class Fl_Check_Button Refactor Fl_Check_Button doxygen comments (add color() info etc?)

Class Fl_Check_Button Generate Fl_Check_Button.gif with visible checkmark.

Class Fl_Choice Refactor the doxygen comments for Fl_Choice changed() documentation.

Class Fl_Counter Refactor the doxygen comments for Fl_Counter type() documentation.

Member Fl_File_Input::errorcolor() const Better docs for Fl_File_Input::errorcolor() - is it even used?

Member Fl_Gl_Window::as_gl_window() More documentation ...

Member Fl_Group::as_group() More documentation ...

Member Fl_Group::sizes() Should the internal representation of the sizes() array be documented?

Member Fl_Input_::handle_mouse(int, int, int, int, int keepmark=0) Add comment and parameters

Member Fl_Input_::handletext(int e, int, int, int, int) Add comment and parameters

Member Fl_Input_::maximum_size(int m) It is not clear if this function is actually required

Member Fl_Input_::maximum_size() const It is not clear if this function is actually required

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

205

Class Fl_Label For FLTK 1.3, the Fl_Label type will become a widget by itself. That way we will be
avoiding a lot of code duplication by handling labels in a similar fashion to widgets containing text.
We also provide an easy interface for very complex labels, containing html or vector graphics.

Member Fl_Preferences::get(const char ∗entry, void ∗value, const void ∗defaultValue, int defaultSize, int maxSize)
maxSize should receive the number of bytes that were read.

Member Fl_Scroll::bbox(int &, int &, int &, int &) The visibility of the scrollbars ought to be
checked/calculated outside of the draw() method (STR #1895).

Class Fl_Text_Buffer unicode check

Member Fl_Text_Buffer::add_modify_callback(Fl_Text_Modify_Cb bufModifiedCB, void ∗cbArg)
unicode check

Member Fl_Text_Buffer::add_predelete_callback(Fl_Text_Predelete_Cb bufPredelCB, void ∗cbArg)
unicode check

Member Fl_Text_Buffer::append(const char ∗t) unicode check

Member Fl_Text_Buffer::appendfile(const char ∗file, int buflen=128 ∗1024) unicode check

Member Fl_Text_Buffer::call_modify_callbacks(int pos, int nDeleted, int nInserted, int nRestyled, const char ∗deletedText) const
unicode check

Member Fl_Text_Buffer::call_modify_callbacks() unicode check

Member Fl_Text_Buffer::call_predelete_callbacks(int pos, int nDeleted) const unicode check

Member Fl_Text_Buffer::call_predelete_callbacks() unicode check

Member Fl_Text_Buffer::clear_rectangular(int start, int end, int rectStart, int rectEnd) unicode
check

Member Fl_Text_Buffer::copy(Fl_Text_Buffer ∗fromBuf, int fromStart, int fromEnd, int toPos)
unicode check

Member Fl_Text_Buffer::count_displayed_characters(int lineStartPos, int targetPos) const
unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

206 Todo List

Member Fl_Text_Buffer::count_lines(int startPos, int endPos) const unicode check

Member Fl_Text_Buffer::expand_character(int pos, int indent, char ∗outStr) const unicode check

Member Fl_Text_Buffer::findchar_backward(int startPos, char searchChar, int ∗foundPos) const
unicode check

Member Fl_Text_Buffer::findchar_forward(int startPos, char searchChar, int ∗foundPos) const
unicode check

Member Fl_Text_Buffer::findchars_backward(int startPos, const char ∗searchChars, int ∗foundPos) const
unicode check

Member Fl_Text_Buffer::findchars_forward(int startPos, const char ∗searchChars, int ∗foundPos) const
unicode check

Member Fl_Text_Buffer::highlight(int start, int end) unicode check

Member Fl_Text_Buffer::highlight_position(int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd)
unicode check

Member Fl_Text_Buffer::highlight_position(int ∗start, int ∗end) unicode check

Member Fl_Text_Buffer::highlight_rectangular(int start, int end, int rectStart, int rectEnd)
unicode check

Member Fl_Text_Buffer::highlight_text() unicode check

Member Fl_Text_Buffer::insert_(int pos, const char ∗text) unicode check

Member Fl_Text_Buffer::insert_column(int column, int startPos, const char ∗text, int ∗charsInserted, int ∗charsDeleted)
unicode check

Member Fl_Text_Buffer::insert_column_(int column, int startPos, const char ∗insText, int ∗nDeleted, int ∗nInserted, int ∗endPos)
unicode check

Member Fl_Text_Buffer::insertfile(const char ∗file, int pos, int buflen=128 ∗1024) unicode check

Member Fl_Text_Buffer::line_end(int pos) const unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

207

Member Fl_Text_Buffer::line_start(int pos) const unicode check

Member Fl_Text_Buffer::line_text(int pos) const unicode check

Member Fl_Text_Buffer::loadfile(const char ∗file, int buflen=128 ∗1024) unicode check

Member Fl_Text_Buffer::move_gap(int pos) unicode check

Member Fl_Text_Buffer::outputfile(const char ∗file, int start, int end, int buflen=128 ∗1024)
unicode check

Member Fl_Text_Buffer::overlay_rectangular(int startPos, int rectStart, int rectEnd, const char ∗text, int ∗charsInserted, int ∗charsDeleted)
unicode check

Member Fl_Text_Buffer::overlay_rectangular_(int startPos, int rectStart, int rectEnd, const char ∗insText, int ∗nDeleted, int ∗nInserted, int ∗endPos)
unicode check

Member Fl_Text_Buffer::reallocate_with_gap(int newGapStart, int newGapLen) unicode check

Member Fl_Text_Buffer::rectangular_selection_boundaries(int lineStartPos, int rectStart, int rectEnd, int ∗selStart, int ∗selEnd) const
unicode check

Member Fl_Text_Buffer::redisplay_selection(Fl_Text_Selection ∗oldSelection, Fl_Text_Selection ∗newSelection) const
unicode check

Member Fl_Text_Buffer::remove_(int start, int end) unicode check

Member Fl_Text_Buffer::remove_modify_callback(Fl_Text_Modify_Cb bufModifiedCB, void ∗cbArg)
unicode check

Member Fl_Text_Buffer::remove_predelete_callback(Fl_Text_Predelete_Cb predelCB, void ∗cbArg)
unicode check

Member Fl_Text_Buffer::remove_rectangular(int start, int end, int rectStart, int rectEnd) unicode
check

Member Fl_Text_Buffer::remove_rectangular_(int start, int end, int rectStart, int rectEnd, int ∗replaceLen, int ∗endPos)
unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

208 Todo List

Member Fl_Text_Buffer::remove_secondary_selection() unicode check

Member Fl_Text_Buffer::remove_selection() unicode check

Member Fl_Text_Buffer::remove_selection_(Fl_Text_Selection ∗sel) unicode check

Member Fl_Text_Buffer::replace_rectangular(int start, int end, int rectStart, int rectEnd, const char ∗text)
unicode check

Member Fl_Text_Buffer::replace_secondary_selection(const char ∗text) unicode check

Member Fl_Text_Buffer::replace_selection(const char ∗text) unicode check

Member Fl_Text_Buffer::replace_selection_(Fl_Text_Selection ∗sel, const char ∗text) unicode
check

Member Fl_Text_Buffer::rewind_lines(int startPos, int nLines) unicode check

Member Fl_Text_Buffer::savefile(const char ∗file, int buflen=128 ∗1024) unicode check

Member Fl_Text_Buffer::search_backward(int startPos, const char ∗searchString, int ∗foundPos, int matchCase=0) const
unicode check

Member Fl_Text_Buffer::search_forward(int startPos, const char ∗searchString, int ∗foundPos, int matchCase=0) const
unicode check

Member Fl_Text_Buffer::secondary_select(int start, int end) unicode check

Member Fl_Text_Buffer::secondary_select_rectangular(int start, int end, int rectStart, int rectEnd)
unicode check

Member Fl_Text_Buffer::secondary_selection_position(int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd)
unicode check

Member Fl_Text_Buffer::secondary_selection_position(int ∗start, int ∗end) unicode check

Member Fl_Text_Buffer::secondary_selection_text() unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

209

Member Fl_Text_Buffer::secondary_unselect() unicode check

Member Fl_Text_Buffer::select(int start, int end) unicode check

Member Fl_Text_Buffer::select_rectangular(int start, int end, int rectStart, int rectEnd) unicode
check

Member Fl_Text_Buffer::selection_position(int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd)
unicode check

Member Fl_Text_Buffer::selection_position(int ∗start, int ∗end) unicode check

Member Fl_Text_Buffer::selection_text() unicode check

Member Fl_Text_Buffer::skip_displayed_characters(int lineStartPos, int nChars) unicode check

Member Fl_Text_Buffer::skip_lines(int startPos, int nLines) unicode check

Member Fl_Text_Buffer::tab_distance(int tabDist) unicode check

Member Fl_Text_Buffer::tab_distance() const unicode check

Member Fl_Text_Buffer::text(const char ∗text) unicode check

Member Fl_Text_Buffer::text_in_rectangle(int start, int end, int rectStart, int rectEnd) const
unicode check

Member Fl_Text_Buffer::undo(int ∗cp=0) unicode check

Member Fl_Text_Buffer::unhighlight() unicode check

Member Fl_Text_Buffer::unselect() unicode check

Member Fl_Text_Buffer::update_selections(int pos, int nDeleted, int nInserted) unicode check

Member Fl_Text_Buffer::word_end(int pos) const unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

210 Todo List

Member Fl_Text_Buffer::word_start(int pos) const unicode check

Member Fl_Text_Display::shortcut(int s) FIXME : get set methods pointing on shortcut_ have no ef-
fects as shortcut_ is unused in this class and derived!

Member Fl_Text_Display::shortcut() const FIXME : get set methods pointing on shortcut_ have no
effects as shortcut_ is unused in this class and derived!

Member Fl_Widget::align() const This function should not take uchar as an argument. Apart from the
fact that uchar is too short with only 8 bits, it does not provide type safety (in which case we don’t
need to declare Fl_Align an enum to begin with). NOTE∗ The current (FLTK 1.3) implementation
(Dec 2008) is such that Fl_Align is (typedef’d to be) "unsigned" (int), but Fl_Widget’s "align_"
member variable is a bit field of 8 bits only !

Member Fl_Widget::argument(long v) The user data value must be implemented using a union to avoid
64 bit machine incompatibilities.

Member Fl_Widget::as_gl_window() More documentation ...

Member Fl_Widget::as_group() More documentation ...

Member Fl_Widget::as_window() More documentation ...

Member Fl_Widget::type() const Explain "simulate RTTI" (currently only used to decide if a widget
is a window, i.e. type()>=FL_WINDOW ?). Is type() really used in a way that ensures "Forms
compatibility" ?

Member Fl_Window::as_window() More documentation ...

Member Fl_When doxygen comments for values are incomplete and maybe wrong or unclear

Member Fl_Labeltype The doxygen comments are incomplete, and some labeltypes are starting with an
underscore. Also, there are three external functions undocumented (yet):

• fl_define_FL_SHADOW_LABEL()

• fl_define_FL_ENGRAVED_LABEL()

• fl_define_FL_EMBOSSED_LABEL()

Member Fl_String FIXME: temporary (?) typedef to mark UTF8 and Unicode conversions

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

211

Member fl_height In the future, when the XFT issues are resolved, this function should simply return the
’size’ value.

Member fl_reset_spot provide user documentation for fl_reset_spot function

Member fl_set_spot provide user documentation for fl_set_spot function

Member fl_set_status provide user documentation for fl_set_status function

Member fl_nonspacing explain what non-spacing means.

Member fl_utf_strcasecmp Correct the incorrect logic where length of strings tested

Member fl_utf_strncasecmp Correct the incorrect logic where length of strings tested

Member fl_utf_strncasecmp Clarify whether n means number of bytes, or characters.

Page Drawing Things in FLTK add an Fl_Draw_Area_Cb typedef to allow fl_scroll(...) to be doxy-
genated?

Page Drawing Things in FLTK Rework the Character Encoding section for UTF-8

Page Drawing Things in FLTK drawing.dox: I fixed the above encoding problem of these ¸ and
umlaut characters, but this text is obsoleted by FLTK 1.3 with UTF-8 encoding, or must be rewritten
accordingly: How to use native (e.g. Windows "ANSI", or ISO-8859-x) encoding in embedded
strings for labels, error messages and more. Please check this (UTF-8) encoding on different OS’es
and with different language and font environments.

Page Drawing Things in FLTK Doxygenate the offscreen drawing functions.

Page Handling Events Is this correct? IMHO, mouse motion (FL_MOVE) events are sent to the below-
mouse() widget, i.e. the widget that returned 1 on an FL_ENTER event. The pushed() widget will
usually get an FL_FOCUS event and becomes the focus() widget if it returns 1 on FL_FOCUS, and
will then get keyboard events (see below).

Page Handling Events Does Fltk Compose Character Sequences text need updating after the addition of
UTF-8 handling to FLTK-1.3.x ?

Page Adding and Extending Widgets Clarify Fl_Window::damage(n) handling - seems con-
fused/wrong? ORing value doesn’t match setting behaviour in FL_Widget.H!

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

212 Todo List

Page Adding and Extending Widgets Clarify Fl_Widget::test_shortcut() explanations. Fl_Widget.h
says Internal Use only, but subclassing chapter gives details!

Page Unicode and UTF-8 Support Verify 16/24 bit Unicode limit for different character sets? OksiD’s
code appears limited to 16-bit whereas the FLTK2 code appears to handle a wider set. What about
illegal characters? See comments in fl_utf8fromwc() and fl_utf8toUtf16().

Page Developer Information This is an example todo entry, please ignore !

Page Developer Information HACK∗ : include image file for footer. Doxygen does not include the file
"tiny.gif" from "html_footer" in its output html dir. Find out, how this can be done, or avoid using an
image in the HTML footer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 25

Module Index

25.1 Modules

Here is a list of all modules:

Callback function typedefs . 229
Windows handling functions . 231
Events handling functions . 234
Selection & Clipboard functions . 246
Screen functions . 249
Color & Font functions . 251
Drawing functions . 260
Multithreading support functions . 280
Safe widget deletion support functions . 282
Cairo support functions and classes . 286
Unicode and UTF-8 functions . 288
Mac OS X-specific functions . 295
Common Dialogs classes and functions . 296
File names and URI utility functions . 304

214 Module Index

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 26

Class Index

26.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Fl . 309
Fl_Cairo_State . 390
FL_CHART_ENTRY . 399
Fl_Device . 426

Fl_Abstract_Printer . 331
Fl_Printer . 644
Fl_PSfile_Device . 653

Fl_Display . 450
Fl_GDI_Display . 487
Fl_Quartz_Display . 656
Fl_Xlib_Display . 901

Fl_End . 454
Fl_File_Chooser . 458
Fl_File_Icon . 467
Fl_Font_Descriptor . 479
Fl_Glut_Bitmap_Font . 497
Fl_Help_Dialog . 511
Fl_Help_Font_Style . 515
Fl_Help_Link . 516
Fl_Help_Target . 517
Fl_Image . 528

Fl_Bitmap . 340
Fl_XBM_Image . 900

Fl_Pixmap . 614
Fl_GIF_Image . 488
Fl_XPM_Image . 902

Fl_RGB_Image . 662
Fl_BMP_Image . 343
Fl_JPEG_Image . 559
Fl_PNG_Image . 622
Fl_PNM_Image . 623

Fl_Shared_Image . 684

216 Class Index

Fl_Tiled_Image . 788
Fl_Label . 561
Fl_Menu_Item . 583
Fl_Native_File_Chooser . 601
Fl_Plugin . 618

Fl_Device_Plugin . 446
Fl_Preferences . 628

Fl_Plugin_Manager . 620
Fl_Preferences::Name . 642
Fl_Text_Buffer . 727
Fl_Text_Display::Style_Table_Entry . 771
Fl_Text_Editor::Key_Binding . 779
Fl_Text_Selection . 780
Fl_Tooltip . 795
Fl_Tree_Item . 813
Fl_Tree_Item_Array . 822
Fl_Tree_Prefs . 825
Fl_Widget . 849

Fl_Box . 344
Fl_Button . 385

Fl_Light_Button . 563
Fl_Check_Button . 404
Fl_Round_Button . 669

Fl_Repeat_Button . 657
Fl_Return_Button . 659
Fl_Toggle_Button . 794

Fl_Chart . 393
Fl_Clock_Output . 413

Fl_Clock . 410
Fl_Round_Clock . 671

Fl_FormsBitmap . 480
Fl_FormsPixmap . 482
Fl_Free . 484
Fl_Group . 501

Fl_Browser_ . 368
Fl_Browser . 346

Fl_File_Browser . 455
Fl_Hold_Browser . 527
Fl_Multi_Browser . 598
Fl_Select_Browser . 683

Fl_Check_Browser . 400
Fl_Color_Chooser . 417
Fl_Help_View . 518
Fl_Input_Choice . 554
Fl_Pack . 612
Fl_Scroll . 672
Fl_Spinner . 696
Fl_Table . 704

Fl_Table_Row . 719
Fl_Tabs . 723
Fl_Text_Display . 754

Fl_Text_Editor . 772

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

26.1 Class Hierarchy 217

Fl_Tile . 785
Fl_Tree . 799
Fl_Window . 885

Fl_Double_Window . 451
Fl_Cairo_Window . 391
Fl_Overlay_Window . 609

Fl_Gl_Window . 489
Fl_Glut_Window . 498

Fl_Single_Window . 690
Fl_Menu_Window . 595

Fl_Wizard . 898
Fl_Input_ . 537

Fl_Input . 533
Fl_File_Input . 473
Fl_Float_Input . 478
Fl_Int_Input . 558
Fl_Multiline_Input . 599
Fl_Output . 607

Fl_Multiline_Output . 600
Fl_Secret_Input . 682

Fl_Menu_ . 566
Fl_Choice . 406
Fl_Menu_Bar . 577

Fl_Sys_Menu_Bar . 701
Fl_Menu_Button . 580

Fl_Positioner . 624
Fl_Progress . 651
Fl_Timer . 791
Fl_Valuator . 830

Fl_Adjuster . 337
Fl_Counter . 422

Fl_Simple_Counter . 689
Fl_Dial . 447

Fl_Fill_Dial . 476
Fl_Roller . 666
Fl_Slider . 692

Fl_Fill_Slider . 477
Fl_Scrollbar . 678
Fl_Value_Slider . 846

Fl_Value_Input . 836
Fl_Value_Output . 842

Fl_Widget_Tracker . 883

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

218 Class Index

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 27

Class Index

27.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Fl (The Fl is the FLTK global (static) containing state information and global methods for the
current application) . 309

Fl_Abstract_Printer (A virtual class for print support with several platform-specific implementa-
tions) . 331

Fl_Adjuster (Was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range) . 337

Fl_Bitmap (Supports caching and drawing of mono-color (bitmap) images) 340
Fl_BMP_Image (Supports loading, caching, and drawing of Windows Bitmap (BMP) image files)343
Fl_Box (This widget simply draws its box, and possibly it’s label) 344
Fl_Browser (Displays a scrolling list of text lines, and manages all the storage for the text) . . . 346
Fl_Browser_ (This is the base class for browsers) . 368
Fl_Button (Buttons generate callbacks when they are clicked by the user) 385
Fl_Cairo_State (Contains all the necessary info on the current cairo context) 390
Fl_Cairo_Window (This defines a pre-configured cairo fltk window) 391
Fl_Chart (Fl_Chart displays simple charts) . 393
FL_CHART_ENTRY (For internal use only) . 399
Fl_Check_Browser (Displays a scrolling list of text lines that may be selected and/or checked by

the user) . 400
Fl_Check_Button (A button with an "checkmark" to show its status) 404
Fl_Choice (A button that is used to pop up a menu) . 406
Fl_Clock (This widget provides a round analog clock display) 410
Fl_Clock_Output (This widget can be used to display a program-supplied time) 413
Fl_Color_Chooser (Standard RGB color chooser) . 417
Fl_Counter (Controls a single floating point value with button (or keyboard) arrows) 422
Fl_Device (A pure virtual class subclassed to send the output of drawing functions to display,

printers, or local files) . 426
Fl_Device_Plugin (This plugin socket allows the integration of new device drivers for special

window or screen types) . 446
Fl_Dial (Circular dial to control a single floating point value) 447
Fl_Display (A virtual class subclassed for OS-specific display graphics) 450
Fl_Double_Window (The Fl_Double_Window provides a double-buffered window) 451
Fl_End (This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:) 454
Fl_File_Browser (Displays a list of filenames, optionally with file-specific icons) 455

220 Class Index

Fl_File_Chooser (Displays a standard file selection dialog that supports various selection modes) 458
Fl_File_Icon (Manages icon images that can be used as labels in other widgets and as icons in

the FileBrowser widget) . 467
Fl_File_Input (This widget displays a pathname in a text input field) 473
Fl_Fill_Dial (Draws a dial with a filled arc) . 476
Fl_Fill_Slider (Widget that draws a filled horizontal slider, useful as a progress or value meter) . 477
Fl_Float_Input (Subclass of Fl_Input that only allows the user to type floating point numbers

(sign, digits, decimal point, more digits, ’E’ or ’e’, sign, digits)) 478
Fl_Font_Descriptor (This a structure for an actual system font, with junk to help choose it and

info on character sizes) . 479
Fl_FormsBitmap (Forms compatibility Bitmap Image Widget) 480
Fl_FormsPixmap (Forms pixmap drawing routines) . 482
Fl_Free (Emulation of the Forms "free" widget) . 484
Fl_GDI_Display (The MSWindows-specific display graphics class) 487
Fl_GIF_Image (Supports loading, caching, and drawing of Compuserve GIFSM images) 488
Fl_Gl_Window (Sets things up so OpenGL works) . 489
Fl_Glut_Bitmap_Font (Fltk glut font/size attributes used in the glutXXX functions) 497
Fl_Glut_Window (GLUT is emulated using this window class and these static variables (plus

several more static variables hidden in glut_compatability.cxx):) 498
Fl_Group (FLTK container widget) . 501
Fl_Help_Dialog (Displays a standard help dialog window using the Fl_Help_View widget) . . . 511
Fl_Help_Font_Style (Fl_Help_View font stack element definition) 515
Fl_Help_Link (Definition of a link for the html viewer) . 516
Fl_Help_Target (Fl_Help_Target structure) . 517
Fl_Help_View (Displays HTML text) . 518
Fl_Hold_Browser (The Fl_Hold_Browser is a subclass of Fl_Browser which lets the user select

a single item, or no items by clicking on the empty space) 527
Fl_Image (Fl_Image is the base class used for caching and drawing all kinds of images in FLTK) 528
Fl_Input (This is the FLTK text input widget) . 533
Fl_Input_ (This class provides a low-overhead text input field) 537
Fl_Input_Choice (A combination of the input widget and a menu button) 554
Fl_Int_Input (Subclass of Fl_Input that only allows the user to type decimal digits (or hex num-

bers of the form 0xaef)) . 558
Fl_JPEG_Image (Supports loading, caching, and drawing of Joint Photographic Experts Group

(JPEG) File Interchange Format (JFIF) images) . 559
Fl_Label (This struct stores all information for a text or mixed graphics label) 561
Fl_Light_Button . 563
Fl_Menu_ (Base class of all widgets that have a menu in FLTK) 566
Fl_Menu_Bar (This widget provides a standard menubar interface) 577
Fl_Menu_Button (This is a button that when pushed pops up a menu (or hierarchy of menus)

defined by an array of Fl_Menu_Item objects) . 580
Fl_Menu_Item (The Fl_Menu_Item structure defines a single menu item that is used by the Fl_-

Menu_ class) . 583
Fl_Menu_Window (Window type used for menus) . 595
Fl_Multi_Browser (Subclass of Fl_Browser which lets the user select any set of the lines) . . . 598
’ characters as new lines rather than ∧J, and accepts the Return, Tab, and up and down arrow keys)599
Fl_Multiline_Output (This widget is a subclass of Fl_Output that displays multiple lines of text) 600
Fl_Native_File_Chooser (This class lets an FLTK application easily and consistently access the

operating system’s native file chooser) . 601
Fl_Output (This widget displays a piece of text) . 607
Fl_Overlay_Window (This window provides double buffering and also the ability to draw the

"overlay" which is another picture placed on top of the main image) 609
Fl_Pack (This widget was designed to add the functionality of compressing and aligning widgets) 612

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

27.1 Class List 221

Fl_Pixmap (Supports caching and drawing of colormap (pixmap) images, including transparency) 614
Fl_Plugin (Fl_Plugin allows link-time and run-time integration of binary modules) 618
Fl_Plugin_Manager (Fl_Plugin_Manager manages link-time and run-time plugin binaries) . . . 620
Fl_PNG_Image (Supports loading, caching, and drawing of Portable Network Graphics (PNG)

image files) . 622
Fl_PNM_Image (Supports loading, caching, and drawing of Portable Anymap (PNM, PBM,

PGM, PPM) image files) . 623
Fl_Positioner (This class is provided for Forms compatibility) 624
Fl_Preferences (Fl_Preferences provides methods to store user settings between application starts)628
Fl_Preferences::Name (’Name’ provides a simple method to create numerical or more complex

procedural names for entries and groups on the fly) 642
Fl_Printer (Provides an OS-independent interface to printing) 644
Fl_Progress (Displays a progress bar for the user) . 651
Fl_PSfile_Device (Sends all graphics to a local PostScript file; same API as Fl_Printer class) . . 653
Fl_Quartz_Display (The Mac OS X-specific display graphics class) 656
Fl_Repeat_Button (The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback

when it is pressed and then repeatedly generates callbacks as long as it is held down) . 657
Fl_Return_Button (The Fl_Return_Button is a subclass of Fl_Button that generates a callback

when it is pressed or when the user presses the Enter key) 659
Fl_RGB_Image (Supports caching and drawing of full-color images with 1 to 4 channels of color

information) . 662
Fl_Roller ("dolly" control commonly used to move 3D objects) 666
Fl_Round_Button (Buttons generate callbacks when they are clicked by the user) 669
Fl_Round_Clock (A clock widget of type FL_ROUND_CLOCK) 671
Fl_Scroll (This container widget lets you maneuver around a set of widgets much larger than

your window) . 672
Fl_Scrollbar (Displays a slider with arrow buttons at the ends of the scrollbar) 678
Fl_Secret_Input (Subclass of Fl_Input that displays its input as a string of asterisks) 682
Fl_Select_Browser (The class is a subclass of Fl_Browser which lets the user select a single item,

or no items by clicking on the empty space) . 683
Fl_Shared_Image (This class supports caching, loading, and drawing of image files) 684
Fl_Simple_Counter (This widget creates a counter with only 2 arrow buttons) 689
Fl_Single_Window (This is the same as Fl_Window) . 690
Fl_Slider (Sliding knob inside a box) . 692
Fl_Spinner (This widget is a combination of the input widget and repeat buttons) 696
Fl_Sys_Menu_Bar (A class to create, modify and delete menus that appear on Mac OS X in the

menu bar at the top of the screen) . 701
Fl_Table (A table of widgets or other content) . 704
Fl_Table_Row (A table with row selection capabilities) . 719
Fl_Tabs ("file card tabs" interface that allows you to put lots and lots of buttons and switches in

a panel, as popularized by many toolkits) . 723
Fl_Text_Buffer (This class manages unicode displayed in one or more Fl_Text_Display widgets) 727
Fl_Text_Display (This is the FLTK text display widget) . 754
Fl_Text_Display::Style_Table_Entry (This structure associates the color,font,size of a string to

draw with an attribute mask matching attr) . 771
Fl_Text_Editor (This is the FLTK text editor widget) . 772
Fl_Text_Editor::Key_Binding (Simple linked list associating a key/state to a function) 779
Fl_Text_Selection (This is an internal class for Fl_Text_Buffer to manage text selections) . . . 780
Fl_Tile (Lets you resize the children by dragging the border between them:) 785
Fl_Tiled_Image (This class supports tiling of images over a specified area) 788
Fl_Timer (This is provided only to emulate the Forms Timer widget) 791
Fl_Toggle_Button (The toggle button is a push button that needs to be clicked once to toggle on,

and one more time to toggle off) . 794
Fl_Tooltip (Tooltip support for all FLTK widgets) . 795

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

222 Class Index

Fl_Tree (Tree widget) . 799
Fl_Tree_Item (Tree item) . 813
Fl_Tree_Item_Array (Manages an array of Fl_Tree_Item pointers) 822
Fl_Tree_Prefs (Tree widget’s preferences) . 825
Fl_Valuator (Controls a single floating-point value and provides a consistent interface to set the

value, range, and step, and insures that callbacks are done the same for every object) . 830
Fl_Value_Input (Displays a numeric value) . 836
Fl_Value_Output (Displays a floating point value) . 842
Fl_Value_Slider (Fl_Slider widget with a box displaying the current value) 846
Fl_Widget (Fl_Widget is the base class for all widgets in FLTK) 849
Fl_Widget_Tracker (This class should be used to control safe widget deletion) 883
Fl_Window (This widget produces an actual window) . 885
Fl_Wizard (This widget is based off the Fl_Tabs widget, but instead of displaying tabs it only

changes "tabs" under program control) . 898
Fl_XBM_Image (Supports loading, caching, and drawing of X Bitmap (XBM) bitmap files) . . 900
Fl_Xlib_Display (The X11-specific display graphics class) . 901
Fl_XPM_Image (Supports loading, caching, and drawing of X Pixmap (XPM) images, including

transparency) . 902

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 28

File Index

28.1 File List

Here is a list of all documented files with brief descriptions:

aimm.h . ??
armscii_8.h . ??
ascii.h . ??
big5.h . ??
big5_emacs.h . ??
case.h . ??
cgdebug.h . ??
cp1133.h . ??
cp1251.h . ??
cp1255.h . ??
cp1256.h . ??
dingbats_.h . ??
dirent.h . ??
Enumerations.H (This file contains type definitions and general enumerations) 903
fastarrow.h . ??
filename.H . ??
Fl.H . ??
Fl_Abstract_Printer.cxx (Implementation of class Fl_Abstract_Printer) 917
Fl_Abstract_Printer.H (Declaration of class Fl_Abstract_Printer) 918
Fl_Adjuster.H . ??
fl_arc.cxx (Utility functions for drawing arcs and circles) . 919
fl_arci.cxx (Utility functions for drawing circles using integers) 920
fl_ask.H . ??
Fl_Bitmap.H . ??
Fl_BMP_Image.H . ??
Fl_Box.H . ??
fl_boxtype.cxx (Drawing code for common box types) . 921
Fl_Browser.H . ??
Fl_Browser_.H . ??
Fl_Button.H . ??
Fl_Cairo.H . ??
Fl_Cairo_Window.H . ??
Fl_Chart.H . ??

224 File Index

Fl_Check_Browser.H . ??
Fl_Check_Button.H . ??
Fl_Choice.H . ??
Fl_Clock.H . ??
fl_cmap.h . ??
fl_color.cxx (Color handling) . 923
Fl_Color_Chooser.H (Fl_Color_Chooser widget) . 925
Fl_Counter.H . ??
fl_curve.cxx (Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_-

vertex/fl_end path) . 926
Fl_Device.H (Declaration of classes Fl_Device, Fl_Display) 927
Fl_Dial.H . ??
Fl_Double_Window.H . ??
fl_draw.H (Utility header to pull drawing functions together) 929
Fl_Export.H . ??
Fl_File_Browser.H . ??
Fl_File_Chooser.H . ??
Fl_File_Icon.H . ??
Fl_File_Input.H . ??
Fl_Fill_Dial.H . ??
Fl_Fill_Slider.H . ??
Fl_Float_Input.H . ??
Fl_Font.H . ??
Fl_FormsBitmap.H . ??
Fl_FormsPixmap.H . ??
Fl_Free.H . ??
Fl_GIF_Image.H . ??
Fl_Gl_Choice.H . ??
Fl_Gl_Window.H . ??
Fl_Group.H . ??
Fl_Help_Dialog.H . ??
Fl_Help_View.H . ??
Fl_Hold_Browser.H . ??
Fl_Hor_Fill_Slider.H . ??
Fl_Hor_Nice_Slider.H . ??
Fl_Hor_Slider.H . ??
Fl_Hor_Value_Slider.H . ??
Fl_Image.H . ??
Fl_Input.H . ??
Fl_Input_.H . ??
Fl_Input_Choice.H . ??
Fl_Int_Input.H . ??
Fl_JPEG_Image.H . ??
Fl_Light_Button.H . ??
Fl_Line_Dial.H . ??
fl_line_style.cxx (Line style drawing utility hiding different platforms) 937
Fl_Menu.H . ??
Fl_Menu_.H . ??
Fl_Menu_Bar.H . ??
Fl_Menu_Button.H . ??
Fl_Menu_Item.H . ??
Fl_Menu_Window.H . ??
fl_message.H . ??
Fl_Multi_Browser.H . ??

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

28.1 File List 225

Fl_Multi_Label.H . ??
Fl_Multiline_Input.H . ??
Fl_Multiline_Output.H . ??
Fl_Native_File_Chooser.H . ??
Fl_Native_File_Chooser_FLTK.H . ??
Fl_Native_File_Chooser_MAC.H . ??
Fl_Native_File_Chooser_WIN32.H . ??
Fl_Nice_Slider.H . ??
Fl_Object.H . ??
Fl_Output.H . ??
Fl_Overlay_Window.H . ??
Fl_Pack.H . ??
Fl_Pixmap.H . ??
Fl_Plugin.H . ??
Fl_PNG_Image.H . ??
Fl_PNM_Image.H . ??
Fl_Positioner.H . ??
Fl_Preferences.H . ??
Fl_Printer.H (Declaration of classes Fl_Printer, Fl_Device_Plugin) 938
Fl_Progress.H . ??
Fl_PSfile_Device.H . ??
Fl_Radio_Button.H . ??
Fl_Radio_Light_Button.H . ??
Fl_Radio_Round_Button.H . ??
fl_rect.cxx (Drawing and clipping routines for rectangles) . 939
Fl_Repeat_Button.H . ??
Fl_Return_Button.H . ??
Fl_RGB_Image.H . ??
Fl_Roller.H . ??
Fl_Round_Button.H . ??
Fl_Round_Clock.H . ??
Fl_Scroll.H . ??
Fl_Scrollbar.H . ??
Fl_Secret_Input.H . ??
Fl_Select_Browser.H . ??
Fl_Shared_Image.H . ??
fl_show_colormap.H . ??
fl_show_input.H . ??
Fl_Simple_Counter.H . ??
Fl_Single_Window.H . ??
Fl_Slider.H . ??
Fl_Spinner.H . ??
Fl_Sys_Menu_Bar.H . ??
Fl_Table.H . ??
Fl_Table_Row.H . ??
Fl_Tabs.H . ??
Fl_Text_Buffer.H . ??
Fl_Text_Display.H . ??
Fl_Text_Editor.H . ??
Fl_Tile.H . ??
Fl_Tiled_Image.H . ??
Fl_Timer.H . ??
Fl_Toggle_Button.H . ??
Fl_Toggle_Light_Button.H . ??

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

226 File Index

Fl_Toggle_Round_Button.H . ??
Fl_Tooltip.H . ??
Fl_Tree.H (This file contains the definitions of the Fl_Tree class) 940
Fl_Tree_Item.H (This file contains the definitions for Fl_Tree_Item) 941
Fl_Tree_Item_Array.H (This file defines a class that manages an array of Fl_Tree_Item pointers) 942
Fl_Tree_Prefs.H (This file contains the definitions for Fl_Tree’s preferences) 943
fl_types.h (This file contains simple "C"-style type definitions) 945
fl_utf8.h (Header for Unicode and UTF8 chracter handling) 946
Fl_Valuator.H . ??
Fl_Value_Input.H . ??
Fl_Value_Output.H . ??
Fl_Value_Slider.H . ??
fl_vertex.cxx (Portable drawing code for drawing arbitrary shapes with simple 2D transforma-

tions) . 948
Fl_Widget.H . ??
Fl_Window.H . ??
Fl_Wizard.H . ??
Fl_XBM_Image.H . ??
Fl_XColor.H . ??
Fl_XPM_Image.H . ??
flstring.h . ??
forms.H . ??
freeglut_teapot_data.h . ??
gb2312.h . ??
georgian_academy.h . ??
georgian_ps.h . ??
gl.h (This file defines wrapper functions for OpenGL in FLTK) 950
gl2opengl.h . ??
gl_draw.H . ??
glu.h . ??
glut.H . ??
iso8859_1.h . ??
iso8859_10.h . ??
iso8859_11.h . ??
iso8859_13.h . ??
iso8859_14.h . ??
iso8859_15.h . ??
iso8859_16.h . ??
iso8859_2.h . ??
iso8859_3.h . ??
iso8859_4.h . ??
iso8859_5.h . ??
iso8859_6.h . ??
iso8859_7.h . ??
iso8859_8.h . ??
iso8859_9.h . ??
iso8859_9e.h . ??
jisx0201.h . ??
jisx0208.h . ??
jisx0212.h . ??
koi8_c.h . ??
koi8_r.h . ??
koi8_u.h . ??
ksc5601.h . ??

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

28.1 File List 227

mac.H . ??
math.h . ??
mediumarrow.h . ??
mulelao.h . ??
names.h . ??
print_panel.h . ??
slowarrow.h . ??
spacing.h . ??
symbol_.h . ??
tatar_cyr.h . ??
tcvn.h . ??
tis620.h . ??
ucs2be.h . ??
utf8.h . ??
viscii.h . ??
win32.H . ??
x.H . ??
Ximint.h . ??
Xlibint.h . ??
Xutf8.h . ??

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

228 File Index

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 29

Module Documentation

29.1 Callback function typedefs

Typedefs for callback or handler functions passed as function parameters.

Typedefs

• typedef void(∗ Fl_Abort_Handler)(const char ∗format,...)
signature of set_abort functions passed as parameters

• typedef int(∗ Fl_Args_Handler)(int argc, char ∗∗argv, int &i)
signature of args functions passed as parameters

• typedef void(∗ Fl_Atclose_Handler)(Fl_Window ∗window, void ∗data)
signature of set_atclose functions passed as parameters

• typedef void(∗ Fl_Awake_Handler)(void ∗data)
signature of some wakeup callback functions passed as parameters

• typedef void(Fl_Box_Draw_F)(int x, int y, int w, int h, Fl_Color color)
signature of some box drawing functions passed as parameters

• typedef int(∗ Fl_Event_Handler)(int event)
signature of add_handler functions passed as parameters

• typedef void(∗ Fl_FD_Handler)(int fd, void ∗data)
signature of add_fd functions passed as parameters

• typedef void(∗ Fl_Idle_Handler)(void ∗data)
signature of add_idle callback functions passed as parameters

• typedef void(Fl_Label_Draw_F)(const Fl_Label ∗label, int x, int y, int w, int h, Fl_Align align)
signature of some label drawing functions passed as parameters

• typedef void(Fl_Label_Measure_F)(const Fl_Label ∗label, int &width, int &height)

230 Module Documentation

signature of some label measurement functions passed as parameters

• typedef void(∗ Fl_Old_Idle_Handler)()
signature of set_idle callback functions passed as parameters

• typedef void(∗ Fl_Timeout_Handler)(void ∗data)
signature of some timeout callback functions passed as parameters

29.1.1 Detailed Description

Typedefs for callback or handler functions passed as function parameters.

FLTK uses callback functions as parameters for some function calls, e.g. to set up global event handlers
(Fl::add_handler()), to add a timeout handler (Fl::add_timeout()), and many more.

The typedefs defined in this group describe the function parameters used to set up or clear the callback
functions and should also be referenced to define the callback function to handle such events in the user’s
code.

See also:

Fl::add_handler(), Fl::add_timeout(), Fl::repeat_timeout(), Fl::remove_timeout() and others

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.2 Windows handling functions 231

29.2 Windows handling functions

Windows and standard dialogs handling.

Functions

• static void Fl::default_atclose (Fl_Window ∗, void ∗)

Default callback for window widgets.

• static void Fl::first_window (Fl_Window ∗)

See Fl_Window∗ first_window().

• static Fl_Window ∗ Fl::first_window ()

Returns the first top-level window in the list of shown() windows.

• static void Fl::grab (Fl_Window ∗)

Selects the window to grab.

• static Fl_Window ∗ Fl::grab ()

This is used when pop-up menu systems are active.

• static Fl_Window ∗ Fl::modal ()

Returns the top-most modal() window currently shown.

• static Fl_Window ∗ Fl::next_window (const Fl_Window ∗)

Returns the next top-level window in the list of shown() windows.

• static void Fl::set_abort (Fl_Abort_Handler f)

For back compatibility, sets the void Fl::fatal handler callback.

• static void Fl::set_atclose (Fl_Atclose_Handler f)

For back compatibility, sets the Fl::atclose handler callback.

Variables

• static void(∗ Fl::atclose)(Fl_Window ∗, void ∗) = default_atclose

Back compatibility: default window callback handler.

29.2.1 Detailed Description

Windows and standard dialogs handling.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

232 Module Documentation

29.2.2 Function Documentation

29.2.2.1 void Fl::default_atclose (Fl_Window ∗ window, void ∗ v) [static, inherited]

Default callback for window widgets.

It hides the window and then calls the default widget callback.

29.2.2.2 Fl_Window ∗ Fl::first_window () [static, inherited]

Returns the first top-level window in the list of shown() windows.

If a modal() window is shown this is the top-most modal window, otherwise it is the most recent window
to get an event.

The second form sets the window that is returned by first_window. The window is removed from wherever
it is in the list and inserted at the top. This is not done if Fl::modal() is on or if the window is not shown().
Because the first window is used to set the "parent" of modal windows, this is often useful.

29.2.2.3 void Fl::grab (Fl_Window ∗ win) [static, inherited]

Selects the window to grab.

See Fl_Window∗ Fl::grab()

29.2.2.4 static Fl_Window∗ Fl::grab () [inline, static, inherited]

This is used when pop-up menu systems are active.

Send all events to the passed window no matter where the pointer or focus is (including in other programs).
The window does not have to be shown() , this lets the handle() method of a "dummy" window override
all event handling and allows you to map and unmap a complex set of windows (under both X and WIN32
some window must be mapped because the system interface needs a window id).

If grab() is on it will also affect show() of windows by doing system-specific operations (on X it turns on
override-redirect). These are designed to make menus popup reliably and faster on the system.

To turn off grabbing do Fl::grab(0).

Be careful that your program does not enter an infinite loop while grab() is on. On X this will lock up your
screen! To avoid this potential lockup, all newer operating systems seem to limit mouse pointer grabbing
to the time during which a mouse button is held down. Some OS’s may not support grabbing at all.

29.2.2.5 static Fl_Window∗ Fl::modal () [inline, static, inherited]

Returns the top-most modal() window currently shown.

This is the most recently shown() window with modal() true, or NULL if there are no modal() windows
shown(). The modal() window has its handle() method called for all events, and no other windows will
have handle() called (grab() overrides this).

29.2.2.6 Fl_Window ∗ Fl::next_window (const Fl_Window ∗ window) [static, inherited]

Returns the next top-level window in the list of shown() windows.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.2 Windows handling functions 233

You can use this call to iterate through all the windows that are shown().

29.2.2.7 static void Fl::set_atclose (Fl_Atclose_Handler f) [inline, static, inherited]

For back compatibility, sets the Fl::atclose handler callback.

You can now simply change the callback for the window instead.

See also:

Fl_Window::callback(Fl_Callback∗)

29.2.3 Variable Documentation

29.2.3.1 void(∗ Fl::atclose)(Fl_Window ∗, void ∗) (Fl_Window ∗, void ∗) = default_atclose
[static, inherited]

Back compatibility: default window callback handler.

See also:

Fl::set_atclose()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

234 Module Documentation

29.3 Events handling functions

Fl class events handling API.

Functions

• static void Fl::add_handler (Fl_Event_Handler h)

Install a function to parse unrecognized events.

• static void Fl::belowmouse (Fl_Widget ∗)
Sets the widget that is below the mouse.

• static Fl_Widget ∗ Fl::belowmouse ()

Gets the widget that is below the mouse.

• static int Fl::compose (int &del)

Any text editing widget should call this for each FL_KEYBOARD event.

• static void Fl::compose_reset ()

If the user moves the cursor, be sure to call Fl::compose_reset().

• static int Fl::event ()

Returns the last event that was processed.

• static int Fl::event_alt ()

Returns non-zero if the Alt key is pressed.

• static int Fl::event_button ()

Gets which particular mouse button caused the current event.

• static int Fl::event_button1 ()

Returns non-zero if mouse button 1 is currently held down.

• static int Fl::event_button2 ()

Returns non-zero if button 2 is currently held down.

• static int Fl::event_button3 ()

Returns non-zero if button 3 is currently held down.

• static int Fl::event_buttons ()

Returns the mouse buttons state bits; if non-zero, then at least one button is pressed now.

• static void Fl::event_clicks (int i)

Manually sets the number returned by Fl::event_clicks().

• static int Fl::event_clicks ()

Returns non zero if we had a double click event.

• static int Fl::event_command ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.3 Events handling functions 235

Returns non-zero if the FL_COMMAND key is pressed, either FL_CTRL or on OSX FL_META.

• static int Fl::event_ctrl ()

Returns non-zero if the Control key is pressed.

• static int Fl::event_dx ()

Returns the current horizontal mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int Fl::event_dy ()

Returns the current vertical mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int Fl::event_inside (const Fl_Widget ∗)
Returns whether or not the mouse event is inside the given widget.

• static int Fl::event_inside (int, int, int, int)

Returns whether or not the mouse event is inside the given rectangle.

• static void Fl::event_is_click (int i)

Only i=0 works! See int event_is_click().

• static int Fl::event_is_click ()

The first form returns non-zero if the mouse has not moved far enough and not enough time has passed since
the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click".

• static int Fl::event_key (int key)

Returns true if the given key was held down (or pressed) during the last event.

• static int Fl::event_key ()

Gets which key on the keyboard was last pushed.

• static int Fl::event_length ()

Returns the length of the text in Fl::event_text().

• static int Fl::event_original_key ()

Returns the keycode of the last key event, regardless of the NumLock state.

• static int Fl::event_shift ()

Returns non-zero if the Shift key is pressed.

• static int Fl::event_state (int i)

See int event_state().

• static int Fl::event_state ()

This is a bitfield of what shift states were on and what mouse buttons were held down during the most recent
event.

• static const char ∗ Fl::event_text ()

Returns the text associated with the current event, including FL_PASTE or FL_DND_RELEASE events.

• static int Fl::event_x ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

236 Module Documentation

Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int Fl::event_x_root ()

Returns the mouse position on the screen of the event.

• static int Fl::event_y ()

Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int Fl::event_y_root ()

Returns the mouse position on the screen of the event.

• static void Fl::focus (Fl_Widget ∗)
Sets the widget that will receive FL_KEYBOARD events.

• static Fl_Widget ∗ Fl::focus ()

Gets the current Fl::focus() widget.

• static int Fl::get_key (int key)

Returns true if the given key is held down now.

• static void Fl::get_mouse (int &, int &)

Return where the mouse is on the screen by doing a round-trip query to the server.

• static int Fl::handle (int, Fl_Window ∗)
Sends the event to a window for processing.

• static void Fl::pushed (Fl_Widget ∗)
Sets the widget that is being pushed.

• static Fl_Widget ∗ Fl::pushed ()

Gets the widget that is being pushed.

• static void Fl::remove_handler (Fl_Event_Handler h)

Removes a previously added event handler.

• static int Fl::test_shortcut (Fl_Shortcut)

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button).

Variables

• const char ∗const fl_eventnames []

This is an array of event names you can use to convert event numbers into names.

• const char ∗const fl_fontnames []

This is an array of font names you can use to convert font numbers into names.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.3 Events handling functions 237

29.3.1 Detailed Description

Fl class events handling API.

29.3.2 Function Documentation

29.3.2.1 void Fl::add_handler (Fl_Event_Handler ha) [static, inherited]

Install a function to parse unrecognized events.

If FLTK cannot figure out what to do with an event, it calls each of these functions (most recent first) until
one of them returns non-zero. If none of them returns non zero then the event is ignored. Events that cause
this to be called are:

• FL_SHORTCUT events that are not recognized by any widget. This lets you provide global shortcut
keys.

• System events that FLTK does not recognize. See fl_xevent.

• Some other events when the widget FLTK selected returns zero from its handle() method. Exactly
which ones may change in future versions, however.

29.3.2.2 void Fl::belowmouse (Fl_Widget ∗ o) [static, inherited]

Sets the widget that is below the mouse.

This is for highlighting buttons. It is not used to send FL_PUSH or FL_MOVE directly, for several obscure
reasons, but those events typically go to this widget. This is also the first widget tried for FL_SHORTCUT
events.

If you change the belowmouse widget, the previous one and all parents (that don’t contain the new widget)
are sent FL_LEAVE events. Changing this does not send FL_ENTER to this or any widget, because
sending FL_ENTER is supposed to test if the widget wants the mouse (by it returning non-zero from
handle()).

29.3.2.3 static Fl_Widget∗ Fl::belowmouse () [inline, static, inherited]

Gets the widget that is below the mouse.

See also:

belowmouse(Fl_Widget∗)

29.3.2.4 int Fl::compose (int & del) [static, inherited]

Any text editing widget should call this for each FL_KEYBOARD event.

Use of this function is very simple.

If true is returned, then it has modified the Fl::event_text() and Fl::event_length() to a set of bytes to insert
(it may be of zero length!). In will also set the "del" parameter to the number of bytes to the left of the
cursor to delete, this is used to delete the results of the previous call to Fl::compose().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

238 Module Documentation

If false is returned, the keys should be treated as function keys, and del is set to zero. You could insert the
text anyways, if you don’t know what else to do.

Though the current implementation returns immediately, future versions may take quite awhile, as they
may pop up a window or do other user-interface things to allow characters to be selected.

29.3.2.5 static void Fl::compose_reset () [inline, static, inherited]

If the user moves the cursor, be sure to call Fl::compose_reset().

The next call to Fl::compose() will start out in an initial state. In particular it will not set "del" to non-zero.
This call is very fast so it is ok to call it many times and in many places.

29.3.2.6 static int Fl::event () [inline, static, inherited]

Returns the last event that was processed.

This can be used to determine if a callback is being done in response to a keypress, mouse click, etc.

29.3.2.7 static int Fl::event_alt () [inline, static, inherited]

Returns non-zero if the Alt key is pressed.

29.3.2.8 static int Fl::event_button () [inline, static, inherited]

Gets which particular mouse button caused the current event.

This returns garbage if the most recent event was not a FL_PUSH or FL_RELEASE event.

Return values:

FL_LEFT_MOUSE

FL_MIDDLE_MOUSE

FL_RIGHT_MOUSE.

See also:

Fl::event_buttons()

29.3.2.9 static int Fl::event_button1 () [inline, static, inherited]

Returns non-zero if mouse button 1 is currently held down.

For more details, see Fl::event_buttons().

29.3.2.10 static int Fl::event_button2 () [inline, static, inherited]

Returns non-zero if button 2 is currently held down.

For more details, see Fl::event_buttons().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.3 Events handling functions 239

29.3.2.11 static int Fl::event_button3 () [inline, static, inherited]

Returns non-zero if button 3 is currently held down.

For more details, see Fl::event_buttons().

29.3.2.12 static int Fl::event_buttons () [inline, static, inherited]

Returns the mouse buttons state bits; if non-zero, then at least one button is pressed now.

This function returns the button state at the time of the event. During an FL_RELEASE event, the state
of the released button will be 0. To find out, which button caused an FL_RELEASE event, you can use
Fl::event_button() instead.

Returns:

a bit mask value like { [FL_BUTTON1] | [FL_BUTTON2] | [FL_BUTTON3] }

29.3.2.13 static void Fl::event_clicks (int i) [inline, static, inherited]

Manually sets the number returned by Fl::event_clicks().

This can be used to set it to zero so that later code does not think an item was double-clicked.

Parameters:

← i corresponds to no double-click if 0, i+1 mouse clicks otherwise

See also:

int event_clicks()

29.3.2.14 static int Fl::event_clicks () [inline, static, inherited]

Returns non zero if we had a double click event.

Return values:

Non-zero if the most recent FL_PUSH or FL_KEYBOARD was a "double click".

N-1 for N clicks. A double click is counted if the same button is pressed again while event_is_click()
is true.

29.3.2.15 static int Fl::event_command () [inline, static, inherited]

Returns non-zero if the FL_COMMAND key is pressed, either FL_CTRL or on OSX FL_META.

29.3.2.16 static int Fl::event_ctrl () [inline, static, inherited]

Returns non-zero if the Control key is pressed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

240 Module Documentation

29.3.2.17 static int Fl::event_dx () [inline, static, inherited]

Returns the current horizontal mouse scrolling associated with the FL_MOUSEWHEEL event.

Right is positive.

29.3.2.18 static int Fl::event_dy () [inline, static, inherited]

Returns the current vertical mouse scrolling associated with the FL_MOUSEWHEEL event.

Down is positive.

29.3.2.19 int Fl::event_inside (const Fl_Widget ∗ o) [static, inherited]

Returns whether or not the mouse event is inside the given widget.

Returns non-zero if the current event_x and event_y put it inside the widget or inside an arbitrary bounding
box. You should always call this rather than doing your own comparison so you are consistent about edge
effects.

29.3.2.20 int Fl::event_inside (int xx, int yy, int ww, int hh) [static, inherited]

Returns whether or not the mouse event is inside the given rectangle.

Returns non-zero if the current event_x and event_y put it inside the widget or inside an arbitrary bounding
box. You should always call this rather than doing your own comparison so you are consistent about edge
effects.

29.3.2.21 static int Fl::event_is_click () [inline, static, inherited]

The first form returns non-zero if the mouse has not moved far enough and not enough time has passed
since the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click".

You can test this on FL_DRAG, FL_RELEASE, and FL_MOVE events. The second form clears the value
returned by Fl::event_is_click(). Useful to prevent the next click from being counted as a double-click or
to make a popup menu pick an item with a single click. Don’t pass non-zero to this.

29.3.2.22 int Fl::event_key (int key) [static, inherited]

Returns true if the given key was held down (or pressed) during the last event.

This is constant until the next event is read from the server.

Fl::get_key(int) returns true if the given key is held down now. Under X this requires a round-trip to the
server and is much slower than Fl::event_key(int).

Keys are identified by the unshifted values. FLTK defines a set of symbols that should work on most
modern machines for every key on the keyboard:

• All keys on the main keyboard producing a printable ASCII character use the value of that ASCII
character (as though shift, ctrl, and caps lock were not on). The space bar is 32.

• All keys on the numeric keypad producing a printable ASCII character use the value of that ASCII
character plus FL_KP. The highest possible value is FL_KP_Last so you can range-check to see if
something is on the keypad.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.3 Events handling functions 241

• All numbered function keys use the number on the function key plus FL_F. The highest possible
number is FL_F_Last, so you can range-check a value.

• Buttons on the mouse are considered keys, and use the button number (where the left button is 1)
plus FL_Button.

• All other keys on the keypad have a symbol: FL_Escape, FL_BackSpace, FL_Tab, FL_Enter,
FL_Print, FL_Scroll_Lock, FL_Pause, FL_Insert, FL_Home, FL_Page_Up, FL_Delete, FL_End,
FL_Page_Down, FL_Left, FL_Up, FL_Right, FL_Down, FL_Shift_L, FL_Shift_R, FL_Control_L,
FL_Control_R, FL_Caps_Lock, FL_Alt_L, FL_Alt_R, FL_Meta_L, FL_Meta_R, FL_Menu, FL_-
Num_Lock, FL_KP_Enter. Be careful not to confuse these with the very similar, but all-caps, sym-
bols used by Fl::event_state().

On X Fl::get_key(FL_Button+n) does not work.

On WIN32 Fl::get_key(FL_KP_Enter) and Fl::event_key(FL_KP_Enter) do not work.

29.3.2.23 static int Fl::event_key () [inline, static, inherited]

Gets which key on the keyboard was last pushed.

The returned integer ’key code’ is not necessarily a text equivalent for the keystroke. For instance: if
someone presses ’5’ on the numeric keypad with numlock on, Fl::event_key() may return the ’key code’
for this key, and NOT the character ’5’. To always get the ’5’, use Fl::event_text() instead.

Returns:

an integer ’key code’, or 0 if the last event was not a key press or release.

See also:

int event_key(int), event_text(), compose(int&).

29.3.2.24 static int Fl::event_length () [inline, static, inherited]

Returns the length of the text in Fl::event_text().

There will always be a nul at this position in the text. However there may be a nul before that if the
keystroke translates to a nul character or you paste a nul character.

29.3.2.25 static int Fl::event_original_key () [inline, static, inherited]

Returns the keycode of the last key event, regardless of the NumLock state.

If NumLock is deactivated, FLTK translates events from the numeric keypad into the corresponding arrow
key events. event_key() returns the translated key code, whereas event_original_key() returns the keycode
before NumLock translation.

29.3.2.26 static int Fl::event_shift () [inline, static, inherited]

Returns non-zero if the Shift key is pressed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

242 Module Documentation

29.3.2.27 static int Fl::event_state () [inline, static, inherited]

This is a bitfield of what shift states were on and what mouse buttons were held down during the most
recent event.

The second version returns non-zero if any of the passed bits are turned on. The legal bits are:

• FL_SHIFT

• FL_CAPS_LOCK

• FL_CTRL

• FL_ALT

• FL_NUM_LOCK

• FL_META

• FL_SCROLL_LOCK

• FL_BUTTON1

• FL_BUTTON2

• FL_BUTTON3

X servers do not agree on shift states, and FL_NUM_LOCK, FL_META, and FL_SCROLL_LOCK may
not work. The values were selected to match the XFree86 server on Linux. In addition there is a bug in the
way X works so that the shift state is not correctly reported until the first event after the shift key is pressed
or released.

29.3.2.28 static const char∗ Fl::event_text () [inline, static, inherited]

Returns the text associated with the current event, including FL_PASTE or FL_DND_RELEASE events.

This can be used in response to FL_KEYUP, FL_KEYDOWN, FL_PASTE, FL_DND_RELEASE.

When responding to FL_KEYUP/FL_KEYDOWN, use this function instead of Fl::event_key() to get the
text equivalent of keystrokes suitable for inserting into strings and text widgets.

The returned string is guaranteed to be be NULL terminated. However, see Fl::event_length() for the actual
length of the string, in case the string itself contains NULLs that are part of the text data.

Returns:

A NULL terminated text string equivalent of the last keystroke.

29.3.2.29 static int Fl::event_x_root () [inline, static, inherited]

Returns the mouse position on the screen of the event.

To find the absolute position of an Fl_Window on the screen, use the difference between event_x_-
root(),event_y_root() and event_x(),event_y().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.3 Events handling functions 243

29.3.2.30 static int Fl::event_y_root () [inline, static, inherited]

Returns the mouse position on the screen of the event.

To find the absolute position of an Fl_Window on the screen, use the difference between event_x_-
root(),event_y_root() and event_x(),event_y().

29.3.2.31 void Fl::focus (Fl_Widget ∗ o) [static, inherited]

Sets the widget that will receive FL_KEYBOARD events.

If you change Fl::focus(), the previous widget and all parents (that don’t contain the new widget) are sent
FL_UNFOCUS events. Changing the focus does not send FL_FOCUS to this or any widget, because send-
ing FL_FOCUS is supposed to test if the widget wants the focus (by it returning non-zero from handle()).

See also:

Fl_Widget::take_focus()

29.3.2.32 static Fl_Widget∗ Fl::focus () [inline, static, inherited]

Gets the current Fl::focus() widget.

See also:

Fl::focus(Fl_Widget∗)

29.3.2.33 int Fl::get_key (int key) [static, inherited]

Returns true if the given key is held down now.

Under X this requires a round-trip to the server and is much slower than Fl::event_key(int).

See also:

event_key(int)

29.3.2.34 static void Fl::get_mouse (int &, int &) [static, inherited]

Return where the mouse is on the screen by doing a round-trip query to the server.

You should use Fl::event_x_root() and Fl::event_y_root() if possible, but this is necessary if you are not
sure if a mouse event has been processed recently (such as to position your first window). If the display is
not open, this will open it.

29.3.2.35 int Fl::handle (int e, Fl_Window ∗ window) [static, inherited]

Sends the event to a window for processing.

Returns non-zero if any widget uses the event.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

244 Module Documentation

29.3.2.36 void Fl::pushed (Fl_Widget ∗ o) [static, inherited]

Sets the widget that is being pushed.

FL_DRAG or FL_RELEASE (and any more FL_PUSH) events will be sent to this widget.

If you change the pushed widget, the previous one and all parents (that don’t contain the new widget) are
sent FL_RELEASE events. Changing this does not send FL_PUSH to this or any widget, because sending
FL_PUSH is supposed to test if the widget wants the mouse (by it returning non-zero from handle()).

29.3.2.37 static Fl_Widget∗ Fl::pushed () [inline, static, inherited]

Gets the widget that is being pushed.

See also:

void pushed(Fl_Widget∗)

29.3.2.38 int Fl::test_shortcut (Fl_Shortcut shortcut) [static, inherited]

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button).

Returns non-zero if there is a match. Not to be confused with Fl_Widget::test_shortcut().

29.3.3 Variable Documentation

29.3.3.1 const char∗ const fl_eventnames[]

Initial value:

{
"FL_NO_EVENT",
"FL_PUSH",
"FL_RELEASE",
"FL_ENTER",
"FL_LEAVE",
"FL_DRAG",
"FL_FOCUS",
"FL_UNFOCUS",
"FL_KEYDOWN",
"FL_KEYUP",
"FL_CLOSE",
"FL_MOVE",
"FL_SHORTCUT",
"FL_DEACTIVATE",
"FL_ACTIVATE",
"FL_HIDE",
"FL_SHOW",
"FL_PASTE",
"FL_SELECTIONCLEAR",
"FL_MOUSEWHEEL",
"FL_DND_ENTER",
"FL_DND_DRAG",
"FL_DND_LEAVE",
"FL_DND_RELEASE",

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.3 Events handling functions 245

This is an array of event names you can use to convert event numbers into names.

The array gets defined inline wherever your ’#include <FL/names.h>’ appears.

Example:

#include <FL/names.h> // array will be defined here
int MyClass::handle(int e) {

printf("Event was %s (%d)\n", fl_eventnames[e], e);
// ..resulting output might be e.g. "Event was FL_PUSH (1)"..
[..]

}

29.3.3.2 const char∗ const fl_fontnames[]

Initial value:

{
"FL_HELVETICA",
"FL_HELVETICA_BOLD",
"FL_HELVETICA_ITALIC",
"FL_HELVETICA_BOLD_ITALIC",
"FL_COURIER",
"FL_COURIER_BOLD",
"FL_COURIER_ITALIC",
"FL_COURIER_BOLD_ITALIC",
"FL_TIMES",
"FL_TIMES_BOLD",
"FL_TIMES_ITALIC",
"FL_TIMES_BOLD_ITALIC",
"FL_SYMBOL",
"FL_SCREEN",
"FL_SCREEN_BOLD",
"FL_ZAPF_DINGBATS",

}

This is an array of font names you can use to convert font numbers into names.

The array gets defined inline wherever your ’#include <FL/names.h>’ appears.

Example:

#include <FL/names.h> // array will be defined here
int MyClass::my_callback(Fl_Widget *w, void*) {

int fnum = w->labelfont();
// Resulting output might be e.g. "Label’s font is FL_HELVETICA (0)"
printf("Label’s font is %s (%d)\n", fl_fontnames[fnum], fnum);
// ..resulting output might be e.g. "Label’s font is FL_HELVETICA (0)"..
[..]

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

246 Module Documentation

29.4 Selection & Clipboard functions

fl global copy/cut/paste functions

Functions

• static void Fl::copy (const char ∗stuff, int len, int clipboard=0)
Copies the data pointed to by stuff to the selection (0) or primary (1) clipboard.

• static int Fl::dnd ()
Initiate a Drag And Drop operation.

• static void Fl::paste (Fl_Widget &receiver)
Backward compatibility only: Set things up so the receiver widget will be called with an FL_PASTE event
some time in the future for the specified clipboard.

• static void Fl::paste (Fl_Widget &receiver, int clipboard)
Pastes the data from the selection (0) or primary (1) clipboard into receiver.

• static void Fl::selection (Fl_Widget &owner, const char ∗, int len)
Changes the current selection.

• static void Fl::selection_owner (Fl_Widget ∗)
Back-compatibility only: The single-argument call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection.

• static Fl_Widget ∗ Fl::selection_owner ()
back-compatibility only: Gets the widget owning the current selection

29.4.1 Detailed Description

fl global copy/cut/paste functions

29.4.2 Function Documentation

29.4.2.1 static void Fl::copy (const char ∗ stuff, int len, int clipboard = 0) [static,
inherited]

Copies the data pointed to by stuff to the selection (0) or primary (1) clipboard.

The selection clipboard is used for middle-mouse pastes and for drag-and-drop selections. The primary
clipboard is used for traditional copy/cut/paste operations.

29.4.2.2 int Fl::dnd () [static, inherited]

Initiate a Drag And Drop operation.

Drag and drop whatever is in the cut-copy-paste buffer.

drag and drop whatever is in the cut-copy-paste buffer

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.4 Selection & Clipboard functions 247

• create a selection first using: Fl::copy(const char ∗stuff, int len, 0)

The clipboard should be filled with relevant data before calling this method. FLTK will then initiate the
system wide drag and drop handling. Dropped data will be marked as text.

Create a selection first using:

Fl::copy(const char ∗stuff, int len, 0)

29.4.2.3 void Fl::paste (Fl_Widget & receiver) [static, inherited]

Backward compatibility only: Set things up so the receiver widget will be called with an FL_PASTE event
some time in the future for the specified clipboard.

The reciever should be prepared to be called directly by this, or for it to happen later, or possibly not at all.
This allows the window system to take as long as necessary to retrieve the paste buffer (or even to screw
up completely) without complex and error-prone synchronization code in FLTK.

See also:

Fl::paste(Fl_Widget &receiver, int clipboard)

29.4.2.4 static void Fl::paste (Fl_Widget & receiver, int clipboard) [static, inherited]

Pastes the data from the selection (0) or primary (1) clipboard into receiver.

The selection clipboard is used for middle-mouse pastes and for drag-and-drop selections. The primary
clipboard is used for traditional copy/cut/paste operations.

29.4.2.5 void Fl::selection (Fl_Widget & owner, const char ∗ text, int len) [static,
inherited]

Changes the current selection.

The block of text is copied to an internal buffer by FLTK (be careful if doing this in response to an FL_-
PASTE as this may be the same buffer returned by event_text()). The selection_owner() widget is set to the
passed owner.

29.4.2.6 void Fl::selection_owner (Fl_Widget ∗ owner) [static, inherited]

Back-compatibility only: The single-argument call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection.

FL_SELECTIONCLEAR is sent to the previous selection owner, if any.

Copying the buffer every time the selection is changed is obviously wasteful, especially for large selections.
An interface will probably be added in a future version to allow the selection to be made by a callback
function. The current interface will be emulated on top of this.

29.4.2.7 static Fl_Widget∗ Fl::selection_owner () [inline, static, inherited]

back-compatibility only: Gets the widget owning the current selection

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

248 Module Documentation

See also:

Fl_Widget∗ selection_owner(Fl_Widget∗)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.5 Screen functions 249

29.5 Screen functions

fl global screen functions

Functions

• static int Fl::h ()
Returns the height of the screen in pixels.

• static int Fl::screen_count ()
Gets the number of available screens.

• static void Fl::screen_xywh (int &X, int &Y, int &W, int &H, int n)
Gets the screen bounding rect for the given screen.

• static void Fl::screen_xywh (int &X, int &Y, int &W, int &H, int mx, int my)
Gets the bounding box of a screen that contains the specified screen position mx, my.

• static void Fl::screen_xywh (int &X, int &Y, int &W, int &H)
Gets the bounding box of a screen that contains the mouse pointer.

• static int Fl::w ()
Returns the width of the screen in pixels.

• static int Fl::x ()
Returns the origin of the current screen, where 0 indicates the left side of the screen.

• static int Fl::y ()
Returns the origin of the current screen, where 0 indicates the top edge of the screen.

29.5.1 Detailed Description

fl global screen functions

29.5.2 Function Documentation

29.5.2.1 static int Fl::h () [static, inherited]

Returns the height of the screen in pixels.

29.5.2.2 void Fl::screen_xywh (int & X, int & Y, int & W, int & H, int n) [static,
inherited]

Gets the screen bounding rect for the given screen.

Parameters:

→ X,Y,W,H the corresponding screen bounding box

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

250 Module Documentation

← n the screen number (0 to Fl::screen_count() - 1)

See also:

void screen_xywh(int &x, int &y, int &w, int &h, int mx, int my)

29.5.2.3 void Fl::screen_xywh (int & X, int & Y, int & W, int & H, int mx, int my) [static,
inherited]

Gets the bounding box of a screen that contains the specified screen position mx, my.

Parameters:

→ X,Y,W,H the corresponding screen bounding box

← mx,my the absolute screen position

29.5.2.4 static void Fl::screen_xywh (int & X, int & Y, int & W, int & H) [inline, static,
inherited]

Gets the bounding box of a screen that contains the mouse pointer.

Parameters:

→ X,Y,W,H the corresponding screen bounding box

See also:

void screen_xywh(int &x, int &y, int &w, int &h, int mx, int my)

29.5.2.5 static int Fl::w () [static, inherited]

Returns the width of the screen in pixels.

29.5.2.6 static int Fl::x () [static, inherited]

Returns the origin of the current screen, where 0 indicates the left side of the screen.

29.5.2.7 static int Fl::y () [static, inherited]

Returns the origin of the current screen, where 0 indicates the top edge of the screen.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.6 Color & Font functions 251

29.6 Color & Font functions

fl global color, font functions

Functions

• Fl_Color fl_color ()

Returns the last fl_color() that was set.

• void fl_color (uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations.

• void fl_color (int c)

for back compatibility - use fl_color(Fl_Color c) instead

• void fl_color (Fl_Color c)

Sets the color for all subsequent drawing operations.

• Fl_Color fl_color_average (Fl_Color color1, Fl_Color color2, float weight)

Returns the weighted average color between the two given colors.

• Fl_Color fl_contrast (Fl_Color fg, Fl_Color bg)

Returns a color that contrasts with the background color.

• FL_EXPORT int fl_descent ()

Returns the recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

• Fl_Font fl_font ()

Returns the face set by the most recent call to fl_font().

• void fl_font (Fl_Font face, Fl_Fontsize size)

Sets the current font, which is then used in various drawing routines.

• FL_EXPORT int fl_height (int font, int size)

This function returns the actual height of the specified font and size.

• FL_EXPORT int fl_height ()

Returns the recommended minimum line spacing for the current font.

• Fl_Color fl_inactive (Fl_Color c)

Returns the inactive, dimmed version of the given color.

• FL_EXPORT const char ∗ fl_latin1_to_local (const char ∗t, int n=-1)

convert text from Windows/X11 latin1 charcter set to local encoding.

• FL_EXPORT const char ∗ fl_local_to_latin1 (const char ∗t, int n=-1)

convert text from local encoding to Windowx/X11 latin1 character set.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

252 Module Documentation

• FL_EXPORT const char ∗ fl_local_to_mac_roman (const char ∗t, int n=-1)
convert text from local encoding to Mac Roman character set.

• FL_EXPORT const char ∗ fl_mac_roman_to_local (const char ∗t, int n=-1)
convert text from Mac Roman charcter set to local encoding.

• Fl_Fontsize fl_size ()
Returns the size set by the most recent call to fl_font().

• FL_EXPORT void fl_text_extents (const char ∗, int n, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a sequence of n characters.

• FL_EXPORT void fl_text_extents (const char ∗, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a nul-terminated string.

• FL_EXPORT double fl_width (unsigned int)
Return the typographical width of a single character :.

• FL_EXPORT double fl_width (const char ∗txt, int n)
Return the typographical width of a sequence of n characters.

• FL_EXPORT double fl_width (const char ∗txt)
Return the typographical width of a nul-terminated string.

• ulong fl_xpixel (Fl_Color i)
Returns the X pixel number used to draw the given FLTK color index.

• ulong fl_xpixel (uchar r, uchar g, uchar b)
Returns the X pixel number used to draw the given rgb color.

• static void Fl::free_color (Fl_Color, int overlay=0)
Frees the specified color from the colormap, if applicable.

• static void Fl::get_color (Fl_Color, uchar &, uchar &, uchar &)
See unsigned get_color(Fl_Color c).

• static Fl_Color Fl::get_color (Fl_Color)
Returns the RGB value(s) for the given FLTK color index.

• static const char ∗ Fl::get_font (Fl_Font)
Gets the string for this face.

• static const char ∗ Fl::get_font_name (Fl_Font, int ∗attributes=0)
Get a human-readable string describing the family of this face.

• static int Fl::get_font_sizes (Fl_Font, int ∗&sizep)
Return an array of sizes in sizep.

• static void Fl::set_color (Fl_Color, unsigned)
Sets an entry in the fl_color index table.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.6 Color & Font functions 253

• static void Fl::set_color (Fl_Color, uchar, uchar, uchar)

Sets an entry in the fl_color index table.

• static void Fl::set_font (Fl_Font, Fl_Font)

Copies one face to another.

• static void Fl::set_font (Fl_Font, const char ∗)
Changes a face.

• static Fl_Font Fl::set_fonts (const char ∗=0)

FLTK will open the display, and add every fonts on the server to the face table.

Variables

• FL_EXPORT Fl_Color fl_color_

The current color.

• FL_EXPORT Fl_Font fl_font_

current font index

• FL_EXPORT Fl_Fontsize fl_size_

current font size

29.6.1 Detailed Description

fl global color, font functions

29.6.2 Function Documentation

29.6.2.1 Fl_Color fl_color () [inline]

Returns the last fl_color() that was set.

This can be used for state save/restore.

29.6.2.2 void fl_color (uchar r, uchar g, uchar b) [inline]

Set the color for all subsequent drawing operations.

The closest possible match to the RGB color is used. The RGB color is used directly on TrueColor displays.
For colormap visuals the nearest index in the gray ramp or color cube is used. If no valid graphical context
(fl_gc) is available, the foreground is not set for the current window.

Parameters:

← r,g,b color components

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

254 Module Documentation

29.6.2.3 void fl_color (Fl_Color c) [inline]

Sets the color for all subsequent drawing operations.

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use a
color. If the colormap fills up then a least-squares algorithm is used to find the closest color. If no valid
graphical context (fl_gc) is available, the foreground is not set for the current window.

Parameters:

← c color

29.6.2.4 Fl_Color fl_color_average (Fl_Color color1, Fl_Color color2, float weight)

Returns the weighted average color between the two given colors.

The red, green and blue values are averages using the following formula:

color = color1 * weight + color2 * (1 - weight)

Thus, a weight value of 1.0 will return the first color, while a value of 0.0 will return the second color.

Parameters:

← color1,color2 boundary colors
← weight weighting factor

29.6.2.5 Fl_Color fl_contrast (Fl_Color fg, Fl_Color bg)

Returns a color that contrasts with the background color.

This will be the foreground color if it contrasts sufficiently with the background color. Otherwise, returns
FL_WHITE or FL_BLACK depending on which color provides the best contrast.

Parameters:

← fg,bg foreground and background colors

Returns:

contrasting color

29.6.2.6 Fl_Font fl_font () [inline]

Returns the face set by the most recent call to fl_font().

This can be used to save/restore the font.

29.6.2.7 void fl_font (Fl_Font face, Fl_Fontsize size) [inline]

Sets the current font, which is then used in various drawing routines.

You may call this outside a draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not "points".
Lines should be spaced size pixels apart or more.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.6 Color & Font functions 255

29.6.2.8 FL_EXPORT int fl_height (int font, int size)

This function returns the actual height of the specified font and size.

Normally the font height should always be ’size’, but with the advent of XFT, there are (currently) com-
plexities that seem to only be solved by asking the font what its actual font height is. (See STR#2115)

This function was originally undocumented in 1.1.x, and was used only by Fl_Text_Display. We’re now
documenting it in 1.3.x so that apps that need precise height info can get it with this function.

Returns:

the height of the font in pixels.

Todo

In the future, when the XFT issues are resolved, this function should simply return the ’size’ value.

29.6.2.9 FL_EXPORT int fl_height ()

Returns the recommended minimum line spacing for the current font.

You can also use the value of size passed to fl_font()

29.6.2.10 FL_EXPORT const char∗ fl_latin1_to_local (const char ∗ t, int n = -1)

convert text from Windows/X11 latin1 charcter set to local encoding.

Parameters:

← t character string (latin1 encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.11 FL_EXPORT const char∗ fl_local_to_latin1 (const char ∗ t, int n = -1)

convert text from local encoding to Windowx/X11 latin1 character set.

Parameters:

← t character string (local encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

256 Module Documentation

29.6.2.12 FL_EXPORT const char∗ fl_local_to_mac_roman (const char ∗ t, int n = -1)

convert text from local encoding to Mac Roman character set.

Parameters:

← t character string (local encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.13 FL_EXPORT const char∗ fl_mac_roman_to_local (const char ∗ t, int n = -1)

convert text from Mac Roman charcter set to local encoding.

Parameters:

← t character string (Mac Roman encoding)

← n optional number of characters to convert (default is all)

Returns:

pointer to internal buffer containing converted characters

29.6.2.14 Fl_Fontsize fl_size () [inline]

Returns the size set by the most recent call to fl_font().

This can be used to save/restore the font.

29.6.2.15 FL_EXPORT void fl_text_extents (const char ∗, int n, int & dx, int & dy, int & w, int
& h)

Determine the minimum pixel dimensions of a sequence of n characters.

See also:

fl_text_extents(const char∗, int& dx, int& dy, int& w, int& h)

29.6.2.16 FL_EXPORT void fl_text_extents (const char ∗, int & dx, int & dy, int & w, int & h)

Determine the minimum pixel dimensions of a nul-terminated string.

Usage: given a string "txt" drawn using fl_draw(txt, x, y) you would determine its pixel extents on the
display using fl_text_extents(txt, dx, dy, wo, ho) such that a bounding box that exactly fits around the text
could be drawn with fl_rect(x+dx, y+dy, wo, ho). Note the dx, dy values hold the offset of the first "colored
in" pixel of the string, from the draw origin.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.6 Color & Font functions 257

29.6.2.17 FL_EXPORT double fl_width (unsigned int)

Return the typographical width of a single character :.

Note:

if a valid fl_gc is NOT found then it uses the first window gc, or the screen gc if no fltk window is
available when called.

29.6.2.18 ulong fl_xpixel (Fl_Color i)

Returns the X pixel number used to draw the given FLTK color index.

This is the X pixel that fl_color() would use.

Parameters:

← i color index

Returns:

X pixel number

29.6.2.19 ulong fl_xpixel (uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given rgb color.

This is the X pixel that fl_color() would use.

Parameters:

← r,g,b color components

Returns:

X pixel number

29.6.2.20 void Fl::free_color (Fl_Color i, int overlay = 0) [static, inherited]

Frees the specified color from the colormap, if applicable.

Free color i if used, and clear mapping table entry.

If overlay is non-zero then the color is freed from the overlay colormap.

Parameters:

← i color index

← overlay 0 for normal, 1 for overlay color

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

258 Module Documentation

29.6.2.21 unsigned Fl::get_color (Fl_Color i) [static, inherited]

Returns the RGB value(s) for the given FLTK color index.

The first form returns the RGB values packed in a 32-bit unsigned integer with the red value in the upper 8
bits, the green value in the next 8 bits, and the blue value in bits 8-15. The lower 8 bits will always be 0.

The second form returns the red, green, and blue values separately in referenced variables.

29.6.2.22 const char ∗ Fl::get_font (Fl_Font fnum) [static, inherited]

Gets the string for this face.

This string is different for each face. Under X this value is passed to XListFonts to get all the sizes of this
face.

29.6.2.23 const char ∗ Fl::get_font_name (Fl_Font fnum, int ∗ attributes = 0) [static,
inherited]

Get a human-readable string describing the family of this face.

This is useful if you are presenting a choice to the user. There is no guarantee that each face has a different
name. The return value points to a static buffer that is overwritten each call.

The integer pointed to by attributes (if the pointer is not zero) is set to zero, FL_BOLD or FL_ITALIC
or FL_BOLD | FL_ITALIC. To locate a "family" of fonts, search forward and back for a set with non-zero
attributes, these faces along with the face with a zero attribute before them constitute a family.

29.6.2.24 int Fl::get_font_sizes (Fl_Font fnum, int ∗& sizep) [static, inherited]

Return an array of sizes in sizep.

The return value is the length of this array. The sizes are sorted from smallest to largest and indicate what
sizes can be given to fl_font() that will be matched exactly (fl_font() will pick the closest size for other
sizes). A zero in the first location of the array indicates a scalable font, where any size works, although the
array may list sizes that work "better" than others. Warning: the returned array points at a static buffer that
is overwritten each call. Under X this will open the display.

29.6.2.25 void Fl::set_color (Fl_Color i, unsigned c) [static, inherited]

Sets an entry in the fl_color index table.

Set color mapping table entry i to color c.

You can set it to any 8-bit RGB color. The color is not allocated until fl_color(i) is used.

Parameters:

← i color index
← c color

29.6.2.26 void Fl::set_color (Fl_Color i, uchar red, uchar green, uchar blue) [static,
inherited]

Sets an entry in the fl_color index table.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.6 Color & Font functions 259

You can set it to any 8-bit RGB color. The color is not allocated until fl_color(i) is used.

29.6.2.27 void Fl::set_font (Fl_Font fnum, Fl_Font from) [static, inherited]

Copies one face to another.

29.6.2.28 void Fl::set_font (Fl_Font fnum, const char ∗ name) [static, inherited]

Changes a face.

The string pointer is simply stored, the string is not copied, so the string must be in static memory.

29.6.2.29 Fl_Font Fl::set_fonts (const char ∗ xstarname = 0) [static, inherited]

FLTK will open the display, and add every fonts on the server to the face table.

It will attempt to put "families" of faces together, so that the normal one is first, followed by bold, italic,
and bold italic.

The optional argument is a string to describe the set of fonts to add. Passing NULL will select only fonts
that have the ISO8859-1 character set (and are thus usable by normal text). Passing "-∗" will select all
fonts with any encoding as long as they have normal X font names with dashes in them. Passing "∗" will
list every font that exists (on X this may produce some strange output). Other values may be useful but are
system dependent. With WIN32 NULL selects fonts with ISO8859-1 encoding and non-NULL selects all
fonts.

The return value is how many faces are in the table after this is done.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

260 Module Documentation

29.7 Drawing functions

fl global graphics and gui drawing functions

Defines

• #define fl_clip fl_push_clip
The fl_clip() name is deprecated and will be removed from future releases.

Enumerations

• enum {

FL_SOLID = 0, FL_DASH = 1, FL_DOT = 2, FL_DASHDOT = 3,

FL_DASHDOTDOT = 4, FL_CAP_FLAT = 0x100, FL_CAP_ROUND = 0x200, FL_CAP_-
SQUARE = 0x300,

FL_JOIN_MITER = 0x1000, FL_JOIN_ROUND = 0x2000, FL_JOIN_BEVEL = 0x3000 }

Functions

• FL_EXPORT int fl_add_symbol (const char ∗name, void(∗drawit)(Fl_Color), int scalable)
Adds a symbol to the system.

• void fl_arc (double x, double y, double r, double start, double end)
Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

• void fl_arc (int x, int y, int w, int h, double a1, double a2)
Draw ellipse sections using integer coordinates.

• void fl_begin_complex_polygon ()
Starts drawing a complex filled polygon.

• void fl_begin_line ()
Starts drawing a list of lines.

• void fl_begin_loop ()
Starts drawing a closed sequence of lines.

• void fl_begin_points ()
Starts drawing a list of points.

• void fl_begin_polygon ()
Starts drawing a convex filled polygon.

• FL_EXPORT char fl_can_do_alpha_blending ()
Checks whether platform supports true alpha blending for RGBA images.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 261

• FL_EXPORT void fl_chord (int x, int y, int w, int h, double a1, double a2)

fl_chord declaration is a place holder - the function does not yet exist

• void fl_circle (double x, double y, double r)

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

• int fl_clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersects the rectangle with the current clip region and returns the bounding box of the result.

• Fl_Region fl_clip_region ()

returns the current clipping region.

• FL_EXPORT void fl_clip_region (Fl_Region r)

Replaces the top of the clipping stack with a clipping region of any shape.

• FL_EXPORT void fl_cursor (Fl_Cursor, Fl_Color fg=FL_BLACK, Fl_Color bg=FL_WHITE)

Sets the cursor for the current window to the specified shape and colors.

• void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

Add a series of points on a Bezier curve to the path.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align,
void(∗callthis)(const char ∗, int, int, int), Fl_Image ∗img=0, int draw_symbols=1)

The same as fl_draw(const char∗,int,int,int,int,Fl_Align,Fl_Image∗,int) with the addition of the callthis
parameter, which is a pointer to a text drawing function such as fl_draw(const char∗, int, int, int) to do the
real work.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align, Fl_Image ∗img=0,
int draw_symbols=1)

Fancy string drawing function which is used to draw all the labels.

• void fl_draw (int angle, const char ∗str, int n, int x, int y)

Draws an array of n characters starting at the given location, rotating angle degrees counterclockwise.

• void fl_draw (const char ∗str, int n, int x, int y)

Draws an array of n characters starting at the given location.

• FL_EXPORT void fl_draw (int angle, const char ∗str, int x, int y)

Draws a nul-terminated string starting at the given location and rotating angle degrees counterclockwise.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y)

Draws a nul-terminated string starting at the given location.

• FL_EXPORT void fl_draw_box (Fl_Boxtype, int x, int y, int w, int h, Fl_Color)

Draws a box using given type, position, size and color.

• void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D=3)

Draw image using callback function to generate image data.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

262 Module Documentation

• void fl_draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D=3, int L=0)
Draw an 8-bit per color RGB or luminance image.

• FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int
H, int D=1)

Draw gray-scale image using callback function to generate image data.

• void fl_draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D=1, int L=0)
Draw a gray-scale (1 channel) image.

• FL_EXPORT int fl_draw_pixmap (const char ∗const ∗cdata, int x, int y, Fl_Color=FL_GRAY)
Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_pixmap (char ∗const ∗data, int x, int y, Fl_Color=FL_GRAY)
Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_symbol (const char ∗label, int x, int y, int w, int h, Fl_Color)
Draw the named symbol in the given rectangle using the given color.

• void fl_end_complex_polygon ()
Ends complex filled polygon, and draws.

• void fl_end_line ()
Ends list of lines, and draws.

• void fl_end_loop ()
Ends closed sequence of lines, and draws.

• void fl_end_points ()
Ends list of points, and draws.

• void fl_end_polygon ()
Ends convex filled polygon, and draws.

• FL_EXPORT const char ∗ fl_expand_text (const char ∗from, char ∗buf, int maxbuf, double maxw,
int &n, double &width, int wrap, int draw_symbols=0)

Copy from to buf, replacing unprintable characters with ∧X and \nnn.

• FL_EXPORT void fl_frame (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• FL_EXPORT void fl_frame2 (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• void fl_gap ()
Call fl_gap() to separate loops of the path.

• void fl_line (int x, int y, int x1, int y1, int x2, int y2)
Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 263

• void fl_line (int x, int y, int x1, int y1)
Draws a line from (x,y) to (x1,y1).

• void fl_line_style (int style, int width=0, char ∗dashes=0)
Sets how to draw lines (the "pen").

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Outlines a 4-sided polygon with lines.

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2)
Outlines a 3-sided polygon with lines.

• FL_EXPORT void fl_measure (const char ∗str, int &x, int &y, int draw_symbols=1)
Measure how wide and tall the string will be when printed by the fl_draw() function with align parameter.

• FL_EXPORT int fl_measure_pixmap (const char ∗const ∗cdata, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT int fl_measure_pixmap (char ∗const ∗data, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT void fl_mult_matrix (double a, double b, double c, double d, double x, double y)
Concatenates another transformation onto the current one.

• int fl_not_clipped (int x, int y, int w, int h)
Does the rectangle intersect the current clip region?

• FL_EXPORT void fl_overlay_clear ()
Erase a selection rectangle without drawing a new one.

• FL_EXPORT void fl_overlay_rect (int x, int y, int w, int h)
Draws a selection rectangle, erasing a previous one by XOR’ing it first.

• void fl_pie (int x, int y, int w, int h, double a1, double a2)
Draw filled ellipse sections using integer coordinates.

• void fl_point (int x, int y)
Draws a single pixel at the given coordinates.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Fills a 4-sided polygon.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2)
Fills a 3-sided polygon.

• void fl_pop_clip ()
Restores the previous clip region.

• FL_EXPORT void fl_pop_matrix ()
Restores the current transformation matrix from the stack.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

264 Module Documentation

• void fl_push_clip (int x, int y, int w, int h)
Intersects the current clip region with a rectangle and pushes this new region onto the stack.

• FL_EXPORT void fl_push_matrix ()
Saves the current transformation matrix on the stack.

• void fl_push_no_clip ()
Pushes an empty clip region onto the stack so nothing will be clipped.

• FL_EXPORT uchar ∗ fl_read_image (uchar ∗p, int X, int Y, int W, int H, int alpha=0)
Read an RGB(A) image from the current window or off-screen buffer.

• void fl_rect (int x, int y, int w, int h, Fl_Color c)
Draws with passed color a 1-pixel border inside the given bounding box.

• void fl_rect (int x, int y, int w, int h)
Draws a 1-pixel border inside the given bounding box.

• FL_EXPORT void fl_rectf (int x, int y, int w, int h, uchar r, uchar g, uchar b)
Color a rectangle with "exactly" the passed r,g,b color.

• void fl_rectf (int x, int y, int w, int h, Fl_Color c)
Colors with passsed color a rectangle that exactly fills the given bounding box.

• void fl_rectf (int x, int y, int w, int h)
Colors with current color a rectangle that exactly fills the given bounding box.

• FL_EXPORT void fl_reset_spot (void)
• void fl_restore_clip ()

Undoes any clobbering of clip done by your program.

• FL_EXPORT void fl_rotate (double d)
Concatenates rotation transformation onto the current one.

• FL_EXPORT void fl_rtl_draw (const char ∗, int n, int x, int y)
Draws an array of n characters right to left starting at given location.

• FL_EXPORT void fl_scale (double x)
Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scale (double x, double y)
Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scroll (int X, int Y, int W, int H, int dx, int dy, void(∗draw_area)(void ∗, int,
int, int, int), void ∗data)

Scroll a rectangle and draw the newly exposed portions.

• FL_EXPORT void fl_set_spot (int font, int size, int X, int Y, int W, int H, Fl_Window ∗win=0)
• FL_EXPORT void fl_set_status (int X, int Y, int W, int H)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 265

• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut, const char ∗∗eom)
Get a human-readable string from a shortcut value.

• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut)
Get a human-readable string from a shortcut value.

• FL_EXPORT double fl_transform_dx (double x, double y)
Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_dy (double x, double y)
Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_x (double x, double y)
Transforms coordinate using the current transformation matrix.

• FL_EXPORT double fl_transform_y (double x, double y)
Transform coordinate using the current transformation matrix.

• void fl_transformed_vertex (double xf, double yf)
Adds coordinate pair to the vertex list without further transformations.

• FL_EXPORT void fl_translate (double x, double y)
Concatenates translation transformation onto the current one.

• void fl_vertex (double x, double y)
Adds a single vertex to the current path.

• void fl_xyline (int x, int y, int x1, int y2, int x3)
Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2) and then another horizontal
from (x1,y2) to (x3,y2).

• void fl_xyline (int x, int y, int x1, int y2)
Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).

• void fl_xyline (int x, int y, int x1)
Draws a horizontal line from (x,y) to (x1,y).

• void fl_yxline (int x, int y, int y1, int x2, int y3)
Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1) to (x2,y1), then another vertical from
(x2,y1) to (x2,y3).

• void fl_yxline (int x, int y, int y1, int x2)
Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).

• void fl_yxline (int x, int y, int y1)
Draws a vertical line from (x,y) to (x,y1).

29.7.1 Detailed Description

fl global graphics and gui drawing functions

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

266 Module Documentation

29.7.2 Enumeration Type Documentation

29.7.2.1 anonymous enum

Enumerator:

FL_SOLID line style: ___________

FL_DASH line style: _ _ _ _ _ _

FL_DOT line style:

FL_DASHDOT line style: _ . _ . _ .

FL_DASHDOTDOT line style: _ . . _ . .

FL_CAP_FLAT cap style: end is flat

FL_CAP_ROUND cap style: end is round

FL_CAP_SQUARE cap style: end wraps end point

FL_JOIN_MITER join style: line join extends to a point

FL_JOIN_ROUND join style: line join is rounded

FL_JOIN_BEVEL join style: line join is tidied

29.7.3 Function Documentation

29.7.3.1 FL_EXPORT int fl_add_symbol (const char ∗ name, void(∗)(Fl_Color) drawit, int
scalable)

Adds a symbol to the system.

Parameters:

← name name of symbol (without the "@")

← drawit function to draw symbol

← scalable set to 1 if drawit uses scalable vector drawing

Returns:

1 on success, 0 on failure

29.7.3.2 void fl_arc (double x, double y, double r, double start, double end) [inline]

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

Parameters:

← x,y,r center and radius of circular arc

← start,end angles of start and end of arc measured in degrees counter-clockwise from 3 o’clock. If
end is less than start then it draws the arc in a clockwise direction.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 267

29.7.3.3 void fl_arc (int x, int y, int w, int h, double a1, double a2) [inline]

Draw ellipse sections using integer coordinates.

These functions match the rather limited circle drawing code provided by X and WIN32. The advantage
over using fl_arc with floating point coordinates is that they are faster because they often use the hardware,
and they draw much nicer small circles, since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured in
degrees counterclockwise from 3 o’clock and are the starting and ending angle of the arc, a2 must be
greater or equal to a1.

fl_arc() draws a series of lines to approximate the arc. Notice that the integer version of fl_arc() has a
different number of arguments than the double version fl_arc(double x, double y, double r, double start,
double end)

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

29.7.3.4 void fl_begin_complex_polygon () [inline]

Starts drawing a complex filled polygon.

The polygon may be concave, may have holes in it, or may be several disconnected pieces. Call fl_gap() to
separate loops of the path.

To outline the polygon, use fl_begin_loop() and replace each fl_gap() with fl_end_loop();fl_begin_loop()
pairs.

Note:

For portability, you should only draw polygons that appear the same whether "even/odd" or "non-zero"
winding rules are used to fill them. Holes should be drawn in the opposite direction to the outside loop.

29.7.3.5 void fl_begin_points () [inline]

Starts drawing a list of points.

Points are added to the list with fl_vertex()

29.7.3.6 FL_EXPORT char fl_can_do_alpha_blending ()

Checks whether platform supports true alpha blending for RGBA images.

Returns:

1 if true alpha blending supported by platform
0 not supported so FLTK will use screen door transparency

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

268 Module Documentation

29.7.3.7 void fl_circle (double x, double y, double r) [inline]

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

It must be the only thing in the path: if you want a circle as part of a complex polygon you must use
fl_arc()

Parameters:

← x,y,r center and radius of circle

29.7.3.8 int fl_clip_box (int x, int y, int w, int h, int & X, int & Y, int & W, int & H) [inline]

Intersects the rectangle with the current clip region and returns the bounding box of the result.

Returns non-zero if the resulting rectangle is different to the original. This can be used to limit the necessary
drawing to a rectangle. W and H are set to zero if the rectangle is completely outside the region.

Parameters:

← x,y,w,h position and size of rectangle

→ X,Y,W,H position and size of resulting bounding box. W and H are set to zero if the rectangle is
completely outside the region.

Returns:

Non-zero if the resulting rectangle is different to the original.

29.7.3.9 FL_EXPORT void fl_clip_region (Fl_Region r)

Replaces the top of the clipping stack with a clipping region of any shape.

Fl_Region is an operating system specific type.

Parameters:

← r clipping region

29.7.3.10 FL_EXPORT void fl_cursor (Fl_Cursor c, Fl_Color fg, Fl_Color bg)

Sets the cursor for the current window to the specified shape and colors.

The cursors are defined in the <FL/Enumerations.H> header file.

29.7.3.11 void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2,
double X3, double Y3) [inline]

Add a series of points on a Bezier curve to the path.

The curve ends (and two of the points) are at X0,Y0 and X3,Y3.

Parameters:

← X0,Y0 curve start point

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 269

← X1,Y1 curve control point

← X2,Y2 curve control point

← X3,Y3 curve end point

29.7.3.12 FL_EXPORT void fl_draw (const char ∗ str, int x, int y, int w, int h, Fl_Align align,
Fl_Image ∗ img, int draw_symbols)

Fancy string drawing function which is used to draw all the labels.

The string is formatted and aligned inside the passed box. Handles ’\t’ and ’\n’, expands all other control
characters to ’∧X’, and aligns inside or against the edges of the box. See Fl_Widget::align() for values of
align. The value FL_ALIGN_INSIDE is ignored, as this function always prints inside the box. If img
is provided and is not NULL, the image is drawn above or below the text as specified by the align value.
The draw_symbols argument specifies whether or not to look for symbol names starting with the ’@’
character’ The text length is limited to 1024 characters per line.

29.7.3.13 FL_EXPORT void fl_draw (int angle, const char ∗ str, int x, int y)

Draws a nul-terminated string starting at the given location and rotating angle degrees counterclockwise.

This version of fl_draw provides direct access to the text drawing function of the underlying OS and is
supported by Xft, Win32 and MacOS fltk subsets.

29.7.3.14 FL_EXPORT void fl_draw (const char ∗ str, int x, int y)

Draws a nul-terminated string starting at the given location.

Text is aligned to the left and to the baseline of the font. To align to the bottom, subtract fl_descent() from
y. To align to the top, subtract fl_descent() and add fl_height(). This version of fl_draw provides direct
access to the text drawing function of the underlying OS. It does not apply any special handling to control
characters.

29.7.3.15 FL_EXPORT void fl_draw_box (Fl_Boxtype t, int x, int y, int w, int h, Fl_Color c)

Draws a box using given type, position, size and color.

Parameters:

← t box type

← x,y,w,h position and size

← c color

29.7.3.16 void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗ data, int X, int Y, int W, int H, int
D = 3) [inline]

Draw image using callback function to generate image data.

You can generate the image as it is being drawn, or do arbitrary decompression of stored data, provided it
can be decompressed to individual scan lines easily.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

270 Module Documentation

Parameters:

← cb callback function to generate scan line data
← data user data passed to callback function
← X,Y
←W,H
← D

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

The callback function cb is called with the void∗ data user data pointer to allow access to a structure
of information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X, Y. A pointer to a buffer to put the data into is passed. You must copy
w pixels from scanline y, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first y
may be greater than zero, and w may be less than W. The buffer is long enough to store the entire W ∗ D
pixels, this is for convenience with some decompression schemes where you must decompress the entire
line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the x’th pixel
is at the start of the buffer.

You can assume the y’s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

29.7.3.17 void fl_draw_image (const uchar ∗ buf, int X, int Y, int W, int H, int D = 3, int L = 0)
[inline]

Draw an 8-bit per color RGB or luminance image.

Parameters:

← buf points at the "r" data of the top-left pixel. Color data must be in r,g,b order.
← X,Y position where to put top-left corner of image
←W,H size of the image
← D delta to add to the pointer between pixels. it may be any value greater than or equal to 3, or it

can be negative to flip the image horizontally
← L delta to add to the pointer between lines (if 0 is passed it uses W ∗ D), and may be larger than W ∗

D to crop data, or negative to flip the image vertically

It is highly recommended that you put the following code before the first show() of any window in your
program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1-channel) images may be drawn. This is done if abs(D) is less than 3, or by calling fl_-
draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with different numbers
of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let you display one
channel of a color image.

Note:

The X version does not support all possible visuals. If FLTK cannot draw the image in the current
visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor visuals up
to 32 bits.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 271

29.7.3.18 FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗ data, int X,
int Y, int W, int H, int D = 1)

Draw gray-scale image using callback function to generate image data.

See also:

fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D)

29.7.3.19 void fl_draw_image_mono (const uchar ∗ buf, int X, int Y, int W, int H, int D = 1, int
L = 0) [inline]

Draw a gray-scale (1 channel) image.

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

29.7.3.20 FL_EXPORT int fl_draw_pixmap (const char ∗const ∗ cdata, int x, int y, Fl_Color bg)

Draw XPM image data, with the top-left corner at the given position.

See also:

fl_draw_pixmap(char∗ const∗ data, int x, int y, Fl_Color bg)

29.7.3.21 FL_EXPORT int fl_draw_pixmap (char ∗const ∗ data, int x, int y, Fl_Color bg)

Draw XPM image data, with the top-left corner at the given position.

The image is dithered on 8-bit displays so you won’t lose color space for programs displaying both images
and pixmaps.

Parameters:

← data pointer to XPM image data

← x,y position of top-left corner

← bg background color

Returns:

0 if there was any error decoding the XPM data.

29.7.3.22 FL_EXPORT int fl_draw_symbol (const char ∗ label, int x, int y, int w, int h, Fl_Color
col)

Draw the named symbol in the given rectangle using the given color.

Parameters:

← label name of symbol

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

272 Module Documentation

← x,y position of symbol

← w,h size of symbol

← col color of symbox

Returns:

1 on success, 0 on failure

29.7.3.23 FL_EXPORT const char∗ fl_expand_text (const char ∗ from, char ∗ buf, int maxbuf,
double maxw, int & n, double & width, int wrap, int draw_symbols)

Copy from to buf, replacing unprintable characters with ∧X and \nnn.

Stop at a newline or if MAXBUF characters written to buffer. Also word-wrap if width exceeds maxw.
Returns a pointer to the start of the next line of characters. Sets n to the number of characters put into the
buffer. Sets width to the width of the string in the current font.

29.7.3.24 FL_EXPORT void fl_frame (const char ∗ s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and ’X’ is white. The order of each set of 4 characters is: top, left, bottom, right. The result
of calling fl_frame() with a string that is not a multiple of 4 characters in length is undefined. The only
difference between this function and fl_frame2() is the order of the line segments.

Parameters:

← s sets of 4 grayscale values in top, left, bottom, right order

← x,y,w,h position and size

29.7.3.25 FL_EXPORT void fl_frame2 (const char ∗ s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and ’X’ is white. The order of each set of 4 characters is: bottom, right, top, left. The result
of calling fl_frame2() with a string that is not a multiple of 4 characters in length is undefined. The only
difference between this function and fl_frame() is the order of the line segments.

Parameters:

← s sets of 4 grayscale values in bottom, right, top, left order

← x,y,w,h position and size

29.7.3.26 void fl_gap () [inline]

Call fl_gap() to separate loops of the path.

It is unnecessary but harmless to call fl_gap() before the first vertex, after the last vertex, or several times
in a row.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 273

29.7.3.27 void fl_line_style (int style, int width = 0, char ∗ dashes = 0) [inline]

Sets how to draw lines (the "pen").

If you change this it is your responsibility to set it back to the default using fl_line_style(0).

Parameters:

← style A bitmask which is a bitwise-OR of a line style, a cap style, and a join style. If you don’t
specify a dash type you will get a solid line. If you don’t specify a cap or join type you will get a
system-defined default of whatever value is fastest.

← width The thickness of the lines in pixels. Zero results in the system defined default, which on both
X and Windows is somewhat different and nicer than 1.

← dashes A pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated
with a zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array
sizes are not supported and result in undefined behavior.

Note:

Because of how line styles are implemented on Win32 systems, you must set the line style after setting
the drawing color. If you set the color after the line style you will lose the line style settings.
The dashes array does not work under Windows 95, 98 or Me, since those operating systems do not
support complex line styles.

29.7.3.28 FL_EXPORT void fl_measure (const char ∗ str, int & w, int & h, int draw_symbols)

Measure how wide and tall the string will be when printed by the fl_draw() function with align parameter.

If the incoming w is non-zero it will wrap to that width.

Parameters:

← str nul-terminated string

→ w,h width and height of string in current font

← draw_symbols non-zero to enable @symbol handling [default=1]

29.7.3.29 FL_EXPORT int fl_measure_pixmap (const char ∗const ∗ cdata, int & w, int & h)

Get the dimensions of a pixmap.

See also:

fl_measure_pixmap(char∗ const∗ data, int &w, int &h)

29.7.3.30 FL_EXPORT int fl_measure_pixmap (char ∗const ∗ data, int & w, int & h)

Get the dimensions of a pixmap.

An XPM image contains the dimensions in its data. This function returns te width and height.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

274 Module Documentation

Parameters:

← data pointer to XPM image data.

→ w,h width and height of image

Returns:

non-zero if the dimensions were parsed OK
0 if there were any problems

29.7.3.31 FL_EXPORT void fl_mult_matrix (double a, double b, double c, double d, double x,
double y)

Concatenates another transformation onto the current one.

Parameters:

← a,b,c,d,x,y transformation matrix elements such that X’ = aX + cY + x and Y’ = bX
+dY + y

29.7.3.32 int fl_not_clipped (int x, int y, int w, int h) [inline]

Does the rectangle intersect the current clip region?

Parameters:

← x,y,w,h position and size of rectangle

Returns:

non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t have to
draw the object.

Note:

Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip region.

29.7.3.33 void fl_pie (int x, int y, int w, int h, double a1, double a2) [inline]

Draw filled ellipse sections using integer coordinates.

Like fl_arc(), but fl_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by fl_arc();
to avoid this use w - 1 and h - 1.

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 275

29.7.3.34 void fl_polygon (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3) [inline]

Fills a 4-sided polygon.

The polygon must be convex.

29.7.3.35 void fl_polygon (int x, int y, int x1, int y1, int x2, int y2) [inline]

Fills a 3-sided polygon.

The polygon must be convex.

29.7.3.36 void fl_pop_clip () [inline]

Restores the previous clip region.

You must call fl_pop_clip() once for every time you call fl_push_clip(). Unpredictable results may occur if
the clip stack is not empty when you return to FLTK.

29.7.3.37 void fl_push_clip (int x, int y, int w, int h) [inline]

Intersects the current clip region with a rectangle and pushes this new region onto the stack.

Parameters:

← x,y,w,h position and size

29.7.3.38 FL_EXPORT void fl_push_matrix ()

Saves the current transformation matrix on the stack.

The maximum depth of the stack is 4.

29.7.3.39 FL_EXPORT uchar∗ fl_read_image (uchar ∗ p, int X, int Y, int W, int H, int alpha = 0)

Read an RGB(A) image from the current window or off-screen buffer.

Parameters:

← p pixel buffer, or NULL to allocate one
← X,Y position of top-left of image to read
←W,H width and height of image to read
← alpha alpha value for image (0 fr none)

Returns:

pointer to pixel buffer, or NULL if allocation failed.

The p argument points to a buffer that can hold the image and must be at least W∗H∗3 bytes when reading
RGB images, or W∗H∗4 bytes when reading RGBA images. If NULL, fl_read_image() will create an array
of the proper suze which can be freed using delete[].

The alpha parameter controls whether an alpha channel is created and the value that is placed in the alpha
channel. If 0, no alpha channel is generated.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

276 Module Documentation

29.7.3.40 void fl_rect (int x, int y, int w, int h) [inline]

Draws a 1-pixel border inside the given bounding box.

This function is meant for quick drawing of simple boxes. The behavior is undefined for line widths that
are not 1.

29.7.3.41 FL_EXPORT void fl_rectf (int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r,g,b color.

On screens with less than 24 bits of color this is done by drawing a solid-colored block using fl_draw_-
image() so that the correct color shade is produced.

29.7.3.42 FL_EXPORT void fl_reset_spot (void)

Todo

provide user documentation for fl_reset_spot function

29.7.3.43 FL_EXPORT void fl_rotate (double d)

Concatenates rotation transformation onto the current one.

Parameters:

← d - rotation angle, counter-clockwise in degrees (not radians)

29.7.3.44 FL_EXPORT void fl_scale (double x)

Concatenates scaling transformation onto the current one.

Parameters:

← x scale factor in both x-direction and y-direction

29.7.3.45 FL_EXPORT void fl_scale (double x, double y)

Concatenates scaling transformation onto the current one.

Parameters:

← x,y scale factors in x-direction and y-direction

29.7.3.46 FL_EXPORT void fl_scroll (int X, int Y, int W, int H, int dx, int dy, void(∗)(void ∗, int,
int, int, int) draw_area, void ∗ data)

Scroll a rectangle and draw the newly exposed portions.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 277

Parameters:

← X,Y position of top-left of rectangle
←W,H size of rectangle
← dx,dy pixel offsets for shifting rectangle
← draw_area callback function to draw rectangular areas
← data pointer to user data for callback The contents of the rectangular area is first shifted by dx and

dy pixels. The draw_area callback is then called for every newly exposed rectangular area.

29.7.3.47 FL_EXPORT void fl_set_spot (int font, int size, int X, int Y, int W, int H, Fl_Window
∗ win = 0)

Todo

provide user documentation for fl_set_spot function

29.7.3.48 FL_EXPORT void fl_set_status (int X, int Y, int W, int H)

Todo

provide user documentation for fl_set_status function

29.7.3.49 FL_EXPORT const char∗ fl_shortcut_label (unsigned int shortcut, const char ∗∗ eom)

Get a human-readable string from a shortcut value.

Parameters:

← shortcut the integer value containing the ascii charcter or extended keystroke plus modifiers
← eom if this pointer is set, it will receive a pointer to the end of the modifier text

Returns:

a pointer to a static buffer containing human readable text for the shortcut

See also:

fl_shortcut_label(unsigned int shortcut)

29.7.3.50 FL_EXPORT const char∗ fl_shortcut_label (unsigned int shortcut)

Get a human-readable string from a shortcut value.

Unparse a shortcut value as used by Fl_Button or Fl_Menu_Item into a human-readable string like "Alt+N".
This only works if the shortcut is a character key or a numbered function key. If the shortcut is zero then
an empty string is returned. The return value points at a static buffer that is overwritten with each call.

Parameters:

← shortcut the integer value containing the ascii charcter or extended keystroke plus modifiers

Returns:

a pointer to a static buffer containing human readable text for the shortcut

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

278 Module Documentation

29.7.3.51 FL_EXPORT double fl_transform_dx (double x, double y)

Transforms distance using current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.52 FL_EXPORT double fl_transform_dy (double x, double y)

Transforms distance using current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.53 FL_EXPORT double fl_transform_x (double x, double y)

Transforms coordinate using the current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.54 FL_EXPORT double fl_transform_y (double x, double y)

Transform coordinate using the current transformation matrix.

Parameters:

← x,y coordinate

29.7.3.55 void fl_transformed_vertex (double xf, double yf) [inline]

Adds coordinate pair to the vertex list without further transformations.

Parameters:

← xf,yf transformed coordinate

29.7.3.56 FL_EXPORT void fl_translate (double x, double y)

Concatenates translation transformation onto the current one.

Parameters:

← x,y translation factor in x-direction and y-direction

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.7 Drawing functions 279

29.7.3.57 void fl_vertex (double x, double y) [inline]

Adds a single vertex to the current path.

Parameters:

← x,y coordinate

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

280 Module Documentation

29.8 Multithreading support functions

fl multithreading support functions

Functions

• static int Fl::awake (Fl_Awake_Handler cb, void ∗message=0)
See void awake(void∗ message=0).

• static void Fl::awake (void ∗message=0)
The awake() method sends a message pointer to the main thread, causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending redraws can be processed.

• static void Fl::lock ()
The lock() method blocks the current thread until it can safely access FLTK widgets and data.

• static void ∗ Fl::thread_message ()
The thread_message() method returns the last message that was sent from a child by the awake() method.

• static void Fl::unlock ()
The unlock() method releases the lock that was set using the lock() method.

29.8.1 Detailed Description

fl multithreading support functions

29.8.2 Function Documentation

29.8.2.1 int Fl::awake (Fl_Awake_Handler cb, void ∗ message = 0) [static, inherited]

See void awake(void∗ message=0).

Let the main thread know an update is pending and have it call a specific function See void awake(void∗
message=0).

29.8.2.2 void Fl::awake (void ∗ msg = 0) [static, inherited]

The awake() method sends a message pointer to the main thread, causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending redraws can be processed.

Multiple calls to Fl::awake() will queue multiple pointers for the main thread to process, up to a system-
defined (typically several thousand) depth. The default message handler saves the last message which can
be accessed using the Fl::thread_message() function.

The second form of awake() registers a function that will be called by the main thread during the next
message handling cycle. awake() will return 0 if the callback function was registered, and -1 if registration
failed. Over a thousand awake callbacks can be registered simultaneously.

In the context of a threaded application, a call to Fl::awake() with no argument will trigger event loop
handling in the main thread. Since it is not possible to call Fl::flush() from a subsidiary thread, Fl::awake()
is the best (and only, really) substitute.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.8 Multithreading support functions 281

See also: Multithreading

29.8.2.3 void Fl::lock () [static, inherited]

The lock() method blocks the current thread until it can safely access FLTK widgets and data.

Child threads should call this method prior to updating any widgets or accessing data. The main thread
must call lock() to initialize the threading support in FLTK.

Child threads must call unlock() when they are done accessing FLTK.

When the wait() method is waiting for input or timeouts, child threads are given access to FLTK. Similarly,
when the main thread needs to do processing, it will wait until all child threads have called unlock() before
processing additional data.

See also: Multithreading

29.8.2.4 static void∗ Fl::thread_message () [static, inherited]

The thread_message() method returns the last message that was sent from a child by the awake() method.

See also: multithreading

29.8.2.5 void Fl::unlock () [static, inherited]

The unlock() method releases the lock that was set using the lock() method.

Child threads should call this method as soon as they are finished accessing FLTK.

See also: Multithreading

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

282 Module Documentation

29.9 Safe widget deletion support functions

These functions support deletion of widgets inside callbacks.

Functions

• static void Fl::clear_widget_pointer (Fl_Widget const ∗w)
Clears a widget pointer in the watch list.

• static void Fl::delete_widget (Fl_Widget ∗w)
Schedules a widget for deletion at the next call to the event loop.

• static void Fl::do_widget_deletion ()
Deletes widgets previously scheduled for deletion.

• static void Fl::release_widget_pointer (Fl_Widget ∗&w)
Releases a widget pointer from the watch list.

• static void Fl::watch_widget_pointer (Fl_Widget ∗&w)
Adds a widget pointer to the widget watch list.

29.9.1 Detailed Description

These functions support deletion of widgets inside callbacks.

Fl::delete_widget() should be called when deleting widgets or complete widget trees (Fl_Group, Fl_-
Window, ...) inside callbacks.

The other functions are intended for internal use. The preferred way to use them is by using the helper
class Fl_Widget_Tracker.

The following is to show how it works ...

There are three groups of related methods:

1. scheduled widget deletion

• Fl::delete_widget() schedules widgets for deletion
• Fl::do_widget_deletion() deletes all scheduled widgets

2. widget watch list ("smart pointers")

• Fl::watch_widget_pointer() adds a widget pointer to the watch list
• Fl::release_widget_pointer() removes a widget pointer from the watch list
• Fl::clear_widget_pointer() clears a widget pointer in the watch list

3. the class Fl_Widget_Tracker:

• the constructor calls Fl::watch_widget_pointer()
• the destructor calls Fl::release_widget_pointer()
• the access methods can be used to test, if a widget has been deleted

See also:

Fl_Widget_Tracker.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.9 Safe widget deletion support functions 283

29.9.2 Function Documentation

29.9.2.1 void Fl::clear_widget_pointer (Fl_Widget const ∗ w) [static, inherited]

Clears a widget pointer in the watch list.

This is called when a widget is destroyed (by its destructor). You should never call this directly.

Note:

Internal use only !

This method searches the widget watch list for pointers to the widget and clears each pointer that points to
it. Widget pointers can be added to the widget watch list by calling Fl::watch_widget_pointer() or by using
the helper class Fl_Widget_Tracker (recommended).

See also:

Fl::watch_widget_pointer()
class Fl_Widget_Tracker

29.9.2.2 void Fl::delete_widget (Fl_Widget ∗ wi) [static, inherited]

Schedules a widget for deletion at the next call to the event loop.

Use this method to delete a widget inside a callback function.

To avoid early deletion of widgets, this function should be called toward the end of a callback and only
after any call to the event loop (Fl::wait(), Fl::flush(), Fl::check(), fl_ask(), etc.).

When deleting groups or windows, you must only delete the group or window widget and not the individual
child widgets.

Since:

FLTK 1.3 it is not necessary to remove widgets from their parent groups or windows before calling
this, because it will be done in the widget’s destructor, but it is not a failure to do this nevertheless.

Note:

In FLTK 1.1 you must remove widgets from their parent group (or window) before deleting them.

See also:

Fl_Widget::∼Fl_Widget()

29.9.2.3 void Fl::do_widget_deletion () [static, inherited]

Deletes widgets previously scheduled for deletion.

This is for internal use only. You should never call this directly.

Fl::do_widget_deletion() is called from the FLTK event loop or whenever you call Fl::wait(). The previ-
ously scheduled widgets are deleted in the same order they were scheduled by calling Fl::delete_widget().

See also:

Fl::delete_widget(Fl_Widget ∗wi)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

284 Module Documentation

29.9.2.4 void Fl::release_widget_pointer (Fl_Widget ∗& w) [static, inherited]

Releases a widget pointer from the watch list.

This is used to remove a widget pointer that has been added to the watch list with Fl::watch_widget_-
pointer(), when it is not needed anymore.

Note:

Internal use only, please use class Fl_Widget_Tracker instead.

See also:

Fl::watch_widget_pointer()

29.9.2.5 void Fl::watch_widget_pointer (Fl_Widget ∗& w) [static, inherited]

Adds a widget pointer to the widget watch list.

Note:

Internal use only, please use class Fl_Widget_Tracker instead.

This can be used, if it is possible that a widget might be deleted during a callback or similar function. The
widget pointer must be added to the watch list before calling the callback. After the callback the widget
pointer can be queried, if it is NULL. If it is NULL, then the widget has been deleted during the callback
and must not be accessed anymore. If the widget pointer is not NULL, then the widget has not been deleted
and can be accessed safely.

After accessing the widget, the widget pointer must be released from the watch list by calling Fl::release_-
widget_pointer().

Example for a button that is clicked (from its handle() method):

Fl_Widget *wp = this; // save ’this’ in a pointer variable
Fl::watch_widget_pointer(wp); // add the pointer to the watch list
set_changed(); // set the changed flag
do_callback(); // call the callback
if (!wp) { // the widget has been deleted

// DO NOT ACCESS THE DELETED WIDGET !

} else { // the widget still exists
clear_changed(); // reset the changed flag

}

Fl::release_widget_pointer(wp); // remove the pointer from the watch list

This works, because all widgets call Fl::clear_widget_pointer() in their destructors.

See also:

Fl::release_widget_pointer()
Fl::clear_widget_pointer()

An easier and more convenient method to control widget deletion during callbacks is to use the class Fl_-
Widget_Tracker with a local (automatic) variable.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.9 Safe widget deletion support functions 285

See also:

class Fl_Widget_Tracker

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

286 Module Documentation

29.10 Cairo support functions and classes

Classes

• class Fl_Cairo_State

Contains all the necessary info on the current cairo context.

• class Fl_Cairo_Window

This defines a pre-configured cairo fltk window.

Functions

• static bool Fl::cairo_autolink_context ()

Gets the current autolink mode for cairo support.

• static void Fl::cairo_autolink_context (bool alink)

when HAVE_CAIRO is defined and cairo_autolink_context() is true, any current window dc is linked to a
current context.

• static void Fl::cairo_cc (cairo_t ∗c, bool own=false)

Sets the current cairo context to c.

• static cairo_t ∗ Fl::cairo_cc ()

Gets the current cairo context linked with a fltk window.

• static cairo_t ∗ Fl::cairo_make_current (Fl_Window ∗w)

29.10.1 Function Documentation

29.10.1.1 static bool Fl::cairo_autolink_context () [inline, static, inherited]

Gets the current autolink mode for cairo support.

Return values:

false if no cairo context autolink is made for each window.

true if any fltk window is attached a cairo context when it is current.

See also:

void cairo_autolink_context(bool alink)

Note:

Only available when configure has the –enable-cairo option

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.10 Cairo support functions and classes 287

29.10.1.2 static void Fl::cairo_autolink_context (bool alink) [inline, static,
inherited]

when HAVE_CAIRO is defined and cairo_autolink_context() is true, any current window dc is linked to a
current context.

This is not the default, because it may not be necessary to add cairo support to all fltk supported windows.
When you wish to associate a cairo context in this mode, you need to call explicitly in your draw() over-
ridden method, FL::cairo_make_current(Fl_Window∗). This will create a cairo context but only for this
Window. Still in custom cairo application it is possible to handle completely this process automatically by
setting alink to true. In this last case, you don’t need anymore to call Fl::cairo_make_current(). You can
use Fl::cairo_cc() to get the current cairo context anytime.

Note:

Only available when configure has the –enable-cairo option

29.10.1.3 static void Fl::cairo_cc (cairo_t ∗ c, bool own = false) [inline, static,
inherited]

Sets the current cairo context to c.

Set own to true if you want fltk to handle this cc deletion.

Note:

Only available when configure has the –enable-cairo option

29.10.1.4 static cairo_t∗ Fl::cairo_cc () [inline, static, inherited]

Gets the current cairo context linked with a fltk window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

288 Module Documentation

29.11 Unicode and UTF-8 functions

fl global Unicode and UTF-8 handling functions

Defines

• #define ERRORS_TO_CP1252 1
• #define ERRORS_TO_ISO8859_1 1
• #define NBC 0xFFFF + 1
• #define STRICT_RFC3629 0

Functions

• FL_EXPORT int fl_access (const char ∗f, int mode)
• FL_EXPORT int fl_chmod (const char ∗f, int mode)
• FL_EXPORT int fl_execvp (const char ∗file, char ∗const ∗argv)
• FL_EXPORT FILE ∗ fl_fopen (const char ∗f, const char ∗mode)
• FL_EXPORT char ∗ fl_getcwd (char ∗buf, int maxlen)
• FL_EXPORT char ∗ fl_getenv (const char ∗name)
• FL_EXPORT char fl_make_path (const char ∗path)
• FL_EXPORT void fl_make_path_for_file (const char ∗path)
• FL_EXPORT int fl_mkdir (const char ∗f, int mode)
• FL_EXPORT unsigned int fl_nonspacing (unsigned int ucs)

returns true if the character is non-spacing.

• FL_EXPORT int fl_open (const char ∗f, int o,...)
• FL_EXPORT int fl_rename (const char ∗f, const char ∗t)
• FL_EXPORT int fl_rmdir (const char ∗f)
• FL_EXPORT int fl_stat (const char ∗path, struct stat ∗buffer)
• FL_EXPORT int fl_system (const char ∗f)
• FL_EXPORT int fl_tolower (unsigned int ucs)

return the Unicode lower case value of ucs

• FL_EXPORT int fl_toupper (unsigned int ucs)

return the Unicode upper case value of ucs

• FL_EXPORT int fl_unlink (const char ∗f)
• FL_EXPORT char ∗ fl_utf2mbcs (const char ∗s)

converts UTF8 to a local multi-byte character string.

• FL_EXPORT const char ∗ fl_utf8back (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8bytes (unsigned ucs)

Return the number of bytes needed to encode the given UCS4 character in UTF8.

• FL_EXPORT unsigned fl_utf8decode (const char ∗p, const char ∗end, int ∗len)
• FL_EXPORT int fl_utf8encode (unsigned ucs, char ∗buf)
• FL_EXPORT unsigned fl_utf8from_mb (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)
• FL_EXPORT unsigned fl_utf8froma (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 289

• FL_EXPORT unsigned fl_utf8fromwc (char ∗dst, unsigned dstlen, const wchar_t ∗src, unsigned
srclen)

• FL_EXPORT const char ∗ fl_utf8fwd (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8len (char c)

return the byte length of the UTF-8 sequence with first byte c, or -1 if c is not valid.

• FL_EXPORT int fl_utf8locale ()
• FL_EXPORT int fl_utf8test (const char ∗src, unsigned len)
• FL_EXPORT unsigned fl_utf8to_mb (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)
• FL_EXPORT unsigned fl_utf8toa (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)
• FL_EXPORT unsigned fl_utf8toUtf16 (const char ∗src, unsigned srclen, unsigned short ∗dst, un-

signed dstlen)
• FL_EXPORT unsigned fl_utf8towc (const char ∗src, unsigned srclen, wchar_t ∗dst, unsigned

dstlen)

Converts a UTF-8 string into a wide character string.

• FL_EXPORT int fl_utf_nb_char (const unsigned char ∗buf, int len)

returns the number of Unicode chars in the UTF-8 string

• FL_EXPORT int fl_utf_strcasecmp (const char ∗s1, const char ∗s2)

UTF-8 aware strcasecmp - converts to Unicode and tests.

• FL_EXPORT int fl_utf_strncasecmp (const char ∗s1, const char ∗s2, int n)

UTF-8 aware strncasecmp - converts to lower case Unicode and tests.

• FL_EXPORT int fl_utf_tolower (const unsigned char ∗str, int len, char ∗buf)

converts the str string to the lower case equivalent into buf.

• FL_EXPORT int fl_utf_toupper (const unsigned char ∗str, int len, char ∗buf)

converts the str string to the upper case equivalent into buf.

29.11.1 Detailed Description

fl global Unicode and UTF-8 handling functions

29.11.2 Function Documentation

29.11.2.1 unsigned int fl_nonspacing (unsigned int ucs)

returns true if the character is non-spacing.

Todo

explain what non-spacing means.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

290 Module Documentation

29.11.2.2 const char ∗ fl_utf8back (const char ∗ p, const char ∗ start, const char ∗ end)

Move p backward until it points to the start of a UTF-8 character. If it already points at the start of one then
it is returned unchanged. Any UTF-8 errors are treated as though each byte of the error is an individual
character.

start is the start of the string and is used to limit the backwards search for the start of a UTF-8 character.

end is the end of the string and is assumed to be a break between characters. It is assumed to be greater
than p.

If you wish to decrement a UTF-8 pointer, pass p-1 to this.

29.11.2.3 int fl_utf8bytes (unsigned ucs)

Return the number of bytes needed to encode the given UCS4 character in UTF8.

Parameters:

← ucs UCS4 encoded character

Returns:

number of bytes required

Returns number of bytes that utf8encode() will use to encode the character ucs.

29.11.2.4 unsigned fl_utf8decode (const char ∗ p, const char ∗ end, int ∗ len)

Decode a single UTF-8 encoded character starting at p. The resulting Unicode value (in the range 0-
0x10ffff) is returned, and len is set to the number of bytes in the UTF-8 encoding (adding len to p will
point at the next character).

If p points at an illegal UTF-8 encoding, including one that would go past end, or where a code is uses
more bytes than necessary, then ∗(unsigned char∗)p is translated as though it is in the Microsoft CP1252
character set and len is set to 1. Treating errors this way allows this to decode almost any ISO-8859-1 or
CP1252 text that has been mistakenly placed where UTF-8 is expected, and has proven very useful.

If you want errors to be converted to error characters (as the standards recommend), adding a test to see if
the length is unexpectedly 1 will work:

if (*p & 0x80) { // what should be a multibyte encoding
code = fl_utf8decode(p,end,&len);
if (len<2) code = 0xFFFD; // Turn errors into REPLACEMENT CHARACTER

} else { // handle the 1-byte utf8 encoding:
code = *p;
len = 1;

}

Direct testing for the 1-byte case (as shown above) will also speed up the scanning of strings where the
majority of characters are ASCII.

29.11.2.5 int fl_utf8encode (unsigned ucs, char ∗ buf)

Write the UTF-8 encoding of ucs into buf and return the number of bytes written. Up to 4 bytes may be
written. If you know that ucs is less than 0x10000 then at most 3 bytes will be written. If you wish to
speed this up, remember that anything less than 0x80 is written as a single byte.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 291

If ucs is greater than 0x10ffff this is an illegal character according to RFC 3629. These are converted as
though they are 0xFFFD (REPLACEMENT CHARACTER).

RFC 3629 also says many other values for ucs are illegal (in the range 0xd800 to 0xdfff, or ending with
0xfffe or 0xffff). However I encode these as though they are legal, so that utf8encode/fl_utf8decode will be
the identity for all codes between 0 and 0x10ffff.

29.11.2.6 unsigned fl_utf8from_mb (char ∗ dst, unsigned dstlen, const char ∗ src, unsigned srclen)

Convert a filename from the locale-specific multibyte encoding used by Windows to UTF-8 as used by
FLTK.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

On Unix or on Windows when a UTF-8 locale is in effect, this does not change the data. It is copied
and truncated as necessary to the destination buffer and srclen is always returned. You may also want
to check if fl_utf8test() returns non-zero, so that the filesystem can store filenames in UTF-8 encoding
regardless of the locale.

29.11.2.7 unsigned fl_utf8froma (char ∗ dst, unsigned dstlen, const char ∗ src, unsigned srclen)

Convert an ISO-8859-1 (ie normal c-string) byte stream to UTF-8.

It is possible this should convert Microsoft’s CP1252 to UTF-8 instead. This would translate the codes in
the range 0x80-0x9f to different characters. Currently it does not do this.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

srclen is the number of bytes in src to convert.

If the return value equals srclen then this indicates that no conversion is necessary, as only ASCII
characters are in the string.

29.11.2.8 unsigned fl_utf8fromwc (char ∗ dst, unsigned dstlen, const wchar_t ∗ src, unsigned
srclen)

Turn "wide characters" as returned by some system calls (especially on Windows) into UTF-8.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

srclen is the number of words in src to convert. On Windows this is not necessairly the number of
characters, due to there possibly being "surrogate pairs" in the UTF-16 encoding used. On Unix wchar_t is
32 bits and each location is a character.

On Unix if a src word is greater than 0x10ffff then this is an illegal character according to RFC 3629.
These are converted as though they are 0xFFFD (REPLACEMENT CHARACTER). Characters in the
range 0xd800 to 0xdfff, or ending with 0xfffe or 0xffff are also illegal according to RFC 3629. However I
encode these as though they are legal, so that fl_utf8towc will return the original data.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

292 Module Documentation

On Windows "surrogate pairs" are converted to a single character and UTF-8 encoded (as 4 bytes). Mis-
matched halves of surrogate pairs are converted as though they are individual characters.

29.11.2.9 const char ∗ fl_utf8fwd (const char ∗ p, const char ∗ start, const char ∗ end)

Move p forward until it points to the start of a UTF-8 character. If it already points at the start of one then
it is returned unchanged. Any UTF-8 errors are treated as though each byte of the error is an individual
character.

start is the start of the string and is used to limit the backwards search for the start of a utf8 character.

end is the end of the string and is assumed to be a break between characters. It is assumed to be greater
than p.

This function is for moving a pointer that was jumped to the middle of a string, such as when doing a
binary search for a position. You should use either this or fl_utf8back() depending on which direction your
algorithim can handle the pointer moving. Do not use this to scan strings, use fl_utf8decode() instead.

29.11.2.10 int fl_utf8locale (void)

Return true if the "locale" seems to indicate that UTF-8 encoding is used. If true the fl_utf8to_mb and
fl_utf8from_mb don’t do anything useful.

It is highly recommended that you change your system so this does return true. On Windows this is done by
setting the "codepage" to CP_UTF8. On Unix this is done by setting $LC_CTYPE to a string containing
the letters "utf" or "UTF" in it, or by deleting all $LC∗ and $LANG environment variables. In the future it is
likely that all non-Asian Unix systems will return true, due to the compatibility of UTF-8 with ISO-8859-1.

29.11.2.11 int fl_utf8test (const char ∗ src, unsigned srclen)

Examines the first srclen bytes in src and returns a verdict on whether it is UTF-8 or not.

• Returns 0 if there is any illegal UTF-8 sequences, using the same rules as fl_utf8decode(). Note that
some UCS values considered illegal by RFC 3629, such as 0xffff, are considered legal by this.

• Returns 1 if there are only single-byte characters (ie no bytes have the high bit set). This is legal
UTF-8, but also indicates plain ASCII. It also returns 1 if srclen is zero.

• Returns 2 if there are only characters less than 0x800.

• Returns 3 if there are only characters less than 0x10000.

• Returns 4 if there are characters in the 0x10000 to 0x10ffff range.

Because there are many illegal sequences in UTF-8, it is almost impossible for a string in another encoding
to be confused with UTF-8. This is very useful for transitioning Unix to UTF-8 filenames, you can simply
test each filename with this to decide if it is UTF-8 or in the locale encoding. My hope is that if this is done
we will be able to cleanly transition to a locale-less encoding.

29.11.2.12 unsigned fl_utf8to_mb (const char ∗ src, unsigned srclen, char ∗ dst, unsigned dstlen)

Convert the UTF-8 used by FLTK to the locale-specific encoding used for filenames (and sometimes used
for data in files). Unfortunately due to stupid design you will have to do this as needed for filenames. This
is a bug on both Unix and Windows.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.11 Unicode and UTF-8 functions 293

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

If fl_utf8locale() returns true then this does not change the data. It is copied and truncated as necessary to
the destination buffer and srclen is always returned.

29.11.2.13 unsigned fl_utf8toa (const char ∗ src, unsigned srclen, char ∗ dst, unsigned dstlen)

Convert a UTF-8 sequence into an array of 1-byte characters.

If the UTF-8 decodes to a character greater than 0xff then it is replaced with ’?’.

Errors in the UTF-8 are converted as individual bytes, same as fl_utf8decode() does. This allows ISO-
8859-1 text mistakenly identified as UTF-8 to be printed correctly (and possibly CP1512 on Windows).

src points at the UTF-8, and srclen is the number of bytes to convert.

Up to dstlen bytes are written to dst, including a null terminator. The return value is the number of
bytes that would be written, not counting the null terminator. If greater or equal to dstlen then if you
malloc a new array of size n+1 you will have the space needed for the entire string. If dstlen is zero then
nothing is written and this call just measures the storage space needed.

29.11.2.14 unsigned fl_utf8toUtf16 (const char ∗ src, unsigned srclen, unsigned short ∗ dst,
unsigned dstlen)

Convert a UTF-8 sequence into an array of wchar_t. These are used by some system calls, especially on
Windows.

src points at the UTF-8, and srclen is the number of bytes to convert.

dst points at an array to write, and dstlen is the number of locations in this array. At most dstlen-1
words will be written there, plus a 0 terminating word. Thus this function will never overwrite the buffer
and will always return a zero-terminated string. If dstlen is zero then dst can be null and no data is
written, but the length is returned.

The return value is the number of words that would be written to dst if it were long enough, not counting
the terminating zero. If the return value is greater or equal to dstlen it indicates truncation, you can then
allocate a new array of size return+1 and call this again.

Errors in the UTF-8 are converted as though each byte in the erroneous string is in the Microsoft CP1252
encoding. This allows ISO-8859-1 text mistakenly identified as UTF-8 to be printed correctly.

Notice that sizeof(wchar_t) is 2 on Windows and is 4 on Linux and most other systems. Where wchar_t is
16 bits, Unicode characters in the range 0x10000 to 0x10ffff are converted to "surrogate pairs" which take
two words each (this is called UTF-16 encoding). If wchar_t is 32 bits this rather nasty problem is avoided.

29.11.2.15 unsigned fl_utf8towc (const char ∗ src, unsigned srclen, wchar_t ∗ dst, unsigned dstlen)

Converts a UTF-8 string into a wide character string.

This function generates 32-bit wchar_t (e.g. "ucs4" as it were) except on win32 where it returns Utf16 with
surrogate pairs where required.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

294 Module Documentation

29.11.2.16 int fl_utf_strcasecmp (const char ∗ s1, const char ∗ s2)

UTF-8 aware strcasecmp - converts to Unicode and tests.

Todo

Correct the incorrect logic where length of strings tested

29.11.2.17 int fl_utf_strncasecmp (const char ∗ s1, const char ∗ s2, int n)

UTF-8 aware strncasecmp - converts to lower case Unicode and tests.

Todo

Correct the incorrect logic where length of strings tested

Todo

Clarify whether n means number of bytes, or characters.

29.11.2.18 int fl_utf_tolower (const unsigned char ∗ str, int len, char ∗ buf)

converts the str string to the lower case equivalent into buf.

Warning: to be safe buf length must be at least 3 ∗ len [for 16-bit Unicode]

29.11.2.19 int fl_utf_toupper (const unsigned char ∗ str, int len, char ∗ buf)

converts the str string to the upper case equivalent into buf.

Warning: to be safe buf length must be at least 3 ∗ len [for 16-bit Unicode]

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.12 Mac OS X-specific functions 295

29.12 Mac OS X-specific functions

Functions

• void fl_mac_set_about (Fl_Callback ∗cb, void ∗user_data, int shortcut=0)
Mac OS X: attaches a callback to the "About myprog" item of the system application menu.

29.12.1 Function Documentation

29.12.1.1 void fl_mac_set_about (Fl_Callback ∗ cb, void ∗ user_data, int shortcut = 0)

Mac OS X: attaches a callback to the "About myprog" item of the system application menu.

Note:

include <FL/x.H>

Parameters:

cb a callback that will be called by "About myprog" menu item with NULL 1st argument.

user_data a pointer transmitted as 2nd argument to the callback.

shortcut optional shortcut to attach to the "About myprog" menu item (e.g., FL_META+’a’)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

296 Module Documentation

29.13 Common Dialogs classes and functions

Classes

• class Fl_Color_Chooser
The Fl_Color_Chooser widget provides a standard RGB color chooser.

• class Fl_File_Chooser
The Fl_File_Chooser widget displays a standard file selection dialog that supports various selection modes.

Functions

• void fl_alert (const char ∗fmt,...)
Shows an alert message dialog box.

• int fl_ask (const char ∗fmt,...)
Shows a dialog displaying the fmt message, this dialog features 2 yes/no buttons.

• void fl_beep (int type)
Emits a system beep message.

• int fl_choice (const char ∗fmt, const char ∗b0, const char ∗b1, const char ∗b2,...)
Shows a dialog displaying the fmt message, this dialog features up to 3 customizable choice buttons.

• int Fl_Color_Chooser::fl_color_chooser (const char ∗name, uchar &r, uchar &g, uchar &b)
Pops up a window to let the user pick an arbitrary RGB color.

• int Fl_Color_Chooser::fl_color_chooser (const char ∗name, double &r, double &g, double &b)
Pops up a window to let the user pick an arbitrary RGB color.

• char ∗ Fl_File_Chooser::fl_dir_chooser (const char ∗message, const char ∗fname, int relative)
• char ∗ Fl_File_Chooser::fl_file_chooser (const char ∗message, const char ∗pat, const char ∗fname,

int relative)
• void Fl_File_Chooser::fl_file_chooser_callback (void(∗cb)(const char ∗))
• void fl_file_chooser_callback (void(∗cb)(const char ∗))
• void Fl_File_Chooser::fl_file_chooser_ok_label (const char ∗l)
• void fl_file_chooser_ok_label (const char ∗l)
• const char ∗ fl_input (const char ∗fmt, const char ∗defstr,...)

Shows an input dialog displaying the fmt message.

• void fl_message (const char ∗fmt,...)
Shows an information message dialog box.

• Fl_Widget ∗ fl_message_icon ()
Gets the Fl_Box icon container of the current default dialog used in many common dialogs like fl_message(),
fl_alert(), fl_ask(), fl_choice(), fl_input(), fl_password().

• const char ∗ fl_password (const char ∗fmt, const char ∗defstr,...)
Shows an input dialog displaying the fmt message.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 297

Variables

• static void(∗ Fl::error)(const char ∗,...) = ::error

FLTK calls Fl::error() to output a normal error message.

• static void(∗ Fl::fatal)(const char ∗,...) = ::fatal

FLTK calls Fl::fatal() to output a fatal error message.

• const char ∗ fl_cancel = "Cancel"

string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_close = "Close"

string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_no = "No"

string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_ok = "OK"

string pointer used in common dialogs, you can change it to a foreign language

• const char ∗ fl_yes = "Yes"

string pointer used in common dialogs, you can change it to a foreign language

• static void(∗ Fl::warning)(const char ∗,...) = ::warning

FLTK calls Fl::warning() to output a warning message.

29.13.1 Function Documentation

29.13.1.1 void fl_alert (const char ∗ fmt, ...)

Shows an alert message dialog box.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

29.13.1.2 int fl_ask (const char ∗ fmt, ...)

Shows a dialog displaying the fmt message, this dialog features 2 yes/no buttons.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

298 Module Documentation

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

Return values:

0 if the no button is selected or another dialog box is still open

1 if yes is selected

29.13.1.3 int fl_choice (const char ∗ fmt, const char ∗ b0, const char ∗ b1, const char ∗ b2, ...)

Shows a dialog displaying the fmt message, this dialog features up to 3 customizable choice buttons.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

← b0 text label of button 0

← b1 text label of button 1

← b2 text label of button 2

Return values:

0 if the first button with b0 text is selected or another dialog box is still open

1 if the second button with b1 text is selected

2 if the third button with b2 text is selected

29.13.1.4 int fl_color_chooser (const char ∗ name, uchar & r, uchar & g, uchar & b)
[related, inherited]

Pops up a window to let the user pick an arbitrary RGB color.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 299

Figure 29.1: fl_color_chooser

Parameters:

← name title label for the window

↔ r,g,b color components in the range 0 to 255.

Return values:

1 if user confirms the selection

0 if user cancels the dialog

29.13.1.5 int fl_color_chooser (const char ∗ name, double & r, double & g, double & b)
[related, inherited]

Pops up a window to let the user pick an arbitrary RGB color.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

300 Module Documentation

Figure 29.2: fl_color_chooser

Parameters:

← name title label for the window

↔ r,g,b color components in the range 0.0 to 1.0.

Return values:

1 if user confirms the selection

0 if user cancels the dialog

29.13.1.6 char ∗ fl_dir_chooser (const char ∗ message, const char ∗ fname, int relative)
[related, inherited]

Shows a file chooser dialog and gets a directory.

Parameters:

← message title bar text

← fname initial/default directory name

← relative 0 for absolute path return, relative otherwise

Returns:

the directory path string chosen by the user or NULL if user cancels

29.13.1.7 char ∗ fl_file_chooser (const char ∗ message, const char ∗ pat, const char ∗ fname, int
relative) [related, inherited]

Shows a file chooser dialog and gets a filename.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 301

Figure 29.3: Fl_File_Chooser

Parameters:

← message text in title bar

← pat filename pattern filter

← fname initial/default filename selection

← relative 0 for absolute path name, relative path name otherwise

Returns:

the user selected filename, in absolute or relative format or NULL if user cancels

29.13.1.8 void fl_file_chooser_callback (void(∗)(const char ∗) cb) [related, inherited]

Set the file chooser callback

29.13.1.9 void fl_file_chooser_callback (void(∗)(const char ∗) cb)

Set the file chooser callback

29.13.1.10 void fl_file_chooser_ok_label (const char ∗ l) [related, inherited]

Set the "OK" button label

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

302 Module Documentation

29.13.1.11 void fl_file_chooser_ok_label (const char ∗ l)

Set the "OK" button label

29.13.1.12 const char∗ fl_input (const char ∗ fmt, const char ∗ defstr, ...)

Shows an input dialog displaying the fmt message.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text
← defstr defines the default returned string if no text is entered

Returns:

the user string input if OK was pushed, NULL if Cancel was pushed or another dialog box was still
open

29.13.1.13 void fl_message (const char ∗ fmt, ...)

Shows an information message dialog box.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text

29.13.1.14 const char∗ fl_password (const char ∗ fmt, const char ∗ defstr, ...)

Shows an input dialog displaying the fmt message.

Like fl_input() except the input text is not shown, ’∗’ characters are displayed instead.

Note:

Common dialog boxes are application modal. No more than one common dialog box can be open at
any time. Requests for additional dialog boxes are ignored.

Parameters:

← fmt can be used as an sprintf-like format and variables for the message text
← defstr defines the default returned string if no text is entered

Returns:

the user string input if OK was pushed, NULL if Cancel was pushed or aother dialog box was still
open

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.13 Common Dialogs classes and functions 303

29.13.2 Variable Documentation

29.13.2.1 void(∗ Fl::error)(const char ∗format,...) (const char ∗, ...) = ::error [static,
inherited]

FLTK calls Fl::error() to output a normal error message.

The default version on Windows displays the error message in a MessageBox window.

The default version on all other platforms prints the error message to stderr.

You can override the behavior by setting the function pointer to your own routine.

Fl::error() means there is a recoverable error such as the inability to read an image file. The default imple-
mentation returns after displaying the message.

29.13.2.2 void(∗ Fl::fatal)(const char ∗format,...) (const char ∗, ...) = ::fatal [static,
inherited]

FLTK calls Fl::fatal() to output a fatal error message.

The default version on Windows displays the error message in a MessageBox window.

The default version on all other platforms prints the error message to stderr.

You can override the behavior by setting the function pointer to your own routine.

Fl::fatal() must not return, as FLTK is in an unusable state, however your version may be able to use
longjmp or an exception to continue, as long as it does not call FLTK again. The default implementation
exits with status 1 after displaying the message.

29.13.2.3 void(∗ Fl::warning)(const char ∗format,...) (const char ∗, ...) = ::warning [static,
inherited]

FLTK calls Fl::warning() to output a warning message.

The default version on Windows returns without printing a warning message, because Windows programs
normally don’t have stderr (a console window) enabled.

The default version on all other platforms prints the warning message to stderr.

You can override the behavior by setting the function pointer to your own routine.

Fl::warning() means that there was a recoverable problem, the display may be messed up, but the user can
probably keep working - all X protocol errors call this, for example. The default implementation returns
after displaying the message.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

304 Module Documentation

29.14 File names and URI utility functions

Defines

• #define FL_PATH_MAX 256
all path buffers should use this length

Typedefs

• typedef int(Fl_File_Sort_F)(struct dirent ∗∗, struct dirent ∗∗)
File sorting function.

Functions

• FL_EXPORT int fl_filename_absolute (char ∗to, int tolen, const char ∗from)
Makes a filename absolute from a relative filename.

• FL_EXPORT int fl_filename_expand (char ∗to, int tolen, const char ∗from)
Expands a filename containing shell variables and tilde (∼).

• FL_EXPORT const char ∗ fl_filename_ext (const char ∗buf)
Gets the extensions of a filename.

• FL_EXPORT int fl_filename_isdir (const char ∗name)
Determines if a file exists and is a directory from its filename.

• FL_EXPORT int fl_filename_match (const char ∗name, const char ∗pattern)
Checks if a string s matches a pattern p.

• FL_EXPORT const char ∗ fl_filename_name (const char ∗filename)
Gets the file name from a path.

• FL_EXPORT int fl_filename_relative (char ∗to, int tolen, const char ∗from)
Makes a filename relative to the current working directory.

• FL_EXPORT char ∗ fl_filename_setext (char ∗to, int tolen, const char ∗ext)
Replaces the extension in buf of max.

29.14.1 Typedef Documentation

29.14.1.1 typedef int(Fl_File_Sort_F)(struct dirent ∗∗, struct dirent ∗∗)

File sorting function.

See also:

fl_filename_list()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.14 File names and URI utility functions 305

29.14.2 Function Documentation

29.14.2.1 FL_EXPORT int fl_filename_absolute (char ∗ to, int tolen, const char ∗ from)

Makes a filename absolute from a relative filename.

#include <FL/filename.H>
[..]
chdir("/var/tmp");
fl_filename_absolute(out, sizeof(out), "foo.txt"); // out="/var/tmp/foo.txt"
fl_filename_absolute(out, sizeof(out), "./foo.txt"); // out="/var/tmp/foo.txt"
fl_filename_absolute(out, sizeof(out), "../log/messages"); // out="/var/log/messages"

Parameters:

→ to resulting absolute filename

← tolen size of the absolute filename buffer

← from relative filename

Returns:

0 if no change, non zero otherwise

29.14.2.2 FL_EXPORT int fl_filename_expand (char ∗ to, int tolen, const char ∗ from)

Expands a filename containing shell variables and tilde (∼).

Currently handles these variants:

"~username" // if ’username’ does not exist, result will be unchanged
"~/file"
"$VARNAME" // does NOT handle ${VARNAME}

Examples:

#include <FL/filename.H>
[..]
putenv("TMPDIR=/var/tmp");
fl_filename_expand(out, sizeof(out), "~fred/.cshrc"); // out="/usr/fred/.cshrc"
fl_filename_expand(out, sizeof(out), "~/.cshrc"); // out="/usr/<yourname>/.cshrc"
fl_filename_expand(out, sizeof(out), "$TMPDIR/foo.txt"); // out="/var/tmp/foo.txt"

Parameters:

→ to resulting expanded filename

← tolen size of the expanded filename buffer

← from filename containing shell variables

Returns:

0 if no change, non zero otherwise

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

306 Module Documentation

29.14.2.3 FL_EXPORT const char∗ fl_filename_ext (const char ∗ buf)

Gets the extensions of a filename.

#include <FL/filename.H>
[..]
const char *out;
out = fl_filename_ext("/some/path/foo.txt"); // result: ".txt"
out = fl_filename_ext("/some/path/foo"); // result: NULL

Parameters:

← buf the filename to be parsed

Returns:

a pointer to the extension (including ’.’) if any or NULL otherwise

29.14.2.4 FL_EXPORT int fl_filename_isdir (const char ∗ n)

Determines if a file exists and is a directory from its filename.

#include <FL/filename.H>
[..]
fl_filename_isdir("/etc"); // returns non-zero
fl_filename_isdir("/etc/hosts"); // returns 0

Parameters:

← n the filename to parse

Returns:

non zero if file exists and is a directory, zero otherwise

29.14.2.5 FL_EXPORT int fl_filename_match (const char ∗ s, const char ∗ p)

Checks if a string s matches a pattern p.

The following syntax is used for the pattern:

• ∗ matches any sequence of 0 or more characters.

• ? matches any single character.

• [set] matches any character in the set. Set can contain any single characters, or a-z to represent a
range. To match] or - they must be the first characters. To match ∧ or ! they must not be the first
characters.

• [∧set] or [!set] matches any character not in the set.

• {X|Y|Z} or {X,Y,Z} matches any one of the subexpressions literally.

• \x quotes the character x so it has no special meaning.

• x all other characters must be matched exactly.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

29.14 File names and URI utility functions 307

Include:

#include <FL/filename.H>

Parameters:

← s the string to check for a match

← p the string pattern

Returns:

non zero if the string matches the pattern

29.14.2.6 FL_EXPORT const char∗ fl_filename_name (const char ∗ filename)

Gets the file name from a path.

Similar to basename(3), exceptions shown below.

#include <FL/filename.H>
[..]
const char *out;
out = fl_filename_name("/usr/lib"); // out="lib"
out = fl_filename_name("/usr/"); // out="" (basename(3) returns "usr" instead)
out = fl_filename_name("/usr"); // out="usr"
out = fl_filename_name("/"); // out="" (basename(3) returns "/" instead)
out = fl_filename_name("."); // out="."
out = fl_filename_name(".."); // out=".."

Returns:

a pointer to the char after the last slash, or to filename if there is none.

29.14.2.7 FL_EXPORT int fl_filename_relative (char ∗ to, int tolen, const char ∗ from)

Makes a filename relative to the current working directory.

#include <FL/filename.H>
[..]
chdir("/var/tmp/somedir"); // set cwd to /var/tmp/somedir
[..]
char out[1024];
fl_filename_relative(out, sizeof(out), "/var/tmp/somedir/foo.txt"); // out="foo.txt", return=1
fl_filename_relative(out, sizeof(out), "/var/tmp/foo.txt"); // out="../foo.txt", return=1
fl_filename_relative(out, sizeof(out), "foo.txt"); // out="foo.txt", return=0 (no change)
fl_filename_relative(out, sizeof(out), "./foo.txt"); // out="./foo.txt", return=0 (no change)
fl_filename_relative(out, sizeof(out), "../foo.txt"); // out="../foo.txt", return=0 (no change)

Parameters:

→ to resulting relative filename

← tolen size of the relative filename buffer

← from absolute filename

Returns:

0 if no change, non zero otherwise

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

308 Module Documentation

29.14.2.8 FL_EXPORT char∗ fl_filename_setext (char ∗ buf, int buflen, const char ∗ ext)

Replaces the extension in buf of max.

size buflen with the extension in ext.

If there’s no ’.’ in buf, ext is appended.

If ext is NULL, behaves as if it were an empty string ("").

Example

#include <FL/filename.H>
[..]
char buf[1024] = "/path/myfile.cxx";
fl_filename_setext(buf, sizeof(buf), ".txt"); // buf[] becomes "/path/myfile.txt"

Returns:

buf itself for calling convenience.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 30

Class Documentation

30.1 Fl Class Reference

The Fl is the FLTK global (static) containing state information and global methods for the current applica-
tion.

#include <Fl.H>

Static Public Member Functions

• static int add_awake_handler_ (Fl_Awake_Handler, void ∗)
Adds an awake handler for use in awake().

• static void add_check (Fl_Timeout_Handler, void ∗=0)
FLTK will call this callback just before it flushes the display and waits for events.

• static void add_fd (int fd, Fl_FD_Handler cb, void ∗=0)
See void add_fd(int fd, int when, Fl_FD_Handler cb, void∗ = 0).

• static void add_fd (int fd, int when, Fl_FD_Handler cb, void ∗=0)
Adds file descriptor fd to listen to.

• static void add_handler (Fl_Event_Handler h)
Install a function to parse unrecognized events.

• static void add_idle (Fl_Idle_Handler cb, void ∗data=0)
Adds a callback function that is called every time by Fl::wait() and also makes it act as though the timeout
is zero (this makes Fl::wait() return immediately, so if it is in a loop it is called repeatedly, and thus the idle
fucntion is called repeatedly).

• static void add_timeout (double t, Fl_Timeout_Handler, void ∗=0)
Adds a one-shot timeout callback.

• static int arg (int, char ∗∗, int &)
Consume a single switch from argv, starting at word i.

310 Class Documentation

• static void args (int, char ∗∗)
See Fl::args(int argc, char ∗∗argv, int& i, int (∗cb)(int,char∗∗,int&)).

• static int args (int, char ∗∗, int &, Fl_Args_Handler ah=0)

Consume all switches from argv.

• static int awake (Fl_Awake_Handler cb, void ∗message=0)

See void awake(void∗ message=0).

• static void awake (void ∗message=0)

The awake() method sends a message pointer to the main thread, causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending redraws can be processed.

• static void background (uchar, uchar, uchar)

Changes fl_color(FL_BACKGROUND_COLOR) to the given color, and changes the gray ramp from 32 to
56 to black to white.

• static void background2 (uchar, uchar, uchar)

Changes the alternative background color.

• static void belowmouse (Fl_Widget ∗)
Sets the widget that is below the mouse.

• static Fl_Widget ∗ belowmouse ()

Gets the widget that is below the mouse.

• static int box_dh (Fl_Boxtype)

Returns the height offset for the given boxtype.

• static int box_dw (Fl_Boxtype)

Returns the width offset for the given boxtype.

• static int box_dx (Fl_Boxtype)

Returns the X offset for the given boxtype.

• static int box_dy (Fl_Boxtype)

Returns the Y offset for the given boxtype.

• static bool cairo_autolink_context ()

Gets the current autolink mode for cairo support.

• static void cairo_autolink_context (bool alink)

when HAVE_CAIRO is defined and cairo_autolink_context() is true, any current window dc is linked to a
current context.

• static void cairo_cc (cairo_t ∗c, bool own=false)

Sets the current cairo context to c.

• static cairo_t ∗ cairo_cc ()

Gets the current cairo context linked with a fltk window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 311

• static cairo_t ∗ cairo_make_current (Fl_Window ∗w)
• static int check ()

Same as Fl::wait(0).

• static void clear_widget_pointer (Fl_Widget const ∗w)
Clears a widget pointer in the watch list.

• static int compose (int &del)
Any text editing widget should call this for each FL_KEYBOARD event.

• static void compose_reset ()
If the user moves the cursor, be sure to call Fl::compose_reset().

• static void copy (const char ∗stuff, int len, int clipboard=0)
Copies the data pointed to by stuff to the selection (0) or primary (1) clipboard.

• static int damage ()
If true then flush() will do something.

• static void damage (int d)
If true then flush() will do something.

• static void default_atclose (Fl_Window ∗, void ∗)
Default callback for window widgets.

• static void delete_widget (Fl_Widget ∗w)
Schedules a widget for deletion at the next call to the event loop.

• static void display (const char ∗)
Sets the X display to use for all windows.

• static int dnd ()
Initiate a Drag And Drop operation.

• static int dnd_text_ops ()
Gets or sets whether drag and drop text operations are supported.

• static void dnd_text_ops (int v)
Gets or sets whether drag and drop text operations are supported.

• static void do_widget_deletion ()
Deletes widgets previously scheduled for deletion.

• static int draw_box_active ()
Determines if the current draw box is active or inactive.

• static int event ()
Returns the last event that was processed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

312 Class Documentation

• static int event_alt ()
Returns non-zero if the Alt key is pressed.

• static int event_button ()
Gets which particular mouse button caused the current event.

• static int event_button1 ()
Returns non-zero if mouse button 1 is currently held down.

• static int event_button2 ()
Returns non-zero if button 2 is currently held down.

• static int event_button3 ()
Returns non-zero if button 3 is currently held down.

• static int event_buttons ()
Returns the mouse buttons state bits; if non-zero, then at least one button is pressed now.

• static void event_clicks (int i)
Manually sets the number returned by Fl::event_clicks().

• static int event_clicks ()
Returns non zero if we had a double click event.

• static int event_command ()
Returns non-zero if the FL_COMMAND key is pressed, either FL_CTRL or on OSX FL_META.

• static int event_ctrl ()
Returns non-zero if the Control key is pressed.

• static int event_dx ()
Returns the current horizontal mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int event_dy ()
Returns the current vertical mouse scrolling associated with the FL_MOUSEWHEEL event.

• static int event_inside (const Fl_Widget ∗)
Returns whether or not the mouse event is inside the given widget.

• static int event_inside (int, int, int, int)
Returns whether or not the mouse event is inside the given rectangle.

• static void event_is_click (int i)
Only i=0 works! See int event_is_click().

• static int event_is_click ()
The first form returns non-zero if the mouse has not moved far enough and not enough time has passed since
the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click".

• static int event_key (int key)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 313

Returns true if the given key was held down (or pressed) during the last event.

• static int event_key ()
Gets which key on the keyboard was last pushed.

• static int event_length ()
Returns the length of the text in Fl::event_text().

• static int event_original_key ()
Returns the keycode of the last key event, regardless of the NumLock state.

• static int event_shift ()
Returns non-zero if the Shift key is pressed.

• static int event_state (int i)
See int event_state().

• static int event_state ()
This is a bitfield of what shift states were on and what mouse buttons were held down during the most recent
event.

• static const char ∗ event_text ()
Returns the text associated with the current event, including FL_PASTE or FL_DND_RELEASE events.

• static int event_x ()
Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int event_x_root ()
Returns the mouse position on the screen of the event.

• static int event_y ()
Returns the mouse position of the event relative to the Fl_Window it was passed to.

• static int event_y_root ()
Returns the mouse position on the screen of the event.

• static void first_window (Fl_Window ∗)
See Fl_Window∗ first_window().

• static Fl_Window ∗ first_window ()
Returns the first top-level window in the list of shown() windows.

• static void flush ()
Causes all the windows that need it to be redrawn and graphics forced out through the pipes.

• static void focus (Fl_Widget ∗)
Sets the widget that will receive FL_KEYBOARD events.

• static Fl_Widget ∗ focus ()
Gets the current Fl::focus() widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

314 Class Documentation

• static void foreground (uchar, uchar, uchar)
Changes fl_color(FL_FOREGROUND_COLOR).

• static void free_color (Fl_Color, int overlay=0)
Frees the specified color from the colormap, if applicable.

• static int get_awake_handler_ (Fl_Awake_Handler &, void ∗&)
Gets the last stored awake handler for use in awake().

• static Fl_Box_Draw_F ∗ get_boxtype (Fl_Boxtype)
Gets the current box drawing function for the specified box type.

• static void get_color (Fl_Color, uchar &, uchar &, uchar &)
See unsigned get_color(Fl_Color c).

• static Fl_Color get_color (Fl_Color)
Returns the RGB value(s) for the given FLTK color index.

• static const char ∗ get_font (Fl_Font)
Gets the string for this face.

• static const char ∗ get_font_name (Fl_Font, int ∗attributes=0)
Get a human-readable string describing the family of this face.

• static int get_font_sizes (Fl_Font, int ∗&sizep)
Return an array of sizes in sizep.

• static int get_key (int key)
Returns true if the given key is held down now.

• static void get_mouse (int &, int &)
Return where the mouse is on the screen by doing a round-trip query to the server.

• static void get_system_colors ()
Read the user preference colors from the system and use them to call Fl::foreground(), Fl::background(),
and Fl::background2().

• static int gl_visual (int, int ∗alist=0)
This does the same thing as Fl::visual(int) but also requires OpenGL drawing to work.

• static void grab (Fl_Window &win)
See Fl_Window∗ grab().

• static void grab (Fl_Window ∗)
Selects the window to grab.

• static Fl_Window ∗ grab ()
This is used when pop-up menu systems are active.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 315

• static int h ()

Returns the height of the screen in pixels.

• static int handle (int, Fl_Window ∗)
Sends the event to a window for processing.

• static int has_check (Fl_Timeout_Handler, void ∗=0)

Returns 1 if the check exists and has not been called yet, 0 otherwise.

• static int has_idle (Fl_Idle_Handler cb, void ∗data=0)

Returns true if the specified idle callback is currently installed.

• static int has_timeout (Fl_Timeout_Handler, void ∗=0)

Returns true if the timeout exists and has not been called yet.

• static void lock ()

The lock() method blocks the current thread until it can safely access FLTK widgets and data.

• static Fl_Window ∗ modal ()

Returns the top-most modal() window currently shown.

• static Fl_Window ∗ next_window (const Fl_Window ∗)
Returns the next top-level window in the list of shown() windows.

• static void own_colormap ()

Makes FLTK use its own colormap.

• static void paste (Fl_Widget &receiver)

Backward compatibility only: Set things up so the receiver widget will be called with an FL_PASTE event
some time in the future for the specified clipboard.

• static void paste (Fl_Widget &receiver, int clipboard)

Pastes the data from the selection (0) or primary (1) clipboard into receiver.

• static void pushed (Fl_Widget ∗)
Sets the widget that is being pushed.

• static Fl_Widget ∗ pushed ()

Gets the widget that is being pushed.

• static Fl_Widget ∗ readqueue ()

All Fl_Widgets that don’t have a callback defined use a default callback that puts a pointer to the widget in
this queue, and this method reads the oldest widget out of this queue.

• static int ready ()

This is similar to Fl::check() except this does not call Fl::flush() or any callbacks, which is useful if your
program is in a state where such callbacks are illegal.

• static void redraw ()

Redraws all widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

316 Class Documentation

• static void release ()
Releases the current grabbed window, equals grab(0).

• static void release_widget_pointer (Fl_Widget ∗&w)
Releases a widget pointer from the watch list.

• static int reload_scheme ()
Called by scheme according to scheme name.

• static void remove_check (Fl_Timeout_Handler, void ∗=0)
Removes a check callback.

• static void remove_fd (int)
Removes a file descriptor handler.

• static void remove_fd (int, int when)
Removes a file descriptor handler.

• static void remove_handler (Fl_Event_Handler h)
Removes a previously added event handler.

• static void remove_idle (Fl_Idle_Handler cb, void ∗data=0)
Removes the specified idle callback, if it is installed.

• static void remove_timeout (Fl_Timeout_Handler, void ∗=0)
Removes a timeout callback.

• static void repeat_timeout (double t, Fl_Timeout_Handler, void ∗=0)
Repeats a timeout callback from the expiration of the previous timeout, allowing for more accurate timing.

• static int run ()
As long as any windows are displayed this calls Fl::wait() repeatedly.

• static const char ∗ scheme ()
See void scheme(const char ∗name).

• static int scheme (const char ∗)
Gets or sets the current widget scheme.

• static int screen_count ()
Gets the number of available screens.

• static void screen_xywh (int &X, int &Y, int &W, int &H, int n)
Gets the screen bounding rect for the given screen.

• static void screen_xywh (int &X, int &Y, int &W, int &H, int mx, int my)
Gets the bounding box of a screen that contains the specified screen position mx, my.

• static void screen_xywh (int &X, int &Y, int &W, int &H)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 317

Gets the bounding box of a screen that contains the mouse pointer.

• static void scrollbar_size (int W)

Sets the default scrollbar size that is used by the Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_-
Display widgets.

• static int scrollbar_size ()

Gets the default scrollbar size used by Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_Display wid-
gets.

• static void selection (Fl_Widget &owner, const char ∗, int len)

Changes the current selection.

• static void selection_owner (Fl_Widget ∗)
Back-compatibility only: The single-argument call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection.

• static Fl_Widget ∗ selection_owner ()

back-compatibility only: Gets the widget owning the current selection

• static void set_abort (Fl_Abort_Handler f)

For back compatibility, sets the void Fl::fatal handler callback.

• static void set_atclose (Fl_Atclose_Handler f)

For back compatibility, sets the Fl::atclose handler callback.

• static void set_boxtype (Fl_Boxtype, Fl_Boxtype from)

Copies the from boxtype.

• static void set_boxtype (Fl_Boxtype, Fl_Box_Draw_F ∗, uchar, uchar, uchar, uchar)

Sets the function to call to draw a specific boxtype.

• static void set_color (Fl_Color, unsigned)

Sets an entry in the fl_color index table.

• static void set_color (Fl_Color, uchar, uchar, uchar)

Sets an entry in the fl_color index table.

• static void set_font (Fl_Font, Fl_Font)

Copies one face to another.

• static void set_font (Fl_Font, const char ∗)
Changes a face.

• static Fl_Font set_fonts (const char ∗=0)

FLTK will open the display, and add every fonts on the server to the face table.

• static void set_idle (Fl_Old_Idle_Handler cb)

Sets an idle callback.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

318 Class Documentation

• static void set_labeltype (Fl_Labeltype, Fl_Labeltype from)

Sets the functions to call to draw and measure a specific labeltype.

• static void set_labeltype (Fl_Labeltype, Fl_Label_Draw_F ∗, Fl_Label_Measure_F ∗)
Sets the functions to call to draw and measure a specific labeltype.

• static int test_shortcut (Fl_Shortcut)

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button).

• static void ∗ thread_message ()

The thread_message() method returns the last message that was sent from a child by the awake() method.

• static void unlock ()

The unlock() method releases the lock that was set using the lock() method.

• static double version ()

Returns the compiled-in value of the FL_VERSION constant.

• static int visible_focus ()

Gets or sets the visible keyboard focus on buttons and other non-text widgets.

• static void visible_focus (int v)

Gets or sets the visible keyboard focus on buttons and other non-text widgets.

• static int visual (int)

Selects a visual so that your graphics are drawn correctly.

• static int w ()

Returns the width of the screen in pixels.

• static double wait (double time)

See int wait().

• static int wait ()

Waits until "something happens" and then returns.

• static void watch_widget_pointer (Fl_Widget ∗&w)

Adds a widget pointer to the widget watch list.

• static int x ()

Returns the origin of the current screen, where 0 indicates the left side of the screen.

• static int y ()

Returns the origin of the current screen, where 0 indicates the top edge of the screen.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 319

Static Public Attributes

• static void(∗ atclose)(Fl_Window ∗, void ∗) = default_atclose
Back compatibility: default window callback handler.

• static void(∗ error)(const char ∗,...) = ::error
FLTK calls Fl::error() to output a normal error message.

• static void(∗ fatal)(const char ∗,...) = ::fatal
FLTK calls Fl::fatal() to output a fatal error message.

• static const char ∗const help = helpmsg+13
Usage string displayed if Fl::args() detects an invalid argument.

• static void(∗ idle)()
The currently executing idle callback function: DO NOT USE THIS DIRECTLY!

• static void(∗ warning)(const char ∗,...) = ::warning
FLTK calls Fl::warning() to output a warning message.

30.1.1 Detailed Description

The Fl is the FLTK global (static) containing state information and global methods for the current applica-
tion.

30.1.2 Member Function Documentation

30.1.2.1 int Fl::add_awake_handler_ (Fl_Awake_Handler func, void ∗ data) [static]

Adds an awake handler for use in awake().

30.1.2.2 void Fl::add_check (Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

FLTK will call this callback just before it flushes the display and waits for events.

This is different than an idle callback because it is only called once, then FLTK calls the system and tells it
not to return until an event happens.

This can be used by code that wants to monitor the application’s state, such as to keep a display up to date.
The advantage of using a check callback is that it is called only when no events are pending. If events
are coming in quickly, whole blocks of them will be processed before this is called once. This can save
significant time and avoid the application falling behind the events.

Sample code:

bool state_changed; // anything that changes the display turns this on

void callback(void*) {
if (!state_changed) return;
state_changed = false;
do_expensive_calculation();
widget->redraw();

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

320 Class Documentation

}

main() {
Fl::add_check(callback);
return Fl::run();

}

30.1.2.3 static void Fl::add_fd (int fd, int when, Fl_FD_Handler cb, void ∗ = 0) [static]

Adds file descriptor fd to listen to.

When the fd becomes ready for reading Fl::wait() will call the callback and then return. The callback is
passed the fd and the arbitrary void∗ argument.

The second version takes a when bitfield, with the bits FL_READ, FL_WRITE, and FL_EXCEPT defined,
to indicate when the callback should be done.

There can only be one callback of each type for a file descriptor. Fl::remove_fd() gets rid of all the callbacks
for a given file descriptor.

Under UNIX any file descriptor can be monitored (files, devices, pipes, sockets, etc.). Due to limitations
in Microsoft Windows, WIN32 applications can only monitor sockets.

30.1.2.4 void Fl::add_idle (Fl_Idle_Handler cb, void ∗ data = 0) [static]

Adds a callback function that is called every time by Fl::wait() and also makes it act as though the timeout
is zero (this makes Fl::wait() return immediately, so if it is in a loop it is called repeatedly, and thus the idle
fucntion is called repeatedly).

The idle function can be used to get background processing done.

You can have multiple idle callbacks. To remove an idle callback use Fl::remove_idle().

Fl::wait() and Fl::check() call idle callbacks, but Fl::ready() does not.

The idle callback can call any FLTK functions, including Fl::wait(), Fl::check(), and Fl::ready().

FLTK will not recursively call the idle callback.

30.1.2.5 void Fl::add_timeout (double t, Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

Adds a one-shot timeout callback.

The function will be called by Fl::wait() at t seconds after this function is called. The optional void∗
argument is passed to the callback.

You can have multiple timeout callbacks. To remove a timeout callback use Fl::remove_timeout().

If you need more accurate, repeated timeouts, use Fl::repeat_timeout() to reschedule the subsequent time-
outs.

The following code will print "TICK" each second on stdout with a fair degree of accuracy:

void callback(void*) {
puts("TICK");
Fl::repeat_timeout(1.0, callback);

}

int main() {
Fl::add_timeout(1.0, callback);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 321

return Fl::run();
}

30.1.2.6 int Fl::arg (int argc, char ∗∗ argv, int & i) [static]

Consume a single switch from argv, starting at word i.

Returns the number of words eaten (1 or 2, or 0 if it is not recognized) and adds the same value to i. You
can use this function if you prefer to control the incrementing through the arguments yourself.

30.1.2.7 int Fl::args (int argc, char ∗∗ argv, int & i, Fl_Args_Handler cb = 0) [static]

Consume all switches from argv.

Returns number of words eaten Returns zero on error. ’i’ will either point at first word that does not start
with ’-’, at the error word, or after a ’–’, or at argc. If your program does not take any word arguments you
can report an error if i < argc.

FLTK provides an entirely optional command-line switch parser. You don’t have to call it if you don’t like
them! Everything it can do can be done with other calls to FLTK.

To use the switch parser, call Fl::args(...) near the start of your program. This does not open the display,
instead switches that need the display open are stashed into static variables. Then you must display your
first window by calling window->show(argc,argv), which will do anything stored in the static variables.

callback lets you define your own switches. It is called with the same argc and argv, and with i the index
of each word. The callback should return zero if the switch is unrecognized, and not change i. It should
return non-zero if the switch is recognized, and add at least 1 to i (it can add more to consume words after
the switch). This function is called before any other tests, so you can override any FLTK switch (this is
why FLTK can use very short switches instead of the long ones all other toolkits force you to use).

On return i is set to the index of the first non-switch. This is either:

• The first word that does not start with ’-’.

• The word ’-’ (used by many programs to name stdin as a file)

• The first unrecognized switch (return value is 0).

• argc

The return value is i unless an unrecognized switch is found, in which case it is zero. If your program takes
no arguments other than switches you should produce an error if the return value is less than argc.

All switches except -bg2 may be abbreviated one letter and case is ignored:

• -bg color or -background color

Sets the background color using Fl::background().

• -bg2 color or -background2 color

Sets the secondary background color using Fl::background2().

• -display host:n.n

Sets the X display to use; this option is silently ignored under WIN32 and MacOS.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

322 Class Documentation

• -dnd and -nodnd

Enables or disables drag and drop text operations using Fl::dnd_text_ops().

• -fg color or -foreground color

Sets the foreground color using Fl::foreground().

• -geometry WxH+X+Y

Sets the initial window position and size according to the standard X geometry string.

• -iconic

Iconifies the window using Fl_Window::iconize().

• -kbd and -nokbd

Enables or disables visible keyboard focus for non-text widgets using Fl::visible_focus().

• -name string

Sets the window class using Fl_Window::xclass().

• -scheme string

Sets the widget scheme using Fl::scheme().

• -title string

Sets the window title using Fl_Window::label().

• -tooltips and -notooltips

Enables or disables tooltips using Fl_Tooltip::enable().

The second form of Fl::args() is useful if your program does not have command line switches of its own.
It parses all the switches, and if any are not recognized it calls Fl::abort(Fl::help).

A usage string is displayed if Fl::args() detects an invalid argument on the command-line. You can change
the message by setting the Fl::help pointer.

30.1.2.8 void Fl::background (uchar r, uchar g, uchar b) [static]

Changes fl_color(FL_BACKGROUND_COLOR) to the given color, and changes the gray ramp from 32
to 56 to black to white.

These are the colors used as backgrounds by almost all widgets and used to draw the edges of all the
boxtypes.

30.1.2.9 void Fl::background2 (uchar r, uchar g, uchar b) [static]

Changes the alternative background color.

This color is used as a background by Fl_Input and other text widgets.

This call may change fl_color(FL_FOREGROUND_COLOR) if it does not provide sufficient contrast to
FL_BACKGROUND2_COLOR.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 323

30.1.2.10 int Fl::box_dh (Fl_Boxtype t) [static]

Returns the height offset for the given boxtype.

See also:

box_dy().

30.1.2.11 int Fl::box_dw (Fl_Boxtype t) [static]

Returns the width offset for the given boxtype.

See also:

box_dy().

30.1.2.12 int Fl::box_dx (Fl_Boxtype t) [static]

Returns the X offset for the given boxtype.

See also:

box_dy()

30.1.2.13 int Fl::box_dy (Fl_Boxtype t) [static]

Returns the Y offset for the given boxtype.

These functions return the offset values necessary for a given boxtype, useful for computing the area inside
a box’s borders, to prevent overdrawing the borders.

For instance, in the case of a boxtype like FL_DOWN_BOX where the border width might be 2 pixels
all around, the above functions would return 2, 2, 4, and 4 for box_dx, box_dy, box_dw, and box_dh
respectively.

An example to compute the area inside a widget’s box():

int X = yourwidget->x() + Fl::box_dx(yourwidget->box());
int Y = yourwidget->y() + Fl::box_dy(yourwidget->box());
int W = yourwidget->w() - Fl::box_dw(yourwidget->box());
int H = yourwidget->h() - Fl::box_dh(yourwidget->box());

These functions are mainly useful in the draw() code for deriving custom widgets, where one wants to
avoid drawing over the widget’s own border box().

30.1.2.14 int Fl::check () [static]

Same as Fl::wait(0).

Calling this during a big calculation will keep the screen up to date and the interface responsive:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

324 Class Documentation

while (!calculation_done()) {
calculate();
Fl::check();
if (user_hit_abort_button()) break;
}

The returns non-zero if any windows are displayed, and 0 if no windows are displayed (this is likely to
change in future versions of FLTK).

30.1.2.15 static int Fl::damage () [inline, static]

If true then flush() will do something.

30.1.2.16 void Fl::display (const char ∗ d) [static]

Sets the X display to use for all windows.

Actually this just sets the environment variable $DISPLAY to the passed string, so this only works before
you show() the first window or otherwise open the display, and does nothing useful under WIN32.

30.1.2.17 static int Fl::dnd_text_ops () [inline, static]

Gets or sets whether drag and drop text operations are supported.

This specifically affects whether selected text can be dragged from text fields or dragged within a text field
as a cut/paste shortcut.

30.1.2.18 static void Fl::dnd_text_ops (int v) [inline, static]

Gets or sets whether drag and drop text operations are supported.

This specifically affects whether selected text can be dragged from text fields or dragged within a text field
as a cut/paste shortcut.

30.1.2.19 int Fl::draw_box_active () [static]

Determines if the current draw box is active or inactive.

If inactive, the box color is changed by the inactive color.

30.1.2.20 void Fl::flush () [static]

Causes all the windows that need it to be redrawn and graphics forced out through the pipes.

This is what wait() does before looking for events.

Note: in multi-threaded applications you should only call Fl::flush() from the main thread. If a child thread
needs to trigger a redraw event, it should instead call Fl::awake() to get the main thread to process the event
queue.

30.1.2.21 void Fl::foreground (uchar r, uchar g, uchar b) [static]

Changes fl_color(FL_FOREGROUND_COLOR).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 325

30.1.2.22 int Fl::get_awake_handler_ (Fl_Awake_Handler & func, void ∗& data) [static]

Gets the last stored awake handler for use in awake().

30.1.2.23 Fl_Box_Draw_F ∗ Fl::get_boxtype (Fl_Boxtype t) [static]

Gets the current box drawing function for the specified box type.

30.1.2.24 void Fl::get_system_colors () [static]

Read the user preference colors from the system and use them to call Fl::foreground(), Fl::background(),
and Fl::background2().

This is done by Fl_Window::show(argc,argv) before applying the -fg and -bg switches.

On X this reads some common values from the Xdefaults database. KDE users can set these values by
running the "krdb" program, and newer versions of KDE set this automatically if you check the "apply
style to other X programs" switch in their control panel.

30.1.2.25 int Fl::gl_visual (int mode, int ∗ alist = 0) [static]

This does the same thing as Fl::visual(int) but also requires OpenGL drawing to work.

This must be done if you want to draw in normal windows with OpenGL with gl_start() and gl_end(). It
may be useful to call this so your X windows use the same visual as an Fl_Gl_Window, which on some
servers will reduce colormap flashing.

See Fl_Gl_Window for a list of additional values for the argument.

30.1.2.26 void Fl::own_colormap () [static]

Makes FLTK use its own colormap.

This may make FLTK display better and will reduce conflicts with other programs that want lots of colors.
However the colors may flash as you move the cursor between windows.

This does nothing if the current visual is not colormapped.

30.1.2.27 int Fl::ready () [static]

This is similar to Fl::check() except this does not call Fl::flush() or any callbacks, which is useful if your
program is in a state where such callbacks are illegal.

This returns true if Fl::check() would do anything (it will continue to return true until you call Fl::check()
or Fl::wait()).

while (!calculation_done()) {
calculate();
if (Fl::ready()) {

do_expensive_cleanup();
Fl::check();
if (user_hit_abort_button()) break;

}
}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

326 Class Documentation

30.1.2.28 static void Fl::release () [inline, static]

Releases the current grabbed window, equals grab(0).

Deprecated

Use Fl::grab(0) instead.

See also:

Fl_Window∗ grab()

30.1.2.29 int Fl::reload_scheme () [static]

Called by scheme according to scheme name.

Loads or reloads the current scheme selection. See void scheme(const char ∗name)

30.1.2.30 void Fl::remove_check (Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

Removes a check callback.

It is harmless to remove a check callback that no longer exists.

30.1.2.31 static void Fl::remove_fd (int) [static]

Removes a file descriptor handler.

30.1.2.32 static void Fl::remove_fd (int, int when) [static]

Removes a file descriptor handler.

30.1.2.33 void Fl::remove_timeout (Fl_Timeout_Handler cb, void ∗ argp = 0) [static]

Removes a timeout callback.

It is harmless to remove a timeout callback that no longer exists.

30.1.2.34 void Fl::repeat_timeout (double t, Fl_Timeout_Handler cb, void ∗ argp = 0)
[static]

Repeats a timeout callback from the expiration of the previous timeout, allowing for more accurate timing.

You may only call this method inside a timeout callback.

The following code will print "TICK" each second on stdout with a fair degree of accuracy:

void callback(void*) {
puts("TICK");
Fl::repeat_timeout(1.0, callback);

}

int main() {

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 327

Fl::add_timeout(1.0, callback);
return Fl::run();

}

30.1.2.35 int Fl::run () [static]

As long as any windows are displayed this calls Fl::wait() repeatedly.

When all the windows are closed it returns zero (supposedly it would return non-zero on any errors, but
FLTK calls exit directly for these). A normal program will end main() with return Fl::run();.

30.1.2.36 int Fl::scheme (const char ∗ s) [static]

Gets or sets the current widget scheme.

NULL will use the scheme defined in the FLTK_SCHEME environment variable or the scheme resource
under X11. Otherwise, any of the following schemes can be used:

• "none" - This is the default look-n-feel which resembles old Windows (95/98/Me/NT/2000) and old
GTK/KDE

• "plastic" - This scheme is inspired by the Aqua user interface on Mac OS X

• "gtk+" - This scheme is inspired by the Red Hat Bluecurve theme

30.1.2.37 void Fl::scrollbar_size (int W) [static]

Sets the default scrollbar size that is used by the Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_-
Display widgets.

Parameters:

←W The new default size for widget scrollbars, in pixels.

30.1.2.38 int Fl::scrollbar_size () [static]

Gets the default scrollbar size used by Fl_Browser_, Fl_Help_View, Fl_Scroll, and Fl_Text_Display wid-
gets.

Returns:

The default size for widget scrollbars, in pixels.

30.1.2.39 void Fl::set_boxtype (Fl_Boxtype to, Fl_Boxtype from) [static]

Copies the from boxtype.

30.1.2.40 void Fl::set_boxtype (Fl_Boxtype t, Fl_Box_Draw_F ∗ f, uchar a, uchar b, uchar c,
uchar d) [static]

Sets the function to call to draw a specific boxtype.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

328 Class Documentation

30.1.2.41 static void Fl::set_idle (Fl_Old_Idle_Handler cb) [inline, static]

Sets an idle callback.

Deprecated

This method is obsolete - use the add_idle() method instead.

30.1.2.42 static void Fl::set_labeltype (Fl_Labeltype, Fl_Labeltype from) [static]

Sets the functions to call to draw and measure a specific labeltype.

30.1.2.43 void Fl::set_labeltype (Fl_Labeltype t, Fl_Label_Draw_F ∗ f, Fl_Label_Measure_F ∗
m) [static]

Sets the functions to call to draw and measure a specific labeltype.

30.1.2.44 double Fl::version () [static]

Returns the compiled-in value of the FL_VERSION constant.

This is useful for checking the version of a shared library.

30.1.2.45 static int Fl::visible_focus () [inline, static]

Gets or sets the visible keyboard focus on buttons and other non-text widgets.

The default mode is to enable keyboard focus for all widgets.

30.1.2.46 static void Fl::visible_focus (int v) [inline, static]

Gets or sets the visible keyboard focus on buttons and other non-text widgets.

The default mode is to enable keyboard focus for all widgets.

30.1.2.47 int Fl::visual (int flags) [static]

Selects a visual so that your graphics are drawn correctly.

This is only allowed before you call show() on any windows. This does nothing if the default visual
satisfies the capabilities, or if no visual satisfies the capabilities, or on systems that don’t have such brain-
dead notions.

Only the following combinations do anything useful:

• Fl::visual(FL_RGB)

Full/true color (if there are several depths FLTK chooses the largest). Do this if you use fl_draw_-
image for much better (non-dithered) output.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.1 Fl Class Reference 329

• Fl::visual(FL_RGB8)

Full color with at least 24 bits of color. FL_RGB will always pick this if available, but if not it will
happily return a less-than-24 bit deep visual. This call fails if 24 bits are not available.

• Fl::visual(FL_DOUBLE|FL_INDEX)

Hardware double buffering. Call this if you are going to use Fl_Double_Window.

• Fl::visual(FL_DOUBLE|FL_RGB)

• Fl::visual(FL_DOUBLE|FL_RGB8)

Hardware double buffering and full color.

This returns true if the system has the capabilities by default or FLTK suceeded in turing them on. Your
program will still work even if this returns false (it just won’t look as good).

30.1.2.48 int Fl::wait () [static]

Waits until "something happens" and then returns.

Call this repeatedly to "run" your program. You can also check what happened each time after this returns,
which is quite useful for managing program state.

What this really does is call all idle callbacks, all elapsed timeouts, call Fl::flush() to get the screen to
update, and then wait some time (zero if there are idle callbacks, the shortest of all pending timeouts, or
infinity), for any events from the user or any Fl::add_fd() callbacks. It then handles the events and calls the
callbacks and then returns.

The return value of the first form is non-zero if there are any visible windows - this may change in future
versions of FLTK.

The second form waits a maximum of time seconds. It can return much sooner if something happens.

The return value is positive if an event or fd happens before the time elapsed. It is zero if nothing happens
(on Win32 this will only return zero if time is zero). It is negative if an error occurs (this will happen on
UNIX if a signal happens).

30.1.3 Member Data Documentation

30.1.3.1 const char ∗const Fl::help = helpmsg+13 [static]

Usage string displayed if Fl::args() detects an invalid argument.

This may be changed to point to customized text at run-time.

30.1.3.2 void(∗ Fl::idle)() () [static]

The currently executing idle callback function: DO NOT USE THIS DIRECTLY!

This is now used as part of a higher level system allowing multiple idle callback functions to be called.

See also:

add_idle(), remove_idle()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

330 Class Documentation

The documentation for this class was generated from the following files:

• Fl.H
• Fl.cxx
• Fl_abort.cxx
• Fl_add_idle.cxx
• Fl_arg.cxx
• fl_boxtype.cxx
• fl_color.cxx
• fl_color_mac.cxx
• fl_color_win32.cxx
• Fl_compose.cxx
• Fl_display.cxx
• fl_dnd_mac.cxx
• fl_dnd_win32.cxx
• fl_dnd_x.cxx
• Fl_get_key.cxx
• Fl_get_key_mac.cxx
• Fl_get_key_win32.cxx
• Fl_get_system_colors.cxx
• Fl_grab.cxx
• fl_labeltype.cxx
• Fl_lock.cxx
• Fl_own_colormap.cxx
• fl_set_font.cxx
• fl_set_fonts_mac.cxx
• fl_set_fonts_win32.cxx
• fl_set_fonts_x.cxx
• fl_set_fonts_xft.cxx
• fl_shortcut.cxx
• Fl_visual.cxx
• Fl_Widget.cxx
• Fl_Window.cxx
• gl_start.cxx
• screen_xywh.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.2 Fl_Abstract_Printer Class Reference 331

30.2 Fl_Abstract_Printer Class Reference

A virtual class for print support with several platform-specific implementations.

#include <Fl_Abstract_Printer.H>

Inheritance diagram for Fl_Abstract_Printer::

Fl_Abstract_Printer

Fl_Device

Fl_Printer Fl_PSfile_Device

Public Member Functions

• virtual void end_job (void)
To be called at the end of a print job.

• virtual int end_page (void)
To be called at the end of each page.

• virtual void margins (int ∗left, int ∗top, int ∗right, int ∗bottom)
Computes the dimensions of margins that lie between the printable page area and the full page.

• void origin (int ∗x, int ∗y)
Computes the page coordinates of the current origin of graphics functions.

• virtual void origin (int x, int y)
Sets the position in page coordinates of the origin of graphics functions.

• void print_widget (Fl_Widget ∗widget, int delta_x=0, int delta_y=0)
Draws the widget on the printed page.

• void print_window_part (Fl_Window ∗win, int x, int y, int w, int h, int delta_x=0, int delta_y=0)
Prints a rectangular part of an on-screen window.

• virtual int printable_rect (int ∗w, int ∗h)
Computes the width and height of the printable area of the page.

• virtual void rotate (float angle)
Rotates the graphics operations relatively to paper.

• virtual void scale (float scale_x, float scale_y)
Changes the scaling of page coordinates.

• Fl_Device ∗ set_current (void)
Sets this device (display, printer, local file) as the target of future graphics calls.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

332 Class Documentation

• virtual int start_job (int pagecount, int ∗frompage=NULL, int ∗topage=NULL)

Starts a print job.

• virtual int start_page (void)

Starts a new printed page.

• virtual void translate (int x, int y)

Translates the current graphics origin accounting for the current rotation.

• virtual void untranslate (void)

Undoes the effect of a previous translate() call.

Protected Member Functions

• Fl_Abstract_Printer (void)

the constructor

Protected Attributes

• void ∗ gc

the printer’s graphics context, if there’s one, NULL otherwise

• struct chain_elt ∗ image_list_

chained list of Fl_Image’s used in this page

• int x_offset

horizontal offset to the origin of graphics coordinates

• int y_offset

vertical offset to the origin of graphics coordinates

Friends

• class Fl_Bitmap
• class Fl_Pixmap
• class Fl_RGB_Image

30.2.1 Detailed Description

A virtual class for print support with several platform-specific implementations.

This class has no public constructor: don’t instantiate it; use Fl_Printer or Fl_PSfile_Device instead.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.2 Fl_Abstract_Printer Class Reference 333

30.2.2 Member Function Documentation

30.2.2.1 int Fl_Abstract_Printer::end_page (void) [virtual]

To be called at the end of each page.

Returns:

0 iff OK.

Reimplemented in Fl_Printer.

30.2.2.2 void Fl_Abstract_Printer::margins (int ∗ left, int ∗ top, int ∗ right, int ∗ bottom)
[virtual]

Computes the dimensions of margins that lie between the printable page area and the full page.

Values are in the same unit as that used by FLTK drawing functions. They are changed by scale() calls.

Parameters:

→ left If non-null, ∗left is set to the left margin size.

→ top If non-null, ∗top is set to the top margin size.

→ right If non-null, ∗right is set to the right margin size.

→ bottom If non-null, ∗bottom is set to the bottom margin size.

Reimplemented in Fl_Printer.

30.2.2.3 void Fl_Abstract_Printer::origin (int ∗ x, int ∗ y)

Computes the page coordinates of the current origin of graphics functions.

Parameters:

→ x If non-null, ∗x is set to the horizontal page offset of graphics origin.

→ y Same as above, vertically.

Reimplemented in Fl_Printer.

30.2.2.4 void Fl_Abstract_Printer::origin (int x, int y) [virtual]

Sets the position in page coordinates of the origin of graphics functions.

Arguments should be expressed relatively to the result of a previous printable_rect() call. That is,
printable_rect(&w, &h); origin(w/2, 0); sets the graphics origin at the top center of the
page printable area. Origin() calls are not affected by rotate() calls. Successive origin() calls don’t combine
their effects.

Parameters:

← x Horizontal position in page coordinates of the desired origin of graphics functions.

← y Same as above, vertically.

Reimplemented in Fl_Printer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

334 Class Documentation

30.2.2.5 void Fl_Abstract_Printer::print_widget (Fl_Widget ∗ widget, int delta_x = 0, int delta_y
= 0)

Draws the widget on the printed page.

The widget’s position on the printed page is determined by the last call to origin() and by the optional
delta_x and delta_y arguments. Its dimensions are in points unless there was a previous call to scale().

Parameters:

← widget Any FLTK widget (e.g., standard, custom, window).

← delta_x Optional horizontal offset for positioning the widget relatively to the current origin of
graphics functions.

← delta_y Same as above, vertically.

Reimplemented in Fl_Printer.

30.2.2.6 void Fl_Abstract_Printer::print_window_part (Fl_Window ∗ win, int x, int y, int w, int
h, int delta_x = 0, int delta_y = 0)

Prints a rectangular part of an on-screen window.

Parameters:

win The window from where to capture.

x The rectangle left

y The rectangle top

w The rectangle width

h The rectangle height

delta_x Optional horizontal offset from current graphics origin where to print the captured rectangle.

delta_y As above, vertically.

Reimplemented in Fl_Printer.

30.2.2.7 int Fl_Abstract_Printer::printable_rect (int ∗ w, int ∗ h) [virtual]

Computes the width and height of the printable area of the page.

Values are in the same unit as that used by FLTK drawing functions, are unchanged by calls to origin(), but
are changed by scale() calls. Values account for the user-selected paper type and print orientation.

Returns:

0 iff OK.

Reimplemented in Fl_Printer.

30.2.2.8 void Fl_Abstract_Printer::rotate (float angle) [virtual]

Rotates the graphics operations relatively to paper.

The rotation is centered on the current graphics origin. Successive rotate() calls don’t combine their ef-
fects.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.2 Fl_Abstract_Printer Class Reference 335

Parameters:

angle Rotation angle in counterclockwise degrees.

Reimplemented in Fl_Printer.

30.2.2.9 void Fl_Abstract_Printer::scale (float scale_x, float scale_y) [virtual]

Changes the scaling of page coordinates.

This function also resets the origin of graphics functions at top left of printable page area. After a scale()
call, do a printable_rect() call to get the new dimensions of the printable page area. Successive scale() calls
don’t combine their effects.

Parameters:

scale_x Horizontal dimensions of plot are multiplied by this quantity.

scale_y Same as above, vertically.

Reimplemented in Fl_Printer.

30.2.2.10 Fl_Device ∗ Fl_Abstract_Printer::set_current (void) [virtual]

Sets this device (display, printer, local file) as the target of future graphics calls.

Returns:

The current target device of graphics calls.

Reimplemented from Fl_Device.

30.2.2.11 int Fl_Abstract_Printer::start_job (int pagecount, int ∗ frompage = NULL, int ∗ topage =
NULL) [virtual]

Starts a print job.

Parameters:

← pagecount the total number of pages of the job

→ frompage if non-null, ∗frompage is set to the first page the user wants printed

→ topage if non-null, ∗topage is set to the last page the user wants printed

Returns:

0 iff OK

Reimplemented in Fl_Printer.

30.2.2.12 int Fl_Abstract_Printer::start_page (void) [virtual]

Starts a new printed page.

The page coordinates are initially in points, i.e., 1/72 inch, and with origin at the top left of the printable
page area.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

336 Class Documentation

Returns:

0 iff OK

Reimplemented in Fl_Printer.

30.2.2.13 void Fl_Abstract_Printer::translate (int x, int y) [virtual]

Translates the current graphics origin accounting for the current rotation.

This function is only useful after a rotate() call. Each translate() call must be matched by an untranslate()
call. Successive translate() calls add up their effects.

Reimplemented in Fl_Printer.

The documentation for this class was generated from the following files:

• Fl_Abstract_Printer.H
• Fl_Abstract_Printer.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.3 Fl_Adjuster Class Reference 337

30.3 Fl_Adjuster Class Reference

The Fl_Adjuster widget was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range.

#include <Fl_Adjuster.H>

Inheritance diagram for Fl_Adjuster::

Fl_Adjuster

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Adjuster (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Adjuster widget using the given position, size, and label string.

• int soft () const

If "soft" is turned on, the user is allowed to drag the value outside the range.

• void soft (int s)

If "soft" is turned on, the user is allowed to drag the value outside the range.

Protected Member Functions

• void draw ()

Draws the widget.

• int handle (int)

Handles the specified event.

• void value_damage ()

Asks for partial redraw.

30.3.1 Detailed Description

The Fl_Adjuster widget was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

338 Class Documentation

Figure 30.1: Fl_Adjuster

When you press a button and drag to the right the value increases. When you drag to the left it decreases.
The largest button adjusts by 100 ∗ step(), the next by 10 ∗ step() and that smallest button by step(). Clicking
on the buttons increments by 10 times the amount dragging by a pixel does. Shift + click decrements by 10
times the amount.

30.3.2 Constructor & Destructor Documentation

30.3.2.1 Fl_Adjuster::Fl_Adjuster (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Adjuster widget using the given position, size, and label string.

It looks best if one of the dimensions is 3 times the other.

Inherited destructor destroys the Valuator.

30.3.3 Member Function Documentation

30.3.3.1 void Fl_Adjuster::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.3.3.2 int Fl_Adjuster::handle (int event) [protected, virtual]

Handles the specified event.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.3 Fl_Adjuster Class Reference 339

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.3.3.3 int Fl_Adjuster::soft () const [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

30.3.3.4 void Fl_Adjuster::soft (int s) [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

The documentation for this class was generated from the following files:

• Fl_Adjuster.H
• Fl_Adjuster.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

340 Class Documentation

30.4 Fl_Bitmap Class Reference

The Fl_Bitmap class supports caching and drawing of mono-color (bitmap) images.

#include <Fl_Bitmap.H>

Inheritance diagram for Fl_Bitmap::

Fl_Bitmap

Fl_Image

Fl_XBM_Image

Public Member Functions

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)

The draw() methods draw the image.

• Fl_Bitmap (const char ∗bits, int W, int H)

The constructors create a new bitmap from the specified bitmap data.

• Fl_Bitmap (const uchar ∗bits, int W, int H)

The constructors create a new bitmap from the specified bitmap data.

• virtual void label (Fl_Menu_Item ∗m)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void label (Fl_Widget ∗w)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

• virtual ∼Fl_Bitmap ()

The destructor free all memory and server resources that are used by the bitmap.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.4 Fl_Bitmap Class Reference 341

Public Attributes

• int alloc_array

Non-zero if array points to bitmap data allocated internally.

• const uchar ∗ array

pointer to raw bitmap data

30.4.1 Detailed Description

The Fl_Bitmap class supports caching and drawing of mono-color (bitmap) images.

Images are drawn using the current color.

30.4.2 Constructor & Destructor Documentation

30.4.2.1 Fl_Bitmap::Fl_Bitmap (const uchar ∗ bits, int W, int H) [inline]

The constructors create a new bitmap from the specified bitmap data.

30.4.2.2 Fl_Bitmap::Fl_Bitmap (const char ∗ array, int W, int H) [inline]

The constructors create a new bitmap from the specified bitmap data.

30.4.3 Member Function Documentation

30.4.3.1 Fl_Image∗ Fl_Bitmap::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.4.3.2 Fl_Image ∗ Fl_Bitmap::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.4.3.3 void Fl_Bitmap::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

342 Class Documentation

30.4.3.4 void Fl_Bitmap::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.4.3.5 void Fl_Bitmap::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.4.3.6 void Fl_Bitmap::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.4.3.7 void Fl_Bitmap::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Bitmap.H
• Fl_Bitmap.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.5 Fl_BMP_Image Class Reference 343

30.5 Fl_BMP_Image Class Reference

The Fl_BMP_Image class supports loading, caching, and drawing of Windows Bitmap (BMP) image files.

#include <Fl_BMP_Image.H>

Inheritance diagram for Fl_BMP_Image::

Fl_BMP_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_BMP_Image (const char ∗filename)
The constructor loads the named BMP image from the given bmp filename.

30.5.1 Detailed Description

The Fl_BMP_Image class supports loading, caching, and drawing of Windows Bitmap (BMP) image files.

30.5.2 Constructor & Destructor Documentation

30.5.2.1 Fl_BMP_Image::Fl_BMP_Image (const char ∗ bmp)

The constructor loads the named BMP image from the given bmp filename.

The inherited destructor free all memory and server resources that are used by the image.

The destructor free all memory and server resources that are used by the image

The documentation for this class was generated from the following files:

• Fl_BMP_Image.H
• Fl_BMP_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

344 Class Documentation

30.6 Fl_Box Class Reference

This widget simply draws its box, and possibly it’s label.

#include <Fl_Box.H>

Inheritance diagram for Fl_Box::

Fl_Box

Fl_Widget

Public Member Functions

• Fl_Box (Fl_Boxtype b, int X, int Y, int W, int H, const char ∗l)
See Fl_Box::Fl_Box(int x, int y, int w, int h, const char ∗ = 0).

• Fl_Box (int X, int Y, int W, int H, const char ∗l=0)
– The first constructor sets box() to FL_NO_BOX, which means it is invisible.

• virtual int handle (int)
Handles the specified event.

Protected Member Functions

• void draw ()
Draws the widget.

30.6.1 Detailed Description

This widget simply draws its box, and possibly it’s label.

Putting it before some other widgets and making it big enough to surround them will let you draw a frame
around them.

30.6.2 Constructor & Destructor Documentation

30.6.2.1 Fl_Box::Fl_Box (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

• The first constructor sets box() to FL_NO_BOX, which means it is invisible.

However such widgets are useful as placeholders or Fl_Group::resizable() values. To change the box to
something visible, use box(n).

• The second form of the constructor sets the box to the specified box type.

The destructor removes the box.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.6 Fl_Box Class Reference 345

30.6.3 Member Function Documentation

30.6.3.1 void Fl_Box::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.6.3.2 int Fl_Box::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Box.H
• Fl_Box.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

346 Class Documentation

30.7 Fl_Browser Class Reference

The Fl_Browser widget displays a scrolling list of text lines, and manages all the storage for the text.

#include <Fl_Browser.H>

Inheritance diagram for Fl_Browser::

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Fl_File_Browser Fl_Hold_Browser Fl_Multi_Browser Fl_Select_Browser

Public Types

• enum Fl_Line_Position { TOP, BOTTOM, MIDDLE }

For internal use only?

Public Member Functions

• void add (const char ∗newtext, void ∗d=0)

Adds a new line to the end of the browser.

• void bottomline (int line)

Scrolls the browser so the bottom item in the browser is showing the specified line.

• void clear ()

Removes all the lines in the browser.

• void column_char (char c)

Sets the column separator to c.

• char column_char () const

Gets the current column separator character.

• void column_widths (const int ∗arr)

Sets the current array to arr.

• const int ∗ column_widths () const

Gets the current column width array.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 347

• void data (int line, void ∗d)
Sets the user data for specified line to d.

• void ∗ data (int line) const
Returns the user data() for specified line.

• void display (int line, int val=1)
For back compatibility.

• int displayed (int line) const
Returns non-zero if line has been scrolled to a position where it is being displayed.

• Fl_Browser (int X, int Y, int W, int H, const char ∗L=0)
The constructor makes an empty browser.

• void format_char (char c)
Sets the current format code prefix character to c.

• char format_char () const
Gets the current format code prefix character, which by default is ’@’.

• void hide ()
Hides the entire Fl_Browser widget – opposite of show().

• void hide (int line)
Makes line invisible, preventing selection by the user.

• Fl_Image ∗ icon (int line) const
Returns the icon currently defined for line.

• void icon (int line, Fl_Image ∗icon)
Set the image icon for line to the value icon.

• void insert (int line, const char ∗newtext, void ∗d=0)
Insert a new entry whose label is newtext above given line, optional data d.

• void lineposition (int line, Fl_Line_Position pos)
Updates the browser so that line is shown at position pos.

• int load (const char ∗filename)
Clears the browser and reads the file, adding each line from the file to the browser.

• void make_visible (int line)
Make the item at the specified line visible().

• void middleline (int line)
Scrolls the browser so the middle item in the browser is showing the specified line.

• void move (int to, int from)
Line from is removed and reinserted at to.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

348 Class Documentation

• void remove (int line)
Remove entry for given line number, making the browser one line shorter.

• void remove_icon (int line)
Removes the icon for line.

• void replace (int a, const char ∗b)
For back compatibility only.

• int select (int line, int val=1)
Sets the selection state of the item at line to the value val.

• int selected (int line) const
Returns 1 if specified line is selected, 0 if not.

• void show ()
Shows the entire Fl_Browser widget – opposite of hide().

• void show (int line)
Makes line visible, and available for selection by user.

• void size (int W, int H)
Changes the size of the widget.

• int size () const
Returns how many lines are in the browser.

• void swap (int a, int b)
Swaps two browser lines a and b.

• void text (int line, const char ∗newtext)
Sets the text for the specified line to newtext.

• const char ∗ text (int line) const
Returns the label text for the specified line.

• void topline (int line)
Scrolls the browser so the top item in the browser is showing the specified line.

• int topline () const
Returns the line that is currently visible at the top of the browser.

• void value (int line)
Sets the browser’s value(), which selects the specified line.

• int value () const
Returns the line number of the currently selected line, or 0 if none.

• int visible (int line) const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 349

Returns non-zero if the specified line is visible, 0 if hidden.

• ∼Fl_Browser ()
The destructor deletes all list items and destroys the browser.

Protected Member Functions

• FL_BLINE ∗ _remove (int line)
Removes the item at the specified line.

• FL_BLINE ∗ find_line (int line) const
Returns the item for specified line.

• int full_height () const
The height of the entire list of all visible() items in pixels.

• int incr_height () const
The default ’average’ item height (including inter-item spacing) in pixels.

• void insert (int line, FL_BLINE ∗item)
Insert specified item above line.

• void ∗ item_at (int line) const
Return the item at specified line.

• void item_draw (void ∗item, int X, int Y, int W, int H) const
Draws item at the position specified by X Y W H.

• void ∗ item_first () const
Returns the very first item in the list.

• int item_height (void ∗item) const
Returns height of item in pixels.

• void ∗ item_last () const
Returns the very last item in the list.

• void ∗ item_next (void ∗item) const
Returns the next item after item.

• void ∗ item_prev (void ∗item) const
Returns the previous item before item.

• void item_select (void ∗item, int val)
Change the selection state of item to the value val.

• int item_selected (void ∗item) const
See if item is selected.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

350 Class Documentation

• void item_swap (void ∗a, void ∗b)
Swap the items a and b.

• const char ∗ item_text (void ∗item) const
Returns the label text for item.

• int item_width (void ∗item) const
Returns width of item in pixels.

• int lineno (void ∗item) const
Returns line number corresponding to item, or zero if not found.

• void swap (FL_BLINE ∗a, FL_BLINE ∗b)
Swap the two items a and b.

30.7.1 Detailed Description

The Fl_Browser widget displays a scrolling list of text lines, and manages all the storage for the text.

This is not a text editor or spreadsheet! But it is useful for showing a vertical list of named objects to the
user.

Each line in the browser is identified by number. The numbers start at one (this is so that zero can be
reserved for "no line" in the selective browsers). Unless otherwise noted, the methods do not check to see
if the passed line number is in range and legal. It must always be greater than zero and <= size().

Each line contains a null-terminated string of text and a void ∗ data pointer. The text string is displayed,
the void ∗ pointer can be used by the callbacks to reference the object the text describes.

The base class does nothing when the user clicks on it. The subclasses Fl_Select_Browser, Fl_Hold_-
Browser, and Fl_Multi_Browser react to user clicks to select lines in the browser and do callbacks.

The base class Fl_Browser_ provides the scrolling and selection mechanisms of this and all the subclasses,
but the dimensions and appearance of each item are determined by the subclass. You can use Fl_Browser_
to display information other than text, or text that is dynamically produced from your own data structures.
If you find that loading the browser is a lot of work or is inefficient, you may want to make a subclass of
Fl_Browser_.

Some common coding patterns used for working with Fl_Browser:

// How to loop through all the items in the browser
for (int t=1; t<=browser->size(); t++) { // index 1 based..!

printf("item #%d, label=’%s’\n", t, browser->text(t));
}

Note: If you are subclassing Fl_Browser, it’s more efficient to use the protected methods item_first() and
item_next(), since Fl_Browser internally uses linked lists to manage the browser’s items. For more info,
see find_item(int).

30.7.2 Constructor & Destructor Documentation

30.7.2.1 Fl_Browser::Fl_Browser (int X, int Y, int W, int H, const char ∗ L = 0)

The constructor makes an empty browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 351

Parameters:

← X,Y,W,H position and size.

← L label string, may be NULL.

30.7.3 Member Function Documentation

30.7.3.1 FL_BLINE ∗ Fl_Browser::_remove (int line) [protected]

Removes the item at the specified line.

Caveat: See efficiency note in find_line(). You must call redraw() to make any changes visible.

Parameters:

← line The line number to be removed. (1 based) Must be in range!

Returns:

Pointer to browser item that was removed (and is no longer valid).

See also:

add(), insert(), remove(), swap(int,int), clear()

30.7.3.2 void Fl_Browser::add (const char ∗ newtext, void ∗ d = 0)

Adds a new line to the end of the browser.

The text string newtextmay contain format characters; see format_char() for details. newtext is copied
using the strdup() function, and can be NULL to make a blank line.

The optional void∗ argument d will be the data() for the new item.

Parameters:

← newtext The label text used for the added item

← d Optional user data() for the item (0 if unspecified)

See also:

add(), insert(), remove(), swap(int,int), clear()

30.7.3.3 void Fl_Browser::bottomline (int line) [inline]

Scrolls the browser so the bottom item in the browser is showing the specified line.

Parameters:

← line The line to be displayed at the bottom.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

352 Class Documentation

30.7.3.4 void Fl_Browser::clear ()

Removes all the lines in the browser.

See also:

add(), insert(), remove(), swap(int,int), clear()

Reimplemented from Fl_Group.

30.7.3.5 void Fl_Browser::column_char (char c) [inline]

Sets the column separator to c.

This will only have an effect if you also set column_widths(). The default is ’\t’ (tab).

See also:

column_char(), column_widths()

30.7.3.6 char Fl_Browser::column_char () const [inline]

Gets the current column separator character.

The default is ’\t’ (tab).

See also:

column_char(), column_widths()

30.7.3.7 void Fl_Browser::column_widths (const int ∗ arr) [inline]

Sets the current array to arr.

Make sure the last entry is zero.

See also:

column_char(), column_widths()

30.7.3.8 const int∗ Fl_Browser::column_widths () const [inline]

Gets the current column width array.

This array is zero-terminated and specifies the widths in pixels of each column. The text is split at each
column_char() and each part is formatted into it’s own column. After the last column any remaining text is
formatted into the space between the last column and the right edge of the browser, even if the text contains
instances of column_char() . The default value is a one-element array of just a zero, which means there are
no columns.

Example:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 353

Fl_Browser *b = new Fl_Browser(..);
int widths[] = { 50, 50, 50, 70, 70, 40, 40, 70, 70, 50, 0 }; // widths for each column
b->column_widths(widths); // assign array to widget
b->column_char(’\t’); // use tab as the column character
b->add("USER\tPID\tCPU\tMEM\tVSZ\tRSS\tTTY\tSTAT\tSTART\tTIME\tCOMMAND");
b->add("root\t2888\t0.0\t0.0\t1352\t0\ttty3\tSW\tAug15\t0:00\t@b@f/sbin/mingetty tty3");
b->add("root\t13115\t0.0\t0.0\t1352\t0\ttty2\tSW\tAug30\t0:00\t@b@f/sbin/mingetty tty2");
[..]

See also:

column_char(), column_widths()

30.7.3.9 void Fl_Browser::data (int line, void ∗ d)

Sets the user data for specified line to d.

Does nothing if line is out of range.

Parameters:

← line The line of the item whose data() is to be changed. (1 based)
← d The new data to be assigned to the item. (can be NULL)

30.7.3.10 void ∗ Fl_Browser::data (int line) const

Returns the user data() for specified line.

Return value can be NULL if line is out of range or no user data() was defined. The parameter line is
1 based (1 will be the first item in the list).

Parameters:

← line The line number of the item whose data() is returned. (1 based)

Returns:

The user data pointer (can be NULL)

30.7.3.11 void Fl_Browser::display (int line, int val = 1)

For back compatibility.

This calls show(line) if val is true, and hide(line) otherwise. If val is not specified, the default is 1
(makes the line visible).

See also:

show(int), hide(int), display(), visible(), make_visible()

30.7.3.12 int Fl_Browser::displayed (int line) const [inline]

Returns non-zero if line has been scrolled to a position where it is being displayed.

Checks to see if the item’s vertical position is within the top and bottom edges of the display window. This
does NOT take into account the hide()/show() status of the widget or item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

354 Class Documentation

Parameters:

← line The line to be checked

Returns:

1 if visible, 0 if not visible.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

30.7.3.13 FL_BLINE ∗ Fl_Browser::find_line (int line) const [protected]

Returns the item for specified line.

Note: This call is slow. It’s fine for e.g. responding to user clicks, but slow if called often, such as in a tight
sorting loop. Finding an item ’by line’ involves a linear lookup on the internal linked list. The performance
hit can be significant if the browser’s contents is large, and the method is called often (e.g. during a sort).
If you’re writing a subclass, use the protected methods item_first(), item_next(), etc. to access the internal
linked list more efficiently.

Parameters:

← line The line number of the item to return. (1 based)

Return values:

item that was found.

NULL if line is out of range.

See also:

item_at(), find_line(), lineno()

30.7.3.14 void Fl_Browser::format_char (char c) [inline]

Sets the current format code prefix character to c.

The default prefix is ’@’. Set the prefix to 0 to disable formatting.

See also:

format_char() for list of ’@’ codes

30.7.3.15 char Fl_Browser::format_char () const [inline]

Gets the current format code prefix character, which by default is ’@’.

A string of formatting codes at the start of each column are stripped off and used to modify how the rest of
the line is printed:

• ’@.’ Print rest of line, don’t look for more ’@’ signs

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 355

• ’@@’ Print rest of line starting with ’@’

• ’@l’ Use a LARGE (24 point) font

• ’@m’ Use a medium large (18 point) font

• ’@s’ Use a small (11 point) font

• ’@b’ Use a bold font (adds FL_BOLD to font)

• ’@i’ Use an italic font (adds FL_ITALIC to font)

• ’@f’ or ’@t’ Use a fixed-pitch font (sets font to FL_COURIER)

• ’@c’ Center the line horizontally

• ’@r’ Right-justify the text

• ’@B0’, ’@B1’, ... ’@B255’ Fill the backgound with fl_color(n)

• ’@C0’, ’@C1’, ... ’@C255’ Use fl_color(n) to draw the text

• ’@F0’, ’@F1’, ... Use fl_font(n) to draw the text

• ’@S1’, ’@S2’, ... Use point size n to draw the text

• ’@u’ or ’@_’ Underline the text.

• ’@-’ draw an engraved line through the middle.

Notice that the ’@.’ command can be used to reliably terminate the parsing. To print a random string in
a random color, use sprintf("@C%d@.%s", color, string) and it will work even if the string
starts with a digit or has the format character in it.

30.7.3.16 int Fl_Browser::full_height () const [protected, virtual]

The height of the entire list of all visible() items in pixels.

This returns the accumulated height of ∗all∗ the items in the browser that are not hidden with hide(),
including items scrolled off screen.

Returns:

The accumulated size of all the visible items in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Reimplemented from Fl_Browser_.

30.7.3.17 void Fl_Browser::hide () [inline, virtual]

Hides the entire Fl_Browser widget – opposite of show().

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

356 Class Documentation

30.7.3.18 void Fl_Browser::hide (int line)

Makes line invisible, preventing selection by the user.

The line can still be selected under program control. This changes the full_height() if the state was changed.
When a line is made invisible, lines below it are moved up in the display. redraw() is called automatically
if a change occurred.

Parameters:

← line The line to be hidden. (1 based)

See also:

show(int), hide(int), display(), visible(), make_visible()

30.7.3.19 Fl_Image ∗ Fl_Browser::icon (int line) const

Returns the icon currently defined for line.

If no icon is defined, NULL is returned.

Parameters:

← line The line whose icon is returned.

Returns:

The icon defined, or NULL if none.

30.7.3.20 void Fl_Browser::icon (int line, Fl_Image ∗ icon)

Set the image icon for line to the value icon.

Caller is responsible for keeping the icon allocated. The line is automatically redrawn.

Parameters:

← line The line to be modified. If out of range, nothing is done.
← icon The image icon to be assigned to the line. If NULL, any previous icon is removed.

30.7.3.21 int Fl_Browser::incr_height () const [protected, virtual]

The default ’average’ item height (including inter-item spacing) in pixels.

This currently returns textsize() + 2.

Returns:

The value in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Reimplemented from Fl_Browser_.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 357

30.7.3.22 void Fl_Browser::insert (int line, const char ∗ newtext, void ∗ d = 0)

Insert a new entry whose label is newtext above given line, optional data d.

Text may contain format characters; see format_char() for details. newtext is copied using the strdup()
function, and can be NULL to make a blank line.

The optional void ∗ argument d will be the data() of the new item.

Parameters:

← line Line position for insert. (1 based)
If line > size(), the entry will be added at the end.

← newtext The label text for the new line.

← d Optional pointer to user data to be associated with the new line.

30.7.3.23 void Fl_Browser::insert (int line, FL_BLINE ∗ item) [protected]

Insert specified item above line.

If line > size() then the line is added to the end.

Caveat: See efficiency note in find_line().

Parameters:

← line The new line will be inserted above this line (1 based).

← item The item to be added.

30.7.3.24 void∗ Fl_Browser::item_at (int line) const [inline, protected, virtual]

Return the item at specified line.

Parameters:

← line The line of the item to return. (1 based)

Returns:

The item, or NULL if line out of range.

See also:

item_at(), find_line(), lineno()

Reimplemented from Fl_Browser_.

30.7.3.25 void Fl_Browser::item_draw (void ∗ item, int X, int Y, int W, int H) const
[protected, virtual]

Draws item at the position specified by X Y W H.

The W and H values are used for clipping. Should only be called within the context of an FLTK draw().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

358 Class Documentation

Parameters:

← item The item to be drawn

← X,Y,W,H position and size.

Implements Fl_Browser_.

30.7.3.26 void ∗ Fl_Browser::item_first () const [protected, virtual]

Returns the very first item in the list.

Example of use:

// Walk the browser from beginning to end
for (void *i=item_first(); i; i=item_next(i)) {

printf("item label=’%s’\n", item_text(i));
}

Returns:

The first item, or NULL if list is empty.

See also:

item_first(), item_last(), item_next(), item_prev()

Implements Fl_Browser_.

30.7.3.27 int Fl_Browser::item_height (void ∗ item) const [protected, virtual]

Returns height of item in pixels.

This takes into account embedded @ codes within the text() label.

Parameters:

← item The item whose height is returned.

Returns:

The height of the item in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Implements Fl_Browser_.

30.7.3.28 void ∗ Fl_Browser::item_last () const [protected, virtual]

Returns the very last item in the list.

Example of use:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 359

// Walk the browser in reverse, from end to start
for (void *i=item_last(); i; i=item_prev(i)) {

printf("item label=’%s’\n", item_text(i));
}

Returns:

The last item, or NULL if list is empty.

See also:

item_first(), item_last(), item_next(), item_prev()

Reimplemented from Fl_Browser_.

30.7.3.29 void ∗ Fl_Browser::item_next (void ∗ item) const [protected, virtual]

Returns the next item after item.

Parameters:

← item The ’current’ item

Returns:

The next item after item, or NULL if there are none after this one.

See also:

item_first(), item_last(), item_next(), item_prev()

Implements Fl_Browser_.

30.7.3.30 void ∗ Fl_Browser::item_prev (void ∗ item) const [protected, virtual]

Returns the previous item before item.

Parameters:

← item The ’current’ item

Returns:

The previous item before item, or NULL if there none before this one.

See also:

item_first(), item_last(), item_next(), item_prev()

Implements Fl_Browser_.

30.7.3.31 void Fl_Browser::item_select (void ∗ item, int val) [protected, virtual]

Change the selection state of item to the value val.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

360 Class Documentation

Parameters:

← item The item to be changed.
← val The new selection state: 1 selects, 0 de-selects.

See also:

select(), selected(), value(), item_select(), item_selected()

Reimplemented from Fl_Browser_.

30.7.3.32 int Fl_Browser::item_selected (void ∗ item) const [protected, virtual]

See if item is selected.

Parameters:

← item The item whose selection state is to be checked.

Returns:

1 if selected, 0 if not.

See also:

select(), selected(), value(), item_select(), item_selected()

Reimplemented from Fl_Browser_.

30.7.3.33 void Fl_Browser::item_swap (void ∗ a, void ∗ b) [inline, protected,
virtual]

Swap the items a and b.

You must call redraw() to make any changes visible.

Parameters:

← a,b the items to be swapped.

See also:

swap(int,int), item_swap()

Reimplemented from Fl_Browser_.

30.7.3.34 const char ∗ Fl_Browser::item_text (void ∗ item) const [protected, virtual]

Returns the label text for item.

Parameters:

← item The item whose label text is returned.

Returns:

The item’s text string. (Can be NULL)

Reimplemented from Fl_Browser_.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 361

30.7.3.35 int Fl_Browser::item_width (void ∗ item) const [protected, virtual]

Returns width of item in pixels.

This takes into account embedded @ codes within the text() label.

Parameters:

← item The item whose width is returned.

Returns:

The width of the item in pixels.

See also:

item_height(), item_width(),
incr_height(), full_height()

Implements Fl_Browser_.

30.7.3.36 int Fl_Browser::lineno (void ∗ item) const [protected]

Returns line number corresponding to item, or zero if not found.

Caveat: See efficiency note in find_line().

Parameters:

← item The item to be found

Returns:

The line number of the item, or 0 if not found.

See also:

item_at(), find_line(), lineno()

30.7.3.37 void Fl_Browser::lineposition (int line, Fl_Line_Position pos)

Updates the browser so that line is shown at position pos.

Parameters:

← line line number. (1 based)

← pos position.

See also:

topline(), middleline(), bottomline()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

362 Class Documentation

30.7.3.38 int Fl_Browser::load (const char ∗ filename)

Clears the browser and reads the file, adding each line from the file to the browser.

If the filename is NULL or a zero-length string then this just clears the browser. This returns zero if there
was any error in opening or reading the file, in which case errno is set to the system error. The data() of
each line is set to NULL.

Parameters:

← filename The filename to load

Returns:

1 if OK, 0 on error (errno has reason)

See also:

add()

30.7.3.39 void Fl_Browser::make_visible (int line) [inline]

Make the item at the specified line visible().

Functionally similar to show(int line). If line is out of range, redisplay top or bottom of list as appropri-
ate.

Parameters:

← line The line to be made visible.

See also:

show(int), hide(int), display(), visible(), make_visible()

30.7.3.40 void Fl_Browser::middleline (int line) [inline]

Scrolls the browser so the middle item in the browser is showing the specified line.

Parameters:

← line The line to be displayed in the middle.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

30.7.3.41 void Fl_Browser::move (int to, int from)

Line from is removed and reinserted at to.

Note: to is calculated after line from gets removed.

Parameters:

← to Destination line number (calculated after line from is removed)
← from Line number of item to be moved

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 363

30.7.3.42 void Fl_Browser::remove (int line)

Remove entry for given line number, making the browser one line shorter.

You must call redraw() to make any changes visible.

Parameters:

← line Line to be removed. (1 based)
If line is out of range, no action is taken.

See also:

add(), insert(), remove(), swap(int,int), clear()

30.7.3.43 void Fl_Browser::remove_icon (int line)

Removes the icon for line.

It’s ok to remove an icon if none has been defined.

Parameters:

← line The line whose icon is to be removed.

30.7.3.44 void Fl_Browser::replace (int a, const char ∗ b) [inline]

For back compatibility only.

30.7.3.45 int Fl_Browser::select (int line, int val = 1)

Sets the selection state of the item at line to the value val.

If val is not specified, the default is 1 (selects the item).

Parameters:

← line The line number of the item to be changed. (1 based)

← val The new selection state (1=select, 0=de-select).

Returns:

1 if the state changed, 0 if not.

See also:

select(), selected(), value(), item_select(), item_selected()

30.7.3.46 int Fl_Browser::selected (int line) const

Returns 1 if specified line is selected, 0 if not.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

364 Class Documentation

Parameters:

← line The line being checked (1 based)

Returns:

1 if item selected, 0 if not.

See also:

select(), selected(), value(), item_select(), item_selected()

30.7.3.47 void Fl_Browser::show () [inline, virtual]

Shows the entire Fl_Browser widget – opposite of hide().

Reimplemented from Fl_Widget.

30.7.3.48 void Fl_Browser::show (int line)

Makes line visible, and available for selection by user.

Opposite of hide(int). This changes the full_height() if the state was changed. redraw() is called automati-
cally if a change occurred.

Parameters:

← line The line to be shown. (1 based)

See also:

show(int), hide(int), display(), visible(), make_visible()

30.7.3.49 void Fl_Browser::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

30.7.3.50 int Fl_Browser::size () const [inline]

Returns how many lines are in the browser.

The last line number is equal to this. Returns 0 if browser is empty.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 365

30.7.3.51 void Fl_Browser::swap (int a, int b)

Swaps two browser lines a and b.

You must call redraw() to make any changes visible.

Parameters:

← a,b The two lines to be swapped. (both 1 based)

See also:

swap(int,int), item_swap()

30.7.3.52 void Fl_Browser::swap (FL_BLINE ∗ a, FL_BLINE ∗ b) [protected]

Swap the two items a and b.

Uses swapping() to ensure list updates correctly.

Parameters:

← a,b The two items to be swapped.

See also:

swap(int,int), item_swap()

30.7.3.53 void Fl_Browser::text (int line, const char ∗ newtext)

Sets the text for the specified line to newtext.

Text may contain format characters; see format_char() for details. newtext is copied using the strdup()
function, and can be NULL to make a blank line.

Does nothing if line is out of range.

Parameters:

← line The line of the item whose text will be changed. (1 based)

← newtext The new string to be assigned to the item.

30.7.3.54 const char ∗ Fl_Browser::text (int line) const

Returns the label text for the specified line.

Return value can be NULL if line is out of range or unset. The parameter line is 1 based.

Parameters:

← line The line number of the item whose text is returned. (1 based)

Returns:

The text string (can be NULL)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

366 Class Documentation

30.7.3.55 void Fl_Browser::topline (int line) [inline]

Scrolls the browser so the top item in the browser is showing the specified line.

Parameters:

← line The line to be displayed at the top.

See also:

topline(), middleline(), bottomline(), displayed(), lineposition()

30.7.3.56 int Fl_Browser::topline () const

Returns the line that is currently visible at the top of the browser.

If there is no vertical scrollbar then this will always return 1.

Returns:

The lineno() of the top() of the browser.

30.7.3.57 void Fl_Browser::value (int line) [inline]

Sets the browser’s value(), which selects the specified line.

This is the same as calling select(line).

See also:

select(), selected(), value(), item_select(), item_selected()

30.7.3.58 int Fl_Browser::value () const

Returns the line number of the currently selected line, or 0 if none.

Returns:

The line number of current selection, or 0 if none selected.

See also:

select(), selected(), value(), item_select(), item_selected()

30.7.3.59 int Fl_Browser::visible (int line) const

Returns non-zero if the specified line is visible, 0 if hidden.

Use show(int), hide(int), or make_visible(int) to change an item’s visible state.

Parameters:

← line The line in the browser to be tested. (1 based)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.7 Fl_Browser Class Reference 367

See also:

show(int), hide(int), display(), visible(), make_visible()

The documentation for this class was generated from the following files:

• Fl_Browser.H
• Fl_Browser.cxx
• Fl_Browser_load.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

368 Class Documentation

30.8 Fl_Browser_ Class Reference

This is the base class for browsers.

#include <Fl_Browser_.H>

Inheritance diagram for Fl_Browser_::

Fl_Browser_

Fl_Group

Fl_Widget

Fl_Browser Fl_Check_Browser

Fl_File_Browser Fl_Hold_Browser Fl_Multi_Browser Fl_Select_Browser

Public Types

• enum {

HORIZONTAL = 1, VERTICAL = 2, BOTH = 3, ALWAYS_ON = 4,

HORIZONTAL_ALWAYS = 5, VERTICAL_ALWAYS = 6, BOTH_ALWAYS = 7 }
Values for has_scrollbar().

Public Member Functions

• int deselect (int docallbacks=0)
Deselects all items in the list and returns 1 if the state changed or 0 if it did not.

• void display (void ∗item)
Displays the item, scrolling the list as necessary.

• int handle (int event)
Handles the event within the normal widget bounding box.

• void has_scrollbar (uchar mode)
Sets whether the widget should have scrollbars or not (default Fl_Browser_::BOTH).

• uchar has_scrollbar () const
Returns the current scrollbar mode, see Fl_Browser_::has_scrollbar(uchar).

• void hposition (int)
Sets the horizontal scroll position of the list to pixel position pos.

• int hposition () const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 369

Gets the horizontal scroll position of the list as a pixel position pos.

• void position (int pos)
Sets the vertical scroll position of the list to pixel position pos.

• int position () const
Gets the vertical scroll position of the list as a pixel position pos.

• void resize (int X, int Y, int W, int H)
Repositions and/or resizes the browser.

• void scrollbar_left ()
Moves the vertical scrollbar to the lefthand side of the list.

• void scrollbar_right ()
Moves the vertical scrollbar to the righthand side of the list.

• void scrollbar_size (int size)
Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

• void scrollbar_width (int width)
This method has been deprecated, existing for backwards compatibility only.

• int scrollbar_width () const
This method has been deprecated, existing for backwards compatibility only.

• int select (void ∗item, int val=1, int docallbacks=0)
Sets the selection state of item to val, and returns 1 if the state changed or 0 if it did not.

• int select_only (void ∗item, int docallbacks=0)
Selects item and returns 1 if the state changed or 0 if it did not.

• void sort (int flags=0)
Sort the items in the browser based on flags.

• void textcolor (Fl_Color col)
Sets the default text color for the lines in the browser to color col.

• Fl_Color textcolor () const
Gets the default text color for the lines in the browser.

• void textfont (Fl_Font font)
Sets the default text font for the lines in the browser to font.

• Fl_Font textfont () const
Gets the default text font for the lines in the browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

370 Class Documentation

• void textsize (Fl_Fontsize size)
Sets the default text size (in pixels) for the lines in the browser to size.

• Fl_Fontsize textsize () const
Gets the default text size (in pixels) for the lines in the browser.

Public Attributes

• Fl_Scrollbar hscrollbar
Horizontal scrollbar.

• Fl_Scrollbar scrollbar
Vertical scrollbar.

Protected Member Functions

• void bbox (int &X, int &Y, int &W, int &H) const
Returns the bounding box for the interior of the list’s display window, inside the scrollbars.

• void deleting (void ∗item)
This method should be used when item is being deleted from the list.

• int displayed (void ∗item) const
Returns non-zero if item has been scrolled to a position where it is being displayed.

• void draw ()
Draws the list within the normal widget bounding box.

• void ∗ find_item (int ypos)
This method returns the item under mouse y position ypos.

• Fl_Browser_ (int X, int Y, int W, int H, const char ∗L=0)
The constructor makes an empty browser.

• virtual int full_height () const
This method may be provided by the subclass to indicate the full height of the item list, in pixels.

• virtual int full_width () const
This method may be provided by the subclass to indicate the full width of the item list, in pixels.

• virtual int incr_height () const
This method may be provided to return the average height of all items to be used for scrolling.

• void inserting (void ∗a, void ∗b)
This method should be used when an item is in the process of being inserted into the list.

• virtual void ∗ item_at (int index) const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 371

This method must be provided by the subclass to return the item for the specified index.

• virtual void item_draw (void ∗item, int X, int Y, int W, int H) const =0
This method must be provided by the subclass to draw the item in the area indicated by X, Y, W, H.

• virtual void ∗ item_first () const =0
This method must be provided by the subclass to return the first item in the list.

• virtual int item_height (void ∗item) const =0
This method must be provided by the subclass to return the height of item in pixels.

• virtual void ∗ item_last () const
This method must be provided by the subclass to return the last item in the list.

• virtual void ∗ item_next (void ∗item) const =0
This method must be provided by the subclass to return the item in the list after item.

• virtual void ∗ item_prev (void ∗item) const =0
This method must be provided by the subclass to return the item in the list before item.

• virtual int item_quick_height (void ∗item) const
This method may be provided by the subclass to return the height of the item, in pixels.

• virtual void item_select (void ∗item, int val=1)
This method must be implemented by the subclass if it supports multiple selections; sets the selection state
to val for the item.

• virtual int item_selected (void ∗item) const
This method must be implemented by the subclass if it supports multiple selections; returns the selection
state for item.

• virtual void item_swap (void ∗a, void ∗b)
This optional method should be provided by the subclass to efficiently swap browser items a and b, such as
for sorting.

• virtual const char ∗ item_text (void ∗item) const
This optional method returns a string (label) that may be used for sorting.

• virtual int item_width (void ∗item) const =0
This method must be provided by the subclass to return the width of the item in pixels.

• int leftedge () const
This method returns the X position of the left edge of the list area after adjusting for the scrollbar and border,
if any.

• void new_list ()
This method should be called when the list data is completely replaced or cleared.

• void redraw_line (void ∗item)
This method should be called when the contents of item has changed, but not its height.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

372 Class Documentation

• void redraw_lines ()
This method will cause the entire list to be redrawn.

• void replacing (void ∗a, void ∗b)
This method should be used when item a is being replaced by item b.

• void ∗ selection () const
Returns the item currently selected, or NULL if there is no selection.

• void swapping (void ∗a, void ∗b)
This method should be used when two items a and b are being swapped.

• void ∗ top () const
Returns the item that appears at the top of the list.

30.8.1 Detailed Description

This is the base class for browsers.

To be useful it must be subclassed and several virtual functions defined. The Forms-compatible browser
and the file chooser’s browser are subclassed off of this.

This has been designed so that the subclass has complete control over the storage of the data, although
because next() and prev() functions are used to index, it works best as a linked list or as a large block of
characters in which the line breaks must be searched for.

A great deal of work has been done so that the "height" of a data object does not need to be determined
until it is drawn. This is useful if actually figuring out the size of an object requires accessing image data
or doing stat() on a file or doing some other slow operation.

30.8.2 Member Enumeration Documentation

30.8.2.1 anonymous enum

Values for has_scrollbar().

Anonymous enum bit flags for has_scrollbar().

• bit 0: horizontal

• bit 1: vertical

• bit 2: ’always’ (to be combined with bits 0 and 1)

• bit 3-31: reserved for future use

Enumerator:

HORIZONTAL Only show horizontal scrollbar.

VERTICAL Only show vertical scrollbar.

BOTH Show both scrollbars. (default).

ALWAYS_ON Specified scrollbar(s) should ’always’ be shown (to be used with HORIZON-
TAL/VERTICAL).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 373

HORIZONTAL_ALWAYS Horizontal scrollbar always on.

VERTICAL_ALWAYS Vertical scrollbar always on.

BOTH_ALWAYS Both scrollbars always on.

30.8.3 Constructor & Destructor Documentation

30.8.3.1 Fl_Browser_::Fl_Browser_ (int X, int Y, int W, int H, const char ∗ L = 0)
[protected]

The constructor makes an empty browser.

Parameters:

← X,Y,W,H position and size.

← L The label string, may be NULL.

30.8.4 Member Function Documentation

30.8.4.1 void Fl_Browser_::bbox (int & X, int & Y, int & W, int & H) const [protected]

Returns the bounding box for the interior of the list’s display window, inside the scrollbars.

Parameters:

→ X,Y,W,H The returned bounding box.
(The original contents of these parameters are overwritten)

30.8.4.2 void Fl_Browser_::deleting (void ∗ item) [protected]

This method should be used when item is being deleted from the list.

It allows the Fl_Browser_ to discard any cached data it has on the item. This method does not actually
delete the item, but handles the follow up bookkeeping after the item has just been deleted.

Parameters:

← item The item being deleted.

30.8.4.3 int Fl_Browser_::deselect (int docallbacks = 0)

Deselects all items in the list and returns 1 if the state changed or 0 if it did not.

If the optional docallbacks parameter is non-zero, deselect tries to call the callback function for the
widget.

Parameters:

← docallbacks If 1, invokes widget callback if item changed.
If 0, doesn’t do callback (default).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

374 Class Documentation

30.8.4.4 void Fl_Browser_::display (void ∗ item)

Displays the item, scrolling the list as necessary.

Parameters:

← item The item to be displayed.

See also:

display(), displayed()

30.8.4.5 int Fl_Browser_::displayed (void ∗ item) const [protected]

Returns non-zero if item has been scrolled to a position where it is being displayed.

Checks to see if the item’s vertical position is within the top and bottom edges of the display window. This
does NOT take into account the hide()/show() status of the widget or item.

Parameters:

← item The item to check

Returns:

1 if visible, 0 if not visible.

See also:

display(), displayed()

30.8.4.6 void ∗ Fl_Browser_::find_item (int ypos) [protected]

This method returns the item under mouse y position ypos.

NULL is returned if no item is displayed at that position.

Parameters:

← ypos The y position (eg. Fl::event_y()) to find an item under.

Returns:

The item, or NULL if not found

30.8.4.7 int Fl_Browser_::full_height () const [protected, virtual]

This method may be provided by the subclass to indicate the full height of the item list, in pixels.

The default implementation computes the full height from the item heights. Includes the items that are
scrolled off screen.

Returns:

The height of the entire list, in pixels.

Reimplemented in Fl_Browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 375

30.8.4.8 int Fl_Browser_::full_width () const [protected, virtual]

This method may be provided by the subclass to indicate the full width of the item list, in pixels.

The default implementation computes the full width from the item widths.

Returns:

The maximum width of all the items, in pixels.

30.8.4.9 int Fl_Browser_::handle (int event) [virtual]

Handles the event within the normal widget bounding box.

Parameters:

← event The event to process.

Returns:

1 if event was processed, 0 if not.

Reimplemented from Fl_Group.

Reimplemented in Fl_Check_Browser.

30.8.4.10 void Fl_Browser_::has_scrollbar (uchar mode) [inline]

Sets whether the widget should have scrollbars or not (default Fl_Browser_::BOTH).

By default you can scroll in both directions, and the scrollbars disappear if the data will fit in the widget.
has_scrollbar() changes this based on the value of mode:

• 0 - No scrollbars.

• Fl_Browser_::HORIZONTAL - Only a horizontal scrollbar.

• Fl_Browser_::VERTICAL - Only a vertical scrollbar.

• Fl_Browser_::BOTH - The default is both scrollbars.

• Fl_Browser_::HORIZONTAL_ALWAYS - Horizontal scrollbar always on, vertical always off.

• Fl_Browser_::VERTICAL_ALWAYS - Vertical scrollbar always on, horizontal always off.

• Fl_Browser_::BOTH_ALWAYS - Both always on.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

376 Class Documentation

30.8.4.11 void Fl_Browser_::hposition (int pos)

Sets the horizontal scroll position of the list to pixel position pos.

The position is how many pixels of the list are scrolled off the left edge of the screen. Example: A position
of ’18’ scrolls the left 18 pixels of the list off the left edge of the screen.

Parameters:

← pos The horizontal position (in pixels) to scroll the browser to.

See also:

position(), hposition()

30.8.4.12 int Fl_Browser_::hposition () const [inline]

Gets the horizontal scroll position of the list as a pixel position pos.

The position returned is how many pixels of the list are scrolled off the left edge of the screen. Example:
A position of ’18’ indicates the left 18 pixels of the list are scrolled off the left edge of the screen.

See also:

position(), hposition()

30.8.4.13 int Fl_Browser_::incr_height () const [protected, virtual]

This method may be provided to return the average height of all items to be used for scrolling.

The default implementation uses the height of the first item.

Returns:

The average height of items, in pixels.

Reimplemented in Fl_Browser.

30.8.4.14 void Fl_Browser_::inserting (void ∗ a, void ∗ b) [protected]

This method should be used when an item is in the process of being inserted into the list.

It allows the Fl_Browser_ to update its cache data as needed, scheduling a redraw for the affected lines.
This method does not actually insert items, but handles the follow up bookkeeping after items have been
inserted.

Parameters:

← a The starting item position

← b The new item being inserted

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 377

30.8.4.15 virtual void∗ Fl_Browser_::item_at (int index) const [inline, protected,
virtual]

This method must be provided by the subclass to return the item for the specified index.

Parameters:

← index The index of the item to be returned

Returns:

The item at the specified index.

Reimplemented in Fl_Browser.

30.8.4.16 virtual void∗ Fl_Browser_::item_first () const [protected, pure virtual]

This method must be provided by the subclass to return the first item in the list.

See also:

item_first(), item_next(), item_last(), item_prev()

Implemented in Fl_Browser.

30.8.4.17 virtual int Fl_Browser_::item_height (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the height of item in pixels.

Allow for two additional pixels for the list selection box.

Parameters:

← item The item whose height is returned.

Returns:

The height of the specified item in pixels.

See also:

item_height(), item_width(), item_quick_height()

Implemented in Fl_Browser.

30.8.4.18 virtual void∗ Fl_Browser_::item_last () const [inline, protected, virtual]

This method must be provided by the subclass to return the last item in the list.

See also:

item_first(), item_next(), item_last(), item_prev()

Reimplemented in Fl_Browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

378 Class Documentation

30.8.4.19 virtual void∗ Fl_Browser_::item_next (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the item in the list after item.

See also:

item_first(), item_next(), item_last(), item_prev()

Implemented in Fl_Browser.

30.8.4.20 virtual void∗ Fl_Browser_::item_prev (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the item in the list before item.

See also:

item_first(), item_next(), item_last(), item_prev()

Implemented in Fl_Browser.

30.8.4.21 int Fl_Browser_::item_quick_height (void ∗ item) const [protected, virtual]

This method may be provided by the subclass to return the height of the item, in pixels.

Allow for two additional pixels for the list selection box. This method differs from item_height in that it is
only called for selection and scrolling operations. The default implementation calls item_height.

Parameters:

← item The item whose height to return.

Returns:

The height, in pixels.

30.8.4.22 void Fl_Browser_::item_select (void ∗ item, int val = 1) [protected, virtual]

This method must be implemented by the subclass if it supports multiple selections; sets the selection state
to val for the item.

Sets the selection state for item, where optional val is 1 (select, the default) or 0 (de-select).

Parameters:

← item The item to be selected

← val The optional selection state; 1=select, 0=de-select.
The default is to select the item (1).

Reimplemented in Fl_Browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 379

30.8.4.23 int Fl_Browser_::item_selected (void ∗ item) const [protected, virtual]

This method must be implemented by the subclass if it supports multiple selections; returns the selection
state for item.

The method should return 1 if item is selected, or 0 otherwise.

Parameters:

← item The item to test.

Reimplemented in Fl_Browser.

30.8.4.24 virtual void Fl_Browser_::item_swap (void ∗ a, void ∗ b) [inline, protected,
virtual]

This optional method should be provided by the subclass to efficiently swap browser items a and b, such
as for sorting.

Parameters:

← a,b The two items to be swapped.

Reimplemented in Fl_Browser.

30.8.4.25 virtual const char∗ Fl_Browser_::item_text (void ∗ item) const [inline,
protected, virtual]

This optional method returns a string (label) that may be used for sorting.

Parameters:

← item The item whose label text is returned.

Returns:

The item’s text label. (Can be NULL if blank)

Reimplemented in Fl_Browser.

30.8.4.26 virtual int Fl_Browser_::item_width (void ∗ item) const [protected, pure
virtual]

This method must be provided by the subclass to return the width of the item in pixels.

Allow for two additional pixels for the list selection box.

Parameters:

← item The item whose width is returned.

Returns:

The width of the item in pixels.

Implemented in Fl_Browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

380 Class Documentation

30.8.4.27 int Fl_Browser_::leftedge () const [protected]

This method returns the X position of the left edge of the list area after adjusting for the scrollbar and
border, if any.

Returns:

The X position of the left edge of the list, in pixels.

See also:

Fl_Browser_::bbox()

30.8.4.28 void Fl_Browser_::new_list () [protected]

This method should be called when the list data is completely replaced or cleared.

It informs the Fl_Browser_ widget that any cached information it has concerning the items is invalid. This
method does not clear the list, it just handles the follow up bookkeeping after the list has been cleared.

30.8.4.29 void Fl_Browser_::position (int pos)

Sets the vertical scroll position of the list to pixel position pos.

The position is how many pixels of the list are scrolled off the top edge of the screen. Example: A position
of ’3’ scrolls the top three pixels of the list off the top edge of the screen.

Parameters:

← pos The vertical position (in pixels) to scroll the browser to.

See also:

position(), hposition()

30.8.4.30 int Fl_Browser_::position () const [inline]

Gets the vertical scroll position of the list as a pixel position pos.

The position returned is how many pixels of the list are scrolled off the top edge of the screen. Example:
A position of ’3’ indicates the top 3 pixels of the list are scrolled off the top edge of the screen.

See also:

position(), hposition()

30.8.4.31 void Fl_Browser_::redraw_line (void ∗ item) [protected]

This method should be called when the contents of item has changed, but not its height.

Parameters:

← item The item that needs to be redrawn.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 381

See also:

redraw_lines(), redraw_line()

30.8.4.32 void Fl_Browser_::redraw_lines () [inline, protected]

This method will cause the entire list to be redrawn.

See also:

redraw_lines(), redraw_line()

30.8.4.33 void Fl_Browser_::replacing (void ∗ a, void ∗ b) [protected]

This method should be used when item a is being replaced by item b.

It allows the Fl_Browser_ to update its cache data as needed, schedules a redraw for the item being changed,
and tries to maintain the selection. This method does not actually replace the item, but handles the follow
up bookkeeping after the item has just been replaced.

Parameters:

← a Item being replaced

← b Item to replace ’a’

30.8.4.34 void Fl_Browser_::resize (int X, int Y, int W, int H) [virtual]

Repositions and/or resizes the browser.

Parameters:

← X,Y,W,H The new position and size for the browser, in pixels.

Reimplemented from Fl_Group.

30.8.4.35 void Fl_Browser_::scrollbar_left () [inline]

Moves the vertical scrollbar to the lefthand side of the list.

For back compatibility.

30.8.4.36 void Fl_Browser_::scrollbar_right () [inline]

Moves the vertical scrollbar to the righthand side of the list.

For back compatibility.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

382 Class Documentation

30.8.4.37 void Fl_Browser_::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use Fl::scrollbar_size(int) instead to manage the
size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the default
behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Parameters:

← size Sets the scrollbar size in pixels.
If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

30.8.4.38 int Fl_Browser_::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the Fl::scrollbar_size() value as the scrollbar’s width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollsize() is being used.

See also:

Fl::scrollbar_size(int)

30.8.4.39 void Fl_Browser_::scrollbar_width (int width) [inline]

This method has been deprecated, existing for backwards compatibility only.

Use scrollbar_size(int) instead. This method sets the global Fl::scrollbar_size(), and forces this instance of
the widget to use it.

Todo

This method should eventually be removed in 1.4+

30.8.4.40 int Fl_Browser_::scrollbar_width () const [inline]

This method has been deprecated, existing for backwards compatibility only.

Use scrollbar_size() instead. This method always returns the global value Fl::scrollbar_size().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.8 Fl_Browser_ Class Reference 383

Returns:

Always returns the global value Fl::scrollbar_size().

Todo

This method should eventually be removed in 1.4+

30.8.4.41 int Fl_Browser_::select (void ∗ item, int val = 1, int docallbacks = 0)

Sets the selection state of item to val, and returns 1 if the state changed or 0 if it did not.

If docallbacks is non-zero, select tries to call the callback function for the widget.

Parameters:

← item The item whose selection state is to be changed

← val The new selection state (1=select, 0=de-select)

← docallbacks If 1, invokes widget callback if item changed.
If 0, doesn’t do callback (default).

Returns:

1 if state was changed, 0 if not.

30.8.4.42 int Fl_Browser_::select_only (void ∗ item, int docallbacks = 0)

Selects item and returns 1 if the state changed or 0 if it did not.

Any other items in the list are deselected.

Parameters:

← item The item to select.

← docallbacks If 1, invokes widget callback if item changed.
If 0, doesn’t do callback (default).

30.8.4.43 void∗ Fl_Browser_::selection () const [inline, protected]

Returns the item currently selected, or NULL if there is no selection.

For multiple selection browsers this call returns the currently focused item, even if it is not selected. To
find all selected items, call Fl_Multi_Browser::selected() for every item in question.

30.8.4.44 void Fl_Browser_::sort (int flags = 0)

Sort the items in the browser based on flags.

item_swap(void∗, void∗) and item_text(void∗) must be implemented for this call.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

384 Class Documentation

Parameters:

← flags FL_SORT_ASCENDING – sort in ascending order
FL_SORT_DESCENDING – sort in descending order
Values other than the above will cause undefined behavior
Other flags may appear in the future.

Todo

Add a flag to ignore case

30.8.4.45 void Fl_Browser_::swapping (void ∗ a, void ∗ b) [protected]

This method should be used when two items a and b are being swapped.

It allows the Fl_Browser_ to update its cache data as needed, schedules a redraw for the two items, and
tries to maintain the current selection. This method does not actually swap items, but handles the follow
up bookkeeping after items have been swapped.

Parameters:

← a,b Items being swapped.

30.8.4.46 Fl_Font Fl_Browser_::textfont () const [inline]

Gets the default text font for the lines in the browser.

See also:

textfont(), textsize(), textcolor()

30.8.5 Member Data Documentation

30.8.5.1 Fl_Scrollbar Fl_Browser_::hscrollbar

Horizontal scrollbar.

Public, so that it can be accessed directly.

30.8.5.2 Fl_Scrollbar Fl_Browser_::scrollbar

Vertical scrollbar.

Public, so that it can be accessed directly.

The documentation for this class was generated from the following files:

• Fl_Browser_.H
• Fl_Browser_.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.9 Fl_Button Class Reference 385

30.9 Fl_Button Class Reference

Buttons generate callbacks when they are clicked by the user.

#include <Fl_Button.H>

Inheritance diagram for Fl_Button::

Fl_Button

Fl_Widget

Fl_Light_Button Fl_Repeat_Button Fl_Return_Button Fl_Toggle_Button

Fl_Check_Button Fl_Round_Button

Public Member Functions

• int clear ()

Same as value(0).

• void down_box (Fl_Boxtype b)

Sets the down box type.

• Fl_Boxtype down_box () const

Returns the current down box type, which is drawn when value() is non-zero.

• void down_color (unsigned c)

(for backwards compatibility)

• Fl_Color down_color () const

(for backwards compatibility)

• Fl_Button (int X, int Y, int W, int H, const char ∗L=0)

The constructor creates the button using the given position, size and label.

• virtual int handle (int)

Handles the specified event.

• int set ()

Same as value(1).

• void setonly ()

Turns on this button and turns off all other radio buttons in the group (calling value(1) or set() does
not do this).

• void shortcut (const char ∗s)

(for backwards compatibility)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

386 Class Documentation

• void shortcut (int s)
Sets the shortcut key to s.

• int shortcut () const
Returns the current shortcut key for the button.

• char value () const
Returns the current value of the button (0 or 1).

• int value (int v)
Sets the current value of the button.

Protected Member Functions

• virtual void draw ()
Draws the widget.

30.9.1 Detailed Description

Buttons generate callbacks when they are clicked by the user.

You control exactly when and how by changing the values for type() and when(). Buttons can also generate
callbacks in response to FL_SHORTCUT events. The button can either have an explicit shortcut(int s) value
or a letter shortcut can be indicated in the label() with an ’&’ character before it. For the label shortcut it
does not matter if Alt is held down, but if you have an input field in the same window, the user will have to
hold down the Alt key so that the input field does not eat the event first as an FL_KEYBOARD event.

Todo

Refactor the doxygen comments for Fl_Button type() documentation.

For an Fl_Button object, the type() call returns one of:

• FL_NORMAL_BUTTON (0): value() remains unchanged after button press.

• FL_TOGGLE_BUTTON: value() is inverted after button press.

• FL_RADIO_BUTTON: value() is set to 1 after button press, and all other buttons in the current
group with type() == FL_RADIO_BUTTON are set to zero.

Todo

Refactor the doxygen comments for Fl_Button when() documentation.

For an Fl_Button object, the following when() values are useful, the default being FL_WHEN_RELEASE:

• 0: The callback is not done, instead changed() is turned on.

• FL_WHEN_RELEASE: The callback is done after the user successfully clicks the button, or when a
shortcut is typed.

• FL_WHEN_CHANGED: The callback is done each time the value() changes (when the user pushes
and releases the button, and as the mouse is dragged around in and out of the button).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.9 Fl_Button Class Reference 387

30.9.2 Constructor & Destructor Documentation

30.9.2.1 Fl_Button::Fl_Button (int X, int Y, int W, int H, const char ∗ L = 0)

The constructor creates the button using the given position, size and label.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.9.3 Member Function Documentation

30.9.3.1 int Fl_Button::clear () [inline]

Same as value(0).

See also:

value(int v)

30.9.3.2 void Fl_Button::down_box (Fl_Boxtype b) [inline]

Sets the down box type.

The default value of 0 causes FLTK to figure out the correct matching down version of box().

Parameters:

← b down box type

30.9.3.3 Fl_Boxtype Fl_Button::down_box () const [inline]

Returns the current down box type, which is drawn when value() is non-zero.

Return values:

Fl_Boxtype

30.9.3.4 void Fl_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

388 Class Documentation

Implements Fl_Widget.

Reimplemented in Fl_Light_Button, and Fl_Return_Button.

30.9.3.5 int Fl_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_Light_Button, Fl_Repeat_Button, and Fl_Return_Button.

30.9.3.6 int Fl_Button::set () [inline]

Same as value(1).

See also:

value(int v)

30.9.3.7 void Fl_Button::shortcut (int s) [inline]

Sets the shortcut key to s.

Setting this overrides the use of ’&’ in the label(). The value is a bitwise OR of a key and a set of shift
flags, for example: FL_ALT | ’a’, or FL_ALT | (FL_F + 10), or just ’a’. A value of 0 disables
the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a lower-case
letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on, that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don’t care" setting).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.9 Fl_Button Class Reference 389

Parameters:

← s bitwise OR of key and shift flags

30.9.3.8 int Fl_Button::shortcut () const [inline]

Returns the current shortcut key for the button.

Return values:

int

30.9.3.9 int Fl_Button::value (int v)

Sets the current value of the button.

A non-zero value sets the button to 1 (ON), and zero sets it to 0 (OFF).

Parameters:

← v button value.

See also:

set(), clear()

The documentation for this class was generated from the following files:

• Fl_Button.H
• Fl_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

390 Class Documentation

30.10 Fl_Cairo_State Class Reference

Contains all the necessary info on the current cairo context.

#include <Fl_Cairo.H>

Public Member Functions

• void autolink (bool b)
Sets the autolink option, only available with –enable-cairoext.

• bool autolink () const
Gets the autolink option. See Fl::cairo_autolink_context(bool).

• void cc (cairo_t ∗c, bool own=true)
Sets the current cairo context, own indicates cc deletion is handle externally by user.

• cairo_t ∗ cc () const
Gets the current cairo context.

• void ∗ gc () const
Gets the last gc attached to a cc.

• void gc (void ∗c)
Sets the gc c to keep track on.

• void ∗ window () const
Gets the last window attached to a cc.

• void window (void ∗w)
Sets the window w to keep track on.

30.10.1 Detailed Description

Contains all the necessary info on the current cairo context.

A private internal & unique corresponding object is created to permit cairo context state handling while
keeping it opaque. For internal use only.

Note:

Only available when configure has the –enable-cairo option

The documentation for this class was generated from the following file:

• Fl_Cairo.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.11 Fl_Cairo_Window Class Reference 391

30.11 Fl_Cairo_Window Class Reference

This defines a pre-configured cairo fltk window.

#include <Fl_Cairo_Window.H>

Inheritance diagram for Fl_Cairo_Window::

Fl_Cairo_Window

Fl_Double_Window

Fl_Window

Fl_Group

Fl_Widget

Public Types

• typedef void(∗ cairo_draw_cb)(Fl_Cairo_Window ∗self, cairo_t ∗def)
This defines the cairo draw callback prototype that you must further.

Public Member Functions

• Fl_Cairo_Window (int w, int h)
• void set_draw_cb (cairo_draw_cb cb)

You must provide a draw callback which will implement your cairo rendering.

Protected Member Functions

• void draw ()
Overloaded to provide cairo callback support.

30.11.1 Detailed Description

This defines a pre-configured cairo fltk window.

This class overloads the virtual draw() method for you, so that the only thing you have to do is to provide
your cairo code. All cairo context handling is achieved transparently.

Note:

You can alternatively define your custom cairo fltk window, and thus at least override the draw()
method to provide custom cairo support. In this case you will probably use Fl::cairo_make_-

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

392 Class Documentation

current(Fl_Window∗) to attach a context to your window. You should do it only when your window is
the current window.

See also:

Fl_Window::current()

30.11.2 Member Function Documentation

30.11.2.1 void Fl_Cairo_Window::set_draw_cb (cairo_draw_cb cb) [inline]

You must provide a draw callback which will implement your cairo rendering.

This method will permit you to set your cairo callback to cb.

The documentation for this class was generated from the following file:

• Fl_Cairo_Window.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.12 Fl_Chart Class Reference 393

30.12 Fl_Chart Class Reference

Fl_Chart displays simple charts.

#include <Fl_Chart.H>

Inheritance diagram for Fl_Chart::

Fl_Chart

Fl_Widget

Public Member Functions

• void add (double val, const char ∗str=0, unsigned col=0)

Add the data value val with optional label str and color col to the chart.

• void autosize (uchar n)

Set whether the chart will automatically adjust the bounds of the chart.

• uchar autosize () const

Get whether the chart will automatically adjust the bounds of the chart.

• void bounds (double a, double b)

Sets the lower and upper bounds of the chart values.

• void bounds (double ∗a, double ∗b) const

Gets the lower and upper bounds of the chart values.

• void clear ()

Removes all values from the chart.

• Fl_Chart (int X, int Y, int W, int H, const char ∗L=0)

Create a new Fl_Chart widget using the given position, size and label string.

• void insert (int ind, double val, const char ∗str=0, unsigned col=0)

Inserts a data value val at the given position ind.

• void maxsize (int m)

Set the maximum number of data values for a chart.

• int maxsize () const

Gets the maximum number of data values for a chart.

• void replace (int ind, double val, const char ∗str=0, unsigned col=0)

Replace a data value val at the given position ind.

• void size (int W, int H)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

394 Class Documentation

Changes the size of the widget.

• int size () const
Returns the number of data values in the chart.

• void textcolor (Fl_Color n)
gets the chart’s text color to n.

• Fl_Color textcolor () const
Gets the chart’s text color.

• void textfont (Fl_Font s)
Sets the chart’s text font to s.

• Fl_Font textfont () const
Gets the chart’s text font.

• void textsize (Fl_Fontsize s)
gets the chart’s text size to s.

• Fl_Fontsize textsize () const
Gets the chart’s text size.

• ∼Fl_Chart ()
Destroys the Fl_Chart widget and all of its data.

Protected Member Functions

• void draw ()
Draws the widget.

30.12.1 Detailed Description

Fl_Chart displays simple charts.

It is provided for Forms compatibility.

Figure 30.2: Fl_Chart

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.12 Fl_Chart Class Reference 395

Todo

Refactor Fl_Chart::type() information.

The type of an Fl_Chart object can be set using type(uchar t) to:

• FL_BAR_CHART: Each sample value is drawn as a vertical bar.

• FL_FILLED_CHART: The chart is filled from the bottom of the graph to the sample values.

• FL_HORBAR_CHART: Each sample value is drawn as a horizontal bar.

• FL_LINE_CHART: The chart is drawn as a polyline with vertices at each sample value.

• FL_PIE_CHART: A pie chart is drawn with each sample value being drawn as a proportionate slice
in the circle.

• FL_SPECIALPIE_CHART: Like FL_PIE_CHART, but the first slice is separated from the pie.

• FL_SPIKE_CHART: Each sample value is drawn as a vertical line.

30.12.2 Constructor & Destructor Documentation

30.12.2.1 Fl_Chart::Fl_Chart (int X, int Y, int W, int H, const char ∗ L = 0)

Create a new Fl_Chart widget using the given position, size and label string.

The default boxstyle is FL_NO_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.12.3 Member Function Documentation

30.12.3.1 void Fl_Chart::add (double val, const char ∗ str = 0, unsigned col = 0)

Add the data value val with optional label str and color col to the chart.

Parameters:

← val data value

← str optional data label

← col optional data color

30.12.3.2 void Fl_Chart::autosize (uchar n) [inline]

Set whether the chart will automatically adjust the bounds of the chart.

Parameters:

← n non-zero to enable automatic resizing, zero to disable.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

396 Class Documentation

30.12.3.3 uchar Fl_Chart::autosize () const [inline]

Get whether the chart will automatically adjust the bounds of the chart.

Returns:

non-zero if auto-sizing is enabled and zero if disabled.

30.12.3.4 void Fl_Chart::bounds (double a, double b)

Sets the lower and upper bounds of the chart values.

Parameters:

← a,b are used to set lower, upper

30.12.3.5 void Fl_Chart::bounds (double ∗ a, double ∗ b) const [inline]

Gets the lower and upper bounds of the chart values.

Parameters:

→ a,b are set to lower, upper

30.12.3.6 void Fl_Chart::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.12.3.7 void Fl_Chart::insert (int ind, double val, const char ∗ str = 0, unsigned col = 0)

Inserts a data value val at the given position ind.

Position 1 is the first data value.

Parameters:

← ind insertion position
← val data value
← str optional data label
← col optional data color

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.12 Fl_Chart Class Reference 397

30.12.3.8 void Fl_Chart::maxsize (int m)

Set the maximum number of data values for a chart.

If you do not call this method then the chart will be allowed to grow to any size depending on available
memory.

Parameters:

← m maximum number of data values allowed.

30.12.3.9 void Fl_Chart::replace (int ind, double val, const char ∗ str = 0, unsigned col = 0)

Replace a data value val at the given position ind.

Position 1 is the first data value.

Parameters:

← ind insertion position

← val data value

← str optional data label

← col optional data color

30.12.3.10 void Fl_Chart::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

30.12.3.11 void Fl_Chart::textcolor (Fl_Color n) [inline]

gets the chart’s text color to n.

30.12.3.12 void Fl_Chart::textfont (Fl_Font s) [inline]

Sets the chart’s text font to s.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

398 Class Documentation

30.12.3.13 void Fl_Chart::textsize (Fl_Fontsize s) [inline]

gets the chart’s text size to s.

The documentation for this class was generated from the following files:

• Fl_Chart.H
• Fl_Chart.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.13 FL_CHART_ENTRY Struct Reference 399

30.13 FL_CHART_ENTRY Struct Reference

For internal use only.

#include <Fl_Chart.H>

Public Attributes

• unsigned col
For internal use only.

• char str [FL_CHART_LABEL_MAX+1]
For internal use only.

• float val
For internal use only.

30.13.1 Detailed Description

For internal use only.

30.13.2 Member Data Documentation

30.13.2.1 unsigned FL_CHART_ENTRY::col

For internal use only.

30.13.2.2 char FL_CHART_ENTRY::str[FL_CHART_LABEL_MAX+1]

For internal use only.

30.13.2.3 float FL_CHART_ENTRY::val

For internal use only.

The documentation for this struct was generated from the following file:

• Fl_Chart.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

400 Class Documentation

30.14 Fl_Check_Browser Class Reference

The Fl_Check_Browser widget displays a scrolling list of text lines that may be selected and/or checked
by the user.

#include <Fl_Check_Browser.H>

Inheritance diagram for Fl_Check_Browser::

Fl_Check_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• int add (const char ∗s, int b)
See int Fl_Check_Browser::add(char ∗s).

• int add (const char ∗s)
See int Fl_Check_Browser::add(char ∗s).

• int add (char ∗s, int b)
See int Fl_Check_Browser::add(char ∗s).

• int add (char ∗s)
Add a new unchecked line to the end of the browser.

• void check_all ()
Sets all the items checked.

• void check_none ()
Sets all the items unchecked.

• void checked (int item, int b)
Sets the check status of item item to b.

• int checked (int item) const
Gets the current status of item item.

• void clear ()
Remove every item from the browser.

• Fl_Check_Browser (int x, int y, int w, int h, const char ∗l=0)
The constructor makes an empty browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.14 Fl_Check_Browser Class Reference 401

• int nchecked () const

Returns how many items are currently checked.

• int nitems () const

Returns how many lines are in the browser.

• int remove (int item)

Remove line n and make the browser one line shorter.

• void set_checked (int item)

Equivalent to Fl_Check_Browser::checked(item, 1).

• char ∗ text (int item) const

Return a pointer to an internal buffer holding item item’s text.

• int value () const

Returns the index of the currently selected item.

• ∼Fl_Check_Browser ()

The destructor deletes all list items and destroys the browser.

Protected Member Functions

• int handle (int)

Handles the event within the normal widget bounding box.

30.14.1 Detailed Description

The Fl_Check_Browser widget displays a scrolling list of text lines that may be selected and/or checked
by the user.

30.14.2 Constructor & Destructor Documentation

30.14.2.1 Fl_Check_Browser::Fl_Check_Browser (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor makes an empty browser.

30.14.2.2 Fl_Check_Browser::∼Fl_Check_Browser () [inline]

The destructor deletes all list items and destroys the browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

402 Class Documentation

30.14.3 Member Function Documentation

30.14.3.1 int Fl_Check_Browser::add (char ∗ s)

Add a new unchecked line to the end of the browser.

The text is copied using the strdup() function. It may also be NULL to make a blank line. The second form
can set the item checked.

30.14.3.2 void Fl_Check_Browser::check_all ()

Sets all the items checked.

30.14.3.3 void Fl_Check_Browser::check_none ()

Sets all the items unchecked.

30.14.3.4 void Fl_Check_Browser::checked (int i, int b)

Sets the check status of item item to b.

30.14.3.5 int Fl_Check_Browser::checked (int i) const

Gets the current status of item item.

30.14.3.6 void Fl_Check_Browser::clear ()

Remove every item from the browser.

Reimplemented from Fl_Group.

30.14.3.7 int Fl_Check_Browser::handle (int event) [protected, virtual]

Handles the event within the normal widget bounding box.

Parameters:

← event The event to process.

Returns:

1 if event was processed, 0 if not.

Reimplemented from Fl_Browser_.

30.14.3.8 int Fl_Check_Browser::nchecked () const [inline]

Returns how many items are currently checked.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.14 Fl_Check_Browser Class Reference 403

30.14.3.9 int Fl_Check_Browser::nitems () const [inline]

Returns how many lines are in the browser.

The last line number is equal to this.

30.14.3.10 int Fl_Check_Browser::remove (int item)

Remove line n and make the browser one line shorter.

Returns the number of lines left in the browser.

30.14.3.11 void Fl_Check_Browser::set_checked (int item) [inline]

Equivalent to Fl_Check_Browser::checked(item, 1).

30.14.3.12 char ∗ Fl_Check_Browser::text (int i) const

Return a pointer to an internal buffer holding item item’s text.

30.14.3.13 int Fl_Check_Browser::value () const

Returns the index of the currently selected item.

The documentation for this class was generated from the following files:

• Fl_Check_Browser.H
• Fl_Check_Browser.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

404 Class Documentation

30.15 Fl_Check_Button Class Reference

A button with an "checkmark" to show its status.

#include <Fl_Check_Button.H>

Inheritance diagram for Fl_Check_Button::

Fl_Check_Button

Fl_Light_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Check_Button (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_Check_Button widget using the given position, size and label string.

30.15.1 Detailed Description

A button with an "checkmark" to show its status.

Figure 30.3: Fl_Check_Button

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

The Fl_Check_Button subclass displays its "ON" state by showing a "checkmark" rather than drawing
itself pushed in.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.15 Fl_Check_Button Class Reference 405

Todo

Refactor Fl_Check_Button doxygen comments (add color() info etc?)

Todo

Generate Fl_Check_Button.gif with visible checkmark.

30.15.2 Constructor & Destructor Documentation

30.15.2.1 Fl_Check_Button::Fl_Check_Button (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Check_Button widget using the given position, size and label string.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

The documentation for this class was generated from the following files:

• Fl_Check_Button.H
• Fl_Check_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

406 Class Documentation

30.16 Fl_Choice Class Reference

A button that is used to pop up a menu.

#include <Fl_Choice.H>

Inheritance diagram for Fl_Choice::

Fl_Choice

Fl_Menu_

Fl_Widget

Public Member Functions

• Fl_Choice (int X, int Y, int W, int H, const char ∗L=0)
Create a new Fl_Choice widget using the given position, size and label string.

• int handle (int)
Handles the specified event.

• int value (const Fl_Menu_Item ∗v)
Sets the currently selected value using a pointer to menu item.

• int value (int v)
Sets the currently selected value using the index into the menu item array.

• int value () const
Gets the index of the last item chosen by the user.

Protected Member Functions

• void draw ()
Draws the widget.

30.16.1 Detailed Description

A button that is used to pop up a menu.

This is a button that, when pushed, pops up a menu (or hierarchy of menus) defined by an array of Fl_-
Menu_Item objects. Motif calls this an OptionButton.

The only difference between this and a Fl_Menu_Button is that the name of the most recent chosen menu
item is displayed inside the box, while the label is displayed outside the box. However, since the use of this
is most often to control a single variable rather than do individual callbacks, some of the Fl_Menu_Button
methods are redescribed here in those terms.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.16 Fl_Choice Class Reference 407

When the user picks an item off the menu the value() is set to that item and then the item’s callback
is done with the menu_button as the Fl_Widget∗ argument. If the item does not have a callback the
menu_button’s callback is done instead.

All three mouse buttons pop up the menu. The Forms behavior of the first two buttons to incre-
ment/decrement the choice is not implemented. This could be added with a subclass, however.

The menu will also pop up in response to shortcuts indicated by putting a ’&’ character in the label(). See
Fl_Button::shortcut(int s) for a description of this.

Typing the shortcut() of any of the items will do exactly the same as when you pick the item with the
mouse. The ’&’ character in item names are only looked at when the menu is popped up, however.

Figure 30.4: Fl_Choice

Todo

Refactor the doxygen comments for Fl_Choice changed() documentation.

• int Fl_Widget::changed() const This value is true the user picks a different value. It is
turned off by value() and just before doing a callback (the callback can turn it back on if desired).

• void Fl_Widget::set_changed() This method sets the changed() flag.

• void Fl_Widget::clear_changed() This method clears the changed() flag.

• Fl_Boxtype Fl_Choice::down_box() const Gets the current down box, which is used
when the menu is popped up. The default down box type is FL_DOWN_BOX.

• void Fl_Choice::down_box(Fl_Boxtype b) Sets the current down box type to b.

30.16.2 Constructor & Destructor Documentation

30.16.2.1 Fl_Choice::Fl_Choice (int X, int Y, int W, int H, const char ∗ L = 0)

Create a new Fl_Choice widget using the given position, size and label string.

The default boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

Parameters:

← X,Y,W,H position and size of the widget
← L widget label, default is no label

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

408 Class Documentation

30.16.3 Member Function Documentation

30.16.3.1 void Fl_Choice::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.16.3.2 int Fl_Choice::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.16.3.3 int Fl_Choice::value (const Fl_Menu_Item ∗ v)

Sets the currently selected value using a pointer to menu item.

Changing the selected value causes a redraw().

Parameters:

← v pointer to menu item in the menu item array.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.16 Fl_Choice Class Reference 409

Returns:

non-zero if the new value is different to the old one.

Reimplemented from Fl_Menu_.

30.16.3.4 int Fl_Choice::value (int v)

Sets the currently selected value using the index into the menu item array.

Changing the selected value causes a redraw().

Parameters:

← v index of value in the menu item array.

Returns:

non-zero if the new value is different to the old one.

Reimplemented from Fl_Menu_.

30.16.3.5 int Fl_Choice::value () const [inline]

Gets the index of the last item chosen by the user.

The index is zero initially.

Reimplemented from Fl_Menu_.

The documentation for this class was generated from the following files:

• Fl_Choice.H
• Fl_Choice.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

410 Class Documentation

30.17 Fl_Clock Class Reference

This widget provides a round analog clock display.

#include <Fl_Clock.H>

Inheritance diagram for Fl_Clock::

Fl_Clock

Fl_Clock_Output

Fl_Widget

Fl_Round_Clock

Public Member Functions

• Fl_Clock (uchar t, int X, int Y, int W, int H, const char ∗L)

Create an Fl_Clock widget using the given boxtype, position, size, and label string.

• Fl_Clock (int X, int Y, int W, int H, const char ∗L=0)

Create an Fl_Clock widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• ∼Fl_Clock ()

The destructor removes the clock.

30.17.1 Detailed Description

This widget provides a round analog clock display.

Fl_Clock is provided for Forms compatibility. It installs a 1-second timeout callback using Fl::add_-
timeout(). You can choose the rounded or square type of the clock with type(), see below.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.17 Fl_Clock Class Reference 411

Figure 30.5: FL_SQUARE_CLOCK type

Figure 30.6: FL_ROUND_CLOCK type

30.17.2 Constructor & Destructor Documentation

30.17.2.1 Fl_Clock::Fl_Clock (int X, int Y, int W, int H, const char ∗ L = 0)

Create an Fl_Clock widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.17.2.2 Fl_Clock::Fl_Clock (uchar t, int X, int Y, int W, int H, const char ∗ L)

Create an Fl_Clock widget using the given boxtype, position, size, and label string.

Parameters:

← t boxtype

← X,Y,W,H position and size of the widget

← L widget label, default is no label

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

412 Class Documentation

30.17.3 Member Function Documentation

30.17.3.1 int Fl_Clock::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Clock.H
• Fl_Clock.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.18 Fl_Clock_Output Class Reference 413

30.18 Fl_Clock_Output Class Reference

This widget can be used to display a program-supplied time.

#include <Fl_Clock.H>

Inheritance diagram for Fl_Clock_Output::

Fl_Clock_Output

Fl_Widget

Fl_Clock

Fl_Round_Clock

Public Member Functions

• Fl_Clock_Output (int X, int Y, int W, int H, const char ∗L=0)
Create a new Fl_Clock_Output widget with the given position, size and label.

• int hour () const
Returns the displayed hour (0 to 23).

• int minute () const
Returns the displayed minute (0 to 59).

• int second () const
Returns the displayed second (0 to 60, 60=leap second).

• ulong value () const
Returns the displayed time.

• void value (int H, int m, int s)
Set the displayed time.

• void value (ulong v)
Set the displayed time.

Protected Member Functions

• void draw (int X, int Y, int W, int H)
Draw clock with the given position and size.

• void draw ()
Draw clock with current position and size.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

414 Class Documentation

30.18.1 Detailed Description

This widget can be used to display a program-supplied time.

The time shown on the clock is not updated. To display the current time, use Fl_Clock instead.

Figure 30.7: FL_SQUARE_CLOCK type

Figure 30.8: FL_ROUND_CLOCK type

30.18.2 Constructor & Destructor Documentation

30.18.2.1 Fl_Clock_Output::Fl_Clock_Output (int X, int Y, int W, int H, const char ∗ L = 0)

Create a new Fl_Clock_Output widget with the given position, size and label.

The default boxtype is FL_NO_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.18.3 Member Function Documentation

30.18.3.1 void Fl_Clock_Output::draw (int X, int Y, int W, int H) [protected]

Draw clock with the given position and size.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.18 Fl_Clock_Output Class Reference 415

Parameters:

← X,Y,W,H position and size

30.18.3.2 int Fl_Clock_Output::hour () const [inline]

Returns the displayed hour (0 to 23).

See also:

value(), minute(), second()

30.18.3.3 int Fl_Clock_Output::minute () const [inline]

Returns the displayed minute (0 to 59).

See also:

value(), hour(), second()

30.18.3.4 int Fl_Clock_Output::second () const [inline]

Returns the displayed second (0 to 60, 60=leap second).

See also:

value(), hour(), minute()

30.18.3.5 ulong Fl_Clock_Output::value () const [inline]

Returns the displayed time.

Returns the time in seconds since the UNIX epoch (January 1, 1970).

See also:

value(ulong)

30.18.3.6 void Fl_Clock_Output::value (int H, int m, int s)

Set the displayed time.

Set the time in hours, minutes, and seconds.

Parameters:

← H,m,s displayed time

See also:

hour(), minute(), second()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

416 Class Documentation

30.18.3.7 void Fl_Clock_Output::value (ulong v)

Set the displayed time.

Set the time in seconds since the UNIX epoch (January 1, 1970).

Parameters:

← v seconds since epoch

See also:

value()

The documentation for this class was generated from the following files:

• Fl_Clock.H
• Fl_Clock.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.19 Fl_Color_Chooser Class Reference 417

30.19 Fl_Color_Chooser Class Reference

The Fl_Color_Chooser widget provides a standard RGB color chooser.

#include <Fl_Color_Chooser.H>

Inheritance diagram for Fl_Color_Chooser::

Fl_Color_Chooser

Fl_Group

Fl_Widget

Public Member Functions

• double b () const

Returns the current blue value.

• Fl_Color_Chooser (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_Color_Chooser widget using the given position, size, and label string.

• double g () const

Returns the current green value.

• int hsv (double H, double S, double V)

Set the hsv values.

• double hue () const

Returns the current hue.

• int mode ()

Returns which Fl_Color_Chooser variant is currently active.

• double r () const

Returns the current red value.

• int rgb (double R, double G, double B)

Sets the current rgb color values.

• double saturation () const

Returns the saturation.

• double value () const

Returns the value/brightness.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

418 Class Documentation

Static Public Member Functions

• static void hsv2rgb (double H, double S, double V, double &R, double &G, double &B)

This static method converts HSV colors to RGB colorspace.

• static void rgb2hsv (double R, double G, double B, double &H, double &S, double &V)

This static method converts RGB colors to HSV colorspace.

Related Functions

(Note that these are not member functions.)

• int fl_color_chooser (const char ∗name, uchar &r, uchar &g, uchar &b)

Pops up a window to let the user pick an arbitrary RGB color.

• int fl_color_chooser (const char ∗name, double &r, double &g, double &b)

Pops up a window to let the user pick an arbitrary RGB color.

30.19.1 Detailed Description

The Fl_Color_Chooser widget provides a standard RGB color chooser.

Figure 30.9: fl_color_chooser()

You can place any number of the widgets into a panel of your own design. The diagram shows the widget
as part of a color chooser dialog created by the fl_color_chooser() function. The Fl_Color_Chooser widget
contains the hue box, value slider, and rgb input fields from the above diagram (it does not have the color
chips or the Cancel or OK buttons). The callback is done every time the user changes the rgb value. It is
not done if they move the hue control in a way that produces the same rgb value, such as when saturation
or value is zero.

The fl_color_chooser() function pops up a window to let the user pick an arbitrary RGB color. They can
pick the hue and saturation in the "hue box" on the left (hold down CTRL to just change the saturation), and
the brightness using the vertical slider. Or they can type the 8-bit numbers into the RGB Fl_Value_Input
fields, or drag the mouse across them to adjust them. The pull-down menu lets the user set the input fields
to show RGB, HSV, or 8-bit RGB (0 to 255).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.19 Fl_Color_Chooser Class Reference 419

fl_color_chooser() returns non-zero if the user picks ok, and updates the RGB values. If the user picks
cancel or closes the window this returns zero and leaves RGB unchanged.

If you use the color chooser on an 8-bit screen, it will allocate all the available colors, leaving you no space
to exactly represent the color the user picks! You can however use fl_rectf() to fill a region with a simulated
color using dithering.

30.19.2 Constructor & Destructor Documentation

30.19.2.1 Fl_Color_Chooser::Fl_Color_Chooser (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Color_Chooser widget using the given position, size, and label string.

The recommended dimensions are 200x95. The color is initialized to black.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.19.3 Member Function Documentation

30.19.3.1 double Fl_Color_Chooser::b () const [inline]

Returns the current blue value.

0 <= b <= 1.

30.19.3.2 double Fl_Color_Chooser::g () const [inline]

Returns the current green value.

0 <= g <= 1.

30.19.3.3 int Fl_Color_Chooser::hsv (double H, double S, double V)

Set the hsv values.

The passed values are clamped (or for hue, modulus 6 is used) to get legal values. Does not do the call-
back.

Parameters:

← H,S,V color components.

Returns:

1 if a new hsv value was set, 0 if the hsv value was the previous one.

30.19.3.4 void Fl_Color_Chooser::hsv2rgb (double H, double S, double V, double & R, double
& G, double & B) [static]

This static method converts HSV colors to RGB colorspace.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

420 Class Documentation

Parameters:

← H,S,V color components

→ R,G,B color components

30.19.3.5 double Fl_Color_Chooser::hue () const [inline]

Returns the current hue.

0 <= hue < 6. Zero is red, one is yellow, two is green, etc. This value is convenient for the internal
calculations - some other systems consider hue to run from zero to one, or from 0 to 360.

30.19.3.6 double Fl_Color_Chooser::r () const [inline]

Returns the current red value.

0 <= r <= 1.

30.19.3.7 int Fl_Color_Chooser::rgb (double R, double G, double B)

Sets the current rgb color values.

Does not do the callback. Does not clamp (but out of range values will produce psychedelic effects in the
hue selector).

Parameters:

← R,G,B color components.

Returns:

1 if a new rgb value was set, 0 if the rgb value was the previous one.

30.19.3.8 void Fl_Color_Chooser::rgb2hsv (double R, double G, double B, double & H, double
& S, double & V) [static]

This static method converts RGB colors to HSV colorspace.

Parameters:

← R,G,B color components

→ H,S,V color components

30.19.3.9 double Fl_Color_Chooser::saturation () const [inline]

Returns the saturation.

0 <= saturation <= 1.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.19 Fl_Color_Chooser Class Reference 421

30.19.3.10 double Fl_Color_Chooser::value () const [inline]

Returns the value/brightness.

0 <= value <= 1.

The documentation for this class was generated from the following files:

• Fl_Color_Chooser.H
• Fl_Color_Chooser.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

422 Class Documentation

30.20 Fl_Counter Class Reference

Controls a single floating point value with button (or keyboard) arrows.

#include <Fl_Counter.H>

Inheritance diagram for Fl_Counter::

Fl_Counter

Fl_Valuator

Fl_Widget

Fl_Simple_Counter

Public Member Functions

• Fl_Counter (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Counter widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void lstep (double a)
Sets the increment for the large step buttons.

• double step () const
Returns the increment for normal step buttons.

• void step (double a)
Sets the increment for the normal step buttons.

• void step (double a, double b)
Sets the increments for the normal and large step buttons.

• void textcolor (Fl_Color s)
Sets the font color to s.

• Fl_Color textcolor () const
Gets the font color.

• void textfont (Fl_Font s)
Sets the text font to s.

• Fl_Font textfont () const
Gets the text font.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.20 Fl_Counter Class Reference 423

• void textsize (Fl_Fontsize s)

Sets the font size to s.

• Fl_Fontsize textsize () const

Gets the font size.

• ∼Fl_Counter ()

Destroys the valuator.

Protected Member Functions

• void draw ()

Draws the widget.

30.20.1 Detailed Description

Controls a single floating point value with button (or keyboard) arrows.

Double arrows buttons achieve larger steps than simple arrows.

See also:

Fl_Spinner for value input with vertical step arrows.

Figure 30.10: Fl_Counter

Todo

Refactor the doxygen comments for Fl_Counter type() documentation.

The type of an Fl_Counter object can be set using type(uchar t) to:

• FL_NORMAL_COUNTER: Displays a counter with 4 arrow buttons.

• FL_SIMPLE_COUNTER: Displays a counter with only 2 arrow buttons.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

424 Class Documentation

30.20.2 Constructor & Destructor Documentation

30.20.2.1 Fl_Counter::Fl_Counter (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Counter widget using the given position, size, and label string.

The default type is FL_NORMAL_COUNTER.

Parameters:

← X,Y,W,H position and size of the widget
← L widget label, default is no label

30.20.3 Member Function Documentation

30.20.3.1 void Fl_Counter::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.20.3.2 int Fl_Counter::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood
1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.20 Fl_Counter Class Reference 425

30.20.3.3 void Fl_Counter::lstep (double a) [inline]

Sets the increment for the large step buttons.

The default value is 1.0.

Parameters:

← a large step increment.

30.20.3.4 void Fl_Counter::step (double a) [inline]

Sets the increment for the normal step buttons.

Parameters:

← a normal step increment.

Reimplemented from Fl_Valuator.

30.20.3.5 void Fl_Counter::step (double a, double b) [inline]

Sets the increments for the normal and large step buttons.

Parameters:

← a,b normal and large step increments.

The documentation for this class was generated from the following files:

• Fl_Counter.H
• Fl_Counter.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

426 Class Documentation

30.21 Fl_Device Class Reference

A pure virtual class subclassed to send the output of drawing functions to display, printers, or local files.

#include <Fl_Device.H>

Inheritance diagram for Fl_Device::

Fl_Device

Fl_Abstract_Printer Fl_Display

Fl_Printer Fl_PSfile_Device Fl_GDI_Display Fl_Quartz_Display Fl_Xlib_Display

Public Types

• enum device_types {

xlib_display = 0, quartz_display, gdi_display, gdi_printer = 256,

quartz_printer, postscript_device }

All implemented graphics output devices.

Public Member Functions

• virtual Fl_Device ∗ set_current (void)

Sets this device (display, printer, local file) as the target of future graphics calls.

• int type ()

An RTTI emulation of device classes.

Static Public Member Functions

• static Fl_Device ∗ current ()

Returns the current target device of graphics calls.

• static Fl_Display ∗ display_device ()

Returns the platform’s display device.

Protected Member Functions

• virtual void arc (int x, int y, int w, int h, double a1, double a2)

see fl_arc(int x, int y, int w, int h, double a1, double a2).

• virtual void arc (double x, double y, double r, double start, double end)

see fl_arc(double x, double y, double r, double start, double end).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 427

• virtual void begin_complex_polygon ()
see fl_begin_complex_polygon().

• virtual void begin_line ()
see fl_begin_line().

• virtual void begin_loop ()
see fl_begin_loop().

• virtual void begin_points ()
see fl_begin_points().

• virtual void begin_polygon ()
see fl_begin_polygon().

• virtual void circle (double x, double y, double r)
see fl_circle(double x, double y, double r).

• virtual int clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)
see fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H).

• virtual void color (uchar r, uchar g, uchar b)
see fl_color(uchar r, uchar g, uchar b).

• virtual void color (Fl_Color c)
see fl_color(Fl_Color c).

• virtual void curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

see fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3).

• virtual void draw (Fl_Pixmap ∗pxm, int XP, int YP, int WP, int HP, int cx, int cy)
Draws an Fl_Pixmap object to the device.

• virtual void draw (Fl_Bitmap ∗bmp, int XP, int YP, int WP, int HP, int cx, int cy)
Draws an Fl_Bitmap object to the device.

• virtual void draw (Fl_RGB_Image ∗rgb, int XP, int YP, int WP, int HP, int cx, int cy)
Draws an Fl_RGB_Image object to the device.

• virtual void draw (int angle, const char ∗str, int n, int x, int y)
see fl_draw(int angle, const char ∗str, int n, int x, int y).

• virtual void draw (const char ∗str, int n, int x, int y)
see fl_draw(const char ∗str, int n, int x, int y).

• virtual void draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D=3)
see fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

428 Class Documentation

• virtual void draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D=3, int L=0)
see fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

• virtual void draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int
D=1)

see fl_draw_image_mono(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

• virtual void draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D=1, int L=0)
see fl_draw_image_mono(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

• virtual void end_complex_polygon ()
see fl_end_complex_polygon().

• virtual void end_line ()
see fl_end_line().

• virtual void end_loop ()
see fl_end_loop().

• virtual void end_points ()
see fl_end_points().

• virtual void end_polygon ()
see fl_end_polygon().

• virtual void font (Fl_Font face, Fl_Fontsize size)
see fl_font(Fl_Font face, Fl_Fontsize size).

• virtual void gap ()
see fl_gap().

• virtual void line (int x, int y, int x1, int y1, int x2, int y2)
see fl_line(int x, int y, int x1, int y1, int x2, int y2).

• virtual void line (int x, int y, int x1, int y1)
see fl_line(int x, int y, int x1, int y1).

• virtual void line_style (int style, int width=0, char ∗dashes=0)
see fl_line_style(int style, int width, char∗ dashes).

• virtual void loop (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

• virtual void loop (int x0, int y0, int x1, int y1, int x2, int y2)
see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2).

• virtual int not_clipped (int x, int y, int w, int h)
see fl_not_clipped(int x, int y, int w, int h).

• virtual void pie (int x, int y, int w, int h, double a1, double a2)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 429

see fl_pie(int x, int y, int w, int h, double a1, double a2).

• virtual void point (int x, int y)
see fl_point(int x, int y).

• virtual void polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

• virtual void polygon (int x0, int y0, int x1, int y1, int x2, int y2)
see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2).

• virtual void pop_clip ()
see fl_pop_clip().

• virtual void push_clip (int x, int y, int w, int h)
see fl_push_clip(int x, int y, int w, int h).

• virtual void push_no_clip ()
see fl_push_no_clip().

• virtual void rect (int x, int y, int w, int h)
see fl_rect(int x, int y, int w, int h).

• virtual void rectf (int x, int y, int w, int h)
see fl_rectf(int x, int y, int w, int h).

• virtual void transformed_vertex (double xf, double yf)
see fl_transformed_vertex(double xf, double yf).

• virtual void vertex (double x, double y)
see fl_vertex(double x, double y).

• virtual void xyline (int x, int y, int x1, int y2, int x3)
see fl_xyline(int x, int y, int x1, int y2, int x3).

• virtual void xyline (int x, int y, int x1, int y2)
see fl_xyline(int x, int y, int x1, int y2).

• virtual void xyline (int x, int y, int x1)
see fl_xyline(int x, int y, int x1).

• virtual void yxline (int x, int y, int y1, int x2, int y3)
see fl_yxline(int x, int y, int y1, int x2, int y3).

• virtual void yxline (int x, int y, int y1, int x2)
see fl_yxline(int x, int y, int y1, int x2).

• virtual void yxline (int x, int y, int y1)
see fl_yxline(int x, int y, int y1).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

430 Class Documentation

Protected Attributes

• uchar bg_b_
blue color for background and/or mixing if device does not support masking or alpha

• uchar bg_g_
green color for background and/or mixing if device does not support masking or alpha

• uchar bg_r_
red color for background and/or mixing if device does not support masking or alpha

• int type_
The device type.

Friends

• void fl_arc (int x, int y, int w, int h, double a1, double a2)
Draw ellipse sections using integer coordinates.

• void fl_arc (double x, double y, double r, double start, double end)
Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

• void fl_begin_complex_polygon ()
Starts drawing a complex filled polygon.

• void fl_begin_line ()
Starts drawing a list of lines.

• void fl_begin_loop ()
Starts drawing a closed sequence of lines.

• void fl_begin_points ()
Starts drawing a list of points.

• void fl_begin_polygon ()
Starts drawing a convex filled polygon.

• class Fl_Bitmap
• void fl_circle (double x, double y, double r)

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

• int fl_clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)
Intersects the rectangle with the current clip region and returns the bounding box of the result.

• void fl_color (uchar r, uchar g, uchar b)
Set the color for all subsequent drawing operations.

• void fl_color (Fl_Color c)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 431

Sets the color for all subsequent drawing operations.

• void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

Add a series of points on a Bezier curve to the path.

• void fl_draw (int angle, const char ∗str, int n, int x, int y)

Draws an array of n characters starting at the given location, rotating angle degrees counterclockwise.

• void fl_draw (const char ∗str, int n, int x, int y)

Draws an array of n characters starting at the given location.

• void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D)

Draw image using callback function to generate image data.

• void fl_draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D, int L)

Draw an 8-bit per color RGB or luminance image.

• FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int
H, int D)

Draw gray-scale image using callback function to generate image data.

• void fl_draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D, int L)

Draw a gray-scale (1 channel) image.

• void fl_end_complex_polygon ()

Ends complex filled polygon, and draws.

• void fl_end_line ()

Ends list of lines, and draws.

• void fl_end_loop ()

Ends closed sequence of lines, and draws.

• void fl_end_points ()

Ends list of points, and draws.

• void fl_end_polygon ()

Ends convex filled polygon, and draws.

• void fl_font (Fl_Font face, Fl_Fontsize size)

Sets the current font, which is then used in various drawing routines.

• void fl_gap ()

Call fl_gap() to separate loops of the path.

• void fl_line (int x, int y, int x1, int y1, int x2, int y2)

Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2).

• void fl_line (int x, int y, int x1, int y1)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

432 Class Documentation

Draws a line from (x,y) to (x1,y1).

• void fl_line_style (int style, int width, char ∗dashes)
Sets how to draw lines (the "pen").

• void fl_loop (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
Outlines a 4-sided polygon with lines.

• void fl_loop (int x0, int y0, int x1, int y1, int x2, int y2)
Outlines a 3-sided polygon with lines.

• int fl_not_clipped (int x, int y, int w, int h)
Does the rectangle intersect the current clip region?

• void fl_pie (int x, int y, int w, int h, double a1, double a2)
Draw filled ellipse sections using integer coordinates.

• class Fl_Pixmap
• void fl_point (int x, int y)

Draws a single pixel at the given coordinates.

• void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
Fills a 4-sided polygon.

• void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2)
Fills a 3-sided polygon.

• void fl_pop_clip ()
Restores the previous clip region.

• void fl_push_clip (int x, int y, int w, int h)
Intersects the current clip region with a rectangle and pushes this new region onto the stack.

• void fl_push_no_clip ()
Pushes an empty clip region onto the stack so nothing will be clipped.

• void fl_rect (int x, int y, int w, int h)
Draws a 1-pixel border inside the given bounding box.

• void fl_rectf (int x, int y, int w, int h)
Colors with current color a rectangle that exactly fills the given bounding box.

• class Fl_RGB_Image
• void fl_transformed_vertex (double xf, double yf)

Adds coordinate pair to the vertex list without further transformations.

• void fl_vertex (double x, double y)
Adds a single vertex to the current path.

• void fl_xyline (int x, int y, int x1, int y2, int x3)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 433

Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2) and then another horizontal
from (x1,y2) to (x3,y2).

• void fl_xyline (int x, int y, int x1, int y2)
Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).

• void fl_xyline (int x, int y, int x1)
Draws a horizontal line from (x,y) to (x1,y).

• void fl_yxline (int x, int y, int y1, int x2, int y3)
Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1) to (x2,y1), then another vertical from
(x2,y1) to (x2,y3).

• void fl_yxline (int x, int y, int y1, int x2)
Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).

• void fl_yxline (int x, int y, int y1)
Draws a vertical line from (x,y) to (x,y1).

30.21.1 Detailed Description

A pure virtual class subclassed to send the output of drawing functions to display, printers, or local files.

The protected virtual methods of this class are those that a device should implement to support all of FLTK
drawing functions.

The preferred FLTK API for drawing operations is the function collection of the Drawing functions and
Color & Font functions modules.

Alternatively, member functions of the Fl_Device class can be called using the global variable Fl_Device ∗
fl_device that points at all time to the single device (an instance of an Fl_Device subclass) that’s currently
receiving graphics requests:

fl_device->rect(x, y, w, h);

Each member function of the Fl_Device class has the same effect and parameter list as the function of the
Drawing functions and Color & Font functions modules which bears the same name prefixed with fl_ .

30.21.2 Member Enumeration Documentation

30.21.2.1 enum Fl_Device::device_types

All implemented graphics output devices.

Enumerator:

xlib_display The X11 display.
quartz_display The Mac OS X display.
gdi_display The MSWindows display.
gdi_printer The MSWindows printer.
quartz_printer The Mac OS X printer.
postscript_device The PostScript device.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

434 Class Documentation

30.21.3 Member Function Documentation

30.21.3.1 void Fl_Device::arc (int x, int y, int w, int h, double a1, double a2) [protected,
virtual]

see fl_arc(int x, int y, int w, int h, double a1, double a2).

30.21.3.2 void Fl_Device::arc (double x, double y, double r, double start, double end)
[protected, virtual]

see fl_arc(double x, double y, double r, double start, double end).

30.21.3.3 void Fl_Device::begin_complex_polygon () [protected, virtual]

see fl_begin_complex_polygon().

30.21.3.4 void Fl_Device::begin_line () [protected, virtual]

see fl_begin_line().

30.21.3.5 void Fl_Device::begin_loop () [protected, virtual]

see fl_begin_loop().

30.21.3.6 void Fl_Device::begin_points () [protected, virtual]

see fl_begin_points().

30.21.3.7 void Fl_Device::begin_polygon () [protected, virtual]

see fl_begin_polygon().

30.21.3.8 void Fl_Device::circle (double x, double y, double r) [protected, virtual]

see fl_circle(double x, double y, double r).

30.21.3.9 int Fl_Device::clip_box (int x, int y, int w, int h, int & X, int & Y, int & W, int & H)
[protected, virtual]

see fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H).

30.21.3.10 void Fl_Device::color (uchar r, uchar g, uchar b) [protected, virtual]

see fl_color(uchar r, uchar g, uchar b).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 435

30.21.3.11 void Fl_Device::color (Fl_Color c) [protected, virtual]

see fl_color(Fl_Color c).

30.21.3.12 void Fl_Device::curve (double X0, double Y0, double X1, double Y1, double X2,
double Y2, double X3, double Y3) [protected, virtual]

see fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3).

30.21.3.13 void Fl_Device::draw (Fl_Pixmap ∗ pxm, int XP, int YP, int WP, int HP, int cx, int
cy) [protected, virtual]

Draws an Fl_Pixmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

30.21.3.14 void Fl_Device::draw (Fl_Bitmap ∗ bm, int XP, int YP, int WP, int HP, int cx, int cy)
[protected, virtual]

Draws an Fl_Bitmap object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

30.21.3.15 void Fl_Device::draw (Fl_RGB_Image ∗ rgb, int XP, int YP, int WP, int HP, int cx,
int cy) [protected, virtual]

Draws an Fl_RGB_Image object to the device.

Specifies a bounding box for the image, with the origin (upper left-hand corner) of the image offset by the
cx and cy arguments.

30.21.3.16 virtual void Fl_Device::draw (int angle, const char ∗ str, int n, int x, int y)
[protected, virtual]

see fl_draw(int angle, const char ∗str, int n, int x, int y).

30.21.3.17 virtual void Fl_Device::draw (const char ∗ str, int n, int x, int y) [protected,
virtual]

see fl_draw(const char ∗str, int n, int x, int y).

30.21.3.18 void Fl_Device::draw_image (Fl_Draw_Image_Cb cb, void ∗ data, int X, int Y, int W,
int H, int D = 3) [protected, virtual]

see fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

436 Class Documentation

30.21.3.19 void Fl_Device::draw_image (const uchar ∗ buf, int X, int Y, int W, int H, int D = 3,
int L = 0) [protected, virtual]

see fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

30.21.3.20 void Fl_Device::draw_image_mono (Fl_Draw_Image_Cb cb, void ∗ data, int X, int Y,
int W, int H, int D = 1) [protected, virtual]

see fl_draw_image_mono(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D).

30.21.3.21 void Fl_Device::draw_image_mono (const uchar ∗ buf, int X, int Y, int W, int H, int
D = 1, int L = 0) [protected, virtual]

see fl_draw_image_mono(const uchar∗ buf, int X,int Y,int W,int H, int D, int L).

30.21.3.22 void Fl_Device::end_complex_polygon () [protected, virtual]

see fl_end_complex_polygon().

30.21.3.23 void Fl_Device::end_line () [protected, virtual]

see fl_end_line().

30.21.3.24 void Fl_Device::end_loop () [protected, virtual]

see fl_end_loop().

30.21.3.25 void Fl_Device::end_points () [protected, virtual]

see fl_end_points().

30.21.3.26 void Fl_Device::end_polygon () [protected, virtual]

see fl_end_polygon().

30.21.3.27 virtual void Fl_Device::font (Fl_Font face, Fl_Fontsize size) [protected,
virtual]

see fl_font(Fl_Font face, Fl_Fontsize size).

30.21.3.28 void Fl_Device::gap () [protected, virtual]

see fl_gap().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 437

30.21.3.29 void Fl_Device::line (int x, int y, int x1, int y1, int x2, int y2) [protected,
virtual]

see fl_line(int x, int y, int x1, int y1, int x2, int y2).

30.21.3.30 void Fl_Device::line (int x, int y, int x1, int y1) [protected, virtual]

see fl_line(int x, int y, int x1, int y1).

30.21.3.31 void Fl_Device::line_style (int style, int width = 0, char ∗ dashes = 0) [protected,
virtual]

see fl_line_style(int style, int width, char∗ dashes).

30.21.3.32 void Fl_Device::loop (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
[protected, virtual]

see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

30.21.3.33 void Fl_Device::loop (int x0, int y0, int x1, int y1, int x2, int y2) [protected,
virtual]

see fl_loop(int x0, int y0, int x1, int y1, int x2, int y2).

30.21.3.34 int Fl_Device::not_clipped (int x, int y, int w, int h) [protected, virtual]

see fl_not_clipped(int x, int y, int w, int h).

30.21.3.35 void Fl_Device::pie (int x, int y, int w, int h, double a1, double a2) [protected,
virtual]

see fl_pie(int x, int y, int w, int h, double a1, double a2).

30.21.3.36 void Fl_Device::point (int x, int y) [protected, virtual]

see fl_point(int x, int y).

30.21.3.37 void Fl_Device::polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3)
[protected, virtual]

see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3).

30.21.3.38 void Fl_Device::polygon (int x0, int y0, int x1, int y1, int x2, int y2) [protected,
virtual]

see fl_polygon(int x0, int y0, int x1, int y1, int x2, int y2).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

438 Class Documentation

30.21.3.39 void Fl_Device::pop_clip () [protected, virtual]

see fl_pop_clip().

30.21.3.40 void Fl_Device::push_clip (int x, int y, int w, int h) [protected, virtual]

see fl_push_clip(int x, int y, int w, int h).

30.21.3.41 void Fl_Device::push_no_clip () [protected, virtual]

see fl_push_no_clip().

30.21.3.42 void Fl_Device::rect (int x, int y, int w, int h) [protected, virtual]

see fl_rect(int x, int y, int w, int h).

30.21.3.43 void Fl_Device::rectf (int x, int y, int w, int h) [protected, virtual]

see fl_rectf(int x, int y, int w, int h).

30.21.3.44 Fl_Device ∗ Fl_Device::set_current (void) [virtual]

Sets this device (display, printer, local file) as the target of future graphics calls.

Returns:

The current target device of graphics calls.

Reimplemented in Fl_Abstract_Printer.

30.21.3.45 void Fl_Device::transformed_vertex (double xf, double yf) [protected,
virtual]

see fl_transformed_vertex(double xf, double yf).

30.21.3.46 int Fl_Device::type () [inline]

An RTTI emulation of device classes.

It returns values < 256 if it is a display device

30.21.3.47 void Fl_Device::vertex (double x, double y) [protected, virtual]

see fl_vertex(double x, double y).

30.21.3.48 void Fl_Device::xyline (int x, int y, int x1, int y2, int x3) [protected, virtual]

see fl_xyline(int x, int y, int x1, int y2, int x3).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 439

30.21.3.49 void Fl_Device::xyline (int x, int y, int x1, int y2) [protected, virtual]

see fl_xyline(int x, int y, int x1, int y2).

30.21.3.50 void Fl_Device::xyline (int x, int y, int x1) [protected, virtual]

see fl_xyline(int x, int y, int x1).

30.21.3.51 void Fl_Device::yxline (int x, int y, int y1, int x2, int y3) [protected, virtual]

see fl_yxline(int x, int y, int y1, int x2, int y3).

30.21.3.52 void Fl_Device::yxline (int x, int y, int y1, int x2) [protected, virtual]

see fl_yxline(int x, int y, int y1, int x2).

30.21.3.53 void Fl_Device::yxline (int x, int y, int y1) [protected, virtual]

see fl_yxline(int x, int y, int y1).

30.21.4 Friends And Related Function Documentation

30.21.4.1 void fl_arc (int x, int y, int w, int h, double a1, double a2) [friend]

Draw ellipse sections using integer coordinates.

These functions match the rather limited circle drawing code provided by X and WIN32. The advantage
over using fl_arc with floating point coordinates is that they are faster because they often use the hardware,
and they draw much nicer small circles, since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured in
degrees counterclockwise from 3 o’clock and are the starting and ending angle of the arc, a2 must be
greater or equal to a1.

fl_arc() draws a series of lines to approximate the arc. Notice that the integer version of fl_arc() has a
different number of arguments than the double version fl_arc(double x, double y, double r, double start,
double end)

Parameters:

← x,y,w,h bounding box of complete circle

← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must
be greater than or equal to a1.

30.21.4.2 void fl_arc (double x, double y, double r, double start, double end) [friend]

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

440 Class Documentation

Parameters:

← x,y,r center and radius of circular arc
← start,end angles of start and end of arc measured in degrees counter-clockwise from 3 o’clock. If

end is less than start then it draws the arc in a clockwise direction.

30.21.4.3 void fl_begin_complex_polygon () [friend]

Starts drawing a complex filled polygon.

The polygon may be concave, may have holes in it, or may be several disconnected pieces. Call fl_gap() to
separate loops of the path.

To outline the polygon, use fl_begin_loop() and replace each fl_gap() with fl_end_loop();fl_begin_loop()
pairs.

Note:

For portability, you should only draw polygons that appear the same whether "even/odd" or "non-zero"
winding rules are used to fill them. Holes should be drawn in the opposite direction to the outside loop.

30.21.4.4 void fl_begin_points () [friend]

Starts drawing a list of points.

Points are added to the list with fl_vertex()

30.21.4.5 void fl_circle (double x, double y, double r) [friend]

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

It must be the only thing in the path: if you want a circle as part of a complex polygon you must use
fl_arc()

Parameters:

← x,y,r center and radius of circle

30.21.4.6 int fl_clip_box (int x, int y, int w, int h, int & X, int & Y, int & W, int & H)
[friend]

Intersects the rectangle with the current clip region and returns the bounding box of the result.

Returns non-zero if the resulting rectangle is different to the original. This can be used to limit the necessary
drawing to a rectangle. W and H are set to zero if the rectangle is completely outside the region.

Parameters:

← x,y,w,h position and size of rectangle
→ X,Y,W,H position and size of resulting bounding box. W and H are set to zero if the rectangle is

completely outside the region.

Returns:

Non-zero if the resulting rectangle is different to the original.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 441

30.21.4.7 void fl_color (uchar r, uchar g, uchar b) [friend]

Set the color for all subsequent drawing operations.

The closest possible match to the RGB color is used. The RGB color is used directly on TrueColor displays.
For colormap visuals the nearest index in the gray ramp or color cube is used. If no valid graphical context
(fl_gc) is available, the foreground is not set for the current window.

Parameters:

← r,g,b color components

30.21.4.8 void fl_color (Fl_Color c) [friend]

Sets the color for all subsequent drawing operations.

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use a
color. If the colormap fills up then a least-squares algorithm is used to find the closest color. If no valid
graphical context (fl_gc) is available, the foreground is not set for the current window.

Parameters:

← c color

30.21.4.9 void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2,
double X3, double Y3) [friend]

Add a series of points on a Bezier curve to the path.

The curve ends (and two of the points) are at X0,Y0 and X3,Y3.

Parameters:

← X0,Y0 curve start point

← X1,Y1 curve control point

← X2,Y2 curve control point

← X3,Y3 curve end point

30.21.4.10 void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗ data, int X, int Y, int W, int H,
int D = 3) [friend]

Draw image using callback function to generate image data.

You can generate the image as it is being drawn, or do arbitrary decompression of stored data, provided it
can be decompressed to individual scan lines easily.

Parameters:

← cb callback function to generate scan line data

← data user data passed to callback function

← X,Y
←W,H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

442 Class Documentation

← D

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

The callback function cb is called with the void∗ data user data pointer to allow access to a structure
of information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X, Y. A pointer to a buffer to put the data into is passed. You must copy
w pixels from scanline y, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first y
may be greater than zero, and w may be less than W. The buffer is long enough to store the entire W ∗ D
pixels, this is for convenience with some decompression schemes where you must decompress the entire
line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the x’th pixel
is at the start of the buffer.

You can assume the y’s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

30.21.4.11 void fl_draw_image (const uchar ∗ buf, int X, int Y, int W, int H, int D = 3, int L = 0)
[friend]

Draw an 8-bit per color RGB or luminance image.

Parameters:

← buf points at the "r" data of the top-left pixel. Color data must be in r,g,b order.

← X,Y position where to put top-left corner of image

←W,H size of the image

← D delta to add to the pointer between pixels. it may be any value greater than or equal to 3, or it
can be negative to flip the image horizontally

← L delta to add to the pointer between lines (if 0 is passed it uses W ∗ D), and may be larger than W ∗
D to crop data, or negative to flip the image vertically

It is highly recommended that you put the following code before the first show() of any window in your
program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1-channel) images may be drawn. This is done if abs(D) is less than 3, or by calling fl_-
draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with different numbers
of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let you display one
channel of a color image.

Note:

The X version does not support all possible visuals. If FLTK cannot draw the image in the current
visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor visuals up
to 32 bits.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 443

30.21.4.12 FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗ data, int X,
int Y, int W, int H, int D) [friend]

Draw gray-scale image using callback function to generate image data.

See also:

fl_draw_image(Fl_Draw_Image_Cb cb, void∗ data, int X,int Y,int W,int H, int D)

30.21.4.13 void fl_draw_image_mono (const uchar ∗ buf, int X, int Y, int W, int H, int D = 1, int
L = 0) [friend]

Draw a gray-scale (1 channel) image.

See also:

fl_draw_image(const uchar∗ buf, int X,int Y,int W,int H, int D, int L)

30.21.4.14 void fl_font (Fl_Font face, Fl_Fontsize size) [friend]

Sets the current font, which is then used in various drawing routines.

You may call this outside a draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not "points".
Lines should be spaced size pixels apart or more.

30.21.4.15 void fl_gap () [friend]

Call fl_gap() to separate loops of the path.

It is unnecessary but harmless to call fl_gap() before the first vertex, after the last vertex, or several times
in a row.

30.21.4.16 void fl_line_style (int style, int width = 0, char ∗ dashes = 0) [friend]

Sets how to draw lines (the "pen").

If you change this it is your responsibility to set it back to the default using fl_line_style(0).

Parameters:

← style A bitmask which is a bitwise-OR of a line style, a cap style, and a join style. If you don’t
specify a dash type you will get a solid line. If you don’t specify a cap or join type you will get a
system-defined default of whatever value is fastest.

← width The thickness of the lines in pixels. Zero results in the system defined default, which on both
X and Windows is somewhat different and nicer than 1.

← dashes A pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated
with a zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array
sizes are not supported and result in undefined behavior.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

444 Class Documentation

Note:

Because of how line styles are implemented on Win32 systems, you must set the line style after setting
the drawing color. If you set the color after the line style you will lose the line style settings.
The dashes array does not work under Windows 95, 98 or Me, since those operating systems do not
support complex line styles.

30.21.4.17 int fl_not_clipped (int x, int y, int w, int h) [friend]

Does the rectangle intersect the current clip region?

Parameters:

← x,y,w,h position and size of rectangle

Returns:

non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t have to
draw the object.

Note:

Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip region.

30.21.4.18 void fl_pie (int x, int y, int w, int h, double a1, double a2) [friend]

Draw filled ellipse sections using integer coordinates.

Like fl_arc(), but fl_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by fl_arc();
to avoid this use w - 1 and h - 1.

Parameters:

← x,y,w,h bounding box of complete circle
← a1,a2 start and end angles of arc measured in degrees counter-clockwise from 3 o’clock. a2 must

be greater than or equal to a1.

30.21.4.19 void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2, int x3, int y3) [friend]

Fills a 4-sided polygon.

The polygon must be convex.

30.21.4.20 void fl_polygon (int x0, int y0, int x1, int y1, int x2, int y2) [friend]

Fills a 3-sided polygon.

The polygon must be convex.

30.21.4.21 void fl_pop_clip () [friend]

Restores the previous clip region.

You must call fl_pop_clip() once for every time you call fl_push_clip(). Unpredictable results may occur if
the clip stack is not empty when you return to FLTK.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.21 Fl_Device Class Reference 445

30.21.4.22 void fl_push_clip (int x, int y, int w, int h) [friend]

Intersects the current clip region with a rectangle and pushes this new region onto the stack.

Parameters:

← x,y,w,h position and size

30.21.4.23 void fl_rect (int x, int y, int w, int h) [friend]

Draws a 1-pixel border inside the given bounding box.

This function is meant for quick drawing of simple boxes. The behavior is undefined for line widths that
are not 1.

30.21.4.24 void fl_transformed_vertex (double xf, double yf) [friend]

Adds coordinate pair to the vertex list without further transformations.

Parameters:

← xf,yf transformed coordinate

30.21.4.25 void fl_vertex (double x, double y) [friend]

Adds a single vertex to the current path.

Parameters:

← x,y coordinate

The documentation for this class was generated from the following files:

• Fl_Device.H
• fl_arc.cxx
• fl_arci.cxx
• fl_color.cxx
• fl_color_mac.cxx
• fl_color_win32.cxx
• fl_curve.cxx
• Fl_Device.cxx
• fl_draw_image.cxx
• fl_draw_image_mac.cxx
• fl_draw_image_win32.cxx
• fl_line_style.cxx
• fl_rect.cxx
• fl_vertex.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

446 Class Documentation

30.22 Fl_Device_Plugin Class Reference

This plugin socket allows the integration of new device drivers for special window or screen types.

#include <Fl_Printer.H>

Inheritance diagram for Fl_Device_Plugin::

Fl_Device_Plugin

Fl_Plugin

Public Member Functions

• Fl_Device_Plugin (const char ∗name)
The constructor.

• virtual const char ∗ klass ()
Returns the class name.

• virtual const char ∗ name ()=0
Returns the plugin name.

• virtual int print (Fl_Widget ∗w, int x, int y, int height)
Prints a widget.

30.22.1 Detailed Description

This plugin socket allows the integration of new device drivers for special window or screen types.

It is currently used to provide an automated printing service for OpenGL windows, if linked with fltk_gl.

30.22.2 Member Function Documentation

30.22.2.1 virtual int Fl_Device_Plugin::print (Fl_Widget ∗ w, int x, int y, int height) [inline,
virtual]

Prints a widget.

Parameters:

w the widget
x,y offsets where to print relatively to coordinates origin
height height of the current drawing area

The documentation for this class was generated from the following file:

• Fl_Printer.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.23 Fl_Dial Class Reference 447

30.23 Fl_Dial Class Reference

The Fl_Dial widget provides a circular dial to control a single floating point value.

#include <Fl_Dial.H>

Inheritance diagram for Fl_Dial::

Fl_Dial

Fl_Valuator

Fl_Widget

Fl_Fill_Dial

Public Member Functions

• void angle1 (short a)

See short angle1() const.

• short angle1 () const

Sets Or gets the angles used for the minimum and maximum values.

• void angle2 (short a)

See short angle1() const.

• short angle2 () const

See short angle1() const.

• void angles (short a, short b)

See short angle1() const.

• Fl_Dial (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Dial widget using the given position, size, and label string.

• int handle (int)

Allow subclasses to handle event based on current position and size.

Protected Member Functions

• void draw ()

Draws dial at current position and size.

• void draw (int X, int Y, int W, int H)

Draws dial at given position and size.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

448 Class Documentation

• int handle (int event, int X, int Y, int W, int H)

Allows subclasses to handle event based on given position and size.

30.23.1 Detailed Description

The Fl_Dial widget provides a circular dial to control a single floating point value.

Figure 30.11: Fl_Dial

Use type() to set the type of the dial to:

• FL_NORMAL_DIAL - Draws a normal dial with a knob.

• FL_LINE_DIAL - Draws a dial with a line.

• FL_FILL_DIAL - Draws a dial with a filled arc.

30.23.2 Constructor & Destructor Documentation

30.23.2.1 Fl_Dial::Fl_Dial (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Dial widget using the given position, size, and label string.

Creates a new Fl_Dial widget using the given position, size, and label string.

The default type is FL_NORMAL_DIAL.

30.23.3 Member Function Documentation

30.23.3.1 short Fl_Dial::angle1 () const [inline]

Sets Or gets the angles used for the minimum and maximum values.

The default values are 45 and 315 (0 degrees is straight down and the angles progress clockwise). Normally
angle1 is less than angle2, but if you reverse them the dial moves counter-clockwise.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.23 Fl_Dial Class Reference 449

30.23.3.2 void Fl_Dial::draw (int X, int Y, int W, int H) [protected]

Draws dial at given position and size.

Parameters:

← X,Y,W,H position and size

30.23.3.3 int Fl_Dial::handle (int event, int X, int Y, int W, int H) [protected]

Allows subclasses to handle event based on given position and size.

Parameters:

← event,X,Y,W,H event to handle, related position and size.

The documentation for this class was generated from the following files:

• Fl_Dial.H
• Fl_Dial.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

450 Class Documentation

30.24 Fl_Display Class Reference

A virtual class subclassed for OS-specific display graphics.

#include <Fl_Device.H>

Inheritance diagram for Fl_Display::

Fl_Display

Fl_Device

Fl_GDI_Display Fl_Quartz_Display Fl_Xlib_Display

Friends

• class Fl_PSfile_Device

30.24.1 Detailed Description

A virtual class subclassed for OS-specific display graphics.

The documentation for this class was generated from the following file:

• Fl_Device.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.25 Fl_Double_Window Class Reference 451

30.25 Fl_Double_Window Class Reference

The Fl_Double_Window provides a double-buffered window.

#include <Fl_Double_Window.H>

Inheritance diagram for Fl_Double_Window::

Fl_Double_Window

Fl_Window

Fl_Group

Fl_Widget

Fl_Cairo_Window Fl_Overlay_Window

Public Member Functions

• Fl_Double_Window (int X, int Y, int W, int H, const char ∗l=0)

See Fl_Double_Window::Fl_Double_Window(int w, int h, const char ∗label = 0).

• Fl_Double_Window (int W, int H, const char ∗l=0)

Creates a new Fl_Double_Window widget using the given position, size, and label (title) string.

• void flush ()

Forces the window to be redrawn.

• void hide ()

Removes the window from the screen.

• void resize (int, int, int, int)

Changes the size and position of the window.

• void show (int a, char ∗∗b)

See virtual void Fl_Window::show().

• void show ()

Puts the window on the screen.

• ∼Fl_Double_Window ()

The destructor also deletes all the children.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

452 Class Documentation

Protected Member Functions

• void flush (int eraseoverlay)

Forces the window to be redrawn.

Protected Attributes

• char force_doublebuffering_

Force double buffering, even if the OS already buffers windows (overlays need that on MacOS and Win-
dows2000).

30.25.1 Detailed Description

The Fl_Double_Window provides a double-buffered window.

If possible this will use the X double buffering extension (Xdbe). If not, it will draw the window data into
an off-screen pixmap, and then copy it to the on-screen window.

It is highly recommended that you put the following code before the first show() of any window in your
program:

Fl::visual(FL_DOUBLE|FL_INDEX)

This makes sure you can use Xdbe on servers where double buffering does not exist for every visual.

30.25.2 Constructor & Destructor Documentation

30.25.2.1 Fl_Double_Window::∼Fl_Double_Window ()

The destructor also deletes all the children.

This allows a whole tree to be deleted at once, without having to keep a pointer to all the children in the
user code.

30.25.3 Member Function Documentation

30.25.3.1 void Fl_Double_Window::flush (int eraseoverlay) [protected]

Forces the window to be redrawn.

Parameters:

← eraseoverlay non-zero to erase overlay, zero to ignore

Fl_Overlay_Window relies on flush(1) copying the back buffer to the front everywhere, even if damage()
== 0, thus erasing the overlay, and leaving the clip region set to the entire window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.25 Fl_Double_Window Class Reference 453

30.25.3.2 void Fl_Double_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

30.25.3.3 void Fl_Double_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

30.25.3.4 void Fl_Double_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display. The second form is used for top-level
windows and allows standard arguments to be parsed from the command-line.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Reimplemented from Fl_Window.

Reimplemented in Fl_Overlay_Window.

The documentation for this class was generated from the following files:

• Fl_Double_Window.H
• Fl_Double_Window.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

454 Class Documentation

30.26 Fl_End Class Reference

This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:.

#include <Fl_Group.H>

Public Member Functions

• Fl_End ()
All it does is calling Fl_Group::current()->end().

30.26.1 Detailed Description

This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:.

class MyClass {
Fl_Group group;
Fl_Button button_in_group;
Fl_End end;
Fl_Button button_outside_group;
MyClass();

};
MyClass::MyClass() :
group(10,10,100,100),
button_in_group(20,20,60,30),
end(),
button_outside_group(10,120,60,30)

{}

The documentation for this class was generated from the following file:

• Fl_Group.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.27 Fl_File_Browser Class Reference 455

30.27 Fl_File_Browser Class Reference

The Fl_File_Browser widget displays a list of filenames, optionally with file-specific icons.

#include <Fl_File_Browser.H>

Inheritance diagram for Fl_File_Browser::

Fl_File_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Types

• enum { FILES, DIRECTORIES }

Public Member Functions

• void filetype (int t)

Sets or gets the file browser type, FILES or DIRECTORIES.

• int filetype () const

Sets or gets the file browser type, FILES or DIRECTORIES.

• const char ∗ filter () const

Sets or gets the filename filter.

• void filter (const char ∗pattern)

Sets or gets the filename filter.

• Fl_File_Browser (int, int, int, int, const char ∗=0)

The constructor creates the Fl_File_Browser widget at the specified position and size.

• void iconsize (uchar s)

Sets or gets the size of the icons.

• uchar iconsize () const

Sets or gets the size of the icons.

• int load (const char ∗directory, Fl_File_Sort_F ∗sort=fl_numericsort)

Loads the specified directory into the browser.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

456 Class Documentation

• void textsize (Fl_Fontsize s)
Sets the default text size (in pixels) for the lines in the browser to size.

• Fl_Fontsize textsize () const
Gets the default text size (in pixels) for the lines in the browser.

30.27.1 Detailed Description

The Fl_File_Browser widget displays a list of filenames, optionally with file-specific icons.

30.27.2 Constructor & Destructor Documentation

30.27.2.1 Fl_File_Browser::Fl_File_Browser (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor creates the Fl_File_Browser widget at the specified position and size.

The destructor destroys the widget and frees all memory that has been allocated.

30.27.3 Member Function Documentation

30.27.3.1 void Fl_File_Browser::filetype (int t) [inline]

Sets or gets the file browser type, FILES or DIRECTORIES.

When set to FILES, both files and directories are shown. Otherwise only directories are shown.

30.27.3.2 int Fl_File_Browser::filetype () const [inline]

Sets or gets the file browser type, FILES or DIRECTORIES.

When set to FILES, both files and directories are shown. Otherwise only directories are shown.

30.27.3.3 const char∗ Fl_File_Browser::filter () const [inline]

Sets or gets the filename filter.

The pattern matching uses the fl_filename_match() function in FLTK.

30.27.3.4 void Fl_File_Browser::filter (const char ∗ pattern)

Sets or gets the filename filter.

The pattern matching uses the fl_filename_match() function in FLTK.

30.27.3.5 void Fl_File_Browser::iconsize (uchar s) [inline]

Sets or gets the size of the icons.

The default size is 20 pixels.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.27 Fl_File_Browser Class Reference 457

30.27.3.6 uchar Fl_File_Browser::iconsize () const [inline]

Sets or gets the size of the icons.

The default size is 20 pixels.

30.27.3.7 int Fl_File_Browser::load (const char ∗ directory, Fl_File_Sort_F ∗ sort =
fl_numericsort)

Loads the specified directory into the browser.

If icons have been loaded then the correct icon is associated with each file in the list.

The sort argument specifies a sort function to be used with fl_filename_list().

The documentation for this class was generated from the following files:

• Fl_File_Browser.H
• Fl_File_Browser.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

458 Class Documentation

30.28 Fl_File_Chooser Class Reference

The Fl_File_Chooser widget displays a standard file selection dialog that supports various selection modes.

Public Types

• enum { SINGLE = 0, MULTI = 1, CREATE = 2, DIRECTORY = 4 }

Public Member Functions

• Fl_Widget ∗ add_extra (Fl_Widget ∗gr)
Adds extra widget at the bottom of Fl_File_Chooser window.

• Fl_File_Browser ∗ browser (void)
returns a pointer to the underlying Fl_File_Browser object

• void callback (void(∗cb)(Fl_File_Chooser ∗, void ∗), void ∗d=0)
Sets the file chooser callback cb and associated data d.

• Fl_Color color ()
Sets or gets the background color of the Fl_File_Browser list.

• void color (Fl_Color c)
Sets or gets the background color of the Fl_File_Browser list.

• int count ()
Returns the number of selected files.

• char ∗ directory ()
Sets or gets the current directory.

• void directory (const char ∗d)
Sets or gets the current directory.

• const char ∗ filter ()
See void filter(const char ∗pattern).

• void filter (const char ∗p)
Sets or gets the current filename filter patterns.

• void filter_value (int f)
Sets or gets the current filename filter selection.

• int filter_value ()
Sets or gets the current filename filter selection.

• Fl_File_Chooser (const char ∗d, const char ∗p, int t, const char ∗title)
The constructor creates the Fl_File_Chooser dialog shown.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.28 Fl_File_Chooser Class Reference 459

• void hide ()
Hides the Fl_File_Chooser window.

• uchar iconsize ()
Sets or gets the size of the icons in the Fl_File_Browser.

• void iconsize (uchar s)
Sets or gets the size of the icons in the Fl_File_Browser.

• const char ∗ label ()
Sets or gets the title bar text for the Fl_File_Chooser.

• void label (const char ∗l)
Sets or gets the title bar text for the Fl_File_Chooser.

• const char ∗ ok_label ()
Sets or gets the label for the "ok" button in the Fl_File_Chooser.

• void ok_label (const char ∗l)
Sets or gets the label for the "ok" button in the Fl_File_Chooser.

• int preview () const
Returns the current state of the preview box.

• void preview (int e)
Enable or disable the preview tile.

• void rescan ()
Reloads the current directory in the Fl_File_Browser.

• void rescan_keep_filename ()
Rescan the current directory without clearing the filename, then select the file if it is in the list.

• void show ()
Shows the Fl_File_Chooser window.

• int shown ()
Returns non-zero if the file chooser main window show() has been called (but not hide() see Fl_-
Window::shown().

• Fl_Color textcolor ()
Sets or gets the current Fl_File_Browser text color.

• void textcolor (Fl_Color c)
Sets or gets the current Fl_File_Browser text color.

• Fl_Font textfont ()
Sets or gets the current Fl_File_Browser text font.

• void textfont (Fl_Font f)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

460 Class Documentation

Sets or gets the current Fl_File_Browser text font.

• Fl_Fontsize textsize ()
Sets or gets the current Fl_File_Browser text size.

• void textsize (Fl_Fontsize s)
Sets or gets the current Fl_File_Browser text size.

• int type ()
Sets or gets the current type of Fl_File_Chooser.

• void type (int t)
Sets or gets the current type of Fl_File_Chooser.

• void user_data (void ∗d)
Sets the file chooser user data d.

• void ∗ user_data () const
Gets the file chooser user data d.

• void value (const char ∗filename)
Sets or gets the current value of the selected file.

• const char ∗ value (int f=1)
See const char ∗value(const char ∗pathname).

• int visible ()
Returns 1 if the Fl_File_Chooser window is visible.

• ∼Fl_File_Chooser ()
Destroys the widget and frees all memory used by it.

Public Attributes

• Fl_Button ∗ newButton
The "new directory" button is exported so that application developers can control the appearance and use.

• Fl_Check_Button ∗ previewButton
The "preview" button is exported so that application developers can control the appearance and use.

Static Public Attributes

• static const char ∗ add_favorites_label = "Add to Favorites"
[standard text may be customized at run-time]

• static const char ∗ all_files_label = "All Files (∗)"
[standard text may be customized at run-time]

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.28 Fl_File_Chooser Class Reference 461

• static const char ∗ custom_filter_label = "Custom Filter"

[standard text may be customized at run-time]

• static const char ∗ existing_file_label = "Please choose an existing file!"

[standard text may be customized at run-time]

• static const char ∗ favorites_label = "Favorites"

[standard text may be customized at run-time]

• static const char ∗ filename_label = "Filename:"

[standard text may be customized at run-time]

• static const char ∗ filesystems_label = "File Systems"

[standard text may be customized at run-time]

• static const char ∗ manage_favorites_label = "Manage Favorites"

[standard text may be customized at run-time]

• static const char ∗ new_directory_label = "New Directory?"

[standard text may be customized at run-time]

• static const char ∗ new_directory_tooltip = "Create a new directory."

[standard text may be customized at run-time]

• static const char ∗ preview_label = "Preview"

[standard text may be customized at run-time]

• static const char ∗ save_label = "Save"

[standard text may be customized at run-time]

• static const char ∗ show_label = "Show:"

[standard text may be customized at run-time]

• static Fl_File_Sort_F ∗ sort = fl_numericsort

the sort function that is used when loading the contents of a directory.

Related Functions

(Note that these are not member functions.)

• char ∗ fl_dir_chooser (const char ∗message, const char ∗fname, int relative)
• char ∗ fl_file_chooser (const char ∗message, const char ∗pat, const char ∗fname, int relative)
• void fl_file_chooser_callback (void(∗cb)(const char ∗))
• void fl_file_chooser_ok_label (const char ∗l)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

462 Class Documentation

30.28.1 Detailed Description

The Fl_File_Chooser widget displays a standard file selection dialog that supports various selection modes.

Figure 30.12: Fl_File_Chooser

The Fl_File_Chooser class also exports several static values that may be used to localize or customize the
appearance of all file chooser dialogs:

Member Default value
add_favorites_label "Add to Favorites"
all_files_label "All Files (∗)"
custom_filter_label "Custom Filter"
existing_file_label "Please choose an existing file!"
favorites_label "Favorites"
filename_label "Filename:"
filesystems_label "My Computer" (WIN32)

"File Systems" (all others)
manage_favorites_label "Manage Favorites"
new_directory_label "New Directory?"
new_directory_tooltip "Create a new directory."
preview_label "Preview"
save_label "Save"
show_label "Show:"
sort fl_numericsort

The Fl_File_Chooser::sort member specifies the sort function that is used when loading the contents of a
directory and can be customized at run-time.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.28 Fl_File_Chooser Class Reference 463

The Fl_File_Chooser class also exports the Fl_File_Chooser::newButton and Fl_File_-
Chooser::previewButton widgets so that application developers can control their appearance and
use. For more complex customization, consider copying the FLTK file chooser code and changing it
accordingly.

30.28.2 Constructor & Destructor Documentation

30.28.2.1 Fl_File_Chooser::Fl_File_Chooser (const char ∗ pathname, const char ∗ pattern, int
type, const char ∗ title)

The constructor creates the Fl_File_Chooser dialog shown.

The pathname argument can be a directory name or a complete file name (in which case the corresponding
file is highlighted in the list and in the filename input field.)

The pattern argument can be a NULL string or "∗" to list all files, or it can be a series of descriptions and
filter strings separated by tab characters (\t). The format of filters is either "Description text (patterns)" or
just "patterns". A file chooser that provides filters for HTML and image files might look like:

"HTML Files (*.html)\tImage Files (*.{bmp,gif,jpg,png})"

The file chooser will automatically add the "All Files (∗)" pattern to the end of the string you pass if you
do not provide one. The first filter in the string is the default filter.

See the FLTK documentation on fl_filename_match() for the kinds of pattern strings that are supported.

The type argument can be one of the following:

• SINGLE - allows the user to select a single, existing file.

• MULTI - allows the user to select one or more existing files.

• CREATE - allows the user to select a single, existing file or specify a new filename.

• DIRECTORY - allows the user to select a single, existing directory.

The title argument is used to set the title bar text for the Fl_File_Chooser window.

30.28.2.2 Fl_File_Chooser::∼Fl_File_Chooser ()

Destroys the widget and frees all memory used by it.

30.28.3 Member Function Documentation

30.28.3.1 Fl_Widget ∗ Fl_File_Chooser::add_extra (Fl_Widget ∗ gr)

Adds extra widget at the bottom of Fl_File_Chooser window.

Returns pointer for previous extra widget or NULL if not set previously. If argument is NULL only remove
previous extra widget.

Note:

Fl_File_Chooser does not delete extra widget in destructor! To prevent memory leakage, don’t forget
to delete unused extra widgets

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

464 Class Documentation

30.28.3.2 Fl_Color Fl_File_Chooser::color ()

Sets or gets the background color of the Fl_File_Browser list.

30.28.3.3 void Fl_File_Chooser::color (Fl_Color c)

Sets or gets the background color of the Fl_File_Browser list.

30.28.3.4 int Fl_File_Chooser::count ()

Returns the number of selected files.

30.28.3.5 const char ∗ Fl_File_Chooser::directory ()

Sets or gets the current directory.

30.28.3.6 void Fl_File_Chooser::directory (const char ∗ pathname)

Sets or gets the current directory.

30.28.3.7 void Fl_File_Chooser::filter (const char ∗ pattern)

Sets or gets the current filename filter patterns.

The filter patterns use fl_filename_match(). Multiple patterns can be used by separating them with tabs,
like "∗.jpg\t∗.png\t∗.gif\t∗". In addition, you can provide human-readable labels with the
patterns inside parenthesis, like "JPEG Files (∗.jpg)\tPNG Files (∗.png)\tGIF Files
(∗.gif)\tAll Files (∗)" .

Use filter(NULL) to show all files.

30.28.3.8 void Fl_File_Chooser::filter_value (int f)

Sets or gets the current filename filter selection.

30.28.3.9 int Fl_File_Chooser::filter_value ()

Sets or gets the current filename filter selection.

30.28.3.10 void Fl_File_Chooser::hide ()

Hides the Fl_File_Chooser window.

30.28.3.11 uchar Fl_File_Chooser::iconsize ()

Sets or gets the size of the icons in the Fl_File_Browser.

By default the icon size is set to 1.5 times the textsize().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.28 Fl_File_Chooser Class Reference 465

30.28.3.12 void Fl_File_Chooser::iconsize (uchar s)

Sets or gets the size of the icons in the Fl_File_Browser.

By default the icon size is set to 1.5 times the textsize().

30.28.3.13 const char ∗ Fl_File_Chooser::label ()

Sets or gets the title bar text for the Fl_File_Chooser.

30.28.3.14 void Fl_File_Chooser::label (const char ∗ l)

Sets or gets the title bar text for the Fl_File_Chooser.

30.28.3.15 int Fl_File_Chooser::preview () const [inline]

Returns the current state of the preview box.

30.28.3.16 void Fl_File_Chooser::preview (int e)

Enable or disable the preview tile.

1 = enable preview, 0 = disable preview.

30.28.3.17 void Fl_File_Chooser::rescan ()

Reloads the current directory in the Fl_File_Browser.

30.28.3.18 void Fl_File_Chooser::show ()

Shows the Fl_File_Chooser window.

30.28.3.19 Fl_Color Fl_File_Chooser::textcolor ()

Sets or gets the current Fl_File_Browser text color.

30.28.3.20 void Fl_File_Chooser::textcolor (Fl_Color c)

Sets or gets the current Fl_File_Browser text color.

30.28.3.21 Fl_Font Fl_File_Chooser::textfont ()

Sets or gets the current Fl_File_Browser text font.

30.28.3.22 void Fl_File_Chooser::textfont (Fl_Font f)

Sets or gets the current Fl_File_Browser text font.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

466 Class Documentation

30.28.3.23 Fl_Fontsize Fl_File_Chooser::textsize ()

Sets or gets the current Fl_File_Browser text size.

30.28.3.24 void Fl_File_Chooser::textsize (Fl_Fontsize s)

Sets or gets the current Fl_File_Browser text size.

30.28.3.25 int Fl_File_Chooser::type ()

Sets or gets the current type of Fl_File_Chooser.

30.28.3.26 void Fl_File_Chooser::type (int t)

Sets or gets the current type of Fl_File_Chooser.

30.28.3.27 void Fl_File_Chooser::value (const char ∗ pathname)

Sets or gets the current value of the selected file.

In the second form, file is a 1-based index into a list of file names. The number of selected files is
returned by Fl_File_Chooser::count().

This sample code loops through all selected files:

// Get list of filenames user selected from a MULTI chooser
for (int t=1; t<=chooser->count(); t++) {

const char *filename = chooser->value(t);
...

}

30.28.3.28 int Fl_File_Chooser::visible ()

Returns 1 if the Fl_File_Chooser window is visible.

The documentation for this class was generated from the following files:

• Fl_File_Chooser.H
• Fl_File_Chooser.cxx
• Fl_File_Chooser2.cxx
• fl_file_dir.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.29 Fl_File_Icon Class Reference 467

30.29 Fl_File_Icon Class Reference

The Fl_File_Icon class manages icon images that can be used as labels in other widgets and as icons in the
FileBrowser widget.

#include <Fl_File_Icon.H>

Public Types

• enum {

ANY, PLAIN, FIFO, DEVICE,

LINK, DIRECTORY }
• enum {

END, COLOR, LINE, CLOSEDLINE,

POLYGON, OUTLINEPOLYGON, VERTEX }

Public Member Functions

• short ∗ add (short d)
Adds a keyword value to the icon array, returning a pointer to it.

• short ∗ add_color (Fl_Color c)
Adds a color value to the icon array, returning a pointer to it.

• short ∗ add_vertex (float x, float y)
Adds a vertex value to the icon array, returning a pointer to it.

• short ∗ add_vertex (int x, int y)
Adds a vertex value to the icon array, returning a pointer to it.

• void clear ()
Clears all icon data from the icon.

• void draw (int x, int y, int w, int h, Fl_Color ic, int active=1)
Draws an icon in the indicated area.

• Fl_File_Icon (const char ∗p, int t, int nd=0, short ∗d=0)
Creates a new Fl_File_Icon with the specified information.

• void label (Fl_Widget ∗w)
Applies the icon to the widget, registering the Fl_File_Icon label type as needed.

• void load (const char ∗f)
Loads the specified icon image.

• int load_fti (const char ∗fti)
Loads an SGI icon file.

• int load_image (const char ∗i)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

468 Class Documentation

Load an image icon file from an image filename.

• Fl_File_Icon ∗ next ()
Returns next file icon object.

• const char ∗ pattern ()
Returns the filename matching pattern for the icon.

• int size ()
Returns the number of words of data used by the icon.

• int type ()
Returns the filetype associated with the icon, which can be one of the following:.

• short ∗ value ()
Returns the data array for the icon.

• ∼Fl_File_Icon ()
The destructor destroys the icon and frees all memory that has been allocated for it.

Static Public Member Functions

• static Fl_File_Icon ∗ find (const char ∗filename, int filetype=ANY)
Finds an icon that matches the given filename and file type.

• static Fl_File_Icon ∗ first ()
Returns a pointer to the first icon in the list.

• static void labeltype (const Fl_Label ∗o, int x, int y, int w, int h, Fl_Align a)
Draw the icon label.

• static void load_system_icons (void)
Loads all system-defined icons.

30.29.1 Detailed Description

The Fl_File_Icon class manages icon images that can be used as labels in other widgets and as icons in the
FileBrowser widget.

30.29.2 Constructor & Destructor Documentation

30.29.2.1 Fl_File_Icon::Fl_File_Icon (const char ∗ p, int t, int nd = 0, short ∗ d = 0)

Creates a new Fl_File_Icon with the specified information.

Parameters:

← p filename pattern

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.29 Fl_File_Icon Class Reference 469

← t file type

← nd number of data values

← d data values

30.29.3 Member Function Documentation

30.29.3.1 short ∗ Fl_File_Icon::add (short d)

Adds a keyword value to the icon array, returning a pointer to it.

Parameters:

← d data value

30.29.3.2 short∗ Fl_File_Icon::add_color (Fl_Color c) [inline]

Adds a color value to the icon array, returning a pointer to it.

Parameters:

← c color value

30.29.3.3 short∗ Fl_File_Icon::add_vertex (float x, float y) [inline]

Adds a vertex value to the icon array, returning a pointer to it.

The floating point version goes from 0.0 to 1.0. The origin (0.0) is in the lower-lefthand corner of the
icon.

Parameters:

← x,y vertex coordinates

30.29.3.4 short∗ Fl_File_Icon::add_vertex (int x, int y) [inline]

Adds a vertex value to the icon array, returning a pointer to it.

The integer version accepts coordinates from 0 to 10000. The origin (0.0) is in the lower-lefthand corner
of the icon.

Parameters:

← x,y vertex coordinates

30.29.3.5 void Fl_File_Icon::clear () [inline]

Clears all icon data from the icon.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

470 Class Documentation

30.29.3.6 void Fl_File_Icon::draw (int x, int y, int w, int h, Fl_Color ic, int active = 1)

Draws an icon in the indicated area.

Parameters:

← x,y,w,h position and size

← ic icon color

← active status, default is active [non-zero]

30.29.3.7 Fl_File_Icon ∗ Fl_File_Icon::find (const char ∗ filename, int filetype = ANY) [static]

Finds an icon that matches the given filename and file type.

Parameters:

← filename name of file

← filetype enumerated file type

Returns:

matching file icon or NULL

30.29.3.8 static Fl_File_Icon∗ Fl_File_Icon::first () [inline, static]

Returns a pointer to the first icon in the list.

30.29.3.9 void Fl_File_Icon::label (Fl_Widget ∗ w)

Applies the icon to the widget, registering the Fl_File_Icon label type as needed.

Parameters:

← w widget for which this icon will become the label

30.29.3.10 void Fl_File_Icon::labeltype (const Fl_Label ∗ o, int x, int y, int w, int h, Fl_Align a)
[static]

Draw the icon label.

Parameters:

← o label data

← x,y,w,h position and size of label

← a label alignment [not used]

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.29 Fl_File_Icon Class Reference 471

30.29.3.11 void Fl_File_Icon::load (const char ∗ f)

Loads the specified icon image.

The format is deduced from the filename.

Parameters:

← f filename

30.29.3.12 int Fl_File_Icon::load_fti (const char ∗ fti)

Loads an SGI icon file.

Parameters:

← fti icon filename

Returns:

0 on success, non-zero on error

30.29.3.13 int Fl_File_Icon::load_image (const char ∗ ifile)

Load an image icon file from an image filename.

Parameters:

← ifile image filename

Returns:

0 on success, non-zero on error

30.29.3.14 void Fl_File_Icon::load_system_icons (void) [static]

Loads all system-defined icons.

This call is useful when using the FileChooser widget and should be used when the application starts:

Fl_File_Icon::load_system_icons();

30.29.3.15 Fl_File_Icon∗ Fl_File_Icon::next () [inline]

Returns next file icon object.

See Fl_File_Icon::first()

30.29.3.16 const char∗ Fl_File_Icon::pattern () [inline]

Returns the filename matching pattern for the icon.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

472 Class Documentation

30.29.3.17 int Fl_File_Icon::size () [inline]

Returns the number of words of data used by the icon.

30.29.3.18 int Fl_File_Icon::type () [inline]

Returns the filetype associated with the icon, which can be one of the following:.

• Fl_File_Icon::ANY, any kind of file.

• Fl_File_Icon::PLAIN, plain files.

• Fl_File_Icon::FIFO, named pipes.

• Fl_File_Icon::DEVICE, character and block devices.

• Fl_File_Icon::LINK, symbolic links.

• Fl_File_Icon::DIRECTORY, directories.

30.29.3.19 short∗ Fl_File_Icon::value () [inline]

Returns the data array for the icon.

The documentation for this class was generated from the following files:

• Fl_File_Icon.H
• Fl_File_Icon.cxx
• Fl_File_Icon2.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.30 Fl_File_Input Class Reference 473

30.30 Fl_File_Input Class Reference

This widget displays a pathname in a text input field.

#include <Fl_File_Input.H>

Inheritance diagram for Fl_File_Input::

Fl_File_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• void down_box (Fl_Boxtype b)

Sets the box type to use for the navigation bar.

• Fl_Boxtype down_box () const

Gets the box type used for the navigation bar.

• void errorcolor (Fl_Color c)

Sets the current error color to c.

• Fl_Color errorcolor () const

Gets the current error color.

• Fl_File_Input (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_File_Input widget using the given position, size, and label string.

• virtual int handle (int event)

Handle events in the widget.

• const char ∗ value ()

Returns the current value, which is a pointer to an internal buffer and is valid only until the next event is
handled.

• int value (const char ∗str, int len)

Sets the value of the widget given a new string value and its length.

• int value (const char ∗str)

Sets the value of the widget given a new string value.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

474 Class Documentation

Protected Member Functions

• virtual void draw ()

Draws the file input widget.

30.30.1 Detailed Description

This widget displays a pathname in a text input field.

A navigation bar located above the input field allows the user to navigate upward in the directory tree.
You may want to handle FL_WHEN_CHANGED events for tracking text changes and also FL_WHEN_-
RELEASE for button release when changing to parent dir. FL_WHEN_RELEASE callback won’t be called
if the directory clicked is the same that the current one.

Figure 30.13: Fl_File_Input

Note:

As all Fl_Input derived objects, Fl_File_Input may call its callback when loosing focus (see FL_-
UNFOCUS) to update its state like its cursor shape. One resulting side effect is that you should call
clear_changed() early in your callback to avoid reentrant calls if you plan to show another window or
dialog box in the callback.

30.30.2 Constructor & Destructor Documentation

30.30.2.1 Fl_File_Input::Fl_File_Input (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_File_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Parameters:

← X,Y,W,H position and size of the widget

← L widget label, default is no label

30.30.3 Member Function Documentation

30.30.3.1 void Fl_File_Input::down_box (Fl_Boxtype b) [inline]

Sets the box type to use for the navigation bar.

30.30.3.2 Fl_Boxtype Fl_File_Input::down_box () const [inline]

Gets the box type used for the navigation bar.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.30 Fl_File_Input Class Reference 475

30.30.3.3 Fl_Color Fl_File_Input::errorcolor () const [inline]

Gets the current error color.

Todo

Better docs for Fl_File_Input::errorcolor() - is it even used?

30.30.3.4 int Fl_File_Input::handle (int event) [virtual]

Handle events in the widget.

Return non zero if event is handled.

Parameters:

← event

Reimplemented from Fl_Input.

30.30.3.5 int Fl_File_Input::value (const char ∗ str, int len)

Sets the value of the widget given a new string value and its length.

Returns non 0 on success.

Parameters:

← str new string value

← len lengh of value

Reimplemented from Fl_Input_.

30.30.3.6 int Fl_File_Input::value (const char ∗ str)

Sets the value of the widget given a new string value.

Returns non 0 on success.

Parameters:

← str new string value

Reimplemented from Fl_Input_.

The documentation for this class was generated from the following files:

• Fl_File_Input.H
• Fl_File_Input.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

476 Class Documentation

30.31 Fl_Fill_Dial Class Reference

Draws a dial with a filled arc.

#include <Fl_Fill_Dial.H>

Inheritance diagram for Fl_Fill_Dial::

Fl_Fill_Dial

Fl_Dial

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Fill_Dial (int x, int y, int w, int h, const char ∗l=0)
Creates a filled dial, also setting its type to FL_FILL_DIAL.

30.31.1 Detailed Description

Draws a dial with a filled arc.

30.31.2 Constructor & Destructor Documentation

30.31.2.1 Fl_Fill_Dial::Fl_Fill_Dial (int x, int y, int w, int h, const char ∗ l = 0) [inline]

Creates a filled dial, also setting its type to FL_FILL_DIAL.

The documentation for this class was generated from the following file:

• Fl_Fill_Dial.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.32 Fl_Fill_Slider Class Reference 477

30.32 Fl_Fill_Slider Class Reference

Widget that draws a filled horizontal slider, useful as a progress or value meter.

#include <Fl_Fill_Slider.H>

Inheritance diagram for Fl_Fill_Slider::

Fl_Fill_Slider

Fl_Slider

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Fill_Slider (int x, int y, int w, int h, const char ∗l=0)
Creates the slider from its position,size and optional title.

30.32.1 Detailed Description

Widget that draws a filled horizontal slider, useful as a progress or value meter.

30.32.2 Constructor & Destructor Documentation

30.32.2.1 Fl_Fill_Slider::Fl_Fill_Slider (int x, int y, int w, int h, const char ∗ l = 0) [inline]

Creates the slider from its position,size and optional title.

The documentation for this class was generated from the following file:

• Fl_Fill_Slider.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

478 Class Documentation

30.33 Fl_Float_Input Class Reference

The Fl_Float_Input class is a subclass of Fl_Input that only allows the user to type floating point numbers
(sign, digits, decimal point, more digits, ’E’ or ’e’, sign, digits).

#include <Fl_Float_Input.H>

Inheritance diagram for Fl_Float_Input::

Fl_Float_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Float_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Float_Input widget using the given position, size, and label string.

30.33.1 Detailed Description

The Fl_Float_Input class is a subclass of Fl_Input that only allows the user to type floating point numbers
(sign, digits, decimal point, more digits, ’E’ or ’e’, sign, digits).

30.33.2 Constructor & Destructor Documentation

30.33.2.1 Fl_Float_Input::Fl_Float_Input (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Float_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor destroys the widget and any value associated with it

The documentation for this class was generated from the following file:

• Fl_Float_Input.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.34 Fl_Font_Descriptor Class Reference 479

30.34 Fl_Font_Descriptor Class Reference

This a structure for an actual system font, with junk to help choose it and info on character sizes.

#include <Fl_Font.H>

Public Attributes

• Fl_Font_Descriptor ∗ next
linked list for this Fl_Fontdesc

30.34.1 Detailed Description

This a structure for an actual system font, with junk to help choose it and info on character sizes.

Each Fl_Fontdesc has a linked list of these. These are created the first time each system font/size combi-
nation is used.

The documentation for this class was generated from the following file:

• Fl_Font.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

480 Class Documentation

30.35 Fl_FormsBitmap Class Reference

Forms compatibility Bitmap Image Widget.

#include <Fl_FormsBitmap.H>

Inheritance diagram for Fl_FormsBitmap::

Fl_FormsBitmap

Fl_Widget

Public Member Functions

• Fl_Bitmap ∗ bitmap () const

Gets a the current associated Fl_Bitmap objects.

• void bitmap (Fl_Bitmap ∗B)

Sets a new bitmap.

• Fl_FormsBitmap (Fl_Boxtype, int, int, int, int, const char ∗=0)

Creates a bitmap widget from a box type, position, size and optional label specification.

• void set (int W, int H, const uchar ∗bits)

Sets a new bitmap bits with size W,H.

Protected Member Functions

• void draw ()

Draws the bitmap and its associated box.

30.35.1 Detailed Description

Forms compatibility Bitmap Image Widget.

30.35.2 Member Function Documentation

30.35.2.1 Fl_Bitmap∗ Fl_FormsBitmap::bitmap () const [inline]

Gets a the current associated Fl_Bitmap objects.

30.35.2.2 void Fl_FormsBitmap::bitmap (Fl_Bitmap ∗ B) [inline]

Sets a new bitmap.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.35 Fl_FormsBitmap Class Reference 481

30.35.2.3 void Fl_FormsBitmap::draw (void) [protected, virtual]

Draws the bitmap and its associated box.

Implements Fl_Widget.

30.35.2.4 void Fl_FormsBitmap::set (int W, int H, const uchar ∗ bits)

Sets a new bitmap bits with size W,H.

Deletes the previous one.

The documentation for this class was generated from the following files:

• Fl_FormsBitmap.H
• forms_bitmap.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

482 Class Documentation

30.36 Fl_FormsPixmap Class Reference

Forms pixmap drawing routines.

#include <Fl_FormsPixmap.H>

Inheritance diagram for Fl_FormsPixmap::

Fl_FormsPixmap

Fl_Widget

Public Member Functions

• Fl_FormsPixmap (Fl_Boxtype t, int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_FormsPixmap widget using the given box type, position, size and label string.

• Fl_Pixmap ∗ Pixmap () const

Get the internal pixmap pointer.

• void Pixmap (Fl_Pixmap ∗B)

Set the internal pixmap pointer to an existing pixmap.

• void set (char ∗const ∗bits)

Set/create the internal pixmap using raw data.

Protected Member Functions

• void draw ()

Draws the widget.

30.36.1 Detailed Description

Forms pixmap drawing routines.

30.36.2 Constructor & Destructor Documentation

30.36.2.1 Fl_FormsPixmap::Fl_FormsPixmap (Fl_Boxtype t, int X, int Y, int W, int H, const
char ∗ L = 0)

Creates a new Fl_FormsPixmap widget using the given box type, position, size and label string.

Parameters:

← t box type

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.36 Fl_FormsPixmap Class Reference 483

← X,Y,W,H position and size

← L widget label, default is no label

30.36.3 Member Function Documentation

30.36.3.1 void Fl_FormsPixmap::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.36.3.2 Fl_Pixmap∗ Fl_FormsPixmap::Pixmap () const [inline]

Get the internal pixmap pointer.

30.36.3.3 void Fl_FormsPixmap::Pixmap (Fl_Pixmap ∗ B) [inline]

Set the internal pixmap pointer to an existing pixmap.

Parameters:

← B existing pixmap

30.36.3.4 void Fl_FormsPixmap::set (char ∗const ∗ bits)

Set/create the internal pixmap using raw data.

Parameters:

← bits raw data

The documentation for this class was generated from the following files:

• Fl_FormsPixmap.H
• forms_pixmap.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

484 Class Documentation

30.37 Fl_Free Class Reference

Emulation of the Forms "free" widget.

#include <Fl_Free.H>

Inheritance diagram for Fl_Free::

Fl_Free

Fl_Widget

Public Member Functions

• Fl_Free (uchar t, int X, int Y, int W, int H, const char ∗L, FL_HANDLEPTR hdl)

Create a new Fl_Free widget with type, position, size, label and handler.

• int handle (int e)

Handles the specified event.

• ∼Fl_Free ()

The destructor will call the handle function with the event FL_FREE_MEM.

Protected Member Functions

• void draw ()

Draws the widget.

30.37.1 Detailed Description

Emulation of the Forms "free" widget.

This emulation allows the free demo to run, and appears to be useful for porting programs written in Forms
which use the free widget or make subclasses of the Forms widgets.

There are five types of free, which determine when the handle function is called:

• FL_NORMAL_FREE normal event handling.

• FL_SLEEPING_FREE deactivates event handling (widget is inactive).

• FL_INPUT_FREE accepts FL_FOCUS events.

• FL_CONTINUOUS_FREE sets a timeout callback 100 times a second and provides an FL_STEP
event. This has obvious detrimental effects on machine performance.

• FL_ALL_FREE same as FL_INPUT_FREE and FL_CONTINUOUS_FREE.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.37 Fl_Free Class Reference 485

30.37.2 Constructor & Destructor Documentation

30.37.2.1 Fl_Free::Fl_Free (uchar t, int X, int Y, int W, int H, const char ∗ L, FL_HANDLEPTR
hdl)

Create a new Fl_Free widget with type, position, size, label and handler.

Parameters:

← t type

← X,Y,W,H position and size

← L widget label

← hdl handler function

The constructor takes both the type and the handle function. The handle function should be declared as
follows:

int handle_function(Fl_Widget *w,
int event,
float event_x,
float event_y,
char key)

This function is called from the handle() method in response to most events, and is called by the draw()
method.

The event argument contains the event type:

// old event names for compatibility:
#define FL_MOUSE FL_DRAG
#define FL_DRAW 0
#define FL_STEP 9
#define FL_FREEMEM 12
#define FL_FREEZE FL_UNMAP
#define FL_THAW FL_MAP

30.37.3 Member Function Documentation

30.37.3.1 void Fl_Free::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

486 Class Documentation

30.37.3.2 int Fl_Free::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Free.H
• forms_free.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.38 Fl_GDI_Display Class Reference 487

30.38 Fl_GDI_Display Class Reference

The MSWindows-specific display graphics class.

#include <Fl_Device.H>

Inheritance diagram for Fl_GDI_Display::

Fl_GDI_Display

Fl_Display

Fl_Device

30.38.1 Detailed Description

The MSWindows-specific display graphics class.

The documentation for this class was generated from the following file:

• Fl_Device.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

488 Class Documentation

30.39 Fl_GIF_Image Class Reference

The Fl_GIF_Image class supports loading, caching, and drawing of Compuserve GIFSM images.

#include <Fl_GIF_Image.H>

Inheritance diagram for Fl_GIF_Image::

Fl_GIF_Image

Fl_Pixmap

Fl_Image

Public Member Functions

• Fl_GIF_Image (const char ∗filename)
The constructor loads the named GIF image.

30.39.1 Detailed Description

The Fl_GIF_Image class supports loading, caching, and drawing of Compuserve GIFSM images.

The class loads the first image and supports transparency.

30.39.2 Constructor & Destructor Documentation

30.39.2.1 Fl_GIF_Image::Fl_GIF_Image (const char ∗ infname)

The constructor loads the named GIF image.

The inherited destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_GIF_Image.H
• Fl_GIF_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.40 Fl_Gl_Window Class Reference 489

30.40 Fl_Gl_Window Class Reference

The Fl_Gl_Window widget sets things up so OpenGL works.

#include <Fl_Gl_Window.H>

Inheritance diagram for Fl_Gl_Window::

Fl_Gl_Window

Fl_Window

Fl_Group

Fl_Widget

Fl_Glut_Window

Public Member Functions

• virtual Fl_Gl_Window ∗ as_gl_window ()
Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

• int can_do ()
Returns non-zero if the hardware supports the given or current OpenGL mode.

• int can_do_overlay ()
Returns true if the hardware overlay is possible.

• void context (void ∗, int destroy_flag=0)
Returns or sets a pointer to the GLContext that this window is using.

• void ∗ context () const
void See void context(void∗ v, int destroy_flag)

• void context_valid (char v)
See char Fl_Gl_Window::context_valid() const.

• char context_valid () const
Will only be set if the OpenGL context is created or recreated.

• Fl_Gl_Window (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Gl_Window widget using the given position, size, and label string.

• Fl_Gl_Window (int W, int H, const char ∗l=0)
Creates a new Fl_Gl_Window widget using the given size, and label string.

• void flush ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

490 Class Documentation

Forces the window to be drawn, this window is also made current and calls draw().

• void hide ()
Hides the window and destroys the OpenGL context.

• void hide_overlay ()
Hides the window if it is not this window, does nothing in WIN32.

• void invalidate ()
The invalidate() method turns off valid() and is equivalent to calling value(0).

• void make_current ()
The make_current() method selects the OpenGL context for the widget.

• void make_overlay_current ()
The make_overlay_current() method selects the OpenGL context for the widget’s overlay.

• int mode (const int ∗a)
See Fl_Mode mode() const.

• int mode (int a)
See Fl_Mode mode() const.

• Fl_Mode mode () const
Set or change the OpenGL capabilites of the window.

• void ortho ()
Sets the projection so 0,0 is in the lower left of the window and each pixel is 1 unit wide/tall.

• void redraw_overlay ()
This method causes draw_overlay() to be called at a later time.

• void resize (int, int, int, int)
Changes the size and position of the window.

• void show (int a, char ∗∗b)
See virtual void Fl_Window::show().

• void show ()
Puts the window on the screen.

• void swap_buffers ()
The swap_buffers() method swaps the back and front buffers.

• void valid (char v)
See char Fl_Gl_Window::valid() const.

• char valid () const
Is turned off when FLTK creates a new context for this window or when the window resizes, and is turned
on after draw() is called.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.40 Fl_Gl_Window Class Reference 491

• ∼Fl_Gl_Window ()

The destructor removes the widget and destroys the OpenGL context associated with it.

Static Public Member Functions

• static int can_do (const int ∗m)

Returns non-zero if the hardware supports the given or current OpenGL mode.

• static int can_do (int m)

Returns non-zero if the hardware supports the given or current OpenGL mode.

Protected Member Functions

• virtual void draw ()

Draws the Fl_Gl_Window.

Friends

• class _Fl_Gl_Overlay

30.40.1 Detailed Description

The Fl_Gl_Window widget sets things up so OpenGL works.

It also keeps an OpenGL "context" for that window, so that changes to the lighting and projection may be
reused between redraws. Fl_Gl_Window also flushes the OpenGL streams and swaps buffers after draw()
returns.

OpenGL hardware typically provides some overlay bit planes, which are very useful for drawing UI con-
trols atop your 3D graphics. If the overlay hardware is not provided, FLTK tries to simulate the overlay.
This works pretty well if your graphics are double buffered, but not very well for single-buffered.

Please note that the FLTK drawing and clipping functions will not work inside an Fl_Gl_Window. All
drawing should be done using OpenGL calls exclusively. Even though Fl_Gl_Window is derived from
Fl_Group, it is not useful to add other FLTK Widgets as children, unless those widgets are modified to
draw using OpenGL calls.

30.40.2 Constructor & Destructor Documentation

30.40.2.1 Fl_Gl_Window::Fl_Gl_Window (int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Gl_Window widget using the given size, and label string.

The default boxtype is FL_NO_BOX. The default mode is FL_RGB|FL_DOUBLE|FL_DEPTH.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

492 Class Documentation

30.40.2.2 Fl_Gl_Window::Fl_Gl_Window (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Gl_Window widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX. The default mode is FL_RGB|FL_DOUBLE|FL_DEPTH.

30.40.3 Member Function Documentation

30.40.3.1 virtual Fl_Gl_Window∗ Fl_Gl_Window::as_gl_window () [inline, virtual]

Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

Return values:

NULL if this widget is not derived from Fl_Gl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented from Fl_Widget.

30.40.3.2 int Fl_Gl_Window::can_do () [inline]

Returns non-zero if the hardware supports the given or current OpenGL mode.

30.40.3.3 static int Fl_Gl_Window::can_do (const int ∗ m) [inline, static]

Returns non-zero if the hardware supports the given or current OpenGL mode.

30.40.3.4 static int Fl_Gl_Window::can_do (int m) [inline, static]

Returns non-zero if the hardware supports the given or current OpenGL mode.

30.40.3.5 int Fl_Gl_Window::can_do_overlay ()

Returns true if the hardware overlay is possible.

If this is false, FLTK will try to simulate the overlay, with significant loss of update speed. Calling this will
cause FLTK to open the display.

30.40.3.6 void Fl_Gl_Window::context (void ∗ v, int destroy_flag = 0)

Returns or sets a pointer to the GLContext that this window is using.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.40 Fl_Gl_Window Class Reference 493

This is a system-dependent structure, but it is portable to copy the context from one window to another.
You can also set it to NULL, which will force FLTK to recreate the context the next time make_current()
is called, this is useful for getting around bugs in OpenGL implementations.

If destroy_flag is true the context will be destroyed by fltk when the window is destroyed, or when the
mode() is changed, or the next time context(x) is called.

30.40.3.7 char Fl_Gl_Window::context_valid () const [inline]

Will only be set if the OpenGL context is created or recreated.

It differs from Fl_Gl_Window::valid() which is also set whenever the context changes size.

30.40.3.8 void Fl_Gl_Window::draw (void) [protected, virtual]

Draws the Fl_Gl_Window.

You must subclass Fl_Gl_Window and provide an implementation for draw().

You must override the draw() method.

You may also provide an implementation of draw_overlay() if you want to draw into the overlay planes.
You can avoid reinitializing the viewport and lights and other things by checking valid() at the start of
draw() and only doing the initialization if it is false.

The draw() method can only use OpenGL calls. Do not attempt to call X, any of the functions in <FL/fl_-
draw.H>, or glX directly. Do not call gl_start() or gl_finish().

If double-buffering is enabled in the window, the back and front buffers are swapped after this function is
completed.

Reimplemented from Fl_Window.

Reimplemented in Fl_Glut_Window.

30.40.3.9 void Fl_Gl_Window::flush () [virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented from Fl_Window.

30.40.3.10 void Fl_Gl_Window::hide_overlay ()

Hides the window if it is not this window, does nothing in WIN32.

30.40.3.11 void Fl_Gl_Window::make_current ()

The make_current() method selects the OpenGL context for the widget.

It is called automatically prior to the draw() method being called and can also be used to implement feed-
back and/or selection within the handle() method.

Reimplemented from Fl_Window.

Reimplemented in Fl_Glut_Window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

494 Class Documentation

30.40.3.12 void Fl_Gl_Window::make_overlay_current ()

The make_overlay_current() method selects the OpenGL context for the widget’s overlay.

It is called automatically prior to the draw_overlay() method being called and can also be used to implement
feedback and/or selection within the handle() method.

30.40.3.13 Fl_Mode Fl_Gl_Window::mode () const [inline]

Set or change the OpenGL capabilites of the window.

The value can be any of the following OR’d together:

• FL_RGB - RGB color (not indexed)

• FL_RGB8 - RGB color with at least 8 bits of each color

• FL_INDEX - Indexed mode

• FL_SINGLE - not double buffered

• FL_DOUBLE - double buffered

• FL_ACCUM - accumulation buffer

• FL_ALPHA - alpha channel in color

• FL_DEPTH - depth buffer

• FL_STENCIL - stencil buffer

• FL_MULTISAMPLE - multisample antialiasing

FL_RGB and FL_SINGLE have a value of zero, so they are "on" unless you give FL_INDEX or FL_-
DOUBLE.

If the desired combination cannot be done, FLTK will try turning off FL_MULTISAMPLE. If this also
fails the show() will call Fl::error() and not show the window.

You can change the mode while the window is displayed. This is most useful for turning double-buffering
on and off. Under X this will cause the old X window to be destroyed and a new one to be created. If
this is a top-level window this will unfortunately also cause the window to blink, raise to the top, and be
de-iconized, and the xid() will change, possibly breaking other code. It is best to make the GL window a
child of another window if you wish to do this!

mode() must not be called within draw() since it changes the current context.

30.40.3.14 void Fl_Gl_Window::ortho ()

Sets the projection so 0,0 is in the lower left of the window and each pixel is 1 unit wide/tall.

If you are drawing 2D images, your draw() method may want to call this if valid() is false.

30.40.3.15 void Fl_Gl_Window::redraw_overlay ()

This method causes draw_overlay() to be called at a later time.

Initially the overlay is clear. If you want the window to display something in the overlay when it first
appears, you must call this immediately after you show() your window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.40 Fl_Gl_Window Class Reference 495

30.40.3.16 void Fl_Gl_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Window.

30.40.3.17 void Fl_Gl_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display. The second form is used for top-level
windows and allows standard arguments to be parsed from the command-line.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Reimplemented from Fl_Window.

30.40.3.18 void Fl_Gl_Window::swap_buffers ()

The swap_buffers() method swaps the back and front buffers.

It is called automatically after the draw() method is called.

30.40.3.19 char Fl_Gl_Window::valid () const [inline]

Is turned off when FLTK creates a new context for this window or when the window resizes, and is turned
on after draw() is called.

You can use this inside your draw() method to avoid unnecessarily initializing the OpenGL context. Just
do this:

void mywindow::draw() {
if (!valid()) {

glViewport(0,0,w(),h());
glFrustum(...);
...other initialization...

}
if (!context_valid()) {

...load textures, etc. ...
}
... draw your geometry here ...

}

You can turn valid() on by calling valid(1). You should only do this after fixing the transformation inside a
draw() or after make_current(). This is done automatically after draw() returns.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

496 Class Documentation

The documentation for this class was generated from the following files:

• Fl_Gl_Window.H
• Fl_Gl_Overlay.cxx
• Fl_Gl_Window.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.41 Fl_Glut_Bitmap_Font Struct Reference 497

30.41 Fl_Glut_Bitmap_Font Struct Reference

fltk glut font/size attributes used in the glutXXX functions

#include <glut.H>

Public Attributes

• Fl_Font font
• Fl_Fontsize size

30.41.1 Detailed Description

fltk glut font/size attributes used in the glutXXX functions

The documentation for this struct was generated from the following file:

• glut.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

498 Class Documentation

30.42 Fl_Glut_Window Class Reference

GLUT is emulated using this window class and these static variables (plus several more static variables
hidden in glut_compatability.cxx):.

#include <glut.H>

Inheritance diagram for Fl_Glut_Window::

Fl_Glut_Window

Fl_Gl_Window

Fl_Window

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Glut_Window (int x, int y, int w, int h, const char ∗)
Creates a glut window, registers to the glut windows list.

• Fl_Glut_Window (int w, int h, const char ∗)
Creates a glut window, registers to the glut windows list.

• void make_current ()
The make_current() method selects the OpenGL context for the widget.

• ∼Fl_Glut_Window ()
Destroys the glut window, first unregister it from the glut windows list.

Public Attributes

• void(∗ display)()
• void(∗ entry)(int)
• void(∗ keyboard)(uchar, int x, int y)
• int menu [3]
• void(∗ motion)(int x, int y)
• void(∗ mouse)(int b, int state, int x, int y)
• int number
• void(∗ overlaydisplay)()
• void(∗ passivemotion)(int x, int y)
• void(∗ reshape)(int w, int h)
• void(∗ special)(int, int x, int y)
• void(∗ visibility)(int)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.42 Fl_Glut_Window Class Reference 499

Protected Member Functions

• void draw ()

Draws the Fl_Gl_Window.

• void draw_overlay ()

You must implement this virtual function if you want to draw into the overlay.

• int handle (int)

Handles the specified event.

30.42.1 Detailed Description

GLUT is emulated using this window class and these static variables (plus several more static variables
hidden in glut_compatability.cxx):.

30.42.2 Constructor & Destructor Documentation

30.42.2.1 Fl_Glut_Window::Fl_Glut_Window (int W, int H, const char ∗ t)

Creates a glut window, registers to the glut windows list.

30.42.2.2 Fl_Glut_Window::Fl_Glut_Window (int X, int Y, int W, int H, const char ∗ t)

Creates a glut window, registers to the glut windows list.

30.42.3 Member Function Documentation

30.42.3.1 void Fl_Glut_Window::draw (void) [protected, virtual]

Draws the Fl_Gl_Window.

You must subclass Fl_Gl_Window and provide an implementation for draw().

You must override the draw() method.

You may also provide an implementation of draw_overlay() if you want to draw into the overlay planes.
You can avoid reinitializing the viewport and lights and other things by checking valid() at the start of
draw() and only doing the initialization if it is false.

The draw() method can only use OpenGL calls. Do not attempt to call X, any of the functions in <FL/fl_-
draw.H>, or glX directly. Do not call gl_start() or gl_finish().

If double-buffering is enabled in the window, the back and front buffers are swapped after this function is
completed.

Reimplemented from Fl_Gl_Window.

30.42.3.2 void Fl_Glut_Window::draw_overlay () [protected, virtual]

You must implement this virtual function if you want to draw into the overlay.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

500 Class Documentation

The overlay is cleared before this is called. You should draw anything that is not clear using OpenGL. You
must use gl_color(i) to choose colors (it allocates them from the colormap using system-specific calls),
and remember that you are in an indexed OpenGL mode and drawing anything other than flat-shaded will
probably not work.

Both this function and Fl_Gl_Window::draw() should check Fl_Gl_Window::valid() and set the same trans-
formation. If you don’t your code may not work on other systems. Depending on the OS, and on whether
overlays are real or simulated, the OpenGL context may be the same or different between the overlay and
main window.

Reimplemented from Fl_Gl_Window.

30.42.3.3 int Fl_Glut_Window::handle (int event) [protected, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Window.

30.42.3.4 void Fl_Glut_Window::make_current ()

The make_current() method selects the OpenGL context for the widget.

It is called automatically prior to the draw() method being called and can also be used to implement feed-
back and/or selection within the handle() method.

Reimplemented from Fl_Gl_Window.

The documentation for this class was generated from the following files:

• glut.H
• glut_compatability.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 501

30.43 Fl_Group Class Reference

The Fl_Group class is the FLTK container widget.

#include <Fl_Group.H>

Inheritance diagram for Fl_Group::

Fl_Group

Fl_Widget

Fl_Browser_

Fl_Color_Chooser

Fl_Help_View

Fl_Input_Choice

Fl_Pack

Fl_Scroll

Fl_Spinner

Fl_Table

Fl_Tabs

Fl_Text_Display

Fl_Tile

Fl_Tree

Fl_Window

Fl_Wizard

Public Member Functions

• Fl_Widget ∗& _ddfdesign_kludge ()

This is for forms compatibility only.

• void add (Fl_Widget ∗o)

See void Fl_Group::add(Fl_Widget &w).

• void add (Fl_Widget &)

The widget is removed from its current group (if any) and then added to the end of this group.

• void add_resizable (Fl_Widget &o)

Adds a widget to the group and makes it the resizable widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

502 Class Documentation

• Fl_Widget ∗const ∗ array () const
Returns a pointer to the array of children.

• virtual Fl_Group ∗ as_group ()
Returns an Fl_Group pointer if this widget is an Fl_Group.

• void begin ()
Sets the current group so you can build the widget tree by just constructing the widgets.

• Fl_Widget ∗ child (int n) const
Returns array()[n].

• int children () const
Returns how many child widgets the group has.

• void clear ()
Deletes all child widgets from memory recursively.

• unsigned int clip_children ()
Returns the current clipping mode.

• void clip_children (int c)
Controls whether the group widget clips the drawing of child widgets to its bounding box.

• void end ()
Exactly the same as current(this->parent()).

• int find (const Fl_Widget &o) const
See int Fl_Group::find(const Fl_Widget ∗w) const.

• int find (const Fl_Widget ∗) const
Searches the child array for the widget and returns the index.

• Fl_Group (int, int, int, int, const char ∗=0)
Creates a new Fl_Group widget using the given position, size, and label string.

• void focus (Fl_Widget ∗W)
• void forms_end ()

This is for forms compatibility only.

• int handle (int)
Handles the specified event.

• void init_sizes ()
Resets the internal array of widget sizes and positions.

• void insert (Fl_Widget &o, Fl_Widget ∗before)
This does insert(w, find(before)).

• void insert (Fl_Widget &, int i)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 503

The widget is removed from its current group (if any) and then inserted into this group.

• void remove (Fl_Widget ∗o)
Removes the widget o from the group.

• void remove (Fl_Widget &)
Removes a widget from the group but does not delete it.

• Fl_Widget ∗ resizable () const
See void Fl_Group::resizable(Fl_Widget ∗box).

• void resizable (Fl_Widget ∗o)
The resizable widget defines the resizing box for the group.

• void resizable (Fl_Widget &o)
See void Fl_Group::resizable(Fl_Widget ∗box).

• void resize (int, int, int, int)
Resizes the Fl_Group widget and all of its children.

• virtual ∼Fl_Group ()
The destructor also deletes all the children.

Static Public Member Functions

• static void current (Fl_Group ∗g)
See static Fl_Group ∗Fl_Groupcurrent().

• static Fl_Group ∗ current ()
Returns the currently active group.

Protected Member Functions

• void draw ()
Draws the widget.

• void draw_child (Fl_Widget &widget) const
Forces a child to redraw.

• void draw_children ()
Draws all children of the group.

• void draw_outside_label (const Fl_Widget &widget) const
Parents normally call this to draw outside labels of child widgets.

• int ∗ sizes ()
Returns the internal array of widget sizes and positions.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

504 Class Documentation

• void update_child (Fl_Widget &widget) const
Draws a child only if it needs it.

30.43.1 Detailed Description

The Fl_Group class is the FLTK container widget.

It maintains an array of child widgets. These children can themselves be any widget including Fl_Group.
The most important subclass of Fl_Group is Fl_Window, however groups can also be used to control radio
buttons or to enforce resize behavior.

30.43.2 Constructor & Destructor Documentation

30.43.2.1 Fl_Group::Fl_Group (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Group widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

30.43.2.2 Fl_Group::∼Fl_Group () [virtual]

The destructor also deletes all the children.

This allows a whole tree to be deleted at once, without having to keep a pointer to all the children in the
user code.

It is allowed that the Fl_Group and all of its children are automatic (local) variables, but you must declare
the Fl_Group first, so that it is destroyed last.

If you add static or automatic (local) variables to an Fl_Group, then it is your responsibility to remove (or
delete) all such static or automatic child widgets before destroying the group - otherwise the child widgets’
destructors would be called twice!

30.43.3 Member Function Documentation

30.43.3.1 Fl_Widget ∗const ∗ Fl_Group::array () const

Returns a pointer to the array of children.

This pointer is only valid until the next time a child is added or removed.

30.43.3.2 virtual Fl_Group∗ Fl_Group::as_group () [inline, virtual]

Returns an Fl_Group pointer if this widget is an Fl_Group.

Return values:

NULL if this widget is not derived from Fl_Group.

Note:

This method is provided to avoid dynamic_cast.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 505

Todo

More documentation ...

Reimplemented from Fl_Widget.

30.43.3.3 void Fl_Group::begin ()

Sets the current group so you can build the widget tree by just constructing the widgets.

begin() is automatically called by the constructor for Fl_Group (and thus for Fl_Window as well). begin()
is exactly the same as current(this). Don’t forget to end() the group or window!

Reimplemented in Fl_Table.

30.43.3.4 Fl_Widget∗ Fl_Group::child (int n) const [inline]

Returns array()[n].

No range checking is done!

Reimplemented in Fl_Table.

30.43.3.5 void Fl_Group::clear ()

Deletes all child widgets from memory recursively.

This method differs from the remove() method in that it affects all child widgets and deletes them from
memory.

Reimplemented in Fl_Browser, Fl_Check_Browser, Fl_Input_Choice, Fl_Scroll, Fl_Table, Fl_Table_Row,
and Fl_Tree.

30.43.3.6 unsigned int Fl_Group::clip_children () [inline]

Returns the current clipping mode.

Returns:

true, if clipping is enabled, false otherwise.

See also:

void Fl_Group::clip_children(int c)

30.43.3.7 void Fl_Group::clip_children (int c) [inline]

Controls whether the group widget clips the drawing of child widgets to its bounding box.

Set c to 1 if you want to clip the child widgets to the bounding box.

The default is to not clip (0) the drawing of child widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

506 Class Documentation

30.43.3.8 Fl_Group ∗ Fl_Group::current (void) [static]

Returns the currently active group.

The Fl_Widget constructor automatically does current()->add(widget) if this is not null. To prevent new
widgets from being added to a group, call Fl_Group::current(0).

Reimplemented in Fl_Window.

30.43.3.9 void Fl_Group::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Browser_, Fl_Cairo_Window, Fl_Gl_Window, Fl_Pack, Fl_Scroll, Fl_Table, Fl_-
Tabs, Fl_Text_Display, Fl_Tree, Fl_Window, and Fl_Glut_Window.

30.43.3.10 void Fl_Group::draw_child (Fl_Widget & widget) const [protected]

Forces a child to redraw.

This draws a child widget, if it is not clipped. The damage bits are cleared after drawing.

30.43.3.11 void Fl_Group::draw_children () [protected]

Draws all children of the group.

This is useful, if you derived a widget from Fl_Group and want to draw a special border or background.
You can call draw_children() from the derived draw() method after drawing the box, border, or background.

30.43.3.12 void Fl_Group::draw_outside_label (const Fl_Widget & widget) const [protected]

Parents normally call this to draw outside labels of child widgets.

30.43.3.13 void Fl_Group::end ()

Exactly the same as current(this->parent()).

Any new widgets added to the widget tree will be added to the parent of the group.

Reimplemented in Fl_Table.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 507

30.43.3.14 int Fl_Group::find (const Fl_Widget ∗ o) const

Searches the child array for the widget and returns the index.

Returns children() if the widget is NULL or not found.

Reimplemented in Fl_Table.

30.43.3.15 void Fl_Group::focus (Fl_Widget ∗W) [inline]

Deprecated

This is for backwards compatibility only. You should use W->take_focus() instead.

See also:

Fl_Widget::take_focus();

30.43.3.16 int Fl_Group::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood
1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_Browser_, Fl_Check_Browser, Fl_Scroll, Fl_Spinner, Fl_Table, Fl_Table_Row, Fl_-
Tabs, Fl_Text_Display, Fl_Text_Editor, Fl_Tile, Fl_Tree, Fl_Window, and Fl_Glut_Window.

30.43.3.17 void Fl_Group::init_sizes ()

Resets the internal array of widget sizes and positions.

The Fl_Group widget keeps track of the original widget sizes and positions when resizing occurs so that if
you resize a window back to its original size the widgets will be in the correct places. If you rearrange the
widgets in your group, call this method to register the new arrangement with the Fl_Group that contains
them.

If you add or remove widgets, this will be done automatically.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

508 Class Documentation

Note:

The internal array of widget sizes and positions will be allocated and filled when the next resize()
occurs.

See also:

sizes()

Reimplemented in Fl_Table.

30.43.3.18 void Fl_Group::insert (Fl_Widget & o, Fl_Widget ∗ before) [inline]

This does insert(w, find(before)).

This will append the widget if before is not in the group.

Reimplemented in Fl_Table.

30.43.3.19 void Fl_Group::insert (Fl_Widget & o, int index)

The widget is removed from its current group (if any) and then inserted into this group.

It is put at index n - or at the end, if n >= children(). This can also be used to rearrange the widgets inside
a group.

Reimplemented in Fl_Table.

30.43.3.20 void Fl_Group::remove (Fl_Widget ∗ o) [inline]

Removes the widget o from the group.

See also:

void remove(Fl_Widget&)

30.43.3.21 void Fl_Group::remove (Fl_Widget & o)

Removes a widget from the group but does not delete it.

This method does nothing if the widget is not a child of the group.

This method differs from the clear() method in that it only affects a single widget and does not delete it
from memory.

Reimplemented in Fl_Table.

30.43.3.22 void Fl_Group::resizable (Fl_Widget ∗ o) [inline]

The resizable widget defines the resizing box for the group.

When the group is resized it calculates a new size and position for all of its children. Widgets that are
horizontally or vertically inside the dimensions of the box are scaled to the new size. Widgets outside the
box are moved.

In these examples the gray area is the resizable:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.43 Fl_Group Class Reference 509

Figure 30.14: before resize

Figure 30.15: after resize

The resizable may be set to the group itself, in which case all the contents are resized. This is the default
value for Fl_Group, although NULL is the default for Fl_Window and Fl_Pack.

If the resizable is NULL then all widgets remain a fixed size and distance from the top-left corner.

It is possible to achieve any type of resize behavior by using an invisible Fl_Box as the resizable and/or by
using a hierarchy of child Fl_Group’s.

30.43.3.23 void Fl_Group::resize (int X, int Y, int W, int H) [virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Widget.

Reimplemented in Fl_Browser_, Fl_Double_Window, Fl_Gl_Window, Fl_Help_View, Fl_Input_Choice,
Fl_Overlay_Window, Fl_Scroll, Fl_Spinner, Fl_Table, Fl_Text_Display, Fl_Tile, and Fl_Window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

510 Class Documentation

30.43.3.24 int ∗ Fl_Group::sizes () [protected]

Returns the internal array of widget sizes and positions.

If the sizes() array does not exist, it will be allocated and filled with the current widget sizes and positions.

Note:

You should never need to use this method directly, unless you have special needs to rearrange the
children of a Fl_Group. Fl_Tile uses this to rearrange its widget positions.

See also:

init_sizes()

Todo

Should the internal representation of the sizes() array be documented?

30.43.3.25 void Fl_Group::update_child (Fl_Widget & widget) const [protected]

Draws a child only if it needs it.

This draws a child widget, if it is not clipped and if any damage() bits are set. The damage bits are cleared
after drawing.

See also:

Fl_Group::draw_child(Fl_Widget& widget) const

The documentation for this class was generated from the following files:

• Fl_Group.H
• Fl_Group.cxx
• forms_compatability.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.44 Fl_Help_Dialog Class Reference 511

30.44 Fl_Help_Dialog Class Reference

The Fl_Help_Dialog widget displays a standard help dialog window using the Fl_Help_View widget.

Public Member Functions

• Fl_Help_Dialog ()

The constructor creates the dialog pictured above.

• int h ()

Returns the position and size of the help dialog.

• void hide ()

Hides the Fl_Help_Dialog window.

• void load (const char ∗f)
Loads the specified HTML file into the Fl_Help_View widget.

• void position (int xx, int yy)

Set the screen position of the dialog.

• void resize (int xx, int yy, int ww, int hh)

Change the position and size of the dialog.

• void show (int argc, char ∗∗argv)

Shows the main Help Dialog Window Delegates call to encapsulated window_ void Fl_Window::show(int
argc, char ∗∗argv) instance method.

• void show ()

Shows the Fl_Help_Dialog window.

• Fl_Fontsize textsize ()

Sets or gets the default text size for the help view.

• void textsize (Fl_Fontsize s)

Sets or gets the default text size for the help view.

• void topline (int n)

Sets the top line in the Fl_Help_View widget to the named or numbered line.

• void topline (const char ∗n)

Sets the top line in the Fl_Help_View widget to the named or numbered line.

• const char ∗ value () const

The first form sets the current buffer to the string provided and reformats the text.

• void value (const char ∗f)
The first form sets the current buffer to the string provided and reformats the text.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

512 Class Documentation

• int visible ()

Returns 1 if the Fl_Help_Dialog window is visible.

• int w ()

Returns the position and size of the help dialog.

• int x ()

Returns the position and size of the help dialog.

• int y ()

Returns the position and size of the help dialog.

• ∼Fl_Help_Dialog ()

The destructor destroys the widget and frees all memory that has been allocated for the current file.

30.44.1 Detailed Description

The Fl_Help_Dialog widget displays a standard help dialog window using the Fl_Help_View widget.

Figure 30.16: Fl_Help_Dialog

30.44.2 Constructor & Destructor Documentation

30.44.2.1 Fl_Help_Dialog::Fl_Help_Dialog ()

The constructor creates the dialog pictured above.

30.44.3 Member Function Documentation

30.44.3.1 int Fl_Help_Dialog::h ()

Returns the position and size of the help dialog.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.44 Fl_Help_Dialog Class Reference 513

30.44.3.2 void Fl_Help_Dialog::hide ()

Hides the Fl_Help_Dialog window.

30.44.3.3 void Fl_Help_Dialog::load (const char ∗ f)

Loads the specified HTML file into the Fl_Help_View widget.

The filename can also contain a target name ("filename.html#target").

30.44.3.4 void Fl_Help_Dialog::position (int x, int y)

Set the screen position of the dialog.

30.44.3.5 void Fl_Help_Dialog::resize (int xx, int yy, int ww, int hh)

Change the position and size of the dialog.

30.44.3.6 void Fl_Help_Dialog::show ()

Shows the Fl_Help_Dialog window.

Shows the main Help Dialog Window Delegates call to encapsulated window_ void Fl_Window::show()
method.

30.44.3.7 uchar Fl_Help_Dialog::textsize ()

Sets or gets the default text size for the help view.

30.44.3.8 void Fl_Help_Dialog::textsize (Fl_Fontsize s)

Sets or gets the default text size for the help view.

Sets the internal Fl_Help_View instance text size.

Delegates call to encapsulated view_ void Fl_Help_View::textsize(Fl_Fontsize s) instance method

30.44.3.9 const char ∗ Fl_Help_Dialog::value () const

The first form sets the current buffer to the string provided and reformats the text.

It also clears the history of the "back" and "forward" buttons. The second form returns the current buffer
contents.

30.44.3.10 void Fl_Help_Dialog::value (const char ∗ v)

The first form sets the current buffer to the string provided and reformats the text.

It also clears the history of the "back" and "forward" buttons. The second form returns the current buffer
contents.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

514 Class Documentation

30.44.3.11 int Fl_Help_Dialog::visible ()

Returns 1 if the Fl_Help_Dialog window is visible.

30.44.3.12 int Fl_Help_Dialog::w ()

Returns the position and size of the help dialog.

30.44.3.13 int Fl_Help_Dialog::x ()

Returns the position and size of the help dialog.

30.44.3.14 int Fl_Help_Dialog::y ()

Returns the position and size of the help dialog.

The documentation for this class was generated from the following files:

• Fl_Help_Dialog.H
• Fl_Help_Dialog.cxx
• Fl_Help_Dialog_Dox.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.45 Fl_Help_Font_Style Struct Reference 515

30.45 Fl_Help_Font_Style Struct Reference

Fl_Help_View font stack element definition.

#include <Fl_Help_View.H>

Public Member Functions

• Fl_Help_Font_Style (Fl_Font afont, Fl_Fontsize asize, Fl_Color acolor)
• void get (Fl_Font &afont, Fl_Fontsize &asize, Fl_Color &acolor)

Gets current font attributes.

• void set (Fl_Font afont, Fl_Fontsize asize, Fl_Color acolor)
Sets current font attributes.

Public Attributes

• Fl_Color c
Font Color.

• Fl_Font f
Font.

• Fl_Fontsize s
Font Size.

30.45.1 Detailed Description

Fl_Help_View font stack element definition.

The documentation for this struct was generated from the following file:

• Fl_Help_View.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

516 Class Documentation

30.46 Fl_Help_Link Struct Reference

Definition of a link for the html viewer.

#include <Fl_Help_View.H>

Public Attributes

• char filename [192]
Reference filename.

• int h
Height of link text.

• char name [32]
Link target (blank if none).

• int w
Width of link text.

• int x
X offset of link text.

• int y
Y offset of link text.

30.46.1 Detailed Description

Definition of a link for the html viewer.

The documentation for this struct was generated from the following file:

• Fl_Help_View.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.47 Fl_Help_Target Struct Reference 517

30.47 Fl_Help_Target Struct Reference

Fl_Help_Target structure.

#include <Fl_Help_View.H>

Public Attributes

• char name [32]
Target name.

• int y
Y offset of target.

30.47.1 Detailed Description

Fl_Help_Target structure.

The documentation for this struct was generated from the following file:

• Fl_Help_View.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

518 Class Documentation

30.48 Fl_Help_View Class Reference

The Fl_Help_View widget displays HTML text.

#include <Fl_Help_View.H>

Inheritance diagram for Fl_Help_View::

Fl_Help_View

Fl_Group

Fl_Widget

Public Member Functions

• void clear_selection ()

Removes the current text selection.

• const char ∗ directory () const

Returns the current directory for the text in the buffer.

• const char ∗ filename () const

Returns the current filename for the text in the buffer.

• int find (const char ∗s, int p=0)

Finds the specified string s at starting position p.

• Fl_Help_View (int xx, int yy, int ww, int hh, const char ∗l=0)

The constructor creates the Fl_Help_View widget at the specified position and size.

• int leftline () const

Gets the left position in pixels.

• void leftline (int)

Scrolls the text to the indicated position, given a pixel column.

• void link (Fl_Help_Func ∗fn)

This method assigns a callback function to use when a link is followed or a file is loaded (via Fl_Help_-
View::load()) that requires a different file or path.

• int load (const char ∗f)
Loads the specified file.

• void resize (int, int, int, int)

Resizes the help widget.

• void scrollbar_size (int size)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 519

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

• void select_all ()
Selects all the text in the view.

• void size (int W, int H)
Changes the size of the widget.

• int size () const
Gets the size of the help view.

• Fl_Color textcolor () const
Returns the current default text color.

• void textcolor (Fl_Color c)
Sets the default text color.

• Fl_Font textfont () const
Returns the current default text font.

• void textfont (Fl_Font f)
Sets the default text font.

• Fl_Fontsize textsize () const
Gets the default text size.

• void textsize (Fl_Fontsize s)
Sets the default text size.

• const char ∗ title ()
Returns the current document title, or NULL if there is no title.

• int topline () const
Returns the current top line in pixels.

• void topline (int)
Scrolls the text to the indicated position, given a pixel line.

• void topline (const char ∗n)
Scrolls the text to the indicated position, given a named destination.

• const char ∗ value () const
Returns the current buffer contents.

• void value (const char ∗val)
Sets the current help text buffer to the string provided and reformats the text.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

520 Class Documentation

• ∼Fl_Help_View ()
Destroys the Fl_Help_View widget.

30.48.1 Detailed Description

The Fl_Help_View widget displays HTML text.

Most HTML 2.0 elements are supported, as well as a primitive implementation of tables. GIF, JPEG, and
PNG images are displayed inline.

Supported HTML tags:

• A: HREF/NAME

• B

• BODY: BGCOLOR/TEXT/LINK

• BR

• CENTER

• CODE

• DD

• DL

• DT

• EM

• FONT: COLOR/SIZE/FACE=(helvetica/arial/sans/times/serif/symbol/courier)

• H1/H2/H3/H4/H5/H6

• HEAD

• HR

• I

• IMG: SRC/WIDTH/HEIGHT/ALT

• KBD

• LI

• OL

• P

• PRE

• STRONG

• TABLE: TH/TD/TR/BORDER/BGCOLOR/COLSPAN/ALIGN=CENTER|RIGHT|LEFT

• TITLE

• TT

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 521

• U

• UL

• VAR

Supported color names:

• black,red,green,yellow,blue,magenta,fuchsia,cyan,aqua,white,gray,grey,lime,maroon,navy,olive,purple,silver,teal.

Supported urls:

• Internal: file:

• External: http: ftp: https: ipp: mailto: news:

Quoted char names:

• Aacute aacute Acirc acirc acute AElig aelig Agrave agrave amp Aring aring Atilde atilde Auml auml

• brvbar bull

• Ccedil ccedil cedil cent copy curren

• deg divide

• Eacute eacute Ecirc ecirc Egrave egrave ETH eth Euml euml euro

• frac12 frac14 frac34

• gt

• Iacute iacute Icirc icirc iexcl Igrave igrave iquest Iuml iuml

• laquo lt

• macr micro middot

• nbsp not Ntilde ntilde

• Oacute oacute Ocirc ocirc Ograve ograve ordf ordm Oslash oslash Otilde otilde Ouml ouml

• para premil plusmn pound

• quot

• raquo reg

• sect shy sup1 sup2 sup3 szlig

• THORN thorn times trade

• Uacute uacute Ucirc ucirc Ugrave ugrave uml Uuml uuml

• Yacute yacute

• yen Yuml yuml

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

522 Class Documentation

30.48.2 Constructor & Destructor Documentation

30.48.2.1 Fl_Help_View::∼Fl_Help_View ()

Destroys the Fl_Help_View widget.

The destructor destroys the widget and frees all memory that has been allocated for the current document.

30.48.3 Member Function Documentation

30.48.3.1 void Fl_Help_View::clear_selection ()

Removes the current text selection.

30.48.3.2 const char∗ Fl_Help_View::directory () const [inline]

Returns the current directory for the text in the buffer.

30.48.3.3 const char∗ Fl_Help_View::filename () const [inline]

Returns the current filename for the text in the buffer.

30.48.3.4 int Fl_Help_View::find (const char ∗ s, int p = 0)

Finds the specified string s at starting position p.

Returns:

the matching position or -1 if not found

30.48.3.5 int Fl_Help_View::leftline () const [inline]

Gets the left position in pixels.

30.48.3.6 void Fl_Help_View::leftline (int left)

Scrolls the text to the indicated position, given a pixel column.

If the given pixel value left is out of range, then the text is scrolled to the left or right side of the
document, resp.

Parameters:

← left left column number in pixels (0 = left side)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 523

30.48.3.7 void Fl_Help_View::link (Fl_Help_Func ∗ fn) [inline]

This method assigns a callback function to use when a link is followed or a file is loaded (via Fl_Help_-
View::load()) that requires a different file or path.

The callback function receives a pointer to the Fl_Help_View widget and the URI or full pathname for the
file in question. It must return a pathname that can be opened as a local file or NULL:

const char *fn(Fl_Widget *w, const char *uri);

The link function can be used to retrieve remote or virtual documents, returning a temporary file that
contains the actual data. If the link function returns NULL, the value of the Fl_Help_View widget will
remain unchanged.

If the link callback cannot handle the URI scheme, it should return the uri value unchanged or set the
value() of the widget before returning NULL.

30.48.3.8 int Fl_Help_View::load (const char ∗ f)

Loads the specified file.

This method loads the specified file or URL.

30.48.3.9 void Fl_Help_View::resize (int xx, int yy, int ww, int hh) [virtual]

Resizes the help widget.

Reimplemented from Fl_Group.

30.48.3.10 void Fl_Help_View::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use Fl::scrollbar_size(int) instead to manage the
size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the default
behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Parameters:

← size Sets the scrollbar size in pixels.

If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

524 Class Documentation

30.48.3.11 int Fl_Help_View::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the Fl::scrollbar_size() value as the scrollbar’s width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollbar_size() is being used.

See also:

Fl::scrollbar_size(int)

30.48.3.12 void Fl_Help_View::select_all ()

Selects all the text in the view.

30.48.3.13 void Fl_Help_View::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

30.48.3.14 int Fl_Help_View::size () const [inline]

Gets the size of the help view.

30.48.3.15 Fl_Color Fl_Help_View::textcolor () const [inline]

Returns the current default text color.

30.48.3.16 void Fl_Help_View::textcolor (Fl_Color c) [inline]

Sets the default text color.

30.48.3.17 Fl_Font Fl_Help_View::textfont () const [inline]

Returns the current default text font.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.48 Fl_Help_View Class Reference 525

30.48.3.18 void Fl_Help_View::textfont (Fl_Font f) [inline]

Sets the default text font.

30.48.3.19 Fl_Fontsize Fl_Help_View::textsize () const [inline]

Gets the default text size.

30.48.3.20 void Fl_Help_View::textsize (Fl_Fontsize s) [inline]

Sets the default text size.

30.48.3.21 const char∗ Fl_Help_View::title () [inline]

Returns the current document title, or NULL if there is no title.

30.48.3.22 int Fl_Help_View::topline () const [inline]

Returns the current top line in pixels.

30.48.3.23 void Fl_Help_View::topline (int top)

Scrolls the text to the indicated position, given a pixel line.

If the given pixel value top is out of range, then the text is scrolled to the top or bottom of the document,
resp.

Parameters:

← top top line number in pixels (0 = start of document)

30.48.3.24 void Fl_Help_View::topline (const char ∗ n)

Scrolls the text to the indicated position, given a named destination.

Parameters:

← n target name

30.48.3.25 const char∗ Fl_Help_View::value () const [inline]

Returns the current buffer contents.

30.48.3.26 void Fl_Help_View::value (const char ∗ val)

Sets the current help text buffer to the string provided and reformats the text.

The provided character string val is copied internally and will be freed when value() is called again, or
when the widget is destroyed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

526 Class Documentation

If val is NULL, then the widget is cleared.

The documentation for this class was generated from the following files:

• Fl_Help_View.H
• Fl_Help_View.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.49 Fl_Hold_Browser Class Reference 527

30.49 Fl_Hold_Browser Class Reference

The Fl_Hold_Browser is a subclass of Fl_Browser which lets the user select a single item, or no items by
clicking on the empty space.

#include <Fl_Hold_Browser.H>

Inheritance diagram for Fl_Hold_Browser::

Fl_Hold_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Hold_Browser (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Hold_Browser widget using the given position, size, and label string.

30.49.1 Detailed Description

The Fl_Hold_Browser is a subclass of Fl_Browser which lets the user select a single item, or no items by
clicking on the empty space.

As long as the mouse button is held down the item pointed to by it is highlighted, and this highlighting
remains on when the mouse button is released. Normally the callback is done when the user releases the
mouse, but you can change this with when().

See Fl_Browser for methods to add and remove lines from the browser.

30.49.2 Constructor & Destructor Documentation

30.49.2.1 Fl_Hold_Browser::Fl_Hold_Browser (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Hold_Browser widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX. The constructor specializes Fl_Browser() by setting the type to
FL_HOLD_BROWSER. The destructor destroys the widget and frees all memory that has been allocated.

The documentation for this class was generated from the following file:

• Fl_Hold_Browser.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

528 Class Documentation

30.50 Fl_Image Class Reference

Fl_Image is the base class used for caching and drawing all kinds of images in FLTK.

#include <Fl_Image.H>

Inheritance diagram for Fl_Image::

Fl_Image

Fl_Bitmap Fl_Pixmap Fl_RGB_Image Fl_Shared_Image Fl_Tiled_Image

Fl_XBM_Image Fl_GIF_Image Fl_XPM_Image Fl_BMP_Image Fl_JPEG_Image Fl_PNG_Image Fl_PNM_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)

The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• int count () const

The count() method returns the number of data values associated with the image.

• int d () const

The first form of the d() method returns the current image depth.

• const char ∗const ∗ data () const

The first form of the data() method returns a pointer to the current image data array.

• virtual void desaturate ()

The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)

The draw() methods draw the image.

• Fl_Image (int W, int H, int D)

The constructor creates an empty image with the specified width, height, and depth.

• int h () const

See void Fl_Image::h(int).

• void inactive ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.50 Fl_Image Class Reference 529

The inactive() method calls color_average(FL_BACKGROUND_COLOR, 0.33f) to produce an image that
appears grayed out.

• virtual void label (Fl_Menu_Item ∗m)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void label (Fl_Widget ∗w)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• int ld () const

The first form of the ld() method returns the current line data size in bytes.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

• int w () const

See void Fl_Image::w(int).

• virtual ∼Fl_Image ()

The destructor is a virtual method that frees all memory used by the image.

Protected Member Functions

• void d (int D)

The first form of the d() method returns the current image depth.

• void data (const char ∗const ∗p, int c)

See const char ∗ const ∗data().

• void draw_empty (int X, int Y)

The protected method draw_empty() draws a box with an X in it.

• void h (int H)

The first form of the h() method returns the current image height in pixels.

• void ld (int LD)

See int ld().

• void w (int W)

The first form of the w() method returns the current image width in pixels.

Static Protected Member Functions

• static void labeltype (const Fl_Label ∗lo, int lx, int ly, int lw, int lh, Fl_Align la)
• static void measure (const Fl_Label ∗lo, int &lw, int &lh)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

530 Class Documentation

30.50.1 Detailed Description

Fl_Image is the base class used for caching and drawing all kinds of images in FLTK.

This class keeps track of common image data such as the pixels, colormap, width, height, and depth. Virtual
methods are used to provide type-specific image handling.

Since the Fl_Image class does not support image drawing by itself, calling the draw() method results in a
box with an X in it being drawn instead.

30.50.2 Constructor & Destructor Documentation

30.50.2.1 Fl_Image::Fl_Image (int W, int H, int D) [inline]

The constructor creates an empty image with the specified width, height, and depth.

The width and height are in pixels. The depth is 0 for bitmaps, 1 for pixmap (colormap) images, and 1 to 4
for color images.

30.50.3 Member Function Documentation

30.50.3.1 void Fl_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented in Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.2 Fl_Image∗ Fl_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.3 Fl_Image ∗ Fl_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.4 int Fl_Image::count () const [inline]

The count() method returns the number of data values associated with the image.

The value will be 0 for images with no associated data, 1 for bitmap and color images, and greater than 2
for pixmap images.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.50 Fl_Image Class Reference 531

30.50.3.5 int Fl_Image::d () const [inline]

The first form of the d() method returns the current image depth.

The return value will be 0 for bitmaps, 1 for pixmaps, and 1 to 4 for color images.

The second form is a protected method that sets the current image depth.

30.50.3.6 void Fl_Image::d (int D) [inline, protected]

The first form of the d() method returns the current image depth.

The return value will be 0 for bitmaps, 1 for pixmaps, and 1 to 4 for color images.

The second form is a protected method that sets the current image depth.

30.50.3.7 const char∗ const∗ Fl_Image::data () const [inline]

The first form of the data() method returns a pointer to the current image data array.

Use the count() method to find the size of the data array.

The second form is a protected method that sets the current array pointer and count of pointers in the array.

30.50.3.8 void Fl_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented in Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.9 void Fl_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.10 void Fl_Image::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, Fl_Shared_Image, and Fl_Tiled_Image.

30.50.3.11 void Fl_Image::draw_empty (int X, int Y) [protected]

The protected method draw_empty() draws a box with an X in it.

It can be used to draw any image that lacks image data.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

532 Class Documentation

30.50.3.12 void Fl_Image::h (int H) [inline, protected]

The first form of the h() method returns the current image height in pixels.

The second form is a protected method that sets the current image height.

30.50.3.13 void Fl_Image::inactive () [inline]

The inactive() method calls color_average(FL_BACKGROUND_COLOR, 0.33f) to produce an image that
appears grayed out.

This method does not alter the original image data.

30.50.3.14 void Fl_Image::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, and Fl_Pixmap.

30.50.3.15 void Fl_Image::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, and Fl_Pixmap.

30.50.3.16 int Fl_Image::ld () const [inline]

The first form of the ld() method returns the current line data size in bytes.

Line data is extra data that is included after each line of color image data and is normally not present.

The second form is a protected method that sets the current line data size in bytes.

30.50.3.17 void Fl_Image::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented in Fl_Bitmap, Fl_RGB_Image, Fl_Pixmap, and Fl_Shared_Image.

30.50.3.18 void Fl_Image::w (int W) [inline, protected]

The first form of the w() method returns the current image width in pixels.

The second form is a protected method that sets the current image width.

The documentation for this class was generated from the following files:

• Fl_Image.H
• Fl_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.51 Fl_Input Class Reference 533

30.51 Fl_Input Class Reference

This is the FLTK text input widget.

#include <Fl_Input.H>

Inheritance diagram for Fl_Input::

Fl_Input

Fl_Input_

Fl_Widget

Fl_File_Input Fl_Float_Input Fl_Int_Input Fl_Multiline_Input Fl_Output Fl_Secret_Input

Fl_Multiline_Output

Public Member Functions

• Fl_Input (int, int, int, int, const char ∗=0)

Creates a new Fl_Input widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.51.1 Detailed Description

This is the FLTK text input widget.

It displays a single line of text and lets the user edit it. Normally it is drawn with an inset box and a white
background. The text may contain any characters (even 0), and will correctly display anything, using ∧X
notation for unprintable control characters and \nnn notation for unprintable characters with the high bit
set. It assumes the font can draw any characters in the ISO-8859-1 character set.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

534 Class Documentation

Mouse button 1 Moves the cursor to this point. Drag selects
characters. Double click selects words. Triple
click selects all text. Shift+click extends the
selection. When you select text it is automatically
copied to the clipboard.

Mouse button 2 Insert the clipboard at the point clicked. You can
also select a region and replace it with the
clipboard by selecting the region with mouse
button 2.

Mouse button 3 Currently acts like button 1.

Backspace Deletes one character to the left, or deletes the
selected region.

Enter May cause the callback, see when().
∧A or Home Go to start of line.
∧B or Left Move left
∧C Copy the selection to the clipboard
∧D or Delete Deletes one character to the right or deletes the

selected region.
∧E or End Go to the end of line.
∧F or Right Move right
∧K Delete to the end of line (next \n character) or

deletes a single \n character. These deletions are
all concatenated into the clipboard.

∧N or Down Move down (for Fl_Multiline_Input only,
otherwise it moves to the next input field).

∧P or Up Move up (for Fl_Multiline_Input only, otherwise
it moves to the previous input field).

∧U Delete everything.
∧V or ∧Y Paste the clipboard
∧X or ∧W Copy the region to the clipboard and delete it.
∧Z or ∧_ Undo. This is a single-level undo mechanism, but

all adjacent deletions and insertions are
concatenated into a single "undo". Often this will
undo a lot more than you expected.

Shift+move Move the cursor but also extend the selection.

RightCtrl or
Compose

Start a compose-character sequence. The next
one or two keys typed define the character to
insert (see table that follows.)
For instance, to type "¨ type [compose][a][’] or
[compose][’][a].
The character "nbsp" (non-breaking space) is
typed by using [compose][space].
The single-character sequences may be followed
by a space if necessary to remove ambiguity. For
instance, if you really want to type "∼" rather
than "¨ you must type [compose][a][space][∼].
The same key may be used to "quote" control
characters into the text. If you need a ∧Q
character you can get one by typing
[compose][Control+Q].
X may have a key on the keyboard defined as
XK_Multi_key. If so this key may be used as well
as the right-hand control key. You can set this up
with the program xmodmap.
If your keyboard is set to support a foreign
language you should also be able to type "dead
key" prefix characters. On X you will actually be
able to see what dead key you typed, and if you
then move the cursor without completing the
sequence the accent will remain inserted.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.51 Fl_Input Class Reference 535

Keys Char Keys Char Keys Char Keys Char Keys Char Keys Char

sp nbsp ∗ ‘ A D - ‘ a - ! + -
’ A ∼ N ’ a ∼ n % 2 A ∧ ‘ O

∧ a o # 3 ∼ A ’ O ∼ a o $
’ : A ∧ O : a ∧ o
y = u ∗ A ∼ O ∗ a ∼ o
| p A E : O a e o
& . , C x , c :
: , E ‘ O / ‘ e /
c 1 ’ E ‘ U ’ e u
a o ∧ E ’ U ∧ e u
< < > > : E ∧ U : e ∧ u
∼ 1 4 ‘ I : U ‘ i u
- 1 2 ’ I ’ Y ’ i y
r 3 4 ∧ I T H ∧ i h
_ ? : I s s : i y

Table 30.1: Character Composition Table

30.51.2 Constructor & Destructor Documentation

30.51.2.1 Fl_Input::Fl_Input (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

30.51.3 Member Function Documentation

30.51.3.1 void Fl_Input::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_File_Input.

30.51.3.2 int Fl_Input::handle (int event) [virtual]

Handles the specified event.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

536 Class Documentation

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_File_Input.

The documentation for this class was generated from the following files:

• Fl_Input.H
• Fl_Input.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 537

30.52 Fl_Input_ Class Reference

This class provides a low-overhead text input field.

#include <Fl_Input_.H>

Inheritance diagram for Fl_Input_::

Fl_Input_

Fl_Widget

Fl_Input

Fl_File_Input Fl_Float_Input Fl_Int_Input Fl_Multiline_Input Fl_Output Fl_Secret_Input

Fl_Multiline_Output

Public Member Functions

• int copy (int clipboard)
Put the current selection into the clipboard.

• int copy_cuts ()
Copies the yank buffer to the clipboard.

• void cursor_color (Fl_Color n)
Sets the color of the cursor.

• Fl_Color cursor_color () const
Gets the color of the cursor.

• int cut (int a, int b)
Deletes all characters between index a and b.

• int cut (int n)
Deletes the next n bytes rounded to characters before or after the cursor.

• int cut ()
Deletes the current selection.

• Fl_Input_ (int, int, int, int, const char ∗=0)
Creates a new Fl_Input_ widget.

• Fl_Char index (int i) const
Returns the character at index i.

• void input_type (int t)
Sets the input field type.

• int input_type () const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

538 Class Documentation

Gets the input field type.

• int insert (const char ∗t, int l=0)
Inserts text at the cursor position.

• int mark (int m)
Sets the current selection mark.

• int mark () const
Gets the current selection mark.

• void maximum_size (int m)
Sets the maximum length of the input field.

• int maximum_size () const
Gets the maximum length of the input field.

• int position (int p)
Set the cursor position and mark.

• int position (int p, int m)
Sets the index for the cursor and mark.

• int position () const
Gets the position of the text cursor.

• void readonly (int b)
Sets the read-only state of the input field.

• int readonly () const
Gets the read-only state of the input field.

• int replace (int, int, const char ∗, int=0)
Deletes text from b to e and inserts the new string text.

• void resize (int, int, int, int)
Changes the size of the widget.

• void shortcut (int s)
Sets the shortcut key associtaed with this widget.

• int shortcut () const
Return the shortcut key associtaed with this widget.

• void size (int W, int H)
Sets the width and height of this widget.

• int size () const
Returns the number of bytes in value().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 539

• int static_value (const char ∗, int)

Changes the widget text.

• int static_value (const char ∗)

Changes the widget text.

• void textcolor (Fl_Color n)

Sets the color of the text in the input field.

• Fl_Color textcolor () const

Gets the color of the text in the input field.

• void textfont (Fl_Font s)

Sets the font of the text in the input field.

• Fl_Font textfont () const

Gets the font of the text in the input field.

• void textsize (Fl_Fontsize s)

Sets the size of the text in the input field.

• Fl_Fontsize textsize () const

Gets the size of the text in the input field.

• int undo ()

Undoes previous changes to the text buffer.

• const char ∗ value () const

Returns the text displayed in the widget.

• int value (const char ∗, int)

Changes the widget text.

• int value (const char ∗)

Changes the widget text.

• void wrap (int b)

Sets the word wrapping state of the input field.

• int wrap () const

Gets the word wrapping state of the input field.

• ∼Fl_Input_ ()

Destroys the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

540 Class Documentation

Protected Member Functions

• void drawtext (int, int, int, int)
Draws the text in the passed bounding box.

• void handle_mouse (int, int, int, int, int keepmark=0)
Handles mouse clicks and mouse moves.

• int handletext (int e, int, int, int, int)
Handles all kinds of text field related events.

• int line_end (int i) const
Finds the end of a line.

• int line_start (int i) const
Finds the start of a line.

• int linesPerPage ()
• void maybe_do_callback ()
• int up_down_position (int, int keepmark=0)

Moves the cursor to the column given by up_down_pos.

• int word_end (int i) const
Finds the end of a word.

• int word_start (int i) const
Finds the start of a word.

• int xscroll () const
• void yscroll (int y)
• int yscroll () const

30.52.1 Detailed Description

This class provides a low-overhead text input field.

This is a virtual base class below Fl_Input. It has all the same interfaces, but lacks the handle() and draw()
method. You may want to subclass it if you are one of those people who likes to change how the editing
keys work. It may also be useful for adding scrollbars to the input field.

This can act like any of the subclasses of Fl_Input, by setting type() to one of the following values:

#define FL_NORMAL_INPUT 0
#define FL_FLOAT_INPUT 1
#define FL_INT_INPUT 2
#define FL_MULTILINE_INPUT 4
#define FL_SECRET_INPUT 5
#define FL_INPUT_TYPE 7
#define FL_INPUT_READONLY 8
#define FL_NORMAL_OUTPUT (FL_NORMAL_INPUT | FL_INPUT_READONLY)
#define FL_MULTILINE_OUTPUT (FL_MULTILINE_INPUT | FL_INPUT_READONLY)
#define FL_INPUT_WRAP 16
#define FL_MULTILINE_INPUT_WRAP (FL_MULTILINE_INPUT | FL_INPUT_WRAP)
#define FL_MULTILINE_OUTPUT_WRAP (FL_MULTILINE_INPUT | FL_INPUT_READONLY | FL_INPUT_WRAP)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 541

All variables that represent an index into a text buffer are byte-oriented, not character oriented. Since utf8
characters can be up to six bytes long, simply incrementing such an index will not reliably advance to the
next character in the text buffer.

Indices and pointers into the text buffer should always point at a 7 bit ASCII character or the beginning of
a utf8 character sequence. Behavior for false utf8 sequences and pointers into the middle of a seqeunce are
undefined.

See also:

Fl_Text_Display, Fl_Text_Editor for more powerful text handling widgets

30.52.2 Constructor & Destructor Documentation

30.52.2.1 Fl_Input_::Fl_Input_ (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Input_ widget.

This function creates a new Fl_Input_ widget and adds it to the current Fl_Group. The value() is set to
NULL. The default boxtype is FL_DOWN_BOX.

Parameters:

X,Y,W,H the dimensions of the new widget

l an optional label text

30.52.2.2 Fl_Input_::∼Fl_Input_ ()

Destroys the widget.

The destructor clears all allocated buffers and removes the widget from the parent Fl_Group.

30.52.3 Member Function Documentation

30.52.3.1 int Fl_Input_::copy (int clipboard)

Put the current selection into the clipboard.

This function copies the current selection between mark() and position() into the specified clipboard.
This does not replace the old clipboard contents if position() and mark() are equal. Clipboard 0 maps to
the current text selection and clipboard 1 maps to the cut/paste clipboard.

Parameters:

clipboard the clipboard destination 0 or 1

Returns:

0 if no text is selected, 1 if the selection was copied

See also:

Fl::copy(const char ∗, int, int)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

542 Class Documentation

30.52.3.2 int Fl_Input_::copy_cuts ()

Copies the yank buffer to the clipboard.

This method copies all the previous contiguous cuts from the undo information to the clipboard. This
function implements the ∧K shortcut key.

Returns:

0 if the operation did not change the clipboard

See also:

copy(int), cut()

30.52.3.3 void Fl_Input_::cursor_color (Fl_Color n) [inline]

Sets the color of the cursor.

The default color for the cursor is FL_BLACK.

Parameters:

← n the new cursor color

30.52.3.4 Fl_Color Fl_Input_::cursor_color () const [inline]

Gets the color of the cursor.

Returns:

the current cursor color

30.52.3.5 int Fl_Input_::cut (int a, int b) [inline]

Deletes all characters between index a and b.

This function deletes the currently selected text without storing it in the clipboard. To use the clipboard,
you may call copy() first or copy_cuts() after this call.

Parameters:

a,b range of bytes rounded to full characters and clamped to the buffer

Returns:

0 if no data was copied

30.52.3.6 int Fl_Input_::cut (int n) [inline]

Deletes the next n bytes rounded to characters before or after the cursor.

This function deletes the currently selected text without storing it in the clipboard. To use the clipboard,
you may call copy() first or copy_cuts() after this call.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 543

Parameters:

n number of bytes rounded to full characters and clamped to the buffer. A negative number will cut
characters to the left of the cursor.

Returns:

0 if no data was copied

30.52.3.7 int Fl_Input_::cut () [inline]

Deletes the current selection.

This function deletes the currently selected text without storing it in the clipboard. To use the clipboard,
you may call copy() first or copy_cuts() after this call.

Returns:

0 if no data was copied

30.52.3.8 void Fl_Input_::drawtext (int X, int Y, int W, int H) [protected]

Draws the text in the passed bounding box.

If damage() & FL_DAMAGE_ALL is true, this assumes the area has already been erased to color().
Otherwise it does minimal update and erases the area itself.

Parameters:

X,Y,W,H area that must be redrawn

30.52.3.9 void Fl_Input_::handle_mouse (int X, int Y, int, int, int drag = 0) [protected]

Handles mouse clicks and mouse moves.

Todo

Add comment and parameters

30.52.3.10 int Fl_Input_::handletext (int event, int X, int Y, int W, int H) [protected]

Handles all kinds of text field related events.

This is called by derived classes.

Todo

Add comment and parameters

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

544 Class Documentation

30.52.3.11 unsigned int Fl_Input_::index (int i) const

Returns the character at index i.

This function returns the UTF-8 character at i as a ucs4 character code.

Parameters:

← i index into the value field

Returns:

the character at index i

30.52.3.12 void Fl_Input_::input_type (int t) [inline]

Sets the input field type.

A redraw() is required to reformat the input field.

Parameters:

← t new input type

30.52.3.13 int Fl_Input_::input_type () const [inline]

Gets the input field type.

Returns:

the current input type

30.52.3.14 int Fl_Input_::insert (const char ∗ t, int l = 0) [inline]

Inserts text at the cursor position.

This function inserts the string in t at the cursor position() and moves the new position and mark to the
end of the inserted text.

Parameters:

← t text that will be inserted

← l length of text, or 0 if the string is terminated by nul.

Returns:

0 if no text was inserted

30.52.3.15 int Fl_Input_::line_end (int i) const [protected]

Finds the end of a line.

This call calculates the end of a line based on the given index i.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 545

Parameters:

← i starting index for the search

Returns:

end of the line

30.52.3.16 int Fl_Input_::line_start (int i) const [protected]

Finds the start of a line.

This call calculates the start of a line based on the given index i.

Parameters:

← i starting index for the search

Returns:

start of the line

30.52.3.17 int Fl_Input_::mark (int m) [inline]

Sets the current selection mark.

mark(n) is the same as position(position(),n).

Parameters:

m new index of the mark

Returns:

0 if the mark did not change

See also:

position(), position(int, int)

30.52.3.18 int Fl_Input_::mark () const [inline]

Gets the current selection mark.

Returns:

index into the text

30.52.3.19 void Fl_Input_::maximum_size (int m) [inline]

Sets the maximum length of the input field.

Todo

It is not clear if this function is actually required

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

546 Class Documentation

30.52.3.20 int Fl_Input_::maximum_size () const [inline]

Gets the maximum length of the input field.

Todo

It is not clear if this function is actually required

30.52.3.21 int Fl_Input_::position (int p) [inline]

Set the cursor position and mark.

position(n) is the same as position(n, n).

Parameters:

p new index for cursor and mark

Returns:

0 if no positions changed

See also:

position(int, int), position(), mark(int)

30.52.3.22 int Fl_Input_::position (int p, int m)

Sets the index for the cursor and mark.

The input widget maintains two pointers into the string. The position (p) is where the cursor is. The mark
(m) is the other end of the selected text. If they are equal then there is no selection. Changing this does not
affect the clipboard (use copy() to do that).

Changing these values causes a redraw(). The new values are bounds checked.

Parameters:

p index for the cursor position

m index for the mark

Returns:

0 if no positions changed

See also:

position(int), position(), mark(int)

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 547

30.52.3.23 int Fl_Input_::position () const [inline]

Gets the position of the text cursor.

Returns:

the cursor position as an index

See also:

position(int, int)

30.52.3.24 void Fl_Input_::readonly (int b) [inline]

Sets the read-only state of the input field.

Parameters:

← b if b is 0, the text in this widget can be edited by the user

30.52.3.25 int Fl_Input_::readonly () const [inline]

Gets the read-only state of the input field.

Returns:

non-zero if this widget is read-only

30.52.3.26 int Fl_Input_::replace (int b, int e, const char ∗ text, int ilen = 0)

Deletes text from b to e and inserts the new string text.

All changes to the text buffer go through this function. It deletes the region between a and b (either one
may be less or equal to the other), and then inserts the string text at that point and moves the mark() and
position() to the end of the insertion. Does the callback if when() & FL_WHEN_CHANGED and there is
a change.

Set b and e equal to not delete anything. Set insert to NULL to not insert anything.

ilen must be zero or strlen(insert), this saves a tiny bit of time if you happen to already know the length
of the insertion, or can be used to insert a portion of a string or a string containing nul’s.

b and e are clamped to the 0..size() range, so it is safe to pass any values.

cut() and insert() are just inline functions that call replace().

Parameters:

← b beginning index of text to be deleted
← e ending index of text to be deleted and insertion position
← text string that will be inserted
← ilen length of text or 0 for nul terminated strings

Returns:

0 if nothing changed

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

548 Class Documentation

30.52.3.27 void Fl_Input_::resize (int X, int Y, int W, int H) [virtual]

Changes the size of the widget.

This call updates the text layout so that the cursor is visible.

Parameters:

← X,Y,W,H new size of the widget

See also:

Fl_Widget::resize(int, int, int, int)

Reimplemented from Fl_Widget.

30.52.3.28 void Fl_Input_::shortcut (int s) [inline]

Sets the shortcut key associtaed with this widget.

Pressing the shortcut key gives text editing focus to this widget.

Parameters:

← s new shortcut keystroke

See also:

Fl_Button::shortcut()

30.52.3.29 int Fl_Input_::shortcut () const [inline]

Return the shortcut key associtaed with this widget.

Returns:

shortcut keystroke

See also:

Fl_Button::shortcut()

30.52.3.30 void Fl_Input_::size (int W, int H) [inline]

Sets the width and height of this widget.

Parameters:

←W,H new width and height

See also:

Fl_Widget::size(int, int)

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 549

30.52.3.31 int Fl_Input_::size () const [inline]

Returns the number of bytes in value().

This may be greater than strlen(value()) if there are nul characters in the text.

Returns:

number of bytes in the text

30.52.3.32 int Fl_Input_::static_value (const char ∗ str, int len)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is not copied.
If the user edits the string it is copied to the internal buffer then. This can save a great deal of time and
memory if your program is rapidly changing the values of text fields, but this will only work if the passed
string remains unchanged until either the Fl_Input is destroyed or value() is called again.

You can use the len parameter to directly set the length if you know it already or want to put nul
characters in the text.

Parameters:

← str the new text

← len the length of the new text

Returns:

non-zero if the new value is different than the current one

30.52.3.33 int Fl_Input_::static_value (const char ∗ str)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is not copied.
If the user edits the string it is copied to the internal buffer then. This can save a great deal of time and
memory if your program is rapidly changing the values of text fields, but this will only work if the passed
string remains unchanged until either the Fl_Input is destroyed or value() is called again.

Parameters:

← str the new text

Returns:

non-zero if the new value is different than the current one

30.52.3.34 void Fl_Input_::textcolor (Fl_Color n) [inline]

Sets the color of the text in the input field.

The text color defaults to FL_FOREGROUND_COLOR.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

550 Class Documentation

Parameters:

← n new text color

See also:

textcolor()

30.52.3.35 Fl_Color Fl_Input_::textcolor () const [inline]

Gets the color of the text in the input field.

Returns:

the text color

See also:

textcolor(Fl_Color)

30.52.3.36 void Fl_Input_::textfont (Fl_Font s) [inline]

Sets the font of the text in the input field.

The text font defaults to FL_HELVETICA.

Parameters:

← s the new text font

30.52.3.37 Fl_Font Fl_Input_::textfont () const [inline]

Gets the font of the text in the input field.

Returns:

the current Fl_Font index

30.52.3.38 void Fl_Input_::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the input field.

The text height defaults to FL_NORMAL_SIZE.

Parameters:

← s the new font height in pixel units

30.52.3.39 Fl_Fontsize Fl_Input_::textsize () const [inline]

Gets the size of the text in the input field.

Returns:

the text height in pixels

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 551

30.52.3.40 int Fl_Input_::undo ()

Undoes previous changes to the text buffer.

This call undoes a number of previous calls to replace().

Returns:

non-zero if any change was made.

30.52.3.41 int Fl_Input_::up_down_position (int i, int keepmark = 0) [protected]

Moves the cursor to the column given by up_down_pos.

This function is helpful when implementing up and down cursor movement. It moves the cursor from the
beginning of a line to the column indicated by the global variable up_down_pos in pixel units.

Parameters:

← i index into the beginning of a line of text

← keepmark if set, move only the cursor, but not the mark

Returns:

index to new cursor position

30.52.3.42 const char∗ Fl_Input_::value () const [inline]

Returns the text displayed in the widget.

This function returns the current value, which is a pointer to the internal buffer and is valid only until the
next event is handled.

Returns:

pointer to an internal buffer - do not free() this

See also:

Fl_Input_::value(const char∗)

30.52.3.43 int Fl_Input_::value (const char ∗ str, int len)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is copied to the
internal buffer. Passing NULL is the same as "".

You can use the length parameter to directly set the length if you know it already or want to put nul
characters in the text.

Parameters:

← str the new text

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

552 Class Documentation

← len the length of the new text

Returns:

non-zero if the new value is different than the current one

See also:

Fl_Input_::value(const char∗ str), Fl_Input_::value()

Reimplemented in Fl_File_Input.

30.52.3.44 int Fl_Input_::value (const char ∗ str)

Changes the widget text.

This function changes the text and sets the mark and the point to the end of it. The string is copied to the
internal buffer. Passing NULL is the same as "".

Parameters:

← str the new text

Returns:

non-zero if the new value is different than the current one

See also:

Fl_Input_::value(const char∗ str, int len), Fl_Input_::value()

Reimplemented in Fl_File_Input.

30.52.3.45 int Fl_Input_::word_end (int i) const [protected]

Finds the end of a word.

This call calculates the end of a word based on the given index i. Calling this function repeatedly will
move forwards to the end of the text.

Parameters:

← i starting index for the search

Returns:

end of the word

30.52.3.46 int Fl_Input_::word_start (int i) const [protected]

Finds the start of a word.

This call calculates the start of a word based on the given index i. Calling this function repeatedly will
move backwards to the beginning of the text.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.52 Fl_Input_ Class Reference 553

Parameters:

← i starting index for the search

Returns:

start of the word

30.52.3.47 void Fl_Input_::wrap (int b) [inline]

Sets the word wrapping state of the input field.

Word wrap is only functional with multi-line input fields.

30.52.3.48 int Fl_Input_::wrap () const [inline]

Gets the word wrapping state of the input field.

Word wrap is only functional with multi-line input fields.

The documentation for this class was generated from the following files:

• Fl_Input_.H
• Fl_Input_.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

554 Class Documentation

30.53 Fl_Input_Choice Class Reference

A combination of the input widget and a menu button.

#include <Fl_Input_Choice.H>

Inheritance diagram for Fl_Input_Choice::

Fl_Input_Choice

Fl_Group

Fl_Widget

Classes

• class InputMenuButton

Public Member Functions

• void add (const char ∗s)
Adds an item to the menu.

• int changed () const
Checks if the widget value changed since the last callback.

• void clear ()
Removes all items from the menu.

• void clear_changed ()
Marks the value of the widget as unchanged.

• void down_box (Fl_Boxtype b)
Sets the box type of the menu button.

• Fl_Boxtype down_box () const
Gets the box type of the menu button.

• Fl_Input_Choice (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Input_Choice widget using the given position, size, and label string.

• Fl_Input ∗ input ()
Returns a reference to the internal Fl_Input widget.

• void menu (const Fl_Menu_Item ∗m)
Sets the Fl_Menu_Item array used for the menu.

• const Fl_Menu_Item ∗ menu ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.53 Fl_Input_Choice Class Reference 555

Gets the Fl_Menu_Item array used for the menu.

• Fl_Menu_Button ∗ menubutton ()

Returns a reference to the internal Fl_Menu_Button widget.

• void resize (int X, int Y, int W, int H)

Resizes the Fl_Group widget and all of its children.

• void set_changed ()

Marks the value of the widget as changed.

• void textcolor (Fl_Color c)

Sets the encapsulated input text color attributes.

• Fl_Color textcolor () const

Gets the encapsulated input text color attributes.

• void textfont (Fl_Font f)

Sets the encapsulated input text font attributes.

• Fl_Font textfont () const

Gets the encapsulated input text font attributes.

• void textsize (Fl_Fontsize s)

Sets the encapsulated input size attributes.

• Fl_Fontsize textsize () const

Gets the encapsulated input size attributes.

• void value (int val)

See void Fl_Input_Choice::value(const char ∗s).

• void value (const char ∗val)

Sets or returns the input widget’s current contents.

• const char ∗ value () const

See void Fl_Input_Choice::value(const char ∗s).

30.53.1 Detailed Description

A combination of the input widget and a menu button.

The user can either type into the input area, or use the menu button chooser on the right, which loads the
input area with predefined text. Normally it is drawn with an inset box and a white background.

The application can directly access both the input and menu widgets directly, using the menubutton() and
input() accessor methods.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

556 Class Documentation

30.53.2 Constructor & Destructor Documentation

30.53.2.1 Fl_Input_Choice::Fl_Input_Choice (int x, int y, int w, int h, const char ∗ l = 0)
[inline]

Creates a new Fl_Input_Choice widget using the given position, size, and label string.

Inherited destructor Destroys the widget and any value associated with it.

30.53.3 Member Function Documentation

30.53.3.1 void Fl_Input_Choice::add (const char ∗ s) [inline]

Adds an item to the menu.

30.53.3.2 int Fl_Input_Choice::changed () const [inline]

Checks if the widget value changed since the last callback.

"Changed" is a flag that is turned on when the user changes the value stored in the widget. This is only used
by subclasses of Fl_Widget that store values, but is in the base class so it is easier to scan all the widgets in
a panel and do_callback() on the changed ones in response to an "OK" button.

Most widgets turn this flag off when they do the callback, and when the program sets the stored value.

Return values:

0 if the value did not change

See also:

set_changed(), clear_changed()

Reimplemented from Fl_Widget.

30.53.3.3 void Fl_Input_Choice::clear () [inline]

Removes all items from the menu.

Reimplemented from Fl_Group.

30.53.3.4 void Fl_Input_Choice::clear_changed () [inline]

Marks the value of the widget as unchanged.

See also:

changed(), set_changed()

Reimplemented from Fl_Widget.

30.53.3.5 Fl_Input∗ Fl_Input_Choice::input () [inline]

Returns a reference to the internal Fl_Input widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.53 Fl_Input_Choice Class Reference 557

30.53.3.6 void Fl_Input_Choice::menu (const Fl_Menu_Item ∗ m) [inline]

Sets the Fl_Menu_Item array used for the menu.

30.53.3.7 const Fl_Menu_Item∗ Fl_Input_Choice::menu () [inline]

Gets the Fl_Menu_Item array used for the menu.

30.53.3.8 Fl_Menu_Button∗ Fl_Input_Choice::menubutton () [inline]

Returns a reference to the internal Fl_Menu_Button widget.

30.53.3.9 void Fl_Input_Choice::resize (int X, int Y, int W, int H) [inline, virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

30.53.3.10 void Fl_Input_Choice::set_changed () [inline]

Marks the value of the widget as changed.

See also:

changed(), clear_changed()

Reimplemented from Fl_Widget.

30.53.3.11 void Fl_Input_Choice::value (const char ∗ val) [inline]

Sets or returns the input widget’s current contents.

The second form sets the contents using the index into the menu which you can set as an integer. Setting
the value effectively ’chooses’ this menu item, and sets it as the new input text, deleting the previous text.

The documentation for this class was generated from the following file:

• Fl_Input_Choice.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

558 Class Documentation

30.54 Fl_Int_Input Class Reference

The Fl_Int_Input class is a subclass of Fl_Input that only allows the user to type decimal digits (or hex
numbers of the form 0xaef).

#include <Fl_Int_Input.H>

Inheritance diagram for Fl_Int_Input::

Fl_Int_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Int_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Int_Input widget using the given position, size, and label string.

30.54.1 Detailed Description

The Fl_Int_Input class is a subclass of Fl_Input that only allows the user to type decimal digits (or hex
numbers of the form 0xaef).

30.54.2 Constructor & Destructor Documentation

30.54.2.1 Fl_Int_Input::Fl_Int_Input (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Int_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor Destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Int_Input.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.55 Fl_JPEG_Image Class Reference 559

30.55 Fl_JPEG_Image Class Reference

The Fl_JPEG_Image class supports loading, caching, and drawing of Joint Photographic Experts Group
(JPEG) File Interchange Format (JFIF) images.

#include <Fl_JPEG_Image.H>

Inheritance diagram for Fl_JPEG_Image::

Fl_JPEG_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_JPEG_Image (const char ∗name, const unsigned char ∗data)
The constructor loads the JPEG image from memory.

• Fl_JPEG_Image (const char ∗filename)
The constructor loads the JPEG image from the given jpeg filename.

30.55.1 Detailed Description

The Fl_JPEG_Image class supports loading, caching, and drawing of Joint Photographic Experts Group
(JPEG) File Interchange Format (JFIF) images.

The class supports grayscale and color (RGB) JPEG image files.

30.55.2 Constructor & Destructor Documentation

30.55.2.1 Fl_JPEG_Image::Fl_JPEG_Image (const char ∗ filename)

The constructor loads the JPEG image from the given jpeg filename.

The inherited destructor frees all memory and server resources that are used by the image.

There is no error function in this class. If the image has loaded correctly, w(), h(), and d() should return
values greater zero.

Parameters:

filename a full path and name pointing to a valid jpeg file.

30.55.2.2 Fl_JPEG_Image::Fl_JPEG_Image (const char ∗ name, const unsigned char ∗ data)

The constructor loads the JPEG image from memory.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

560 Class Documentation

The inherited destructor frees all memory and server resources that are used by the image.

There is no error function in this class. If the image has loaded correctly, w(), h(), and d() should return
values greater zero.

Parameters:

name developer shoud provide a unique name for this image

data a pointer to the memorry location of the jpeg image

The documentation for this class was generated from the following files:

• Fl_JPEG_Image.H
• Fl_JPEG_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.56 Fl_Label Struct Reference 561

30.56 Fl_Label Struct Reference

This struct stores all information for a text or mixed graphics label.

#include <Fl_Widget.H>

Public Member Functions

• void draw (int, int, int, int, Fl_Align) const
Draws the label aligned to the given box.

• void measure (int &w, int &h) const
Measures the size of the label.

Public Attributes

• Fl_Align align_
alignment of label

• Fl_Color color
text color

• Fl_Image ∗ deimage
optional image for a deactivated label

• Fl_Font font
label font used in text

• Fl_Image ∗ image
optional image for an active label

• Fl_Fontsize size
size of label font

• uchar type
type of label.

• const char ∗ value
label text

30.56.1 Detailed Description

This struct stores all information for a text or mixed graphics label.

Todo

For FLTK 1.3, the Fl_Label type will become a widget by itself. That way we will be avoiding a lot
of code duplication by handling labels in a similar fashion to widgets containing text. We also provide
an easy interface for very complex labels, containing html or vector graphics.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

562 Class Documentation

30.56.2 Member Function Documentation

30.56.2.1 void Fl_Label::draw (int X, int Y, int W, int H, Fl_Align align) const

Draws the label aligned to the given box.

Draws a label with arbitrary alignment in an arbitrary box.

30.56.2.2 void Fl_Label::measure (int & W, int & H) const

Measures the size of the label.

Parameters:

↔W,H : this is the requested size for the label text plus image; on return, this will contain the size
needed to fit the label

30.56.3 Member Data Documentation

30.56.3.1 uchar Fl_Label::type

type of label.

See also:

Fl_Labeltype

The documentation for this struct was generated from the following files:

• Fl_Widget.H
• fl_labeltype.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.57 Fl_Light_Button Class Reference 563

30.57 Fl_Light_Button Class Reference

#include <Fl_Light_Button.H>

Inheritance diagram for Fl_Light_Button::

Fl_Light_Button

Fl_Button

Fl_Widget

Fl_Check_Button Fl_Round_Button

Public Member Functions

• Fl_Light_Button (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Light_Button widget using the given position, size, and label string.

• virtual int handle (int)

Handles the specified event.

Protected Member Functions

• virtual void draw ()

Draws the widget.

30.57.1 Detailed Description

This subclass displays the "on" state by turning on a light, rather than drawing pushed in. The shape of the
"light" is initially set to FL_DOWN_BOX. The color of the light when on is controlled with selection_-
color(), which defaults to FL_YELLOW.

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

564 Class Documentation

Figure 30.17: Fl_Light_Button

30.57.2 Constructor & Destructor Documentation

30.57.2.1 Fl_Light_Button::Fl_Light_Button (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Light_Button widget using the given position, size, and label string.

The destructor deletes the check button.

30.57.3 Member Function Documentation

30.57.3.1 void Fl_Light_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Button.

30.57.3.2 int Fl_Light_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.57 Fl_Light_Button Class Reference 565

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Button.

The documentation for this class was generated from the following files:

• Fl_Light_Button.H
• Fl_Light_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

566 Class Documentation

30.58 Fl_Menu_ Class Reference

Base class of all widgets that have a menu in FLTK.

#include <Fl_Menu_.H>

Inheritance diagram for Fl_Menu_::

Fl_Menu_

Fl_Widget

Fl_Choice Fl_Menu_Bar Fl_Menu_Button

Fl_Sys_Menu_Bar

Public Member Functions

• int add (const char ∗)
This is a Forms (and SGI GL library) compatible add function, it adds many menu items, with ’|’ separating
the menu items, and tab separating the menu item names from an optional shortcut string.

• int add (const char ∗a, const char ∗b, Fl_Callback ∗c, void ∗d=0, int e=0)
See int Fl_Menu_::add(const char∗ label, int shortcut, Fl_Callback∗, void ∗user_data=0, int flags=0).

• int add (const char ∗, int shortcut, Fl_Callback ∗, void ∗=0, int=0)
Adds a new menu item.

• void clear ()
Same as menu(NULL), set the array pointer to null, indicating a zero-length menu.

• void copy (const Fl_Menu_Item ∗m, void ∗user_data=0)
Sets the menu array pointer with a copy of m that will be automatically deleted.

• void down_box (Fl_Boxtype b)
See Fl_Boxtype Fl_Menu_::down_box() const.

• Fl_Boxtype down_box () const
This box type is used to surround the currently-selected items in the menus.

• void down_color (unsigned c)
For back compatibility, same as selection_color().

• Fl_Color down_color () const
For back compatibility, same as selection_color().

• const Fl_Menu_Item ∗ find_item (Fl_Callback ∗)
Find menu item index given a callback.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 567

• const Fl_Menu_Item ∗ find_item (const char ∗name)
Find menu item index, given a menu pathname such as "Edit/Copy".

• Fl_Menu_ (int, int, int, int, const char ∗=0)
Creates a new Fl_Menu_ widget using the given position, size, and label string.

• void global ()
Make the shortcuts for this menu work no matter what window has the focus when you type it.

• int item_pathname (char ∗name, int namelen, const Fl_Menu_Item ∗finditem=0) const
Get the menu ’pathname’ for the specified menuitem.

• void menu (const Fl_Menu_Item ∗m)
Sets the menu array pointer directly.

• const Fl_Menu_Item ∗ menu () const
Returns a pointer to the array of Fl_Menu_Items.

• int mode (int i) const
Gets the flags of item i.

• void mode (int i, int fl)
Sets the flags of item i.

• const Fl_Menu_Item ∗ mvalue () const
Returns a pointer to the last menu item that was picked.

• const Fl_Menu_Item ∗ picked (const Fl_Menu_Item ∗)
When user picks a menu item, call this.

• void remove (int)
Deletes item i from the menu.

• void replace (int, const char ∗)
Changes the text of item i.

• void shortcut (int i, int s)
Changes the shortcut of item i to n.

• void size (int W, int H)
Changes the size of the widget.

• int size () const
This returns the number of Fl_Menu_Item structures that make up the menu, correctly counting submenus.

• const Fl_Menu_Item ∗ test_shortcut ()
Internal use only.

• const char ∗ text (int i) const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

568 Class Documentation

Returns the title of the last item chosen, or of item i.

• const char ∗ text () const

Returns the title of the last item chosen, or of item i.

• void textcolor (Fl_Color c)

Sets the current color of menu item labels.

• Fl_Color textcolor () const

Get the current color of menu item labels.

• void textfont (Fl_Font c)

Sets the current font of menu item labels.

• Fl_Font textfont () const

Gets the current font of menu item labels.

• void textsize (Fl_Fontsize c)

Sets the font size of menu item labels.

• Fl_Fontsize textsize () const

Gets the font size of menu item labels.

• int value (int i)

The value is the index into menu() of the last item chosen by the user.

• int value (const Fl_Menu_Item ∗)
The value is the index into menu() of the last item chosen by the user.

• int value () const

Returns the index into menu() of the last item chosen by the user.

Protected Attributes

• uchar alloc
• uchar down_box_
• Fl_Color textcolor_
• Fl_Font textfont_
• Fl_Fontsize textsize_

30.58.1 Detailed Description

Base class of all widgets that have a menu in FLTK.

Currently FLTK provides you with Fl_Menu_Button, Fl_Menu_Bar, and Fl_Choice.

The class contains a pointer to an array of structures of type Fl_Menu_Item. The array may either be
supplied directly by the user program, or it may be "private": a dynamically allocated array managed by
the Fl_Menu_.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 569

30.58.2 Constructor & Destructor Documentation

30.58.2.1 Fl_Menu_::Fl_Menu_ (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Menu_ widget using the given position, size, and label string.

menu() is initialized to null.

30.58.3 Member Function Documentation

30.58.3.1 int Fl_Menu_::add (const char ∗ str)

This is a Forms (and SGI GL library) compatible add function, it adds many menu items, with ’|’ separating
the menu items, and tab separating the menu item names from an optional shortcut string.

The passed string is split at any ’|’ characters and then add(s,0,0,0,0) is done with each section. This is
often useful if you are just using the value, and is compatible with Forms and other GL programs. The
section strings use the same special characters as described for the long version of add().

No items must be added to a menu during a callback to the same menu.

30.58.3.2 int Fl_Menu_::add (const char ∗ label, int shortcut, Fl_Callback ∗ callback, void ∗
userdata = 0, int flags = 0)

Adds a new menu item.

Parameters:

← label The text label for the menu item.

← shortcut Optional keyboard shortcut that can be an int or string; (FL_CTRL+’a’) or "∧a". Default
0 if none.

← callback Optional callback invoked when user clicks the item. Default 0 if none.

← userdata Optional user data passed as an argument to the callback. Default 0 if none.

← flags Optional flags that control the type of menu item; see below. Default is 0 for none.

Returns:

The index into the menu() array, where the entry was added.

Description

If the menu array was directly set with menu(x), then copy() is done to make a private array.

A menu item’s callback must not add() items to its parent menu during the callback.

Detailed Description of Parameters

label

The menu item’s label. This option is required.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

570 Class Documentation

The characters "&", "/", "\", and "_" are treated as special characters in the label string. The "&" char-
acter specifies that the following character is an accelerator and will be underlined. The "\" character
is used to escape the next character in the string. Labels starting with the "_" character cause a divider
to be placed after that menu item.

A label of the form "File/Quit" will create the submenu "File" with a menu item called "Quit". The "/"
character is ignored if it appears as the first character of the label string, e.g. "/File/Quit".

The label string is copied to new memory and can be freed. The other arguments (including the
shortcut) are copied into the menu item unchanged.

If an item exists already with that name then it is replaced with this new one. Otherwise this new one
is added to the end of the correct menu or submenu. The return value is the offset into the array that
the new entry was placed at.

shortcut

The keyboard shortcut for this menu item.

This parameter is optional, and defaults to 0 to indicate no shortcut.

Shortcut can be 0L, or either a modifier/key combination (for example FL_CTRL+’A’) or a string
describing the shortcut in one of two ways:

[#+^]<ascii_value> e.g. "97", "^97", "+97", "#97"
[#+^]<ascii_char> e.g. "a", "^a", "+a", "#a"

..where <ascii_value> is a decimal value representing an ascii character (eg. 97 is the ascii for ’a’),
and the optional prefixes enhance the value that follows. Multiple prefixes must appear in the above
order.

- Alt
+ - Shift
^ - Control

Text shortcuts are converted to integer shortcut by calling unsigned int fl_old_shortcut(const char∗).

callback

The callback to invoke when this menu item is selected.

This parameter is optional, and defaults to 0 for no callback.

userdata

The callback’s ’user data’ that is passed to the callback.

This parameter is optional, and defaults to 0.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 571

flags

These are bit flags to define what kind of menu item this is.

This parameter is optional, and defaults to 0 to define a ’regular’ menu item.

These flags can be ’OR’ed together:

FL_MENU_INACTIVE // Deactivate menu item (gray out)
FL_MENU_TOGGLE // Item is a checkbox toggle (shows checkbox for on/off state)
FL_MENU_VALUE // The on/off state for checkbox/radio buttons (if set, state is ’on’)
FL_MENU_RADIO // Item is a radio button (one checkbox of many can be on)
FL_MENU_INVISIBLE // Item will not show up (shortcut will work)
FL_SUBMENU_POINTER // Indicates user_data() is a pointer to another menu array
FL_SUBMENU // This item is a submenu to other items
FL_MENU_DIVIDER // Creates divider line below this item. Also ends a group of radio buttons.

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.3 void Fl_Menu_::clear ()

Same as menu(NULL), set the array pointer to null, indicating a zero-length menu.

Menus must not be cleared during a callback to the same menu.

30.58.3.4 void Fl_Menu_::copy (const Fl_Menu_Item ∗ m, void ∗ ud = 0)

Sets the menu array pointer with a copy of m that will be automatically deleted.

If ud is not NULL, then all user data pointers are changed in the menus as well. See void Fl_Menu_-
::menu(const Fl_Menu_Item∗ m).

30.58.3.5 Fl_Boxtype Fl_Menu_::down_box () const [inline]

This box type is used to surround the currently-selected items in the menus.

If this is FL_NO_BOX then it acts like FL_THIN_UP_BOX and selection_color() acts like FL_WHITE,
for back compatibility.

30.58.3.6 const Fl_Menu_Item ∗ Fl_Menu_::find_item (Fl_Callback ∗ cb)

Find menu item index given a callback.

This method finds a menu item in a menu array, also traversing submenus, but not submenu pointers. This
is useful if an application uses internationalisation and a menu item can not be found using its label. This
search is also much faster.

Parameters:

cb find the first item with this callback

Returns:

NULL if not found

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

572 Class Documentation

See also:

Fl_Menu_::find_item(const char∗)

30.58.3.7 const Fl_Menu_Item ∗ Fl_Menu_::find_item (const char ∗ name)

Find menu item index, given a menu pathname such as "Edit/Copy".

This method finds a menu item in a menu array, also traversing submenus, but not submenu pointers.

Example:

Fl_Menu_Bar *menubar = new Fl_Menu_Bar(..);
menubar->add("File/&Open");
menubar->add("File/&Save");
menubar->add("Edit/&Copy");
// [..]
Fl_Menu_Item *item;
if ((item = (Fl_Menu_Item*)menubar->find_item("File/&Open")) != NULL) {

item->labelcolor(FL_RED);
}
if ((item = (Fl_Menu_Item*)menubar->find_item("Edit/&Copy")) != NULL) {

item->labelcolor(FL_GREEN);
}

Returns:

The item found, or NULL if not found.

See also:

Parameters:

name path and name of the menu item

Returns:

NULL if not found

See also:

Fl_Menu_::find_item(Fl_Callback∗), item_pathname()

30.58.3.8 void Fl_Menu_::global ()

Make the shortcuts for this menu work no matter what window has the focus when you type it.

This is done by using Fl::add_handler(). This Fl_Menu_ widget does not have to be visible (ie the window
it is in can be hidden, or it does not have to be put in a window at all).

Currently there can be only one global()menu. Setting a new one will replace the old one. There is no way
to remove the global() setting (so don’t destroy the widget!)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 573

30.58.3.9 int Fl_Menu_::item_pathname (char ∗ name, int namelen, const Fl_Menu_Item ∗
finditem = 0) const

Get the menu ’pathname’ for the specified menuitem.

If finditem==NULL, mvalue() is used (the most recently picked menuitem).

Example:

Fl_Menu_Bar *menubar = 0;
void my_menu_callback(Fl_Widget*,void*) {

char name[80];
if (menubar->item_pathname(name, sizeof(name)-1) == 0) { // recently picked item

if (strcmp(name, "File/&Open") == 0) { .. } // open invoked
if (strcmp(name, "File/&Save") == 0) { .. } // save invoked
if (strcmp(name, "Edit/&Copy") == 0) { .. } // copy invoked

}
}
int main() {

[..]
menubar = new Fl_Menu_Bar(..);
menubar->add("File/&Open", 0, my_menu_callback);
menubar->add("File/&Save", 0, my_menu_callback);
menubar->add("Edit/&Copy", 0, my_menu_callback);
[..]

}

Returns:

• 0 : OK (name has menuitem’s pathname)

• -1 : item not found (name="")

• -2 : ’name’ not large enough (name="")

See also:

find_item()

30.58.3.10 void Fl_Menu_::menu (const Fl_Menu_Item ∗ m)

Sets the menu array pointer directly.

If the old menu is private it is deleted. NULL is allowed and acts the same as a zero-length menu. If you
try to modify the array (with add(), replace(), or remove()) a private copy is automatically done.

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.11 const Fl_Menu_Item∗ Fl_Menu_::menu () const [inline]

Returns a pointer to the array of Fl_Menu_Items.

This will either be the value passed to menu(value) or the private copy.

30.58.3.12 int Fl_Menu_::mode (int i) const [inline]

Gets the flags of item i.

For a list of the flags, see Fl_Menu_Item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

574 Class Documentation

30.58.3.13 void Fl_Menu_::mode (int i, int fl) [inline]

Sets the flags of item i.

For a list of the flags, see Fl_Menu_Item.

30.58.3.14 const Fl_Menu_Item∗ Fl_Menu_::mvalue () const [inline]

Returns a pointer to the last menu item that was picked.

30.58.3.15 const Fl_Menu_Item ∗ Fl_Menu_::picked (const Fl_Menu_Item ∗ v)

When user picks a menu item, call this.

It will do the callback. Unfortunately this also casts away const for the checkboxes, but this was necessary
so non-checkbox menus can really be declared const...

30.58.3.16 void Fl_Menu_::remove (int i)

Deletes item i from the menu.

If the menu array was directly set with menu(x) then copy() is done to make a private array.

No items must be removed from a menu during a callback to the same menu.

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.17 void Fl_Menu_::replace (int i, const char ∗ str)

Changes the text of item i.

This is the only way to get slash into an add()’ed menu item. If the menu array was directly set with
menu(x) then copy() is done to make a private array.

Reimplemented in Fl_Sys_Menu_Bar.

30.58.3.18 void Fl_Menu_::shortcut (int i, int s) [inline]

Changes the shortcut of item i to n.

30.58.3.19 void Fl_Menu_::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

See also:

position(int,int), resize(int,int,int,int)

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.58 Fl_Menu_ Class Reference 575

30.58.3.20 int Fl_Menu_::size () const

This returns the number of Fl_Menu_Item structures that make up the menu, correctly counting submenus.

This includes the "terminator" item at the end. To copy a menu array you need to copy size()∗sizeof(Fl_-
Menu_Item) bytes. If the menu is NULL this returns zero (an empty menu will return 1).

30.58.3.21 const Fl_Menu_Item∗ Fl_Menu_::test_shortcut () [inline]

Internal use only.

Reimplemented from Fl_Widget.

30.58.3.22 const char∗ Fl_Menu_::text (int i) const [inline]

Returns the title of the last item chosen, or of item i.

30.58.3.23 const char∗ Fl_Menu_::text () const [inline]

Returns the title of the last item chosen, or of item i.

30.58.3.24 void Fl_Menu_::textcolor (Fl_Color c) [inline]

Sets the current color of menu item labels.

30.58.3.25 Fl_Color Fl_Menu_::textcolor () const [inline]

Get the current color of menu item labels.

30.58.3.26 void Fl_Menu_::textfont (Fl_Font c) [inline]

Sets the current font of menu item labels.

30.58.3.27 Fl_Font Fl_Menu_::textfont () const [inline]

Gets the current font of menu item labels.

30.58.3.28 void Fl_Menu_::textsize (Fl_Fontsize c) [inline]

Sets the font size of menu item labels.

30.58.3.29 Fl_Fontsize Fl_Menu_::textsize () const [inline]

Gets the font size of menu item labels.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

576 Class Documentation

30.58.3.30 int Fl_Menu_::value (int i) [inline]

The value is the index into menu() of the last item chosen by the user.

It is zero initially. You can set it as an integer, or set it with a pointer to a menu item. The set routines
return non-zero if the new value is different than the old one.

Reimplemented in Fl_Choice.

30.58.3.31 int Fl_Menu_::value (const Fl_Menu_Item ∗ m)

The value is the index into menu() of the last item chosen by the user.

It is zero initially. You can set it as an integer, or set it with a pointer to a menu item. The set routines
return non-zero if the new value is different than the old one.

Reimplemented in Fl_Choice.

30.58.3.32 int Fl_Menu_::value () const [inline]

Returns the index into menu() of the last item chosen by the user.

It is zero initially.

Reimplemented in Fl_Choice.

The documentation for this class was generated from the following files:

• Fl_Menu_.H
• Fl_Menu_.cxx
• Fl_Menu_add.cxx
• Fl_Menu_global.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.59 Fl_Menu_Bar Class Reference 577

30.59 Fl_Menu_Bar Class Reference

This widget provides a standard menubar interface.

#include <Fl_Menu_Bar.H>

Inheritance diagram for Fl_Menu_Bar::

Fl_Menu_Bar

Fl_Menu_

Fl_Widget

Fl_Sys_Menu_Bar

Public Member Functions

• Fl_Menu_Bar (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Menu_Bar widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.59.1 Detailed Description

This widget provides a standard menubar interface.

Usually you will put this widget along the top edge of your window. The height of the widget should be 30
for the menu titles to draw correctly with the default font.

The items on the bar and the menus they bring up are defined by a single Fl_Menu_Item array. Because
a Fl_Menu_Item array defines a hierarchy, the top level menu defines the items in the menubar, while the
submenus define the pull-down menus. Sub-sub menus and lower pop up to the right of the submenus.

Figure 30.18: menubar

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

578 Class Documentation

If there is an item in the top menu that is not a title of a submenu, then it acts like a "button" in the menubar.
Clicking on it will pick it.

When the user picks an item off the menu, the item’s callback is done with the menubar as the Fl_Widget∗
argument. If the item does not have a callback the menubar’s callback is done instead.

Submenus will also pop up in response to shortcuts indicated by putting a ’&’ character in the name field
of the menu item. If you put a ’&’ character in a top-level "button" then the shortcut picks it. The ’&’
character in submenus is ignored until the menu is popped up.

Typing the shortcut() of any of the menu items will cause callbacks exactly the same as when you pick the
item with the mouse.

30.59.2 Constructor & Destructor Documentation

30.59.2.1 Fl_Menu_Bar::Fl_Menu_Bar (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Menu_Bar widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

labelsize(), labelfont(), and labelcolor() are used to control how the menubar items are drawn. They are
initialized from the Fl_Menu static variables, but you can change them if desired.

label() is ignored unless you change align() to put it outside the menubar.

The destructor removes the Fl_Menu_Bar widget and all of its menu items.

30.59.3 Member Function Documentation

30.59.3.1 void Fl_Menu_Bar::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Sys_Menu_Bar.

30.59.3.2 int Fl_Menu_Bar::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.59 Fl_Menu_Bar Class Reference 579

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

• Fl_Menu_Bar.H
• Fl_Menu_Bar.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

580 Class Documentation

30.60 Fl_Menu_Button Class Reference

This is a button that when pushed pops up a menu (or hierarchy of menus) defined by an array of Fl_-
Menu_Item objects.

#include <Fl_Menu_Button.H>

Inheritance diagram for Fl_Menu_Button::

Fl_Menu_Button

Fl_Menu_

Fl_Widget

Public Types

• enum {

POPUP1 = 1, POPUP2, POPUP12, POPUP3,

POPUP13, POPUP23, POPUP123 }

Public Member Functions

• Fl_Menu_Button (int, int, int, int, const char ∗=0)

Creates a new Fl_Menu_Button widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• const Fl_Menu_Item ∗ popup ()

Act exactly as though the user clicked the button or typed the shortcut key.

Protected Member Functions

• void draw ()

Draws the widget.

30.60.1 Detailed Description

This is a button that when pushed pops up a menu (or hierarchy of menus) defined by an array of Fl_-
Menu_Item objects.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.60 Fl_Menu_Button Class Reference 581

Figure 30.19: menu_button

Normally any mouse button will pop up a menu and it is lined up below the button as shown in the picture.
However an Fl_Menu_Button may also control a pop-up menu. This is done by setting the type() , see
below.

The menu will also pop up in response to shortcuts indicated by putting a ’&’ character in the label().

Typing the shortcut() of any of the menu items will cause callbacks exactly the same as when you pick the
item with the mouse. The ’&’ character in menu item names are only looked at when the menu is popped
up, however.

When the user picks an item off the menu, the item’s callback is done with the menu_button as the Fl_-
Widget∗ argument. If the item does not have a callback the menu_button’s callback is done instead.

30.60.2 Constructor & Destructor Documentation

30.60.2.1 Fl_Menu_Button::Fl_Menu_Button (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Menu_Button widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

30.60.3 Member Function Documentation

30.60.3.1 void Fl_Menu_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

582 Class Documentation

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.60.3.2 int Fl_Menu_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.60.3.3 const Fl_Menu_Item ∗ Fl_Menu_Button::popup ()

Act exactly as though the user clicked the button or typed the shortcut key.

The menu appears, it waits for the user to pick an item, and if they pick one it sets value() and does the
callback or sets changed() as described above. The menu item is returned or NULL if the user dismisses
the menu.

The documentation for this class was generated from the following files:

• Fl_Menu_Button.H
• Fl_Menu_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 583

30.61 Fl_Menu_Item Struct Reference

The Fl_Menu_Item structure defines a single menu item that is used by the Fl_Menu_ class.

#include <Fl_Menu_Item.H>

Public Member Functions

• void activate ()
Allows a menu item to be picked.

• int active () const
Gets whether or not the item can be picked.

• int activevisible () const
Returns non 0 if FL_INACTIVE and FL_INVISIBLE are cleared, 0 otherwise.

• int add (const char ∗a, const char ∗b, Fl_Callback ∗c, void ∗d=0, int e=0)
See int add(const char∗, int shortcut, Fl_Callback∗, void∗, int).

• int add (const char ∗, int shortcut, Fl_Callback ∗, void ∗=0, int=0)
Adds an item.

• void argument (long v)
For convenience you can also define the callback as taking a long argument.

• long argument () const
For convenience you can also define the callback as taking a long argument.

• void callback (Fl_Callback1 ∗c, long p=0)
See Fl_Callback_p Fl_MenuItem::callback() const.

• void callback (Fl_Callback0 ∗c)
See Fl_Callback_p Fl_MenuItem::callback() const.

• void callback (Fl_Callback ∗c)
See Fl_Callback_p Fl_MenuItem::callback() const.

• void callback (Fl_Callback ∗c, void ∗p)
See Fl_Callback_p Fl_MenuItem::callback() const.

• Fl_Callback_p callback () const
Each item has space for a callback function and an argument for that function.

• void check ()
back compatibility only

• int checkbox () const
Returns true if a checkbox will be drawn next to this item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

584 Class Documentation

• int checked () const

back compatibility only

• void clear ()

Turns the check or radio item "off" for the menu item.

• void deactivate ()

Prevents a menu item from being picked.

• void do_callback (Fl_Widget ∗o, long arg) const

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument (and optionally overrides
the user_data() argument).

• void do_callback (Fl_Widget ∗o, void ∗arg) const

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument (and optionally overrides
the user_data() argument).

• void do_callback (Fl_Widget ∗o) const

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument (and optionally overrides
the user_data() argument).

• void draw (int x, int y, int w, int h, const Fl_Menu_ ∗, int t=0) const

Draws the menu item in bounding box x,y,w,h, optionally selects the item.

• const Fl_Menu_Item ∗ find_shortcut (int ∗ip=0) const

Search only the top level menu for a shortcut.

• Fl_Menu_Item ∗ first ()

Returns the first menu item, same as next(0).

• const Fl_Menu_Item ∗ first () const

Returns the first menu item, same as next(0).

• void hide ()

Hides an item in the menu.

• void image (Fl_Image &a)

compatibility api for FLUID, same as a.label(this)

• void image (Fl_Image ∗a)

compatibility api for FLUID, same as a->label(this)

• void label (Fl_Labeltype a, const char ∗b)

See const char∗ Fl_Menu_Item::label() const.

• void label (const char ∗a)

See const char∗ Fl_Menu_Item::label() const.

• const char ∗ label () const

Returns the title of the item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 585

• void labelcolor (Fl_Color a)
See Fl_Color Fl_Menu_Item::labelcolor() const.

• Fl_Color labelcolor () const
This color is passed to the labeltype routine, and is typically the color of the label text.

• void labelfont (Fl_Font a)
Fonts are identified by small 8-bit indexes into a table.

• Fl_Font labelfont () const
Fonts are identified by small 8-bit indexes into a table.

• void labelsize (Fl_Fontsize a)
Sets the label font pixel size/height.

• Fl_Fontsize labelsize () const
Gets the label font pixel size/height.

• void labeltype (Fl_Labeltype a)
A labeltype identifies a routine that draws the label of the widget.

• Fl_Labeltype labeltype () const
A labeltype identifies a routine that draws the label of the widget.

• int measure (int ∗h, const Fl_Menu_ ∗) const
Measures width of label, including effect of & characters.

• Fl_Menu_Item ∗ next (int i=1)
Advances a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

• const Fl_Menu_Item ∗ next (int=1) const
Advance a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

• const Fl_Menu_Item ∗ popup (int X, int Y, const char ∗title=0, const Fl_Menu_Item ∗picked=0,
const Fl_Menu_ ∗=0) const

This method is called by widgets that want to display menus.

• const Fl_Menu_Item ∗ pulldown (int X, int Y, int W, int H, const Fl_Menu_Item ∗picked=0, const
Fl_Menu_ ∗=0, const Fl_Menu_Item ∗title=0, int menubar=0) const

Pulldown() is similar to popup(), but a rectangle is provided to position the menu.

• int radio () const
Returns true if this item is a radio item.

• void set ()
Turns the check or radio item "on" for the menu item.

• void setonly ()
Turns the radio item "on" for the menu item and turns off adjacent radio items set.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

586 Class Documentation

• void shortcut (int s)

Sets exactly what key combination will trigger the menu item.

• int shortcut () const

Gets what key combination shortcut will trigger the menu item.

• void show ()

Makes an item visible in the menu.

• int size () const

Size of the menu starting from this menu item.

• int submenu () const

Returns true if either FL_SUBMENU or FL_SUBMENU_POINTER is on in the flags.

• const Fl_Menu_Item ∗ test_shortcut () const

This is designed to be called by a widgets handle() method in response to a FL_SHORTCUT event.

• void uncheck ()

back compatibility only

• void user_data (void ∗v)

Get or set the user_data argument that is sent to the callback function.

• void ∗ user_data () const

Get or set the user_data argument that is sent to the callback function.

• int value () const

Returns the current value of the check or radio item.

• int visible () const

Gets the visibility of an item.

Public Attributes

• Fl_Callback ∗ callback_

menu item callback

• int flags

menu item flags like FL_MENU_TOGGLE, FL_MENU_RADIO

• Fl_Color labelcolor_

menu item text color

• Fl_Font labelfont_

which font for this menu item text

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 587

• Fl_Fontsize labelsize_

size of menu item text

• uchar labeltype_

how the menu item text looks like

• int shortcut_

menu item shortcut

• const char ∗ text

menu item text, returned by label()

• void ∗ user_data_

menu item user_data for 3rd party apps

30.61.1 Detailed Description

The Fl_Menu_Item structure defines a single menu item that is used by the Fl_Menu_ class.

struct Fl_Menu_Item {
const char* text; // label()
ulong shortcut_;
Fl_Callback* callback_;
void* user_data_;
int flags;
uchar labeltype_;
uchar labelfont_;
uchar labelsize_;
uchar labelcolor_;

};

enum { // values for flags:
FL_MENU_INACTIVE = 1, // Deactivate menu item (gray out)
FL_MENU_TOGGLE = 2, // Item is a checkbox toggle (shows checkbox for on/off state)
FL_MENU_VALUE = 4, // The on/off state for checkbox/radio buttons (if set, state is ’on’)
FL_MENU_RADIO = 8, // Item is a radio button (one checkbox of many can be on)
FL_MENU_INVISIBLE = 0x10, // Item will not show up (shortcut will work)
FL_SUBMENU_POINTER = 0x20, // Indicates user_data() is a pointer to another menu array
FL_SUBMENU = 0x40, // This item is a submenu to other items
FL_MENU_DIVIDER = 0x80, // Creates divider line below this item. Also ends a group of radio buttons.
FL_MENU_HORIZONTAL = 0x100 // ??? -- reserved

};

Typically menu items are statically defined; for example:

Fl_Menu_Item popup[] = {
{"&alpha", FL_ALT+’a’, the_cb, (void*)1},
{"&beta", FL_ALT+’b’, the_cb, (void*)2},
{"gamma", FL_ALT+’c’, the_cb, (void*)3, FL_MENU_DIVIDER},
{"&strange", 0, strange_cb},
{"&charm", 0, charm_cb},
{"&truth", 0, truth_cb},
{"b&eauty", 0, beauty_cb},
{"sub&menu", 0, 0, 0, FL_SUBMENU},
{"one"},
{"two"},
{"three"},

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

588 Class Documentation

{0},
{"inactive", FL_ALT+’i’, 0, 0, FL_MENU_INACTIVE|FL_MENU_DIVIDER},
{"invisible",FL_ALT+’i’, 0, 0, FL_MENU_INVISIBLE},
{"check", FL_ALT+’i’, 0, 0, FL_MENU_TOGGLE|FL_MENU_VALUE},
{"box", FL_ALT+’i’, 0, 0, FL_MENU_TOGGLE},
{0}};

produces:

Figure 30.20: menu

A submenu title is identified by the bit FL_SUBMENU in the flags field, and ends with a label() that is
NULL. You can nest menus to any depth. A pointer to the first item in the submenu can be treated as an
Fl_Menu array itself. It is also possible to make separate submenu arrays with FL_SUBMENU_POINTER
flags.

You should use the method functions to access structure members and not access them directly to avoid
compatibility problems with future releases of FLTK.

30.61.2 Member Function Documentation

30.61.2.1 void Fl_Menu_Item::activate () [inline]

Allows a menu item to be picked.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 589

30.61.2.2 int Fl_Menu_Item::active () const [inline]

Gets whether or not the item can be picked.

30.61.2.3 int Fl_Menu_Item::activevisible () const [inline]

Returns non 0 if FL_INACTIVE and FL_INVISIBLE are cleared, 0 otherwise.

30.61.2.4 int Fl_Menu_Item::add (const char ∗ mytext, int sc, Fl_Callback ∗ cb, void ∗ data = 0,
int myflags = 0)

Adds an item.

The text is split at ’/’ characters to automatically produce submenus (actually a totally unnecessary feature
as you can now add submenu titles directly by setting SUBMENU in the flags):

30.61.2.5 void Fl_Menu_Item::argument (long v) [inline]

For convenience you can also define the callback as taking a long argument.

This is implemented by casting this to a Fl_Callback and casting the long to a void∗ and may not be portable
to some machines.

30.61.2.6 long Fl_Menu_Item::argument () const [inline]

For convenience you can also define the callback as taking a long argument.

This is implemented by casting this to a Fl_Callback and casting the long to a void∗ and may not be portable
to some machines.

30.61.2.7 Fl_Callback_p Fl_Menu_Item::callback () const [inline]

Each item has space for a callback function and an argument for that function.

Due to back compatibility, the Fl_Menu_Item itself is not passed to the callback, instead you have to get it
by calling ((Fl_Menu_∗)w)->mvalue() where w is the widget argument.

30.61.2.8 void Fl_Menu_Item::check () [inline]

back compatibility only

Deprecated

.

30.61.2.9 int Fl_Menu_Item::checkbox () const [inline]

Returns true if a checkbox will be drawn next to this item.

This is true if FL_MENU_TOGGLE or FL_MENU_RADIO is set in the flags.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

590 Class Documentation

30.61.2.10 int Fl_Menu_Item::checked () const [inline]

back compatibility only

Deprecated

.

30.61.2.11 void Fl_Menu_Item::clear () [inline]

Turns the check or radio item "off" for the menu item.

30.61.2.12 void Fl_Menu_Item::deactivate () [inline]

Prevents a menu item from being picked.

Note that this will also cause the menu item to appear grayed-out.

30.61.2.13 void Fl_Menu_Item::do_callback (Fl_Widget ∗ o, long arg) const [inline]

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument (and optionally overrides
the user_data() argument).

You must first check that callback() is non-zero before calling this.

30.61.2.14 void Fl_Menu_Item::do_callback (Fl_Widget ∗ o, void ∗ arg) const [inline]

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument (and optionally overrides
the user_data() argument).

You must first check that callback() is non-zero before calling this.

30.61.2.15 void Fl_Menu_Item::do_callback (Fl_Widget ∗ o) const [inline]

Calls the Fl_Menu_Item item’s callback, and provides the Fl_Widget argument (and optionally overrides
the user_data() argument).

You must first check that callback() is non-zero before calling this.

30.61.2.16 void Fl_Menu_Item::draw (int x, int y, int w, int h, const Fl_Menu_ ∗ m, int selected
= 0) const

Draws the menu item in bounding box x,y,w,h, optionally selects the item.

30.61.2.17 const Fl_Menu_Item ∗ Fl_Menu_Item::find_shortcut (int ∗ ip = 0) const

Search only the top level menu for a shortcut.

Either &x in the label or the shortcut fields are used.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 591

30.61.2.18 Fl_Menu_Item∗ Fl_Menu_Item::first () [inline]

Returns the first menu item, same as next(0).

30.61.2.19 const Fl_Menu_Item∗ Fl_Menu_Item::first () const [inline]

Returns the first menu item, same as next(0).

30.61.2.20 void Fl_Menu_Item::hide () [inline]

Hides an item in the menu.

30.61.2.21 const char∗ Fl_Menu_Item::label () const [inline]

Returns the title of the item.

A NULL here indicates the end of the menu (or of a submenu). A ’&’ in the item will print an underscore
under the next letter, and if the menu is popped up that letter will be a "shortcut" to pick that item. To get a
real ’&’ put two in a row.

30.61.2.22 Fl_Color Fl_Menu_Item::labelcolor () const [inline]

This color is passed to the labeltype routine, and is typically the color of the label text.

This defaults to FL_BLACK. If this color is not black fltk will not use overlay bitplanes to draw the menu
- this is so that images put in the menu draw correctly.

30.61.2.23 void Fl_Menu_Item::labelfont (Fl_Font a) [inline]

Fonts are identified by small 8-bit indexes into a table.

See the enumeration list for predefined fonts. The default value is a Helvetica font. The function Fl::set_-
font() can define new fonts.

30.61.2.24 Fl_Font Fl_Menu_Item::labelfont () const [inline]

Fonts are identified by small 8-bit indexes into a table.

See the enumeration list for predefined fonts. The default value is a Helvetica font. The function Fl::set_-
font() can define new fonts.

30.61.2.25 void Fl_Menu_Item::labelsize (Fl_Fontsize a) [inline]

Sets the label font pixel size/height.

30.61.2.26 Fl_Fontsize Fl_Menu_Item::labelsize () const [inline]

Gets the label font pixel size/height.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

592 Class Documentation

30.61.2.27 void Fl_Menu_Item::labeltype (Fl_Labeltype a) [inline]

A labeltype identifies a routine that draws the label of the widget.

This can be used for special effects such as emboss, or to use the label() pointer as another form of data
such as a bitmap. The value FL_NORMAL_LABEL prints the label as text.

30.61.2.28 Fl_Labeltype Fl_Menu_Item::labeltype () const [inline]

A labeltype identifies a routine that draws the label of the widget.

This can be used for special effects such as emboss, or to use the label() pointer as another form of data
such as a bitmap. The value FL_NORMAL_LABEL prints the label as text.

30.61.2.29 int Fl_Menu_Item::measure (int ∗ hp, const Fl_Menu_ ∗ m) const

Measures width of label, including effect of & characters.

Optionally, can get height if hp is not NULL.

30.61.2.30 Fl_Menu_Item∗ Fl_Menu_Item::next (int i = 1) [inline]

Advances a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

There are two calls so that you can advance through const and non-const data.

30.61.2.31 const Fl_Menu_Item ∗ Fl_Menu_Item::next (int n = 1) const

Advance a pointer by n items through a menu array, skipping the contents of submenus and invisible items.

There are two calls so that you can advance through const and non-const data.

30.61.2.32 const Fl_Menu_Item ∗ Fl_Menu_Item::popup (int X, int Y, const char ∗ title = 0,
const Fl_Menu_Item ∗ picked = 0, const Fl_Menu_ ∗ but = 0) const

This method is called by widgets that want to display menus.

The menu stays up until the user picks an item or dismisses it. The selected item (or NULL if none) is
returned. This does not do the callbacks or change the state of check or radio items.

X,Y is the position of the mouse cursor, relative to the window that got the most recent event (usually you
can pass Fl::event_x() and Fl::event_y() unchanged here).

title is a character string title for the menu. If non-zero a small box appears above the menu with the title
in it.

The menu is positioned so the cursor is centered over the item picked. This will work even if picked is in
a submenu. If picked is zero or not in the menu item table the menu is positioned with the cursor in the
top-left corner.

button is a pointer to an Fl_Menu_ from which the color and boxtypes for the menu are pulled. If NULL
then defaults are used.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.61 Fl_Menu_Item Struct Reference 593

30.61.2.33 const Fl_Menu_Item ∗ Fl_Menu_Item::pulldown (int X, int Y, int W, int H, const
Fl_Menu_Item ∗ initial_item = 0, const Fl_Menu_ ∗ pbutton = 0, const Fl_Menu_Item
∗ t = 0, int menubar = 0) const

Pulldown() is similar to popup(), but a rectangle is provided to position the menu.

The menu is made at least W wide, and the picked item is centered over the rectangle (like Fl_Choice uses).
If picked is zero or not found, the menu is aligned just below the rectangle (like a pulldown menu).

The title and menubar arguments are used internally by the Fl_Menu_Bar widget.

30.61.2.34 int Fl_Menu_Item::radio () const [inline]

Returns true if this item is a radio item.

When a radio button is selected all "adjacent" radio buttons are turned off. A set of radio items is delimited
by an item that has radio() false, or by an item with FL_MENU_DIVIDER turned on.

30.61.2.35 void Fl_Menu_Item::set () [inline]

Turns the check or radio item "on" for the menu item.

Note that this does not turn off any adjacent radio items like set_only() does.

30.61.2.36 void Fl_Menu_Item::setonly ()

Turns the radio item "on" for the menu item and turns off adjacent radio items set.

30.61.2.37 void Fl_Menu_Item::shortcut (int s) [inline]

Sets exactly what key combination will trigger the menu item.

The value is a logical ’or’ of a key and a set of shift flags, for instance FL_ALT+’a’ or FL_ALT+FL_F+10
or just ’a’. A value of zero disables the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a lower-case
letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don’t care" setting).

30.61.2.38 int Fl_Menu_Item::shortcut () const [inline]

Gets what key combination shortcut will trigger the menu item.

30.61.2.39 void Fl_Menu_Item::show () [inline]

Makes an item visible in the menu.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

594 Class Documentation

30.61.2.40 int Fl_Menu_Item::submenu () const [inline]

Returns true if either FL_SUBMENU or FL_SUBMENU_POINTER is on in the flags.

FL_SUBMENU indicates an embedded submenu that goes from the next item through the next one with a
NULL label(). FL_SUBMENU_POINTER indicates that user_data() is a pointer to another menu array.

30.61.2.41 const Fl_Menu_Item ∗ Fl_Menu_Item::test_shortcut () const

This is designed to be called by a widgets handle() method in response to a FL_SHORTCUT event.

If the current event matches one of the items shortcut, that item is returned. If the keystroke does not match
any shortcuts then NULL is returned. This only matches the shortcut() fields, not the letters in the title
preceeded by ’

30.61.2.42 void Fl_Menu_Item::uncheck () [inline]

back compatibility only

Deprecated

.

30.61.2.43 int Fl_Menu_Item::value () const [inline]

Returns the current value of the check or radio item.

30.61.2.44 int Fl_Menu_Item::visible () const [inline]

Gets the visibility of an item.

The documentation for this struct was generated from the following files:

• Fl_Menu_Item.H
• Fl_Menu.cxx
• Fl_Menu_.cxx
• Fl_Menu_add.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.62 Fl_Menu_Window Class Reference 595

30.62 Fl_Menu_Window Class Reference

The Fl_Menu_Window widget is a window type used for menus.

#include <Fl_Menu_Window.H>

Inheritance diagram for Fl_Menu_Window::

Fl_Menu_Window

Fl_Single_Window

Fl_Window

Fl_Group

Fl_Widget

Public Member Functions

• void clear_overlay ()
Tells FLTK to use normal drawing planes instead of overlay planes.

• void erase ()
Erases the window, does nothing if HAVE_OVERLAY is not defined config.h.

• Fl_Menu_Window (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Menu_Window widget using the given position, size, and label string.

• Fl_Menu_Window (int W, int H, const char ∗l=0)
Creates a new Fl_Menu_Window widget using the given size, and label string.

• void flush ()
Forces the window to be drawn, this window is also made current and calls draw().

• void hide ()
Removes the window from the screen.

• unsigned int overlay ()
Tells if hardware overlay mode is set.

• void set_overlay ()
Tells FLTK to use hardware overlay planes if they are available.

• void show ()
Puts the window on the screen.

• ∼Fl_Menu_Window ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

596 Class Documentation

Destroys the window and all of its children.

30.62.1 Detailed Description

The Fl_Menu_Window widget is a window type used for menus.

By default the window is drawn in the hardware overlay planes if they are available so that the menu don’t
force the rest of the window to redraw.

30.62.2 Constructor & Destructor Documentation

30.62.2.1 Fl_Menu_Window::∼Fl_Menu_Window ()

Destroys the window and all of its children.

30.62.2.2 Fl_Menu_Window::Fl_Menu_Window (int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Menu_Window widget using the given size, and label string.

30.62.2.3 Fl_Menu_Window::Fl_Menu_Window (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Menu_Window widget using the given position, size, and label string.

30.62.3 Member Function Documentation

30.62.3.1 void Fl_Menu_Window::clear_overlay () [inline]

Tells FLTK to use normal drawing planes instead of overlay planes.

This is usually necessary if your menu contains multi-color pixmaps.

30.62.3.2 void Fl_Menu_Window::flush () [virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented from Fl_Single_Window.

30.62.3.3 void Fl_Menu_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Window.

30.62.3.4 void Fl_Menu_Window::set_overlay () [inline]

Tells FLTK to use hardware overlay planes if they are available.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.62 Fl_Menu_Window Class Reference 597

30.62.3.5 void Fl_Menu_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display. The second form is used for top-level
windows and allows standard arguments to be parsed from the command-line.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Reimplemented from Fl_Single_Window.

The documentation for this class was generated from the following files:

• Fl_Menu_Window.H
• Fl_Menu_Window.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

598 Class Documentation

30.63 Fl_Multi_Browser Class Reference

The Fl_Multi_Browser class is a subclass of Fl_Browser which lets the user select any set of the lines.

#include <Fl_Multi_Browser.H>

Inheritance diagram for Fl_Multi_Browser::

Fl_Multi_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Multi_Browser (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Multi_Browser widget using the given position, size, and label string.

30.63.1 Detailed Description

The Fl_Multi_Browser class is a subclass of Fl_Browser which lets the user select any set of the lines.

The user interface is Macintosh style: clicking an item turns off all the others and selects that one, dragging
selects all the items the mouse moves over, and shift + click toggles the items. This is different then how
forms did it. Normally the callback is done when the user releases the mouse, but you can change this with
when().

See Fl_Browser for methods to add and remove lines from the browser.

30.63.2 Constructor & Destructor Documentation

30.63.2.1 Fl_Multi_Browser::Fl_Multi_Browser (int X, int Y, int W, int H, const char ∗ L = 0)
[inline]

Creates a new Fl_Multi_Browser widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX. The constructor specializes Fl_Browser() by setting the type to
FL_MULTI_BROWSER. The destructor destroys the widget and frees all memory that has been allocated.

The documentation for this class was generated from the following file:

• Fl_Multi_Browser.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.64 Fl_Multiline_Input Class Reference 599

30.64 Fl_Multiline_Input Class Reference

This input field displays ’

’ characters as new lines rather than ∧J, and accepts the Return, Tab, and up and down arrow keys.

#include <Fl_Multiline_Input.H>

Inheritance diagram for Fl_Multiline_Input::

Fl_Multiline_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Multiline_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Multiline_Input widget using the given position, size, and label string.

30.64.1 Detailed Description

This input field displays ’

’ characters as new lines rather than ∧J, and accepts the Return, Tab, and up and down arrow keys.

This is for editing multiline text.

This is far from the nirvana of text editors, and is probably only good for small bits of text, 10 lines at most.
Note that this widget does not support scrollbars or per-character color control.

If you are presenting large amounts of text and need scrollbars or full color control of characters, you
probably want Fl_Text_Editor instead.

30.64.2 Constructor & Destructor Documentation

30.64.2.1 Fl_Multiline_Input::Fl_Multiline_Input (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Multiline_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Multiline_Input.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

600 Class Documentation

30.65 Fl_Multiline_Output Class Reference

This widget is a subclass of Fl_Output that displays multiple lines of text.

#include <Fl_Multiline_Output.H>

Inheritance diagram for Fl_Multiline_Output::

Fl_Multiline_Output

Fl_Output

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Multiline_Output (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Multiline_Output widget using the given position, size, and label string.

30.65.1 Detailed Description

This widget is a subclass of Fl_Output that displays multiple lines of text.

It also displays tab characters as whitespace to the next column.

Note that this widget does not support scrollbars, or per-character color control.

If you are presenting large amounts of read-only text and need scrollbars, or full color control of characters,
then use Fl_Text_Display. If you want to display HTML text, use Fl_Help_View.

30.65.2 Constructor & Destructor Documentation

30.65.2.1 Fl_Multiline_Output::Fl_Multiline_Output (int X, int Y, int W, int H, const char ∗ l =
0) [inline]

Creates a new Fl_Multiline_Output widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX

Inherited destructor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Multiline_Output.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 601

30.66 Fl_Native_File_Chooser Class Reference

This class lets an FLTK application easily and consistently access the operating system’s native file chooser.

#include <Fl_Native_File_Chooser_FLTK.H>

Public Types

• enum Option { NO_OPTIONS = 0x0000, SAVEAS_CONFIRM = 0x0001, NEW_FOLDER =
0x0002, PREVIEW = 0x0004 }

• enum Type {

BROWSE_FILE = 0, BROWSE_DIRECTORY, BROWSE_MULTI_FILE, BROWSE_MULTI_-
DIRECTORY,

BROWSE_SAVE_FILE, BROWSE_SAVE_DIRECTORY }

Public Member Functions

• int count () const

Returns the number of filenames (or directory names) the user selected.

• const char ∗ directory () const

Returns the current preset directory() value.

• void directory (const char ∗val)

Preset the directory the browser will show when opened.

• const char ∗ errmsg () const

Returns a system dependent error message for the last method that failed.

• const char ∗ filename (int i) const

Return one of the filenames the user selected.

• const char ∗ filename () const

Return the filename the user choose.

• void filter (const char ∗)
Sets the filename filters used for browsing.

• const char ∗ filter () const

Returns the filter string last set.

• int filter_value () const

Returns which filter value was last selected by the user.

• void filter_value (int i)

Sets which filter will be initially selected.

• int filters () const

Gets how many filters were available, not including "All Files".

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

602 Class Documentation

• Fl_Native_File_Chooser (int val=BROWSE_FILE)
The constructor.

• int options () const
Gets the platform specific Fl_Native_File_Chooser::Option flags.

• void options (int)
Sets the platform specific chooser options to val.

• const char ∗ preset_file () const
Get the preset filename.

• void preset_file (const char ∗)
Sets the default filename for the chooser.

• int show ()
Post the chooser’s dialog.

• const char ∗ title () const
Get the title of the file chooser’s dialog window.

• void title (const char ∗)
Set the title of the file chooser’s dialog window.

• int type () const
Gets the current Fl_Native_File_Chooser::Type of browser.

• void type (int)
Sets the current Fl_Native_File_Chooser::Type of browser.

• ∼Fl_Native_File_Chooser ()
Destructor.

30.66.1 Detailed Description

This class lets an FLTK application easily and consistently access the operating system’s native file chooser.

Some operating systems have very complex and specific file choosers that many users want access to
specifically, instead of FLTK’s default file chooser(s).

In cases where there is no native file browser, FLTK’s own file browser is used instead.

// Create and post the local native file chooser
#include <FL/Fl_Native_File_Chooser.H>
[..]
Fl_Native_File_Chooser fnfc;
fnfc.title("Pick a file");
fnfc.type(Fl_Native_File_Chooser::BROWSE_FILE);
fnfc.filter("Text\t*.txt\n"

"C Files\t*.{cxx,h,c}");
fnfc.directory("/var/tmp");

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 603

// Show native chooser
switch (fnfc.show()) {

case -1: printf("ERROR: %s\n", fnfc.errmsg()); break; // ERROR
case 1: printf("CANCEL\n"); break; // CANCEL
default: printf("PICKED: %s\n", fnfc.filename()); break; // FILE CHOSEN

}

Platform Specific Caveats

• Under X windows, it’s best if you call Fl_File_Icon::load_system_icons() at the start of main(), to
enable the nicer looking file browser widgets.

• Some operating systems support certain OS specific options; see Fl_Native_File_Chooser::options()
for a list.

30.66.2 Member Enumeration Documentation

30.66.2.1 enum Fl_Native_File_Chooser::Option

Enumerator:

NO_OPTIONS no options enabled

SAVEAS_CONFIRM Show native ’Save As’ overwrite confirm dialog (if supported).

NEW_FOLDER Show ’New Folder’ icon (if supported).

PREVIEW enable preview mode

30.66.2.2 enum Fl_Native_File_Chooser::Type

Enumerator:

BROWSE_FILE browse files (lets user choose one file)

BROWSE_DIRECTORY browse directories (lets user choose one directory)

BROWSE_MULTI_FILE browse files (lets user choose multiple files)

BROWSE_MULTI_DIRECTORY browse directories (lets user choose multiple directories)

BROWSE_SAVE_FILE browse to save a file

BROWSE_SAVE_DIRECTORY browse to save a directory

30.66.3 Constructor & Destructor Documentation

30.66.3.1 Fl_Native_File_Chooser::Fl_Native_File_Chooser (int val = BROWSE_FILE)

The constructor.

Internally allocates the native widgets. Optional val presets the type of browser this will be, which can
also be changed with type().

30.66.3.2 Fl_Native_File_Chooser::∼Fl_Native_File_Chooser ()

Destructor.

Deallocates any resources allocated to this widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

604 Class Documentation

30.66.4 Member Function Documentation

30.66.4.1 int Fl_Native_File_Chooser::count () const

Returns the number of filenames (or directory names) the user selected.

Example:

if (fnfc->show() == 0) {
// Print all filenames user selected
for (int n=0; n<fnfc->count(); n++) {

printf("%d) ’%s’\n", n, fnfc->filename(n));
}

}

30.66.4.2 void Fl_Native_File_Chooser::directory (const char ∗ val)

Preset the directory the browser will show when opened.

If val is NULL, or no directory is specified, the chooser will attempt to use the last non-cancelled folder.

30.66.4.3 const char ∗ Fl_Native_File_Chooser::errmsg () const

Returns a system dependent error message for the last method that failed.

This message should at least be flagged to the user in a dialog box, or to some kind of error log. Contents
will be valid only for methods that document errmsg() will have info on failures.

30.66.4.4 const char ∗ Fl_Native_File_Chooser::filename (int i) const

Return one of the filenames the user selected.

Use count() to determine how many filenames the user selected.

Example:

if (fnfc->show() == 0) {
// Print all filenames user selected
for (int n=0; n<fnfc->count(); n++) {

printf("%d) ’%s’\n", n, fnfc->filename(n));
}

}

30.66.4.5 const char ∗ Fl_Native_File_Chooser::filename () const

Return the filename the user choose.

Use this if only expecting a single filename. If more than one filename is expected, use filename(int)
instead. Return value may be "" if no filename was chosen (eg. user cancelled).

30.66.4.6 void Fl_Native_File_Chooser::filter (const char ∗ val)

Sets the filename filters used for browsing.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.66 Fl_Native_File_Chooser Class Reference 605

The default is NULL, which browses all files.

The filter string can be any of:

• A single wildcard (eg. "∗.txt")

• Multiple wildcards (eg. "∗.{cxx,h,H}")

• A descriptive name followed by a "\t" and a wildcard (eg. "Text Files\t∗.txt")

• A list of separate wildcards with a "\n" between each (eg. "∗.{cxx,H}\n∗.txt")

• A list of descriptive names and wildcards (eg. "C++ Files\t∗.{cxx,H}\nTxt Files\t∗.txt")

The format of each filter is a wildcard, or an optional user description followed by ’\t’ and the wildcard.

On most platforms, each filter is available to the user via a pulldown menu in the file chooser. The ’All
Files’ option is always available to the user.

30.66.4.7 const char ∗ Fl_Native_File_Chooser::filter () const

Returns the filter string last set.

Can be NULL if no filter was set.

30.66.4.8 int Fl_Native_File_Chooser::filter_value () const

Returns which filter value was last selected by the user.

This is only valid if the chooser returns success.

30.66.4.9 void Fl_Native_File_Chooser::filter_value (int val)

Sets which filter will be initially selected.

The first filter is indexed as 0. If filter_value()==filters(), then "All Files" was chosen. If filter_value() >
filters(), then a custom filter was set.

30.66.4.10 void Fl_Native_File_Chooser::options (int val)

Sets the platform specific chooser options to val.

val is expected to be one or more Fl_Native_File_Chooser::Option flags ORed together. Some platforms
have OS-specific functions that can be enabled/disabled via this method.

Flag Description Win Mac Other
-------------- --- ------- ------- -------
NEW_FOLDER Shows the ’New Folder’ button. Ignored Used Used
PREVIEW Enables the ’Preview’ mode by default. Ignored Ignored Used
SAVEAS_CONFIRM Confirm dialog if BROWSE_SAVE_FILE file exists. Ignored Used Used

30.66.4.11 void Fl_Native_File_Chooser::preset_file (const char ∗ val)

Sets the default filename for the chooser.

Use directory() to set the default directory. Mainly used to preset the filename for save dialogs, and on
most platforms can be used for opening files as well.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

606 Class Documentation

30.66.4.12 int Fl_Native_File_Chooser::show ()

Post the chooser’s dialog.

Blocks until dialog has been completed or cancelled.

Returns:

• 0 – user picked a file

• 1 – user cancelled

• -1 – failed; errmsg() has reason

30.66.4.13 const char ∗ Fl_Native_File_Chooser::title () const

Get the title of the file chooser’s dialog window.

Return value may be NULL if no title was set.

30.66.4.14 void Fl_Native_File_Chooser::title (const char ∗ val)

Set the title of the file chooser’s dialog window.

Can be NULL if no title desired. The default title varies according to the platform, so you are advised to
set the title explicitly.

The documentation for this class was generated from the following files:

• Fl_Native_File_Chooser_FLTK.H
• Fl_Native_File_Chooser_FLTK.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.67 Fl_Output Class Reference 607

30.67 Fl_Output Class Reference

This widget displays a piece of text.

#include <Fl_Output.H>

Inheritance diagram for Fl_Output::

Fl_Output

Fl_Input

Fl_Input_

Fl_Widget

Fl_Multiline_Output

Public Member Functions

• Fl_Output (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Output widget using the given position, size, and label string.

30.67.1 Detailed Description

This widget displays a piece of text.

When you set the value() , Fl_Output does a strcpy() to it’s own storage, which is useful for program-
generated values. The user may select portions of the text using the mouse and paste the contents into other
fields or programs.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

608 Class Documentation

Figure 30.21: Fl_Output

There is a single subclass, Fl_Multiline_Output, which allows you to display multiple lines of text. Fl_-
Multiline_Output does not provide scroll bars. If a more complete text editing widget is needed, use
Fl_Text_Display instead.

The text may contain any characters except \0, and will correctly display anything, using ∧X notation for
unprintable control characters and \nnn notation for unprintable characters with the high bit set. It assumes
the font can draw any characters in the ISO-Latin1 character set.

30.67.2 Constructor & Destructor Documentation

30.67.2.1 Fl_Output::Fl_Output (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Output widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destrucor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Output.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.68 Fl_Overlay_Window Class Reference 609

30.68 Fl_Overlay_Window Class Reference

This window provides double buffering and also the ability to draw the "overlay" which is another picture
placed on top of the main image.

#include <Fl_Overlay_Window.H>

Inheritance diagram for Fl_Overlay_Window::

Fl_Overlay_Window

Fl_Double_Window

Fl_Window

Fl_Group

Fl_Widget

Public Member Functions

• int can_do_overlay ()
• Fl_Overlay_Window (int X, int Y, int W, int H, const char ∗l=0)

See Fl_Overlay_Window::Fl_Overlay_Window(int W, int H, const char ∗l=0).

• Fl_Overlay_Window (int W, int H, const char ∗l=0)
Creates a new Fl_Overlay_Window widget using the given position, size, and label (title) string.

• void flush ()
Forces the window to be redrawn.

• void hide ()
Removes the window from the screen.

• void redraw_overlay ()
Call this to indicate that the overlay data has changed and needs to be redrawn.

• void resize (int, int, int, int)
Changes the size and position of the window.

• void show (int a, char ∗∗b)
See virtual void Fl_Window::show().

• void show ()
Puts the window on the screen.

• ∼Fl_Overlay_Window ()
Destroys the window and all child widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

610 Class Documentation

Friends

• class _Fl_Overlay

30.68.1 Detailed Description

This window provides double buffering and also the ability to draw the "overlay" which is another picture
placed on top of the main image.

The overlay is designed to be a rapidly-changing but simple graphic such as a mouse selection box. Fl_-
Overlay_Window uses the overlay planes provided by your graphics hardware if they are available.

If no hardware support is found the overlay is simulated by drawing directly into the on-screen copy of
the double-buffered window, and "erased" by copying the backbuffer over it again. This means the overlay
will blink if you change the image in the window.

30.68.2 Constructor & Destructor Documentation

30.68.2.1 Fl_Overlay_Window::Fl_Overlay_Window (int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Overlay_Window widget using the given position, size, and label (title) string.

If the positions (x,y) are not given, then the window manager will choose them.

30.68.3 Member Function Documentation

30.68.3.1 void Fl_Overlay_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Double_Window.

30.68.3.2 void Fl_Overlay_Window::redraw_overlay ()

Call this to indicate that the overlay data has changed and needs to be redrawn.

The overlay will be clear until the first time this is called, so if you want an initial display you must call
this after calling show().

30.68.3.3 void Fl_Overlay_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.68 Fl_Overlay_Window Class Reference 611

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Double_Window.

30.68.3.4 void Fl_Overlay_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display. The second form is used for top-level
windows and allows standard arguments to be parsed from the command-line.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Reimplemented from Fl_Double_Window.

The documentation for this class was generated from the following files:

• Fl_Overlay_Window.H
• Fl_Overlay_Window.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

612 Class Documentation

30.69 Fl_Pack Class Reference

This widget was designed to add the functionality of compressing and aligning widgets.

#include <Fl_Pack.H>

Inheritance diagram for Fl_Pack::

Fl_Pack

Fl_Group

Fl_Widget

Public Types

• enum { VERTICAL = 0, HORIZONTAL = 1 }

Public Member Functions

• Fl_Pack (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Pack widget using the given position, size, and label string.

• uchar horizontal () const

Same as Fl_Group::type().

• void spacing (int i)

Sets the number of extra pixels of blank space that are added between the children.

• int spacing () const

Gets the number of extra pixels of blank space that are added between the children.

Protected Member Functions

• void draw ()

Draws the widget.

30.69.1 Detailed Description

This widget was designed to add the functionality of compressing and aligning widgets.

If type() is Fl_Pack::HORIZONTAL all the children are resized to the height of the Fl_Pack, and are moved
next to each other horizontally. If type() is not Fl_Pack::HORIZONTAL then the children are resized to
the width and are stacked below each other. Then the Fl_Pack resizes itself to surround the child widgets.

This widget is needed for the Fl_Tabs. In addition you may want to put the Fl_Pack inside an Fl_Scroll.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.69 Fl_Pack Class Reference 613

The resizable for Fl_Pack is set to NULL by default.

See also: Fl_Group::resizable()

30.69.2 Constructor & Destructor Documentation

30.69.2.1 Fl_Pack::Fl_Pack (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Pack widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Pack and all of it’s
children can be automatic (local) variables, but you must declare the Fl_Packfirst, so that it is destroyed
last.

30.69.3 Member Function Documentation

30.69.3.1 void Fl_Pack::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

The documentation for this class was generated from the following files:

• Fl_Pack.H
• Fl_Pack.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

614 Class Documentation

30.70 Fl_Pixmap Class Reference

The Fl_Pixmap class supports caching and drawing of colormap (pixmap) images, including transparency.

#include <Fl_Pixmap.H>

Inheritance diagram for Fl_Pixmap::

Fl_Pixmap

Fl_Image

Fl_GIF_Image Fl_XPM_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)
The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()
The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)
The copy() method creates a copy of the specified image.

• virtual void desaturate ()
The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)
The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)
The draw() methods draw the image.

• Fl_Pixmap (const uchar ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• Fl_Pixmap (const char ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• Fl_Pixmap (uchar ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• Fl_Pixmap (char ∗const ∗D)
The constructors create a new pixmap from the specified XPM data.

• virtual void label (Fl_Menu_Item ∗m)
The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.70 Fl_Pixmap Class Reference 615

• virtual void label (Fl_Widget ∗w)

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

• virtual ∼Fl_Pixmap ()

The destructor free all memory and server resources that are used by the pixmap.

Public Attributes

• int alloc_data

Protected Member Functions

• void measure ()

30.70.1 Detailed Description

The Fl_Pixmap class supports caching and drawing of colormap (pixmap) images, including transparency.

30.70.2 Constructor & Destructor Documentation

30.70.2.1 Fl_Pixmap::Fl_Pixmap (char ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.70.2.2 Fl_Pixmap::Fl_Pixmap (uchar ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.70.2.3 Fl_Pixmap::Fl_Pixmap (const char ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.70.2.4 Fl_Pixmap::Fl_Pixmap (const uchar ∗const ∗ D) [inline, explicit]

The constructors create a new pixmap from the specified XPM data.

30.70.3 Member Function Documentation

30.70.3.1 void Fl_Pixmap::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

616 Class Documentation

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

30.70.3.2 Fl_Image∗ Fl_Pixmap::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.70.3.3 Fl_Image ∗ Fl_Pixmap::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.70.3.4 void Fl_Pixmap::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

30.70.3.5 void Fl_Pixmap::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.70.3.6 void Fl_Pixmap::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.70.3.7 void Fl_Pixmap::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.70 Fl_Pixmap Class Reference 617

Reimplemented from Fl_Image.

30.70.3.8 void Fl_Pixmap::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.70.3.9 void Fl_Pixmap::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Pixmap.H
• Fl_Pixmap.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

618 Class Documentation

30.71 Fl_Plugin Class Reference

Fl_Plugin allows link-time and run-time integration of binary modules.

#include <Fl_Plugin.H>

Inheritance diagram for Fl_Plugin::

Fl_Plugin

Fl_Device_Plugin

Public Member Functions

• Fl_Plugin (const char ∗klass, const char ∗name)

Create a plugin.

• virtual ∼Fl_Plugin ()

Clear the plugin and remove it from the database.

30.71.1 Detailed Description

Fl_Plugin allows link-time and run-time integration of binary modules.

Fl_Plugin and Fl_Plugin_Manager provide a small and simple solution for linking C++ classes at run-time,
or optionally linking modules at compile time without the need to change the main application.

Fl_Plugin_Manager uses static initialisation to create the plugin interface early during startup. Plugins are
stored in a temporary database, organized in classes.

Plugins should derive a new class from Fl_Plugin as a base:

class My_Plugin : public Fl_Plugin {
public:

My_Plugin() : Fl_Plugin("effects", "blur") { }
void do_something(...);

};
My_Plugin blur_plugin();

Plugins can be put into modules and either linked befor distribution, or loaded from dynamically linkable
files. An Fl_Plugin_Manager is used to list and access all currently loaded plugins.

Fl_Plugin_Manager mgr("effects");
int i, n = mgr.plugins();
for (i=0; i<n; i++) {

My_Plugin *pin = (My_Plugin*)mgr.plugin(i);
pin->do_something();

}

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.71 Fl_Plugin Class Reference 619

30.71.2 Constructor & Destructor Documentation

30.71.2.1 Fl_Plugin::Fl_Plugin (const char ∗ klass, const char ∗ name)

Create a plugin.

Parameters:

← klass plugins are grouped in classes

← name every plugin should have a unique name

The documentation for this class was generated from the following files:

• Fl_Plugin.H
• Fl_Preferences.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

620 Class Documentation

30.72 Fl_Plugin_Manager Class Reference

Fl_Plugin_Manager manages link-time and run-time plugin binaries.

#include <Fl_Plugin.H>

Inheritance diagram for Fl_Plugin_Manager::

Fl_Plugin_Manager

Fl_Preferences

Public Member Functions

• Fl_Preferences::ID addPlugin (const char ∗name, Fl_Plugin ∗plugin)

This function adds a new plugin to the database.

• Fl_Plugin_Manager (const char ∗klass)

Manage all plugins belonging to one class.

• Fl_Plugin ∗ plugin (const char ∗name)

Return the address of a plugin by name.

• Fl_Plugin ∗ plugin (int index)

Return the address of a plugin by index.

• int plugins ()

Return the number of plugins in the klass.

• ∼Fl_Plugin_Manager ()

Remove the plugin manager.

Static Public Member Functions

• static int load (const char ∗filename)

Load a module from disk.

• static int loadAll (const char ∗filepath, const char ∗pattern=0)

Use this function to load a whole directory full of modules.

• static void removePlugin (Fl_Preferences::ID id)

Remove any plugin.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.72 Fl_Plugin_Manager Class Reference 621

30.72.1 Detailed Description

Fl_Plugin_Manager manages link-time and run-time plugin binaries.

See also:

Fl_Plugin

30.72.2 Constructor & Destructor Documentation

30.72.2.1 Fl_Plugin_Manager::∼Fl_Plugin_Manager ()

Remove the plugin manager.

Calling this does not remove the database itself or any plugins. It just removes the reference to the database.

30.72.3 Member Function Documentation

30.72.3.1 Fl_Preferences::ID Fl_Plugin_Manager::addPlugin (const char ∗ name, Fl_Plugin ∗
plugin)

This function adds a new plugin to the database.

There is no need to call this function explicitly. Every Fl_Plugin constructor will call this function at
initialization time.

30.72.3.2 int Fl_Plugin_Manager::load (const char ∗ filename) [static]

Load a module from disk.

A module must be a dynamically linkable file for the given operating system. When loading a module, its
+init function will be called which in turn calls the constructor of all statically initialized Fl_Plugin classes
and adds them to the database.

30.72.3.3 void Fl_Plugin_Manager::removePlugin (Fl_Preferences::ID id) [static]

Remove any plugin.

There is no need to call this function explicitly. Every Fl_Plugin destructor will call this function at de-
struction time.

The documentation for this class was generated from the following files:

• Fl_Plugin.H
• Fl_Preferences.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

622 Class Documentation

30.73 Fl_PNG_Image Class Reference

The Fl_PNG_Image class supports loading, caching, and drawing of Portable Network Graphics (PNG)
image files.

#include <Fl_PNG_Image.H>

Inheritance diagram for Fl_PNG_Image::

Fl_PNG_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_PNG_Image (const char ∗filename)
The constructor loads the named PNG image from the given png filename.

30.73.1 Detailed Description

The Fl_PNG_Image class supports loading, caching, and drawing of Portable Network Graphics (PNG)
image files.

The class loads colormapped and full-color images and handles color- and alpha-based transparency.

30.73.2 Constructor & Destructor Documentation

30.73.2.1 Fl_PNG_Image::Fl_PNG_Image (const char ∗ png)

The constructor loads the named PNG image from the given png filename.

The destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_PNG_Image.H
• Fl_PNG_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.74 Fl_PNM_Image Class Reference 623

30.74 Fl_PNM_Image Class Reference

The Fl_PNM_Image class supports loading, caching, and drawing of Portable Anymap (PNM, PBM, PGM,
PPM) image files.

#include <Fl_PNM_Image.H>

Inheritance diagram for Fl_PNM_Image::

Fl_PNM_Image

Fl_RGB_Image

Fl_Image

Public Member Functions

• Fl_PNM_Image (const char ∗filename)
The constructor loads the named PNM image.

30.74.1 Detailed Description

The Fl_PNM_Image class supports loading, caching, and drawing of Portable Anymap (PNM, PBM, PGM,
PPM) image files.

The class loads bitmap, grayscale, and full-color images in both ASCII and binary formats.

30.74.2 Constructor & Destructor Documentation

30.74.2.1 Fl_PNM_Image::Fl_PNM_Image (const char ∗ name)

The constructor loads the named PNM image.

The inherited destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_PNM_Image.H
• Fl_PNM_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

624 Class Documentation

30.75 Fl_Positioner Class Reference

This class is provided for Forms compatibility.

#include <Fl_Positioner.H>

Inheritance diagram for Fl_Positioner::

Fl_Positioner

Fl_Widget

Public Member Functions

• Fl_Positioner (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Positioner widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• int value (double, double)

Returns the current position in x and y.

• void xbounds (double, double)

Sets the X axis bounds.

• void xmaximum (double a)

Same as xbounds(xminimum(), a).

• double xmaximum () const

Gets the X axis maximum.

• void xminimum (double a)

Same as xbounds(a, xmaximum()).

• double xminimum () const

Gets the X axis minimum.

• void xstep (double a)

Sets the stepping value for the X axis.

• int xvalue (double)

Sets the X axis coordinate.

• double xvalue () const

Gets the X axis coordinate.

• void ybounds (double, double)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.75 Fl_Positioner Class Reference 625

Sets the Y axis bounds.

• void ymaximum (double a)

Same as ybounds(ymininimum(), a).

• double ymaximum () const

Gets the Y axis maximum.

• void yminimum (double a)

Same as ybounds(a, ymaximum()).

• double yminimum () const

Gets the Y axis minimum.

• void ystep (double a)

Sets the stepping value for the Y axis.

• int yvalue (double)

Sets the Y axis coordinate.

• double yvalue () const

Gets the Y axis coordinate.

Protected Member Functions

• void draw ()

Draws the widget.

• void draw (int, int, int, int)
• int handle (int, int, int, int, int)

30.75.1 Detailed Description

This class is provided for Forms compatibility.

It provides 2D input. It would be useful if this could be put atop another widget so that the crosshairs are
on top, but this is not implemented. The color of the crosshairs is selection_color().

Figure 30.22: Fl_Positioner

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

626 Class Documentation

30.75.2 Constructor & Destructor Documentation

30.75.2.1 Fl_Positioner::Fl_Positioner (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Positioner widget using the given position, size, and label string.

Creates a new Fl_Positioner widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

30.75.3 Member Function Documentation

30.75.3.1 void Fl_Positioner::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.75.3.2 int Fl_Positioner::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.75 Fl_Positioner Class Reference 627

30.75.3.3 int Fl_Positioner::value (double X, double Y)

Returns the current position in x and y.

30.75.3.4 void Fl_Positioner::xbounds (double a, double b)

Sets the X axis bounds.

30.75.3.5 void Fl_Positioner::xstep (double a) [inline]

Sets the stepping value for the X axis.

30.75.3.6 int Fl_Positioner::xvalue (double X)

Sets the X axis coordinate.

30.75.3.7 double Fl_Positioner::xvalue () const [inline]

Gets the X axis coordinate.

30.75.3.8 void Fl_Positioner::ybounds (double a, double b)

Sets the Y axis bounds.

30.75.3.9 void Fl_Positioner::ystep (double a) [inline]

Sets the stepping value for the Y axis.

30.75.3.10 int Fl_Positioner::yvalue (double Y)

Sets the Y axis coordinate.

30.75.3.11 double Fl_Positioner::yvalue () const [inline]

Gets the Y axis coordinate.

The documentation for this class was generated from the following files:

• Fl_Positioner.H
• Fl_Positioner.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

628 Class Documentation

30.76 Fl_Preferences Class Reference

Fl_Preferences provides methods to store user settings between application starts.

#include <Fl_Preferences.H>

Inheritance diagram for Fl_Preferences::

Fl_Preferences

Fl_Plugin_Manager

Classes

• struct Entry
• class Name

’Name’ provides a simple method to create numerical or more complex procedural names for entries and
groups on the fly.

• class Node
• class RootNode

Public Types

• typedef void ∗ ID
Every Fl_Preferences-Group has a uniqe ID.

• enum Root { SYSTEM = 0, USER }
Define the scope of the preferences.

Public Member Functions

• char clear ()
Delete all groups and all entries.

• char copyTo (class Fl_Tree ∗)
Copy the database hierarchy to an Fl_Tree browser from this node down.

• char deleteAllEntries ()
Delete all entries.

• char deleteAllGroups ()
Delete all groups.

• char deleteEntry (const char ∗entry)
Deletes a single name/value pair.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 629

• char deleteGroup (const char ∗group)
Deletes a group.

• int entries ()
Returns the number of entries (name/value pairs) in a group.

• const char ∗ entry (int index)
Returns the name of an entry.

• char entryExists (const char ∗key)
Returns non-zero if an entry with this name exists.

• Fl_Preferences (ID id)
Create a new dataset access point using a dataset ID.

• Fl_Preferences (const Fl_Preferences &)
Create another reference to a Preferences group.

• Fl_Preferences (Fl_Preferences ∗parent, int groupIndex)
• Fl_Preferences (Fl_Preferences &parent, int groupIndex)

Open a child group using a given index.

• Fl_Preferences (Fl_Preferences ∗parent, const char ∗group)
Create or access a group of preferences using a name.

• Fl_Preferences (Fl_Preferences &parent, const char ∗group)
Generate or read a new group of entries within another group.

• Fl_Preferences (const char ∗path, const char ∗vendor, const char ∗application)
Use this constructor to create or read a preferences file at an arbitrary position in the file system.

• Fl_Preferences (Root root, const char ∗vendor, const char ∗application)
The constructor creates a group that manages name/value pairs and child groups.

• void flush ()
Writes all preferences to disk.

• char get (const char ∗entry, void ∗value, const void ∗defaultValue, int defaultSize, int maxSize)
Reads an entry from the group.

• char get (const char ∗entry, void ∗&value, const void ∗defaultValue, int defaultSize)
Reads an entry from the group.

• char get (const char ∗entry, char ∗value, const char ∗defaultValue, int maxSize)
Reads an entry from the group.

• char get (const char ∗entry, char ∗&value, const char ∗defaultValue)
Reads an entry from the group.

• char get (const char ∗entry, double &value, double defaultValue)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

630 Class Documentation

Reads an entry from the group.

• char get (const char ∗entry, float &value, float defaultValue)
Reads an entry from the group.

• char get (const char ∗entry, int &value, int defaultValue)
Reads an entry from the group.

• char getUserdataPath (char ∗path, int pathlen)
Creates a path that is related to the preferences file and that is usable for additional application data.

• const char ∗ group (int num_group)
Returns the name of the Nth (num_group) group.

• char groupExists (const char ∗key)
Returns non-zero if a group with this name exists.

• int groups ()
Returns the number of groups that are contained within a group.

• ID id ()
Return an ID that can later be reused to open more references to this dataset.

• const char ∗ name ()
Return the name of this entry.

• const char ∗ path ()
Return the the full path to this entry.

• char set (const char ∗entry, const void ∗value, int size)
Sets an entry (name/value pair).

• char set (const char ∗entry, const char ∗value)
Sets an entry (name/value pair).

• char set (const char ∗entry, double value, int precision)
Sets an entry (name/value pair).

• char set (const char ∗entry, double value)
Sets an entry (name/value pair).

• char set (const char ∗entry, float value, int precision)
Sets an entry (name/value pair).

• char set (const char ∗entry, float value)
Sets an entry (name/value pair).

• char set (const char ∗entry, int value)
Sets an entry (name/value pair).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 631

• int size (const char ∗entry)

Returns the size of the value part of an entry.

• ∼Fl_Preferences ()

The destructor removes allocated resources.

Static Public Member Functions

• static const char ∗ newUUID ()

Returns a UUID as generated by the system.

• static char remove (ID id_)

Remove the group with this ID from a database.

Protected Attributes

• Node ∗ node
• RootNode ∗ rootNode

Friends

• class Node
• class RootNode

30.76.1 Detailed Description

Fl_Preferences provides methods to store user settings between application starts.

It is similar to the Registry on WIN32 and Preferences on MacOS, and provides a simple configuration
mechanism for UNIX.

Fl_Preferences uses a hierarchy to store data. It bundles similar data into groups and manages entries into
those groups as name/value pairs.

Preferences are stored in text files that can be edited manually. The file format is easy to read and relatively
forgiving. Preferences files are the same on all platforms. User comments in preference files are preserved.
Filenames are unique for each application by using a vendor/application naming scheme. The user must
provide default values for all entries to ensure proper operation should preferences be corrupted or not yet
exist.

Entries can be of any length. However, the size of each preferences file should be kept small for perfor-
mance reasons. One application can have multiple preferences files. Extensive binary data however should
be stored in separate files: see getUserdataPath().

Note:

Starting with FLTK 1.3, preference databases are expected to be in utf8 encoding. Previous databases
were stored in the current chracter set or code page which renders them incompatible for text entries
using international characters.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

632 Class Documentation

30.76.2 Member Typedef Documentation

30.76.2.1 typedef void∗ Fl_Preferences::ID

Every Fl_Preferences-Group has a uniqe ID.

ID’s can be retrieved from an Fl_Preferences-Group and can then be used to create more Fl_Preference
references to the same data set, as long as the database remains open.

30.76.3 Member Enumeration Documentation

30.76.3.1 enum Fl_Preferences::Root

Define the scope of the preferences.

Enumerator:

SYSTEM Preferences are used system-wide.

USER Preferences apply only to the current user.

30.76.4 Constructor & Destructor Documentation

30.76.4.1 Fl_Preferences::Fl_Preferences (Root root, const char ∗ vendor, const char ∗
application)

The constructor creates a group that manages name/value pairs and child groups.

Groups are ready for reading and writing at any time. The root argument is either Fl_Preferences::USER
or Fl_Preferences::SYSTEM.

This constructor creates the base instance for all following entries and reads existing databases into mem-
ory. The vendor argument is a unique text string identifying the development team or vendor of an ap-
plication. A domain name or an EMail address are great unique names, e.g. "researchATmatthiasm.com"
or "fltk.org". The application argument can be the working title or final name of your application. Both
vendor and application must be valid relative UNIX pathnames and may contain ’/’s to create deeper file
structures.

A set of Preferences marked "run-time" exists exactly one per application and only as long as the application
runs. It can be used as a database for volatile information. FLTK uses it to register plugins at run-time.

Parameters:

← root can be USER or SYSTEM for user specific or system wide preferences

← vendor unique text describing the company or author of this file

← application unique text describing the application

30.76.4.2 Fl_Preferences::Fl_Preferences (const char ∗ path, const char ∗ vendor, const char ∗
application)

Use this constructor to create or read a preferences file at an arbitrary position in the file system.

The file name is generated in the form path/application.prefs. If application is NULL,
path must contain the full file name.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 633

Parameters:

← path path to the directory that contains the preferences file
← vendor unique text describing the company or author of this file
← application unique text describing the application

30.76.4.3 Fl_Preferences::Fl_Preferences (Fl_Preferences & parent, const char ∗ group)

Generate or read a new group of entries within another group.

Use the group argument to name the group that you would like to access. Group can also contain a path
to a group further down the hierarchy by separating group names with a forward slash ’/’.

Parameters:

← parent reference object for the new group
← group name of the group to access (may contain ’/’s)

30.76.4.4 Fl_Preferences::Fl_Preferences (Fl_Preferences ∗ parent, const char ∗ group)

Create or access a group of preferences using a name.

Parameters:

← parent the parameter parent is a pointer to the parent group. Parent may be NULL. It then refers
to an application internal database which exists only once, and remains in RAM only until the
application quits. This database is used to manage plugins and other data indexes by strings.

← group a group name that is used as a key into the database

See also:

Fl_Preferences(Fl_Preferences&, const char ∗group)

30.76.4.5 Fl_Preferences::Fl_Preferences (Fl_Preferences & parent, int groupIndex)

Open a child group using a given index.

Use the groupIndex argument to find the group that you would like to access. If the given index is
invalid (negative or too high), a new group is created with a UUID as a name.

The index needs to be fixed. It is currently backward. Index 0 points to the last member in the ’list’ of
preferences.

Parameters:

← parent reference object for the new group
← groupIndex zero based index into child groups

30.76.4.6 Fl_Preferences::Fl_Preferences (Fl_Preferences ∗ parent, int groupIndex)

See also:

Fl_Preferences(Fl_Preferences&, int groupIndex)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

634 Class Documentation

30.76.4.7 Fl_Preferences::Fl_Preferences (Fl_Preferences::ID id)

Create a new dataset access point using a dataset ID.

ID’s are a great way to remember shortcuts to database entries that are deeply nested in a preferences
database, as long as the database root is not deleted. An ID can be retrieved from any Fl_Preferences
dataset, and can then be used to create multiple new references to the same dataset.

ID’s can be put very helpful when put into the user_data() field of widget callbacks.

30.76.4.8 Fl_Preferences::∼Fl_Preferences ()

The destructor removes allocated resources.

When used on the base preferences group, the destructor flushes all changes to the preferences file and
deletes all internal databases.

The destructor does not remove any data from the database. It merely deletes your reference to the database.

30.76.5 Member Function Documentation

30.76.5.1 char Fl_Preferences::deleteEntry (const char ∗ key)

Deletes a single name/value pair.

This function removes the entry key from the database.

Parameters:

← key name of entry to delete

Returns:

0 if deleting the entry failed

30.76.5.2 char Fl_Preferences::deleteGroup (const char ∗ group)

Deletes a group.

Removes a group and all keys and groups within that group from the database.

Parameters:

← group name of the group to delete

Returns:

0 if call failed

30.76.5.3 int Fl_Preferences::entries ()

Returns the number of entries (name/value pairs) in a group.

Returns:

number of entries

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 635

30.76.5.4 const char ∗ Fl_Preferences::entry (int index)

Returns the name of an entry.

There is no guaranteed order of entry names. The index must be within the range given by entries().

Parameters:

← index number indexing the requested entry

Returns:

pointer to value cstring

30.76.5.5 char Fl_Preferences::entryExists (const char ∗ key)

Returns non-zero if an entry with this name exists.

Parameters:

← key name of entry that is searched for

Returns:

0 if entry was not found

30.76.5.6 void Fl_Preferences::flush ()

Writes all preferences to disk.

This function works only with the base preferences group. This function is rarely used as deleting the base
preferences flushes automatically.

30.76.5.7 char Fl_Preferences::get (const char ∗ key, void ∗ data, const void ∗ defaultValue, int
defaultSize, int maxSize)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). ’maxSize’ is the maximum length of text that will be read.

Parameters:

← key name of entry
→ data value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set
← defaultSize size of default value array
← maxSize maximum length of value

Returns:

0 if the default value was used

Todo

maxSize should receive the number of bytes that were read.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

636 Class Documentation

30.76.5.8 char Fl_Preferences::get (const char ∗ key, void ∗& data, const void ∗ defaultValue, int
defaultSize)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). get() allocates memory of sufficient size to hold the value. The buffer must be free’d
by the developer using ’free(value)’.

Parameters:

← key name of entry

→ data returned from preferences or default value if none was set

← defaultValue default value to be used if no preference was set

← defaultSize size of default value array

Returns:

0 if the default value was used

30.76.5.9 char Fl_Preferences::get (const char ∗ key, char ∗ text, const char ∗ defaultValue, int
maxSize)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). ’maxSize’ is the maximum length of text that will be read. The text buffer must allow
for one additional byte for a trailling zero.

Parameters:

← key name of entry

→ text returned from preferences or default value if none was set

← defaultValue default value to be used if no preference was set

← maxSize maximum length of value plus one byte for a trailing zero

Returns:

0 if the default value was used

30.76.5.10 char Fl_Preferences::get (const char ∗ key, char ∗& text, const char ∗ defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0). get() allocates memory of sufficient size to hold the value. The buffer must be free’d
by the developer using ’free(value)’.

Parameters:

← key name of entry

→ text returned from preferences or default value if none was set

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 637

← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

30.76.5.11 char Fl_Preferences::get (const char ∗ key, double & value, double defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0).

Parameters:

← key name of entry
→ value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

30.76.5.12 char Fl_Preferences::get (const char ∗ key, float & value, float defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0).

Parameters:

← key name of entry
→ value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

30.76.5.13 char Fl_Preferences::get (const char ∗ key, int & value, int defaultValue)

Reads an entry from the group.

A default value must be supplied. The return value indicates if the value was available (non-zero) or the
default was used (0).

Parameters:

← key name of entry
→ value returned from preferences or default value if none was set
← defaultValue default value to be used if no preference was set

Returns:

0 if the default value was used

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

638 Class Documentation

30.76.5.14 char Fl_Preferences::getUserdataPath (char ∗ path, int pathlen)

Creates a path that is related to the preferences file and that is usable for additional application data.

This function creates a directory that is named after the preferences database without the .prefs extension
and located in the same directory. It then fills the given buffer with the complete path name.

Exmaple:

Fl_Preferences prefs(USER, "matthiasm.com", "test");
char path[FL_PATH_MAX];
prefs.getUserdataPath(path);

creates the preferences database in (MS Windows):

c:/Documents and Settings/matt/Application Data/matthiasm.com/test.prefs

and returns the userdata path:

c:/Documents and Settings/matt/Application Data/matthiasm.com/test/

Parameters:

→ path buffer for user data path
← pathlen size of path buffer (should be at least FL_PATH_MAX)

Returns:

0 if path was not created or pathname can’t fit into buffer

30.76.5.15 const char ∗ Fl_Preferences::group (int num_group)

Returns the name of the Nth (num_group) group.

There is no guaranteed order of group names. The index must be within the range given by groups().

Parameters:

← num_group number indexing the requested group

Returns:

’C’ string pointer to the group name

30.76.5.16 char Fl_Preferences::groupExists (const char ∗ key)

Returns non-zero if a group with this name exists.

Group names are relative to the Preferences node and can contain a path. "." describes the current node,
"./" describes the topmost node. By preceding a groupname with a "./", its path becomes relative to the
topmost node.

Parameters:

← key name of group that is searched for

Returns:

0 if no group by that name was found

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 639

30.76.5.17 int Fl_Preferences::groups ()

Returns the number of groups that are contained within a group.

Returns:

0 for no groups at all

30.76.5.18 const char ∗ Fl_Preferences::newUUID () [static]

Returns a UUID as generated by the system.

A UUID is a "universally unique identifier" which is commonly used in configuration files to create iden-
tities. A UUID in ASCII looks like this: 937C4900-51AA-4C11-8DD3-7AB59944F03E. It has
always 36 bytes plus a trailing zero.

Returns:

a pointer to a static buffer containing the new UUID in ASCII format. The buffer is overwritten during
every call to this function!

30.76.5.19 char Fl_Preferences::set (const char ∗ key, const void ∗ data, int dsize)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← data set this entry to value

← dsize size of data array

Returns:

0 if setting the value failed

30.76.5.20 char Fl_Preferences::set (const char ∗ key, const char ∗ text)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← text set this entry to value

Returns:

0 if setting the value failed

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

640 Class Documentation

30.76.5.21 char Fl_Preferences::set (const char ∗ key, double value, int precision)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

← precision number of decimal digits to represent value

Returns:

0 if setting the value failed

30.76.5.22 char Fl_Preferences::set (const char ∗ key, double value)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

Returns:

0 if setting the value failed

30.76.5.23 char Fl_Preferences::set (const char ∗ key, float value, int precision)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

← precision number of decimal digits to represent value

Returns:

0 if setting the value failed

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.76 Fl_Preferences Class Reference 641

30.76.5.24 char Fl_Preferences::set (const char ∗ key, float value)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

Returns:

0 if setting the value failed

30.76.5.25 char Fl_Preferences::set (const char ∗ key, int value)

Sets an entry (name/value pair).

The return value indicates if there was a problem storing the data in memory. However it does not reflect if
the value was actually stored in the preferences file.

Parameters:

← key name of entry

← value set this entry to value

Returns:

0 if setting the value failed

30.76.5.26 int Fl_Preferences::size (const char ∗ key)

Returns the size of the value part of an entry.

Parameters:

← key name of entry

Returns:

size of value

The documentation for this class was generated from the following files:

• Fl_Preferences.H
• Fl_Preferences.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

642 Class Documentation

30.77 Fl_Preferences::Name Class Reference

’Name’ provides a simple method to create numerical or more complex procedural names for entries and
groups on the fly.

#include <Fl_Preferences.H>

Public Member Functions

• Name (const char ∗format,...)

Creates a group name or entry name on the fly.

• Name (unsigned int n)

Creates a group name or entry name on the fly.

• operator const char ∗ ()

Return the Name as a "C" string.

30.77.1 Detailed Description

’Name’ provides a simple method to create numerical or more complex procedural names for entries and
groups on the fly.

Example: prefs.set(Fl_Preferences::Name("File%d",i),file[i]);.

See test/preferences.cxx as a sample for writing arrays into preferences.

’Name’ is actually implemented as a class inside Fl_Preferences. It casts into const char∗ and gets auto-
matically destroyed after the enclosing call ends.

30.77.2 Constructor & Destructor Documentation

30.77.2.1 Fl_Preferences::Name::Name (unsigned int n)

Creates a group name or entry name on the fly.

This version creates a simple unsigned integer as an entry name.

int n, i;
Fl_Preferences prev(appPrefs, "PreviousFiles");
prev.get("n", 0);
for (i=0; i<n; i++)

prev.get(Fl_Preferences::Name(i), prevFile[i], "");

30.77.2.2 Fl_Preferences::Name::Name (const char ∗ format, ...)

Creates a group name or entry name on the fly.

This version creates entry names as in ’printf’.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.77 Fl_Preferences::Name Class Reference 643

int n, i;
Fl_Preferences prefs(USER, "matthiasm.com", "test");
prev.get("nFiles", 0);
for (i=0; i<n; i++)

prev.get(Fl_Preferences::Name("File%d", i), prevFile[i], "");

The documentation for this class was generated from the following files:

• Fl_Preferences.H
• Fl_Preferences.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

644 Class Documentation

30.78 Fl_Printer Class Reference

Provides an OS-independent interface to printing.

#include <Fl_Printer.H>

Inheritance diagram for Fl_Printer::

Fl_Printer

Fl_Abstract_Printer

Fl_Device

Public Member Functions

• void end_job (void)
To be called at the end of a print job.

• int end_page (void)
To be called at the end of each page.

• Fl_Printer (void)
The constructor.

• void margins (int ∗left, int ∗top, int ∗right, int ∗bottom)
Computes the dimensions of margins that lie between the printable page area and the full page.

• void origin (int ∗x, int ∗y)
Computes the page coordinates of the current origin of graphics functions.

• void origin (int x, int y)
Sets the position in page coordinates of the origin of graphics functions.

• void print_widget (Fl_Widget ∗widget, int delta_x=0, int delta_y=0)
Draws the widget on the printed page.

• void print_window_part (Fl_Window ∗win, int x, int y, int w, int h, int delta_x=0, int delta_y=0)
Prints a rectangular part of an on-screen window.

• int printable_rect (int ∗w, int ∗h)
Computes the width and height of the printable area of the page.

• void rotate (float angle)
Rotates the graphics operations relatively to paper.

• void scale (float scale_x, float scale_y)
Changes the scaling of page coordinates.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.78 Fl_Printer Class Reference 645

• int start_job (int pagecount, int ∗frompage=NULL, int ∗topage=NULL)
Starts a print job.

• int start_page (void)
Starts a new printed page.

• void translate (int x, int y)
Translates the current graphics origin accounting for the current rotation.

• void untranslate (void)
Undoes the effect of a previous translate() call.

• ∼Fl_Printer (void)
The destructor.

Static Public Attributes

These attributes apply to the Xlib platform only.

• static const char ∗ dialog_all = "All"
[this text may be customized at run-time]

• static const char ∗ dialog_cancel_button = "Cancel"
[this text may be customized at run-time]

• static const char ∗ dialog_copies = "Copies"
[this text may be customized at run-time]

• static const char ∗ dialog_copyNo = "# Copies:"
[this text may be customized at run-time]

• static const char ∗ dialog_from = "From:"
[this text may be customized at run-time]

• static const char ∗ dialog_pages = "Pages"
[this text may be customized at run-time]

• static const char ∗ dialog_print_button = "Print"
[this text may be customized at run-time]

• static const char ∗ dialog_print_to_file = "Print To File"
[this text may be customized at run-time]

• static const char ∗ dialog_printer = "Printer:"
[this text may be customized at run-time]

• static const char ∗ dialog_properties = "Properties..."
"Properties..." [this text may be customized at run-time]

• static const char ∗ dialog_range = "Print Range"

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

646 Class Documentation

[this text may be customized at run-time]

• static const char ∗ dialog_title = "Print"
[this text may be customized at run-time]

• static const char ∗ dialog_to = "To:"
[this text may be customized at run-time]

• static const char ∗ property_cancel = "Cancel"
[this text may be customized at run-time]

• static const char ∗ property_mode = "Output Mode:"
[this text may be customized at run-time]

• static const char ∗ property_pagesize = "Page Size:"
[this text may be customized at run-time]

• static const char ∗ property_save = "Save"
[this text may be customized at run-time]

• static const char ∗ property_title = "Printer Properties"
[this text may be customized at run-time]

• static const char ∗ property_use = "Use"
[this text may be customized at run-time]

30.78.1 Detailed Description

Provides an OS-independent interface to printing.

It allows to use all FLTK drawing, color, text, and clip functions, and to have them operate on printed
page(s). There are two main, non exclusive, ways to use it.

• Print any widget (standard, custom, Fl_Window, Fl_Gl_Window) as it appears on screen, with op-
tional translation and scaling. This is done by calling print_widget() or print_window_part().

• Use a series of FLTK graphics commands (e.g., font, text, lines, colors, clip) to compose a page
appropriately shaped for printing.

In both cases, begin by start_job(), start_page(), printable_rect() and origin() calls and finish by end_page()
and end_job() calls.

Platform specifics

• Xlib-based platforms (e.g., Linux, Unix): this class is implemented as a subclass of Fl_PSfile_-
Device. Use the static public attributes of this class to set the print dialog to other languages than
English. For example, the "Printer:" dialog item Fl_Printer::dialog_printer can be set to French with:

Fl_Printer::dialog_printer = "Imprimante:";
Fl_Printer myprinter;
myprinter.start_job();

Use Fl_PSfile_Device::file_chooser_title to customize the title of the file chooser dialog that opens
when using the "Print To File" option of the print dialog. Class Fl_RGB_Image prints but loses its
transparency if it has one.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.78 Fl_Printer Class Reference 647

• MSWindows platform: Transparent Fl_RGB_Image ’s don’t print with exact transparency on most
printers. Fl_RGB_Image ’s don’t rotate() well. A workaround is to use the print_window_part() call.

• Mac OS X platform: all graphics requests print as on display.

30.78.2 Member Function Documentation

30.78.2.1 int Fl_Printer::end_page (void) [virtual]

To be called at the end of each page.

Returns:

0 iff OK.

Reimplemented from Fl_Abstract_Printer.

30.78.2.2 void Fl_Printer::margins (int ∗ left, int ∗ top, int ∗ right, int ∗ bottom) [virtual]

Computes the dimensions of margins that lie between the printable page area and the full page.

Values are in the same unit as that used by FLTK drawing functions. They are changed by scale() calls.

Parameters:

→ left If non-null, ∗left is set to the left margin size.

→ top If non-null, ∗top is set to the top margin size.

→ right If non-null, ∗right is set to the right margin size.

→ bottom If non-null, ∗bottom is set to the bottom margin size.

Reimplemented from Fl_Abstract_Printer.

30.78.2.3 void Fl_Printer::origin (int ∗ x, int ∗ y)

Computes the page coordinates of the current origin of graphics functions.

Parameters:

→ x If non-null, ∗x is set to the horizontal page offset of graphics origin.

→ y Same as above, vertically.

Reimplemented from Fl_Abstract_Printer.

30.78.2.4 void Fl_Printer::origin (int x, int y) [virtual]

Sets the position in page coordinates of the origin of graphics functions.

Arguments should be expressed relatively to the result of a previous printable_rect() call. That is,
printable_rect(&w, &h); origin(w/2, 0); sets the graphics origin at the top center of the
page printable area. Origin() calls are not affected by rotate() calls. Successive origin() calls don’t combine
their effects.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

648 Class Documentation

Parameters:

← x Horizontal position in page coordinates of the desired origin of graphics functions.

← y Same as above, vertically.

Reimplemented from Fl_Abstract_Printer.

30.78.2.5 void Fl_Printer::print_widget (Fl_Widget ∗ widget, int delta_x = 0, int delta_y = 0)

Draws the widget on the printed page.

The widget’s position on the printed page is determined by the last call to origin() and by the optional
delta_x and delta_y arguments. Its dimensions are in points unless there was a previous call to scale().

Parameters:

← widget Any FLTK widget (e.g., standard, custom, window).

← delta_x Optional horizontal offset for positioning the widget relatively to the current origin of
graphics functions.

← delta_y Same as above, vertically.

Reimplemented from Fl_Abstract_Printer.

30.78.2.6 void Fl_Printer::print_window_part (Fl_Window ∗ win, int x, int y, int w, int h, int
delta_x = 0, int delta_y = 0)

Prints a rectangular part of an on-screen window.

Parameters:

win The window from where to capture.

x The rectangle left

y The rectangle top

w The rectangle width

h The rectangle height

delta_x Optional horizontal offset from current graphics origin where to print the captured rectangle.

delta_y As above, vertically.

Reimplemented from Fl_Abstract_Printer.

30.78.2.7 int Fl_Printer::printable_rect (int ∗ w, int ∗ h) [virtual]

Computes the width and height of the printable area of the page.

Values are in the same unit as that used by FLTK drawing functions, are unchanged by calls to origin(), but
are changed by scale() calls. Values account for the user-selected paper type and print orientation.

Returns:

0 iff OK.

Reimplemented from Fl_Abstract_Printer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.78 Fl_Printer Class Reference 649

30.78.2.8 void Fl_Printer::rotate (float angle) [virtual]

Rotates the graphics operations relatively to paper.

The rotation is centered on the current graphics origin. Successive rotate() calls don’t combine their ef-
fects.

Parameters:

angle Rotation angle in counterclockwise degrees.

Reimplemented from Fl_Abstract_Printer.

30.78.2.9 void Fl_Printer::scale (float scale_x, float scale_y) [virtual]

Changes the scaling of page coordinates.

This function also resets the origin of graphics functions at top left of printable page area. After a scale()
call, do a printable_rect() call to get the new dimensions of the printable page area. Successive scale() calls
don’t combine their effects.

Parameters:

scale_x Horizontal dimensions of plot are multiplied by this quantity.
scale_y Same as above, vertically.

Reimplemented from Fl_Abstract_Printer.

30.78.2.10 int Fl_Printer::start_job (int pagecount, int ∗ frompage = NULL, int ∗ topage = NULL)
[virtual]

Starts a print job.

Parameters:

← pagecount the total number of pages of the job
→ frompage if non-null, ∗frompage is set to the first page the user wants printed
→ topage if non-null, ∗topage is set to the last page the user wants printed

Returns:

0 iff OK

Reimplemented from Fl_Abstract_Printer.

30.78.2.11 int Fl_Printer::start_page (void) [virtual]

Starts a new printed page.

The page coordinates are initially in points, i.e., 1/72 inch, and with origin at the top left of the printable
page area.

Returns:

0 iff OK

Reimplemented from Fl_Abstract_Printer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

650 Class Documentation

30.78.2.12 void Fl_Printer::translate (int x, int y) [virtual]

Translates the current graphics origin accounting for the current rotation.

This function is only useful after a rotate() call. Each translate() call must be matched by an untranslate()
call. Successive translate() calls add up their effects.

Reimplemented from Fl_Abstract_Printer.

The documentation for this class was generated from the following files:

• Fl_Printer.H
• Fl_Printer.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.79 Fl_Progress Class Reference 651

30.79 Fl_Progress Class Reference

Displays a progress bar for the user.

#include <Fl_Progress.H>

Inheritance diagram for Fl_Progress::

Fl_Progress

Fl_Widget

Public Member Functions

• Fl_Progress (int x, int y, int w, int h, const char ∗l=0)

The constructor creates the progress bar using the position, size, and label.

• float maximum () const

Gets the maximum value in the progress widget.

• void maximum (float v)

Sets the maximum value in the progress widget.

• float minimum () const

Gets the minimum value in the progress widget.

• void minimum (float v)

Sets the minimum value in the progress widget.

• float value () const

Gets the current value in the progress widget.

• void value (float v)

Sets the current value in the progress widget.

Protected Member Functions

• virtual void draw ()

Draws the progress bar.

30.79.1 Detailed Description

Displays a progress bar for the user.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

652 Class Documentation

30.79.2 Constructor & Destructor Documentation

30.79.2.1 Fl_Progress::Fl_Progress (int X, int Y, int W, int H, const char ∗ L = 0)

The constructor creates the progress bar using the position, size, and label.

You can set the background color with color() and the progress bar color with selection_color(), or you can
set both colors together with color(unsigned bg, unsigned sel).

The default colors are FL_BACKGROUND2_COLOR and FL_YELLOW, resp.

30.79.3 Member Function Documentation

30.79.3.1 void Fl_Progress::draw (void) [protected, virtual]

Draws the progress bar.

Implements Fl_Widget.

30.79.3.2 float Fl_Progress::maximum () const [inline]

Gets the maximum value in the progress widget.

30.79.3.3 void Fl_Progress::maximum (float v) [inline]

Sets the maximum value in the progress widget.

30.79.3.4 float Fl_Progress::minimum () const [inline]

Gets the minimum value in the progress widget.

30.79.3.5 void Fl_Progress::minimum (float v) [inline]

Sets the minimum value in the progress widget.

30.79.3.6 float Fl_Progress::value () const [inline]

Gets the current value in the progress widget.

30.79.3.7 void Fl_Progress::value (float v) [inline]

Sets the current value in the progress widget.

The documentation for this class was generated from the following files:

• Fl_Progress.H
• Fl_Progress.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.80 Fl_PSfile_Device Class Reference 653

30.80 Fl_PSfile_Device Class Reference

Sends all graphics to a local PostScript file; same API as Fl_Printer class.

#include <Fl_PSfile_Device.H>

Inheritance diagram for Fl_PSfile_Device::

Fl_PSfile_Device

Fl_Abstract_Printer

Fl_Device

Public Types

• enum Page_Format {

A0 = 0, A1, A2, A3,

A4, A5, A6, A7,

A8, A9, B0, B1,

B2, B3, B4, B5,

B6, B7, B8, B9,

B10, C5E, DLE, EXECUTIVE,

FOLIO, LEDGER, LEGAL, LETTER,

TABLOID, ENVELOPE, MEDIA = 0x1000 }

Possible page formats.

• enum Page_Layout { PORTRAIT = 0, LANDSCAPE = 0x100, REVERSED = 0x200, ORIEN-
TATION = 0x300 }

Possible page layouts.

Public Member Functions

• Fl_PSfile_Device (void)

The constructor.

• int start_job (FILE ∗ps_output, int pagecount, enum Page_Format format=A4, enum Page_Layout
layout=PORTRAIT)

Begins the session where all graphics requests will go to FILE pointer.

• int start_job (int pagecount, enum Page_Format format=A4, enum Page_Layout lay-
out=PORTRAIT)

Begins the session where all graphics requests will go to a local PostScript file.

• virtual ∼Fl_PSfile_Device ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

654 Class Documentation

The destructor.

Static Public Attributes

• static const char ∗ file_chooser_title = "Select a .ps file"

[this text may be customized at run-time]

30.80.1 Detailed Description

Sends all graphics to a local PostScript file; same API as Fl_Printer class.

This class has the same API as class Fl_Printer except for start_job() member function.

PostScript text output is presently implemented only for the latin character set. FLTK’s standard fonts are
output using PostScript’s standard fonts: Helvetica, Courier, Times (and their bold, oblique, italic variants),
Symbol, ZapfDingbats.

30.80.2 Member Function Documentation

30.80.2.1 int Fl_PSfile_Device::start_job (FILE ∗ ps_output, int pagecount, enum Page_Format
format = A4, enum Page_Layout layout = PORTRAIT)

Begins the session where all graphics requests will go to FILE pointer.

Parameters:

ps_output A writable FILE pointer that will receive PostScript output and that will be closed when
end_job() will be called.

pagecount The total number of pages to be created.

format Desired page format.

layout Desired page layout.

Returns:

always 0.

30.80.2.2 int Fl_PSfile_Device::start_job (int pagecount, enum Page_Format format = A4, enum
Page_Layout layout = PORTRAIT)

Begins the session where all graphics requests will go to a local PostScript file.

Opens a file dialog entitled with Fl_PSfile_Device::file_chooser_title to select an output PostScript file.

Parameters:

pagecount The total number of pages to be created.

format Desired page format.

layout Desired page layout.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.80 Fl_PSfile_Device Class Reference 655

Returns:

0 iff OK, 1 if user cancelled the file dialog, 2 if fopen failed on user-selected output file.

The documentation for this class was generated from the following files:

• Fl_PSfile_Device.H
• Fl_PS_Printer.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

656 Class Documentation

30.81 Fl_Quartz_Display Class Reference

The Mac OS X-specific display graphics class.

#include <Fl_Device.H>

Inheritance diagram for Fl_Quartz_Display::

Fl_Quartz_Display

Fl_Display

Fl_Device

30.81.1 Detailed Description

The Mac OS X-specific display graphics class.

The documentation for this class was generated from the following file:

• Fl_Device.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.82 Fl_Repeat_Button Class Reference 657

30.82 Fl_Repeat_Button Class Reference

The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback when it is pressed and then
repeatedly generates callbacks as long as it is held down.

#include <Fl_Repeat_Button.H>

Inheritance diagram for Fl_Repeat_Button::

Fl_Repeat_Button

Fl_Button

Fl_Widget

Public Member Functions

• void deactivate ()

Deactivates the widget.

• Fl_Repeat_Button (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Repeat_Button widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

30.82.1 Detailed Description

The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback when it is pressed and then
repeatedly generates callbacks as long as it is held down.

The speed of the repeat is fixed and depends on the implementation.

30.82.2 Constructor & Destructor Documentation

30.82.2.1 Fl_Repeat_Button::Fl_Repeat_Button (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Repeat_Button widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX. Deletes the button.

30.82.3 Member Function Documentation

30.82.3.1 void Fl_Repeat_Button::deactivate () [inline]

Deactivates the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

658 Class Documentation

Inactive widgets will be drawn "grayed out", e.g. with less contrast than the active widget. Inactive widgets
will not receive any keyboard or mouse button events. Other events (including FL_ENTER, FL_MOVE,
FL_LEAVE, FL_SHORTCUT, and others) will still be sent. A widget is only active if active() is true on it
and all of its parents.

Changing this value will send FL_DEACTIVATE to the widget if active_r() is true.

Currently you cannot deactivate Fl_Window widgets.

See also:

activate(), active(), active_r()

Reimplemented from Fl_Widget.

30.82.3.2 int Fl_Repeat_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Button.

The documentation for this class was generated from the following files:

• Fl_Repeat_Button.H
• Fl_Repeat_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.83 Fl_Return_Button Class Reference 659

30.83 Fl_Return_Button Class Reference

The Fl_Return_Button is a subclass of Fl_Button that generates a callback when it is pressed or when the
user presses the Enter key.

#include <Fl_Return_Button.H>

Inheritance diagram for Fl_Return_Button::

Fl_Return_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Return_Button (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Return_Button widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.83.1 Detailed Description

The Fl_Return_Button is a subclass of Fl_Button that generates a callback when it is pressed or when the
user presses the Enter key.

A carriage-return symbol is drawn next to the button label.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

660 Class Documentation

Figure 30.23: Fl_Return_Button

30.83.2 Constructor & Destructor Documentation

30.83.2.1 Fl_Return_Button::Fl_Return_Button (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Return_Button widget using the given position, size, and label string.

The default boxtype is FL_UP_BOX.

The inherited destructor deletes the button.

30.83.3 Member Function Documentation

30.83.3.1 void Fl_Return_Button::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Button.

30.83.3.2 int Fl_Return_Button::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.83 Fl_Return_Button Class Reference 661

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Button.

The documentation for this class was generated from the following files:

• Fl_Return_Button.H
• Fl_Return_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

662 Class Documentation

30.84 Fl_RGB_Image Class Reference

The Fl_RGB_Image class supports caching and drawing of full-color images with 1 to 4 channels of color
information.

#include <Fl_Image.H>

Inheritance diagram for Fl_RGB_Image::

Fl_RGB_Image

Fl_Image

Fl_BMP_Image Fl_JPEG_Image Fl_PNG_Image Fl_PNM_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)
The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()
The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)
The copy() method creates a copy of the specified image.

• virtual void desaturate ()
The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)
The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx=0, int cy=0)
The draw() methods draw the image.

• Fl_RGB_Image (const uchar ∗bits, int W, int H, int D=3, int LD=0)
The constructor creates a new image from the specified data.

• virtual void label (Fl_Menu_Item ∗m)
The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void label (Fl_Widget ∗w)
The label() methods are an obsolete way to set the image attribute of a widget or menu item.

• virtual void uncache ()
If the image has been cached for display, delete the cache data.

• virtual ∼Fl_RGB_Image ()
The destructor free all memory and server resources that are used by the image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.84 Fl_RGB_Image Class Reference 663

Public Attributes

• int alloc_array
• const uchar ∗ array

30.84.1 Detailed Description

The Fl_RGB_Image class supports caching and drawing of full-color images with 1 to 4 channels of color
information.

Images with an even number of channels are assumed to contain alpha information, which is used to blend
the image with the contents of the screen.

Fl_RGB_Image is defined in <FL/Fl_Image.H>, however for compatibility reasons <FL/Fl_RGB_-
Image.H> should be included.

30.84.2 Constructor & Destructor Documentation

30.84.2.1 Fl_RGB_Image::Fl_RGB_Image (const uchar ∗ bits, int W, int H, int D = 3, int LD =
0) [inline]

The constructor creates a new image from the specified data.

30.84.2.2 Fl_RGB_Image::∼Fl_RGB_Image () [virtual]

The destructor free all memory and server resources that are used by the image.

30.84.3 Member Function Documentation

30.84.3.1 void Fl_RGB_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

30.84.3.2 Fl_Image∗ Fl_RGB_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.84.3.3 Fl_Image ∗ Fl_RGB_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

664 Class Documentation

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.84.3.4 void Fl_RGB_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

30.84.3.5 void Fl_RGB_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.84.3.6 void Fl_RGB_Image::draw (int X, int Y, int W, int H, int cx = 0, int cy = 0)
[virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.84.3.7 void Fl_RGB_Image::label (Fl_Menu_Item ∗ m) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.84.3.8 void Fl_RGB_Image::label (Fl_Widget ∗ widget) [virtual]

The label() methods are an obsolete way to set the image attribute of a widget or menu item.

Use the image() or deimage() methods of the Fl_Widget and Fl_Menu_Item classes instead.

Reimplemented from Fl_Image.

30.84.3.9 void Fl_RGB_Image::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.84 Fl_RGB_Image Class Reference 665

The documentation for this class was generated from the following files:

• Fl_Image.H
• Fl_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

666 Class Documentation

30.85 Fl_Roller Class Reference

The Fl_Roller widget is a "dolly" control commonly used to move 3D objects.

#include <Fl_Roller.H>

Inheritance diagram for Fl_Roller::

Fl_Roller

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Roller (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_Roller widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

Protected Member Functions

• void draw ()

Draws the widget.

30.85.1 Detailed Description

The Fl_Roller widget is a "dolly" control commonly used to move 3D objects.

Figure 30.24: Fl_Roller

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.85 Fl_Roller Class Reference 667

30.85.2 Constructor & Destructor Documentation

30.85.2.1 Fl_Roller::Fl_Roller (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Roller widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

Inherited destructor destroys the valuator.

30.85.3 Member Function Documentation

30.85.3.1 void Fl_Roller::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.85.3.2 int Fl_Roller::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

The documentation for this class was generated from the following files:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

668 Class Documentation

• Fl_Roller.H
• Fl_Roller.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.86 Fl_Round_Button Class Reference 669

30.86 Fl_Round_Button Class Reference

Buttons generate callbacks when they are clicked by the user.

#include <Fl_Round_Button.H>

Inheritance diagram for Fl_Round_Button::

Fl_Round_Button

Fl_Light_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Round_Button (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Round_Button widget using the given position, size, and label string.

30.86.1 Detailed Description

Buttons generate callbacks when they are clicked by the user.

You control exactly when and how by changing the values for type() and when().

Figure 30.25: Fl_Round_Button

The Fl_Round_Button subclass display the "on" state by turning on a light, rather than drawing pushed in.
The shape of the "light" is initially set to FL_ROUND_DOWN_BOX. The color of the light when on is
controlled with selection_color(), which defaults to FL_RED.

The documentation for this class was generated from the following files:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

670 Class Documentation

• Fl_Round_Button.H
• Fl_Round_Button.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.87 Fl_Round_Clock Class Reference 671

30.87 Fl_Round_Clock Class Reference

A clock widget of type FL_ROUND_CLOCK.

#include <Fl_Round_Clock.H>

Inheritance diagram for Fl_Round_Clock::

Fl_Round_Clock

Fl_Clock

Fl_Clock_Output

Fl_Widget

Public Member Functions

• Fl_Round_Clock (int x, int y, int w, int h, const char ∗l=0)
Creates the clock widget, setting his type and box.

30.87.1 Detailed Description

A clock widget of type FL_ROUND_CLOCK.

Has no box.

30.87.2 Constructor & Destructor Documentation

30.87.2.1 Fl_Round_Clock::Fl_Round_Clock (int x, int y, int w, int h, const char ∗ l = 0)
[inline]

Creates the clock widget, setting his type and box.

The documentation for this class was generated from the following file:

• Fl_Round_Clock.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

672 Class Documentation

30.88 Fl_Scroll Class Reference

This container widget lets you maneuver around a set of widgets much larger than your window.

#include <Fl_Scroll.H>

Inheritance diagram for Fl_Scroll::

Fl_Scroll

Fl_Group

Fl_Widget

Classes

• struct ScrollInfo

Public Types

• enum {

HORIZONTAL = 1, VERTICAL = 2, BOTH = 3, ALWAYS_ON = 4,

HORIZONTAL_ALWAYS = 5, VERTICAL_ALWAYS = 6, BOTH_ALWAYS = 7 }

Public Member Functions

• void clear ()
Clear all but the scrollbars.

• Fl_Scroll (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Scroll widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void resize (int, int, int, int)
Resizes the Fl_Group widget and all of its children.

• void scroll_to (int, int)
Moves the contents of the scroll group to a new position.

• void scrollbar_size (int size)
Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

• int scrollbar_size () const
Gets the current size of the scrollbars’ troughs, in pixels.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.88 Fl_Scroll Class Reference 673

• int xposition () const
Gets the current horizontal scrolling position.

• int yposition () const
Gets the current vertical scrolling position.

Public Attributes

• Fl_Scrollbar hscrollbar
• Fl_Scrollbar scrollbar

Protected Member Functions

• void bbox (int &, int &, int &, int &)
Returns the bounding box for the interior of the scrolling area, inside the scrollbars.

• void draw ()
Draws the widget.

30.88.1 Detailed Description

This container widget lets you maneuver around a set of widgets much larger than your window.

If the child widgets are larger than the size of this object then scrollbars will appear so that you can scroll
over to them:

Figure 30.26: Fl_Scroll

If all of the child widgets are packed together into a solid rectangle then you want to set box() to FL_-
NO_BOX or one of the _FRAME types. This will result in the best output. However, if the child widgets
are a sparse arrangement you must set box() to a real _BOX type. This can result in some blinking during
redrawing, but that can be solved by using a Fl_Double_Window.

By default you can scroll in both directions, and the scrollbars disappear if the data will fit in the area of
the scroll.

Use Fl_Scroll::type() to change this as follows :

• 0 - No scrollbars

• Fl_Scroll::HORIZONTAL - Only a horizontal scrollbar.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

674 Class Documentation

• Fl_Scroll::VERTICAL - Only a vertical scrollbar.

• Fl_Scroll::BOTH - The default is both scrollbars.

• Fl_Scroll::HORIZONTAL_ALWAYS - Horizontal scrollbar always on, vertical always off.

• Fl_Scroll::VERTICAL_ALWAYS - Vertical scrollbar always on, horizontal always off.

• Fl_Scroll::BOTH_ALWAYS - Both always on.

Use scrollbar.align(int) (see void Fl_Widget::align(Fl_Align)) : to change what side the scrollbars are
drawn on.

If the FL_ALIGN_LEFT bit is on, the vertical scrollbar is on the left. If the FL_ALIGN_TOP bit is on, the
horizontal scrollbar is on the top. Note that only the alignment flags in scrollbar are considered. The flags
in hscrollbar however are ignored.

This widget can also be used to pan around a single child widget "canvas". This child widget should be of
your own class, with a draw() method that draws the contents. The scrolling is done by changing the x()
and y() of the widget, so this child must use the x() and y() to position its drawing. To speed up drawing it
should test fl_push_clip().

Another very useful child is a single Fl_Pack, which is itself a group that packs its children together and
changes size to surround them. Filling the Fl_Pack with Fl_Tabs groups (and then putting normal widgets
inside those) gives you a very powerful scrolling list of individually-openable panels.

Fluid lets you create these, but you can only lay out objects that fit inside the Fl_Scroll without scrolling.
Be sure to leave space for the scrollbars, as Fluid won’t show these either.

You cannot use Fl_Window as a child of this since the clipping is not conveyed to it when drawn, and it will
draw over the scrollbars and neighboring objects.

30.88.2 Constructor & Destructor Documentation

30.88.2.1 Fl_Scroll::Fl_Scroll (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Scroll widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Scroll and all of it’s
children can be automatic (local) variables, but you must declare the Fl_Scrollfirst, so that it is destroyed
last.

30.88.3 Member Function Documentation

30.88.3.1 void Fl_Scroll::bbox (int & X, int & Y, int & W, int & H) [protected]

Returns the bounding box for the interior of the scrolling area, inside the scrollbars.

Currently this is only reliable after draw(), and before any resizing of the Fl_Scroll or any child widgets
occur.

Todo

The visibility of the scrollbars ought to be checked/calculated outside of the draw() method (STR
#1895).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.88 Fl_Scroll Class Reference 675

30.88.3.2 void Fl_Scroll::clear ()

Clear all but the scrollbars.

..

Reimplemented from Fl_Group.

30.88.3.3 void Fl_Scroll::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

30.88.3.4 int Fl_Scroll::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood
1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

30.88.3.5 void Fl_Scroll::resize (int X, int Y, int W, int H) [virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

676 Class Documentation

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

30.88.3.6 void Fl_Scroll::scroll_to (int X, int Y)

Moves the contents of the scroll group to a new position.

30.88.3.7 void Fl_Scroll::scrollbar_size (int size) [inline]

Sets the pixel size of the scrollbars’ troughs to the size, in pixels.

Normally you should not need this method, and should use Fl::scrollbar_size(int) instead to manage the
size of ALL your widgets’ scrollbars. This ensures your application has a consistent UI, is the default
behavior, and is normally what you want.

Only use THIS method if you really need to override the global scrollbar size. The need for this should be
rare.

Setting size to the special value of 0 causes the widget to track the global Fl::scrollbar_size(), which is
the default.

Parameters:

← size Sets the scrollbar size in pixels.
If 0 (default), scrollbar size tracks the global Fl::scrollbar_size()

See also:

Fl::scrollbar_size()

30.88.3.8 int Fl_Scroll::scrollbar_size () const [inline]

Gets the current size of the scrollbars’ troughs, in pixels.

If this value is zero (default), this widget will use the Fl::scrollbar_size() value as the scrollbar’s width.

Returns:

Scrollbar size in pixels, or 0 if the global Fl::scrollsize() is being used.

See also:

Fl::scrollbar_size(int)

30.88.3.9 int Fl_Scroll::xposition () const [inline]

Gets the current horizontal scrolling position.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.88 Fl_Scroll Class Reference 677

30.88.3.10 int Fl_Scroll::yposition () const [inline]

Gets the current vertical scrolling position.

The documentation for this class was generated from the following files:

• Fl_Scroll.H
• Fl_Scroll.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

678 Class Documentation

30.89 Fl_Scrollbar Class Reference

The Fl_Scrollbar widget displays a slider with arrow buttons at the ends of the scrollbar.

#include <Fl_Scrollbar.H>

Inheritance diagram for Fl_Scrollbar::

Fl_Scrollbar

Fl_Slider

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Scrollbar (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Scrollbar widget with given position, size, and label.

• int handle (int)
Handles the specified event.

• void linesize (int i)
This number controls how big the steps are that the arrow keys do.

• int linesize () const
Get the size of step, in lines, that the arror keys move.

• int value (int pos, int size, int first, int total)
Sets the position, size and range of the slider in the scrollbar.

• int value (int p)
Sets the value (position) of the slider in the scrollbar.

• int value () const
Gets the integer value (position) of the slider in the scrollbar.

• ∼Fl_Scrollbar ()
Destroys the Scrollbar.

Protected Member Functions

• void draw ()
Draws the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.89 Fl_Scrollbar Class Reference 679

30.89.1 Detailed Description

The Fl_Scrollbar widget displays a slider with arrow buttons at the ends of the scrollbar.

Clicking on the arrows move up/left and down/right by linesize(). Scrollbars also accept FL_SHORTCUT
events: the arrows move by linesize(), and vertical scrollbars take Page Up/Down (they move by the page
size minus linesize()) and Home/End (they jump to the top or bottom).

Scrollbars have step(1) preset (they always return integers). If desired you can set the step() to non-integer
values. You will then have to use casts to get at the floating-point versions of value() from Fl_Slider.

Figure 30.27: Fl_Scrollbar

30.89.2 Constructor & Destructor Documentation

30.89.2.1 Fl_Scrollbar::Fl_Scrollbar (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Scrollbar widget with given position, size, and label.

You need to do type(FL_HORIZONTAL) if you want a horizontal scrollbar.

30.89.2.2 Fl_Scrollbar::∼Fl_Scrollbar ()

Destroys the Scrollbar.

30.89.3 Member Function Documentation

30.89.3.1 void Fl_Scrollbar::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

680 Class Documentation

s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Slider.

30.89.3.2 int Fl_Scrollbar::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Slider.

30.89.3.3 void Fl_Scrollbar::linesize (int i) [inline]

This number controls how big the steps are that the arrow keys do.

In addition page up/down move by the size last sent to value() minus one linesize(). The default is 16.

30.89.3.4 int Fl_Scrollbar::value (int pos, int size, int first, int total) [inline]

Sets the position, size and range of the slider in the scrollbar.

Parameters:

← pos position, first line displayed

← size window size, number of lines displayed

← first number of first line

← total total number of lines

You should call this every time your window changes size, your data changes size, or your scroll position
changes (even if in response to a callback from this scrollbar). All necessary calls to redraw() are done.

Calls Fl_Slider::scrollvalue(int pos, int size, int first, int total).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.89 Fl_Scrollbar Class Reference 681

30.89.3.5 int Fl_Scrollbar::value (int p) [inline]

Sets the value (position) of the slider in the scrollbar.

See also:

Fl_Scrollbar::value()
Fl_Scrollbar::value(int pos, int size, int first, int total)

30.89.3.6 int Fl_Scrollbar::value () const [inline]

Gets the integer value (position) of the slider in the scrollbar.

You can get the floating point value with Fl_Slider::value().

See also:

Fl_Scrollbar::value(int p)
Fl_Scrollbar::value(int pos, int size, int first, int total)

Reimplemented from Fl_Valuator.

The documentation for this class was generated from the following files:

• Fl_Scrollbar.H
• Fl_Scrollbar.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

682 Class Documentation

30.90 Fl_Secret_Input Class Reference

The Fl_Secret_Input class is a subclass of Fl_Input that displays its input as a string of asterisks.

#include <Fl_Secret_Input.H>

Inheritance diagram for Fl_Secret_Input::

Fl_Secret_Input

Fl_Input

Fl_Input_

Fl_Widget

Public Member Functions

• Fl_Secret_Input (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Secret_Input widget using the given position, size, and label string.

30.90.1 Detailed Description

The Fl_Secret_Input class is a subclass of Fl_Input that displays its input as a string of asterisks.

This subclass is usually used to receive passwords and other "secret" information.

30.90.2 Constructor & Destructor Documentation

30.90.2.1 Fl_Secret_Input::Fl_Secret_Input (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Secret_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Inherited destructor destroys the widget and any value associated with it.

The documentation for this class was generated from the following file:

• Fl_Secret_Input.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.91 Fl_Select_Browser Class Reference 683

30.91 Fl_Select_Browser Class Reference

The class is a subclass of Fl_Browser which lets the user select a single item, or no items by clicking on
the empty space.

#include <Fl_Select_Browser.H>

Inheritance diagram for Fl_Select_Browser::

Fl_Select_Browser

Fl_Browser

Fl_Browser_

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Select_Browser (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Select_Browser widget using the given position, size, and label string.

30.91.1 Detailed Description

The class is a subclass of Fl_Browser which lets the user select a single item, or no items by clicking on
the empty space.

As long as the mouse button is held down on an unselected item it is highlighted. Normally the callback is
done when the user presses the mouse, but you can change this with when().

See Fl_Browser for methods to add and remove lines from the browser.

30.91.2 Constructor & Destructor Documentation

30.91.2.1 Fl_Select_Browser::Fl_Select_Browser (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Select_Browser widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX. The constructor specializes Fl_Browser() by setting the type to
FL_SELECT_BROWSER. The destructor destroys the widget and frees all memory that has been allocated.

The documentation for this class was generated from the following file:

• Fl_Select_Browser.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

684 Class Documentation

30.92 Fl_Shared_Image Class Reference

This class supports caching, loading, and drawing of image files.

#include <Fl_Shared_Image.H>

Inheritance diagram for Fl_Shared_Image::

Fl_Shared_Image

Fl_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)

The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• virtual void desaturate ()

The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx, int cy)

The draw() methods draw the image.

• const char ∗ name ()

Returns the filename of the shared image.

• int refcount ()

Returns the number of references of this shared image.

• void release ()

Releases and possibly destroys (if refcount <=0) a shared image.

• void reload ()

Reloads the shared image from disk.

• virtual void uncache ()

If the image has been cached for display, delete the cache data.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.92 Fl_Shared_Image Class Reference 685

Static Public Member Functions

• static void add_handler (Fl_Shared_Handler f)

Adds a shared image handler, which is basically a test function for adding new formats.

• static Fl_Shared_Image ∗ find (const char ∗n, int W=0, int H=0)

Finds a shared image from its named and size specifications.

• static Fl_Shared_Image ∗ get (const char ∗n, int W=0, int H=0)

Gets a shared image, if it exists already ; it will return it.

• static Fl_Shared_Image ∗∗ images ()

Returns the Fl_Shared_Image∗ array.

• static int num_images ()

Returns the total number of shared images in the array.

• static void remove_handler (Fl_Shared_Handler f)

Removes a shared image handler.

Protected Member Functions

• void add ()
• Fl_Shared_Image (const char ∗n, Fl_Image ∗img=0)

Creates a shared image from its filename and its corresponding Fl_Image∗ img.

• Fl_Shared_Image ()

Creates an empty shared image.

• void update ()
• virtual ∼Fl_Shared_Image ()

The destructor free all memory and server resources that are used by the image.

Static Protected Member Functions

• static int compare (Fl_Shared_Image ∗∗i0, Fl_Shared_Image ∗∗i1)

Protected Attributes

• int alloc_image_
• Fl_Image ∗ image_
• const char ∗ name_
• int original_
• int refcount_

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

686 Class Documentation

Static Protected Attributes

• static int alloc_handlers_ = 0
• static int alloc_images_ = 0
• static Fl_Shared_Handler ∗ handlers_ = 0
• static Fl_Shared_Image ∗∗ images_ = 0
• static int num_handlers_ = 0
• static int num_images_ = 0

30.92.1 Detailed Description

This class supports caching, loading, and drawing of image files.

Most applications will also want to link against the fltk_images library and call the fl_register_images()
function to support standard image formats such as BMP, GIF, JPEG, and PNG.

30.92.2 Constructor & Destructor Documentation

30.92.2.1 Fl_Shared_Image::Fl_Shared_Image () [protected]

Creates an empty shared image.

The constructors create a new shared image record in the image cache.

The constructors are protected and cannot be used directly from a program. Use the get() method instead.

30.92.2.2 Fl_Shared_Image::Fl_Shared_Image (const char ∗ n, Fl_Image ∗ img = 0)
[protected]

Creates a shared image from its filename and its corresponding Fl_Image∗ img.

The constructors create a new shared image record in the image cache.

The constructors are protected and cannot be used directly from a program. Use the get() method instead.

30.92.2.3 Fl_Shared_Image::∼Fl_Shared_Image () [protected, virtual]

The destructor free all memory and server resources that are used by the image.

The destructor is protected and cannot be used directly from a program. Use the Fl_Shared_-
Image::release() method instead.

30.92.3 Member Function Documentation

30.92.3.1 void Fl_Shared_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.92 Fl_Shared_Image Class Reference 687

30.92.3.2 Fl_Image∗ Fl_Shared_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.92.3.3 Fl_Image ∗ Fl_Shared_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.92.3.4 void Fl_Shared_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

30.92.3.5 void Fl_Shared_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.92.3.6 void Fl_Shared_Image::draw (int X, int Y, int W, int H, int cx, int cy) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

30.92.3.7 Fl_Shared_Image ∗ Fl_Shared_Image::get (const char ∗ n, int W = 0, int H = 0)
[static]

Gets a shared image, if it exists already ; it will return it.

If it does not exist or if it exist but with other size, then the existing image is deleted and replaced by a new
image from the n filename of the proper dimension. If n is not a valid image filename, then get() will return
NULL.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

688 Class Documentation

30.92.3.8 int Fl_Shared_Image::num_images () [static]

Returns the total number of shared images in the array.

30.92.3.9 int Fl_Shared_Image::refcount () [inline]

Returns the number of references of this shared image.

When reference is below 1, the image is deleted.

30.92.3.10 void Fl_Shared_Image::release ()

Releases and possibly destroys (if refcount <=0) a shared image.

In the latter case, it will reorganize the shared image array so that no hole will occur.

30.92.3.11 void Fl_Shared_Image::uncache () [virtual]

If the image has been cached for display, delete the cache data.

This allows you to change the data used for the image and then redraw it without recreating an image
object.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Shared_Image.H
• Fl_Shared_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.93 Fl_Simple_Counter Class Reference 689

30.93 Fl_Simple_Counter Class Reference

This widget creates a counter with only 2 arrow buttons.

#include <Fl_Simple_Counter.H>

Inheritance diagram for Fl_Simple_Counter::

Fl_Simple_Counter

Fl_Counter

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Simple_Counter (int x, int y, int w, int h, const char ∗l=0)

30.93.1 Detailed Description

This widget creates a counter with only 2 arrow buttons.

Figure 30.28: Fl_Simple_Counter

The documentation for this class was generated from the following file:

• Fl_Simple_Counter.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

690 Class Documentation

30.94 Fl_Single_Window Class Reference

This is the same as Fl_Window.

#include <Fl_Single_Window.H>

Inheritance diagram for Fl_Single_Window::

Fl_Single_Window

Fl_Window

Fl_Group

Fl_Widget

Fl_Menu_Window

Public Member Functions

• Fl_Single_Window (int X, int Y, int W, int H, const char ∗l=0)

Creates a new Fl_Single_Window widget using the given position, size, and label (title) string.

• Fl_Single_Window (int W, int H, const char ∗l=0)

Creates a new Fl_Single_Window widget using the given size, and label (title) string.

• void flush ()

Forces the window to be drawn, this window is also made current and calls draw().

• int make_current ()

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

• void show (int a, char ∗∗b)

See virtual void Fl_Window::show().

• void show ()

Puts the window on the screen.

30.94.1 Detailed Description

This is the same as Fl_Window.

However, it is possible that some implementations will provide double-buffered windows by default. This
subcan be used to force single-buffering. This may be useful for modifying existing programs that use
incremental update, or for some types of image data, such as a movie flipbook.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.94 Fl_Single_Window Class Reference 691

30.94.2 Member Function Documentation

30.94.2.1 void Fl_Single_Window::flush () [virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented from Fl_Window.

Reimplemented in Fl_Menu_Window.

30.94.2.2 int Fl_Single_Window::make_current ()

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

This is useful for incremental update of windows, such as in an idle callback, which will make your program
behave much better if it draws a slow graphic. Danger: incremental update is very hard to debug and
maintain!

This method only works for the Fl_Window and Fl_Gl_Window derived classes.

Reimplemented from Fl_Window.

30.94.2.3 void Fl_Single_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display. The second form is used for top-level
windows and allows standard arguments to be parsed from the command-line.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Reimplemented from Fl_Window.

Reimplemented in Fl_Menu_Window.

The documentation for this class was generated from the following files:

• Fl_Single_Window.H
• Fl_Single_Window.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

692 Class Documentation

30.95 Fl_Slider Class Reference

The Fl_Slider widget contains a sliding knob inside a box.

#include <Fl_Slider.H>

Inheritance diagram for Fl_Slider::

Fl_Slider

Fl_Valuator

Fl_Widget

Fl_Fill_Slider Fl_Scrollbar Fl_Value_Slider

Public Member Functions

• void bounds (double a, double b)

Sets the minimum (a) and maximum (b) values for the valuator widget.

• Fl_Slider (uchar t, int X, int Y, int W, int H, const char ∗L)

Creates a new Fl_Slider widget using the given box type, position, size, and label string.

• Fl_Slider (int X, int Y, int W, int H, const char ∗L=0)

Creates a new Fl_Slider widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• int scrollvalue (int pos, int size, int first, int total)

Sets the size and position of the sliding knob in the box.

• void slider (Fl_Boxtype c)

Sets the slider box type.

• Fl_Boxtype slider () const

Gets the slider box type.

• void slider_size (double v)

Set the dimensions of the moving piece of slider.

• float slider_size () const

Get the dimensions of the moving piece of slider.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.95 Fl_Slider Class Reference 693

Protected Member Functions

• void draw ()

Draws the widget.

• void draw (int, int, int, int)
• int handle (int, int, int, int, int)

30.95.1 Detailed Description

The Fl_Slider widget contains a sliding knob inside a box.

It if often used as a scrollbar. Moving the box all the way to the top/left sets it to the minimum(), and to the
bottom/right to the maximum(). The minimum() may be greater than the maximum() to reverse the slider
direction.

Use void Fl_Widget::type(int) to set how the slider is drawn, which can be one of the following:

• FL_VERTICAL - Draws a vertical slider (this is the default).

• FL_HORIZONTAL - Draws a horizontal slider.

• FL_VERT_FILL_SLIDER - Draws a filled vertical slider, useful as a progress or value meter.

• FL_HOR_FILL_SLIDER - Draws a filled horizontal slider, useful as a progress or value meter.

• FL_VERT_NICE_SLIDER - Draws a vertical slider with a nice looking control knob.

• FL_HOR_NICE_SLIDER - Draws a horizontal slider with a nice looking control knob.

Figure 30.29: Fl_Slider

30.95.2 Constructor & Destructor Documentation

30.95.2.1 Fl_Slider::Fl_Slider (int X, int Y, int W, int H, const char ∗ L = 0)

Creates a new Fl_Slider widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

694 Class Documentation

30.95.3 Member Function Documentation

30.95.3.1 void Fl_Slider::bounds (double a, double b)

Sets the minimum (a) and maximum (b) values for the valuator widget.

if at least one of the values is changed, a partial redraw is asked.

Reimplemented from Fl_Valuator.

30.95.3.2 void Fl_Slider::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Reimplemented in Fl_Scrollbar, and Fl_Value_Slider.

30.95.3.3 int Fl_Slider::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

Reimplemented in Fl_Scrollbar, and Fl_Value_Slider.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.95 Fl_Slider Class Reference 695

30.95.3.4 int Fl_Slider::scrollvalue (int pos, int size, int first, int total)

Sets the size and position of the sliding knob in the box.

Parameters:

← pos position of first line displayed

← size size of window in lines

← first number of first line

← total total number of lines Returns Fl_Valuator::value(p)

30.95.3.5 void Fl_Slider::slider (Fl_Boxtype c) [inline]

Sets the slider box type.

30.95.3.6 Fl_Boxtype Fl_Slider::slider () const [inline]

Gets the slider box type.

30.95.3.7 void Fl_Slider::slider_size (double v)

Set the dimensions of the moving piece of slider.

This is the fraction of the size of the entire widget. If you set this to 1 then the slider cannot move. The
default value is .08.

For the "fill" sliders this is the size of the area around the end that causes a drag effect rather than causing
the slider to jump to the mouse.

The documentation for this class was generated from the following files:

• Fl_Slider.H
• Fl_Slider.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

696 Class Documentation

30.96 Fl_Spinner Class Reference

This widget is a combination of the input widget and repeat buttons.

#include <Fl_Spinner.H>

Inheritance diagram for Fl_Spinner::

Fl_Spinner

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Spinner (int X, int Y, int W, int H, const char ∗L=0)
Creates a new Fl_Spinner widget using the given position, size, and label string.

• void format (const char ∗f)
Sets or returns the format string for the value.

• const char ∗ format ()
Sets or returns the format string for the value.

• int handle (int event)
Handles the specified event.

• void maximum (double m)
Sets the maximum value of the widget.

• double maximum () const
Gets the maximum value of the widget.

• double maxinum () const
Speling mistakes retained for source compatibility.

• void minimum (double m)
Sets the minimum value of the widget.

• double minimum () const
Gets the minimum value of the widget.

• double mininum () const
Speling mistakes retained for source compatibility.

• void range (double a, double b)
Sets the minimum and maximum values for the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.96 Fl_Spinner Class Reference 697

• void resize (int X, int Y, int W, int H)

Resizes the Fl_Group widget and all of its children.

• void step (double s)

See double Fl_Spinner::step() const.

• double step () const

Sets or returns the amount to change the value when the user clicks a button.

• void textcolor (Fl_Color c)

Sets the color of the text in the input field.

• Fl_Color textcolor () const

Gets the color of the text in the input field.

• void textfont (Fl_Font f)

Sets the font of the text in the input field.

• Fl_Font textfont () const

Gets the font of the text in the input field.

• void textsize (Fl_Fontsize s)

Sets the size of the text in the input field.

• Fl_Fontsize textsize () const

Gets the size of the text in the input field.

• void type (uchar v)

See uchar Fl_Spinner::type() const.

• uchar type () const

Sets or Gets the numeric representation in the input field.

• void value (double v)

Sets the current value of the widget.

• double value () const

Gets the current value of the widget.

30.96.1 Detailed Description

This widget is a combination of the input widget and repeat buttons.

The user can either type into the input area or use the buttons to change the value.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

698 Class Documentation

30.96.2 Constructor & Destructor Documentation

30.96.2.1 Fl_Spinner::Fl_Spinner (int X, int Y, int W, int H, const char ∗ L = 0) [inline]

Creates a new Fl_Spinner widget using the given position, size, and label string.

Inherited destructor Destroys the widget and any value associated with it.

30.96.3 Member Function Documentation

30.96.3.1 void Fl_Spinner::format (const char ∗ f) [inline]

Sets or returns the format string for the value.

30.96.3.2 const char∗ Fl_Spinner::format () [inline]

Sets or returns the format string for the value.

30.96.3.3 int Fl_Spinner::handle (int event) [inline, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

30.96.3.4 void Fl_Spinner::maximum (double m) [inline]

Sets the maximum value of the widget.

30.96.3.5 double Fl_Spinner::maximum () const [inline]

Gets the maximum value of the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.96 Fl_Spinner Class Reference 699

30.96.3.6 double Fl_Spinner::maxinum () const [inline]

Speling mistakes retained for source compatibility.

Deprecated

30.96.3.7 void Fl_Spinner::minimum (double m) [inline]

Sets the minimum value of the widget.

30.96.3.8 double Fl_Spinner::minimum () const [inline]

Gets the minimum value of the widget.

30.96.3.9 double Fl_Spinner::mininum () const [inline]

Speling mistakes retained for source compatibility.

Deprecated

30.96.3.10 void Fl_Spinner::range (double a, double b) [inline]

Sets the minimum and maximum values for the widget.

30.96.3.11 void Fl_Spinner::resize (int X, int Y, int W, int H) [inline, virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

30.96.3.12 double Fl_Spinner::step () const [inline]

Sets or returns the amount to change the value when the user clicks a button.

Before setting step to a non-integer value, the spinner type() should be changed to floating point.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

700 Class Documentation

30.96.3.13 void Fl_Spinner::textcolor (Fl_Color c) [inline]

Sets the color of the text in the input field.

30.96.3.14 Fl_Color Fl_Spinner::textcolor () const [inline]

Gets the color of the text in the input field.

30.96.3.15 void Fl_Spinner::textfont (Fl_Font f) [inline]

Sets the font of the text in the input field.

30.96.3.16 Fl_Font Fl_Spinner::textfont () const [inline]

Gets the font of the text in the input field.

30.96.3.17 void Fl_Spinner::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the input field.

30.96.3.18 Fl_Fontsize Fl_Spinner::textsize () const [inline]

Gets the size of the text in the input field.

30.96.3.19 uchar Fl_Spinner::type () const [inline]

Sets or Gets the numeric representation in the input field.

Valid values are FL_INT_INPUT and FL_FLOAT_INPUT. The first form also changes the format() tem-
plate. Setting a new spinner type via a superclass pointer will not work.

Note:

type is not a virtual function.

Reimplemented from Fl_Widget.

30.96.3.20 void Fl_Spinner::value (double v) [inline]

Sets the current value of the widget.

Before setting value to a non-integer value, the spinner type() should be changed to floating point.

30.96.3.21 double Fl_Spinner::value () const [inline]

Gets the current value of the widget.

The documentation for this class was generated from the following file:

• Fl_Spinner.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.97 Fl_Sys_Menu_Bar Class Reference 701

30.97 Fl_Sys_Menu_Bar Class Reference

A class to create, modify and delete menus that appear on Mac OS X in the menu bar at the top of the
screen.

#include <Fl_Sys_Menu_Bar.H>

Inheritance diagram for Fl_Sys_Menu_Bar::

Fl_Sys_Menu_Bar

Fl_Menu_Bar

Fl_Menu_

Fl_Widget

Public Member Functions

• int add (const char ∗label, int shortcut, Fl_Callback ∗, void ∗user_data=0, int flags=0)

add to the system menu bar a new menu item

• Fl_Sys_Menu_Bar (int x, int y, int w, int h, const char ∗l=0)

The constructor.

• void menu (const Fl_Menu_Item ∗m)

create a system menu bar using the given list of menu structs

• void remove (int n)

remove an item from the system menu bar

• void replace (int rank, const char ∗name)

rename an item from the system menu bar

Protected Member Functions

• void draw ()

Draws the widget.

30.97.1 Detailed Description

A class to create, modify and delete menus that appear on Mac OS X in the menu bar at the top of the
screen.

On other than Mac OS X platforms, Fl_Sys_Menu_Bar is a synonym of class Fl_Menu_Bar.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

702 Class Documentation

30.97.2 Constructor & Destructor Documentation

30.97.2.1 Fl_Sys_Menu_Bar::Fl_Sys_Menu_Bar (int x, int y, int w, int h, const char ∗ l = 0)
[inline]

The constructor.

On Mac OS X, all arguments are unused. On other platforms they are used as by Fl_Menu_Bar::Fl_Menu_-
Bar().

30.97.3 Member Function Documentation

30.97.3.1 int Fl_Sys_Menu_Bar::add (const char ∗ label, int shortcut, Fl_Callback ∗ cb, void ∗
user_data = 0, int flags = 0)

add to the system menu bar a new menu item

add to the system menu bar a new menu item, with a title string, shortcut int, callback, argument to the
callback, and flags.

See also:

Fl_Menu_::add(const char∗ label, int shortcut, Fl_Callback ∗cb, void ∗user_data, int flags)

Reimplemented from Fl_Menu_.

30.97.3.2 void Fl_Sys_Menu_Bar::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Menu_Bar.

30.97.3.3 void Fl_Sys_Menu_Bar::menu (const Fl_Menu_Item ∗ m)

create a system menu bar using the given list of menu structs

Author:

Matthias Melcher

Parameters:

m list of Fl_Menu_Item

Reimplemented from Fl_Menu_.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.97 Fl_Sys_Menu_Bar Class Reference 703

30.97.3.4 void Fl_Sys_Menu_Bar::remove (int rank)

remove an item from the system menu bar

Parameters:

rank the rank of the item to remove

Reimplemented from Fl_Menu_.

30.97.3.5 void Fl_Sys_Menu_Bar::replace (int rank, const char ∗ name)

rename an item from the system menu bar

Parameters:

rank the rank of the item to rename

name the new item name as a UTF8 string

Reimplemented from Fl_Menu_.

The documentation for this class was generated from the following files:

• Fl_Sys_Menu_Bar.H
• Fl_Sys_Menu_Bar.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

704 Class Documentation

30.98 Fl_Table Class Reference

A table of widgets or other content.

#include <Fl_Table.H>

Inheritance diagram for Fl_Table::

Fl_Table

Fl_Group

Fl_Widget

Fl_Table_Row

Classes

• class IntVector

Public Types

• enum TableContext {

CONTEXT_NONE = 0, CONTEXT_STARTPAGE = 0x01, CONTEXT_ENDPAGE = 0x02,
CONTEXT_ROW_HEADER = 0x04,

CONTEXT_COL_HEADER = 0x08, CONTEXT_CELL = 0x10, CONTEXT_TABLE = 0x20,
CONTEXT_RC_RESIZE = 0x40 }

Public Member Functions

• void add (Fl_Widget ∗w)
See void Fl_Group::add(Fl_Widget &w).

• void add (Fl_Widget &w)
The widget is removed from its current group (if any) and then added to the end of this group.

• Fl_Widget ∗const ∗ array ()
• void begin ()

Sets the current group so you can build the widget tree by just constructing the widgets.

• int callback_col ()
Returns the current column the event occurred on.

• TableContext callback_context ()
Returns the current ’table context’.

• int callback_row ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 705

Returns the current row the event occurred on.

• Fl_Widget ∗ child (int n) const
Returns the child widget by an index.

• int children () const
Returns the number of children in the table.

• virtual void clear ()
Clears the table to zero rows, zero columns.

• void col_header (int flag)
Enable or disable column headers.

• int col_header ()
Returns if column headers are enabled or not.

• Fl_Color col_header_color ()
Gets the color for column headers.

• void col_header_color (Fl_Color val)
Sets the color for column headers and redraws the table.

• int col_header_height ()
Gets the column header height.

• void col_header_height (int height)
Sets the height in pixels for column headers and redraws the table.

• int col_position ()
Returns the current column scroll position as a column number.

• void col_position (int col)
Sets the column scroll position to column ’col’, and causes the screen to redraw.

• void col_resize (int flag)
Allows/disallows column resizing by the user.

• int col_resize ()
Returns the current value of this flag.

• void col_resize_min (int val)
Returns the current column minimum resize value.

• int col_resize_min ()
Sets the current column minimum resize value.

• int col_width (int col)
Returns the current width of the specified column in pixels.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

706 Class Documentation

• void col_width (int col, int width)
Sets the width of the specified column in pixels, and the table is redrawn.

• void col_width_all (int width)
Convenience method to set the width of all columns to the same value, in pixels.

• int cols ()
Get the number of columns in the table.

• virtual void cols (int val)
Set the number of columns in the table and redraw.

• void do_callback (TableContext context, int row, int col)
• void draw (void)

Draws the widget.

• void end ()
Exactly the same as current(this->parent()).

• int find (const Fl_Widget &w) const
See int Fl_Group::find(const Fl_Widget ∗w) const.

• int find (const Fl_Widget ∗w) const
Searches the child array for the widget and returns the index.

• Fl_Table (int X, int Y, int W, int H, const char ∗l=0)
The constructor for the Fl_Table.

• void get_selection (int &s_top, int &s_left, int &s_bottom, int &s_right)
• void init_sizes ()

Resets the internal array of widget sizes and positions.

• void insert (Fl_Widget &w, Fl_Widget ∗w2)
This does insert(w, find(before)).

• void insert (Fl_Widget &w, int n)
The widget is removed from its current group (if any) and then inserted into this group.

• int is_interactive_resize ()
Returns 1 if someone is interactively resizing a row or column.

• int is_selected (int r, int c)
• int move_cursor (int R, int C)
• void remove (Fl_Widget &w)

Removes a widget from the group but does not delete it.

• void resize (int X, int Y, int W, int H)
Changes the size of the Fl_Table, causing it to redraw.

• void row_header (int flag)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 707

Enables/disables showing the row headers.

• int row_header ()
Returns the value of this flag.

• Fl_Color row_header_color ()
Returns the current row header color.

• void row_header_color (Fl_Color val)
Sets the row header color and causes the screen to redraw.

• int row_header_width ()
Returns the current row header width (in pixels).

• void row_header_width (int width)
Sets the row header width to n and causes the screen to redraw.

• int row_height (int row)
Returns the current height of the specified row as a value in pixels.

• void row_height (int row, int height)
Sets the height of the specified row in pixels, and the table is redrawn.

• void row_height_all (int height)
Convenience method to set the height of all rows to the same value, in pixels.

• int row_position ()
Returns the current row scroll position as a row number.

• void row_position (int row)
Sets the row scroll position to ’row’, and causes the screen to redraw.

• void row_resize (int flag)
Allows/disallows row resizing by the user.

• int row_resize ()
Returns the current value of this flag.

• void row_resize_min (int val)
Sets the current row minimum resize value.

• int row_resize_min ()
Returns the current row minimum resize value.

• int rows ()
Returns the number of rows in the table.

• virtual void rows (int val)
Sets the number of rows in the table, and the table is redrawn.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

708 Class Documentation

• void set_selection (int s_top, int s_left, int s_bottom, int s_right)
• Fl_Boxtype table_box (void)

Returns the current box type used for the data table.

• void table_box (Fl_Boxtype val)

Sets the kind of box drawn around the data table, the default being FL_NO_BOX.

• int top_row ()

Returns the current top row shown in the table.

• void top_row (int row)

Sets which row should be at the top of the table, scrolling as necessary, and the table is redrawn.

• void visible_cells (int &r1, int &r2, int &c1, int &c2)

Returns the range of row and column numbers for all the visible (and partially visible) cells in the table.

• ∼Fl_Table ()

The destructor for the Fl_Table.

Protected Types

• enum ResizeFlag {

RESIZE_NONE = 0, RESIZE_COL_LEFT = 1, RESIZE_COL_RIGHT = 2, RESIZE_ROW_-
ABOVE = 3,

RESIZE_ROW_BELOW = 4 }

Protected Member Functions

• void change_cursor (Fl_Cursor newcursor)
• long col_scroll_position (int col)
• TableContext cursor2rowcol (int &R, int &C, ResizeFlag &resizeflag)
• void damage_zone (int r1, int c1, int r2, int c2, int r3=0, int c3=0)
• virtual void draw_cell (TableContext context, int R=0, int C=0, int X=0, int Y=0, int W=0, int H=0)

Subclass should override this method to handle drawing the cells.

• int find_cell (TableContext context, int R, int C, int &X, int &Y, int &W, int &H)
• void get_bounds (TableContext context, int &X, int &Y, int &W, int &H)
• int handle (int e)

Handles the specified event.

• int is_fltk_container ()
• void recalc_dimensions ()
• void redraw_range (int toprow, int botrow, int leftcol, int rightcol)
• int row_col_clamp (TableContext context, int &R, int &C)
• long row_scroll_position (int row)
• void table_resized ()
• void table_scrolled ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 709

Static Protected Member Functions

• static void scroll_cb (Fl_Widget ∗, void ∗)

Protected Attributes

• int botrow
• int current_col
• int current_row
• Fl_Scrollbar ∗ hscrollbar
• int leftcol
• int leftcol_scrollpos
• int rightcol
• int select_col
• int select_row
• Fl_Scroll ∗ table
• int table_h
• int table_w
• int tih
• int tiw
• int tix
• int tiy
• int toh
• int toprow
• int toprow_scrollpos
• int tow
• int tox
• int toy
• Fl_Scrollbar ∗ vscrollbar
• int wih
• int wiw
• int wix
• int wiy

30.98.1 Detailed Description

A table of widgets or other content.

This is the base class for table widgets.

To be useful it must be subclassed and several virtual functions defined. Normally applications use widgets
derived from this widget, and do not use this widget directly; this widget is usually too low level to be used
directly by applications.

This widget does not handle the data in the table. The draw_cell() method must be overridden by a subclass
to manage drawing the contents of the cells.

This widget can be used in several ways:

• As a custom widget; see test/testtablerow.cxx. Very optimal for even extremely large tables.

• As a table made up of a single FLTK widget instanced all over the table; see test/singleinput.cxx.
Very optimal for even extremely large tables;

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

710 Class Documentation

• As a regular container of FLTK widgets, one widget per cell. See test/widgettable.cxx. Not recom-
mended for large tables.

When acting as part of a custom widget, events on the cells and/or headings generate callbacks when they
are clicked by the user. You control when events are generated based on the setting for Fl_Table::when().

When acting as a container for FLTK widgets, the FLTK widgets maintain themselves. Although the
draw_cell() method must be overridden, its contents can be very simple. See the draw_cell() code in
test/widgettable.cxx.

The following variables are available to classes deriving from Fl_Table:

x()/y()/w()/h() Fl_Table widget’s outer dimension. The outer
edge of the border of the Fl_Table. (Red in the
diagram above)

wix/wiy/wiw/wih Fl_Table widget’s inner dimension. The inner
edge of the border of the Fl_Table. eg. if the
Fl_Table’s box() is FL_NO_BOX, these values
are the same as x()/y()/w()/h(). (Yellow in the
diagram above)

tox/toy/tow/toh The table’s outer dimension. The outer edge of
the border around the cells, but inside the row/col
headings and scrollbars. (Green in the diagram
above)

tix/tiy/tiw/tih The table’s inner dimension. The inner edge of
the border around the cells, but inside the row/col
headings and scrollbars. AKA the table’s clip
region. eg. if the table_box() is FL_NO_BOX,
these values are the same as tox/toyy/tow/toh.
(Blue in the diagram above)

CORE DEVELOPERS

• Greg Ercolano : 12/16/2002 - initial implementation 12/16/02. Fl_Table, Fl_Table_Row, docs.

• Jean-Marc Lienher : 02/22/2004 - added keyboard nav + mouse selection, and ported Fl_Table into
fltk-utf8-1.1.4

OTHER CONTRIBUTORS

• Inspired by the Feb 2000 version of FLVW’s Flvw_Table widget. Mucho thanks to those folks.

• Mister Satan : 04/07/2003 - MinGW porting mods, and singleinput.cxx; a cool Fl_Input oriented
spreadsheet example

• Marek Paliwoda : 01/08/2003 - Porting mods for Borland

• Ori Berger : 03/16/2006 - Optimizations for >500k rows/cols

LICENSE

Greg added the following license to the original distribution of Fl_Table. He kindly gave his permission
to integrate Fl_Table and Fl_Table_row into FLTK, allowing FLTK license to apply while his widgets are
part of the library.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 711

If used on its own, this is the license that applies:

Fl_Table License December 16, 2002

The Fl_Table library and included programs are provided under the terms of the GNU Library General
Public License (LGPL) with the following exceptions:

1. Modifications to the Fl_Table configure script, config header file, and makefiles by themselves to support
a specific platform do not constitute a modified or derivative work.

The authors do request that such modifications be contributed to the Fl_Table project - send all contributions
to "erco at seriss dot com".

2. Widgets that are subclassed from Fl_Table widgets do not constitute a derivative work.

3. Static linking of applications and widgets to the Fl_Table library does not constitute a derivative work
and does not require the author to provide source code for the application or widget, use the shared Fl_Table
libraries, or link their applications or widgets against a user-supplied version of Fl_Table.

If you link the application or widget to a modified version of Fl_Table, then the changes to Fl_Table must
be provided under the terms of the LGPL in sections 1, 2, and 4.

4. You do not have to provide a copy of the Fl_Table license with programs that are linked to the Fl_Table
library, nor do you have to identify the Fl_Table license in your program or documentation as required by
section 6 of the LGPL.

However, programs must still identify their use of Fl_Table. The following example statement can be
included in user documentation to satisfy this requirement:

[program/widget] is based in part on the work of the Fl_Table project
http://seriss.com/people/erco/fltk/Fl_Table/

30.98.2 Constructor & Destructor Documentation

30.98.2.1 Fl_Table::Fl_Table (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor for the Fl_Table.

This creates an empty table with no rows or columns, with headers and row/column resize behavior dis-
abled.

30.98.2.2 Fl_Table::∼Fl_Table ()

The destructor for the Fl_Table.

Destroys the table and its associated widgets.

30.98.3 Member Function Documentation

30.98.3.1 void Fl_Table::begin () [inline]

Sets the current group so you can build the widget tree by just constructing the widgets.

begin() is automatically called by the constructor for Fl_Group (and thus for Fl_Window as well). begin()
is exactly the same as current(this). Don’t forget to end() the group or window!

Reimplemented from Fl_Group.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://seriss.com/people/erco/fltk/Fl_Table/

712 Class Documentation

30.98.3.2 int Fl_Table::callback_col () [inline]

Returns the current column the event occurred on.

This function should only be used from within the user’s callback function

30.98.3.3 TableContext Fl_Table::callback_context () [inline]

Returns the current ’table context’.

This function should only be used from within the user’s callback function

30.98.3.4 int Fl_Table::callback_row () [inline]

Returns the current row the event occurred on.

This function should only be used from within the user’s callback function

30.98.3.5 Fl_Widget∗ Fl_Table::child (int n) const [inline]

Returns the child widget by an index.

When using the Fl_Table as a container for FLTK widgets, this method returns the widget pointer from the
internal array of widgets in the container.

Typically used in loops, eg:

for (int i=0; i<children(); i++)
{
Fl_Widget *w = child(i);
[..]
}

Reimplemented from Fl_Group.

30.98.3.6 int Fl_Table::children () const [inline]

Returns the number of children in the table.

When using the Fl_Table as a container for FLTK widgets, this method returns how many child widgets
the table has.

See also:

child(int)

Reimplemented from Fl_Group.

30.98.3.7 virtual void Fl_Table::clear () [inline, virtual]

Clears the table to zero rows, zero columns.

Same as rows(0); cols(0);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 713

See also:

rows(int), cols(int)

Reimplemented from Fl_Group.

Reimplemented in Fl_Table_Row.

30.98.3.8 void Fl_Table::col_header (int flag) [inline]

Enable or disable column headers.

If changed, the table is redrawn.

30.98.3.9 void Fl_Table::col_resize (int flag) [inline]

Allows/disallows column resizing by the user.

1=allow interactive resizing, 0=disallow interactive resizing. Since interactive resizing is done via the
column headers, col_header() must also be enabled to allow resizing.

30.98.3.10 int Fl_Table::col_resize_min () [inline]

Sets the current column minimum resize value.

This is used to prevent the user from interactively resizing any column to be smaller than ’pixels’. Must be
a value >=1.

30.98.3.11 void Fl_Table::col_width (int col, int width)

Sets the width of the specified column in pixels, and the table is redrawn.

callback() will be invoked with CONTEXT_RC_RESIZE if the column’s width was actually changed, and
when() is FL_WHEN_CHANGED.

30.98.3.12 void Fl_Table::col_width_all (int width) [inline]

Convenience method to set the width of all columns to the same value, in pixels.

The screen is redrawn.

30.98.3.13 void Fl_Table::draw (void) [virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

714 Class Documentation

Reimplemented from Fl_Group.

30.98.3.14 virtual void Fl_Table::draw_cell (TableContext context, int R = 0, int C = 0, int X = 0,
int Y = 0, int W = 0, int H = 0) [inline, protected, virtual]

Subclass should override this method to handle drawing the cells.

This method will be called whenever the table is redrawn, once per cell.

Only cells that are completely (or partially) visible will be told to draw.

context will be one of the following:

Fl_Table::CONTEXT_STARTPAGE When table, or parts of the table, are about to be
redrawn. Use to initialize static data, such as font
selections. r/c will be zero, x/y/w/h will be the
dimensions of the table’s entire data area. (Useful
for locking a database before accessing; see also
visible_cells())

Fl_Table::CONTEXT_ENDPAGE When table has completed being redrawn. r/c will
be zero, x/y/w/h dimensions of table’s data area.
(Useful for unlocking a database after accessing)

Fl_Table::CONTEXT_ROW_HEADER Whenever a row header cell needs to be drawn.
Fl_Table::CONTEXT_COL_HEADER Whenever a column header cell needs to be

drawn.
Fl_Table::CONTEXT_CELL Whenever a data cell in the table needs to be

drawn.
Fl_Table::CONTEXT_RC_RESIZE Whenever table or row/column is resized or

scrolled, either interactively or via col_width() or
row_height().
Useful for fltk containers that need to resize or
move the child fltk widgets.

row and col will be set to the row and column number the user clicked on. In the case of row headers,
col will be 0. In the case of column headers, row will be 0.

x/y/w/h will be the position and dimensions of where the cell should be drawn.

In the case of custom widgets, a minimal draw_cell() override might look like the following. With custom
widgets it is up to the caller to handle drawing everything within the dimensions of the cell, including
handling the selection color. Note all clipping must be handled as well; this allows drawing outside the
dimensions of the cell if so desired for ’custom effects’.

// This is called whenever Fl_Table wants you to draw a cell
void MyTable::draw_cell(TableContext context, int R=0, int C=0, int X=0, int Y=0, int W=0, int H=0)
{
static char s[40];
sprintf(s, "%d/%d", R, C); // text for each cell
switch (context)
{
case CONTEXT_STARTPAGE: // Fl_Table telling us its starting to draw page
fl_font(FL_HELVETICA, 16);
return;

case CONTEXT_ROW_HEADER: // Fl_Table telling us it’s draw row/col headers
case CONTEXT_COL_HEADER:
fl_push_clip(X, Y, W, H);
{
fl_draw_box(FL_THIN_UP_BOX, X, Y, W, H, color());
fl_color(FL_BLACK);

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 715

fl_draw(s, X, Y, W, H, FL_ALIGN_CENTER);
}
fl_pop_clip();
return;

case CONTEXT_CELL: // Fl_Table telling us to draw cells
fl_push_clip(X, Y, W, H);
{
// BG COLOR
fl_color(row_selected(R) ? selection_color() : FL_WHITE);
fl_rectf(X, Y, W, H);

// TEXT
fl_color(FL_BLACK);
fl_draw(s, X, Y, W, H, FL_ALIGN_CENTER);

// BORDER
fl_color(FL_LIGHT2);
fl_rect(X, Y, W, H);
}
fl_pop_clip();
return;

default:
return;
}
//NOTREACHED
}

30.98.3.15 void Fl_Table::end () [inline]

Exactly the same as current(this->parent()).

Any new widgets added to the widget tree will be added to the parent of the group.

Reimplemented from Fl_Group.

30.98.3.16 int Fl_Table::find (const Fl_Widget ∗ o) const [inline]

Searches the child array for the widget and returns the index.

Returns children() if the widget is NULL or not found.

Reimplemented from Fl_Group.

30.98.3.17 int Fl_Table::handle (int event) [protected, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

716 Class Documentation

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

Reimplemented in Fl_Table_Row.

30.98.3.18 void Fl_Table::init_sizes () [inline]

Resets the internal array of widget sizes and positions.

The Fl_Group widget keeps track of the original widget sizes and positions when resizing occurs so that if
you resize a window back to its original size the widgets will be in the correct places. If you rearrange the
widgets in your group, call this method to register the new arrangement with the Fl_Group that contains
them.

If you add or remove widgets, this will be done automatically.

Note:

The internal array of widget sizes and positions will be allocated and filled when the next resize()
occurs.

See also:

sizes()

Reimplemented from Fl_Group.

30.98.3.19 void Fl_Table::insert (Fl_Widget & o, Fl_Widget ∗ before) [inline]

This does insert(w, find(before)).

This will append the widget if before is not in the group.

Reimplemented from Fl_Group.

30.98.3.20 void Fl_Table::insert (Fl_Widget & o, int index) [inline]

The widget is removed from its current group (if any) and then inserted into this group.

It is put at index n - or at the end, if n >= children(). This can also be used to rearrange the widgets inside
a group.

Reimplemented from Fl_Group.

30.98.3.21 int Fl_Table::is_interactive_resize () [inline]

Returns 1 if someone is interactively resizing a row or column.

You can currently call this only from within your callback().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.98 Fl_Table Class Reference 717

30.98.3.22 void Fl_Table::remove (Fl_Widget & o) [inline]

Removes a widget from the group but does not delete it.

This method does nothing if the widget is not a child of the group.

This method differs from the clear() method in that it only affects a single widget and does not delete it
from memory.

Reimplemented from Fl_Group.

30.98.3.23 void Fl_Table::row_header (int flag) [inline]

Enables/disables showing the row headers.

1=enabled, 0=disabled. If changed, the table is redrawn.

30.98.3.24 void Fl_Table::row_height (int row, int height)

Sets the height of the specified row in pixels, and the table is redrawn.

callback() will be invoked with CONTEXT_RC_RESIZE if the row’s height was actually changed, and
when() is FL_WHEN_CHANGED.

30.98.3.25 void Fl_Table::row_height_all (int height) [inline]

Convenience method to set the height of all rows to the same value, in pixels.

The screen is redrawn.

30.98.3.26 void Fl_Table::row_resize (int flag) [inline]

Allows/disallows row resizing by the user.

1=allow interactive resizing, 0=disallow interactive resizing. Since interactive resizing is done via the row
headers, row_header() must also be enabled to allow resizing.

30.98.3.27 void Fl_Table::row_resize_min (int val) [inline]

Sets the current row minimum resize value.

This is used to prevent the user from interactively resizing any row to be smaller than ’pixels’. Must be a
value >=1.

30.98.3.28 void Fl_Table::table_box (Fl_Boxtype val) [inline]

Sets the kind of box drawn around the data table, the default being FL_NO_BOX.

Changing this value will cause the table to redraw.

30.98.3.29 int Fl_Table::top_row () [inline]

Returns the current top row shown in the table.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

718 Class Documentation

This row may be partially obscured.

30.98.3.30 void Fl_Table::top_row (int row) [inline]

Sets which row should be at the top of the table, scrolling as necessary, and the table is redrawn.

If the table cannot be scrolled that far, it is scrolled as far as possible.

30.98.3.31 void Fl_Table::visible_cells (int & r1, int & r2, int & c1, int & c2) [inline]

Returns the range of row and column numbers for all the visible (and partially visible) cells in the table.

These values can be used e.g. by your draw_cell() routine during CONTEXT_STARTPAGE to figure out
what cells are about to be redrawn, for the purposes of locking the data from a database before it’s drawn.

leftcol rightcol
: :
toprow .. .-------------------.
| |
| V I S I B L E |
| |
| T A B L E |
| |
botrow .. ’-------------------‘

e.g. in a table where the visible rows are 5-20, and the visible columns are 100-120, then those variables
would be:

• toprow = 5

• botrow = 20

• leftcol = 100

• rightcol = 120

The documentation for this class was generated from the following files:

• Fl_Table.H
• Fl_Table.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.99 Fl_Table_Row Class Reference 719

30.99 Fl_Table_Row Class Reference

A table with row selection capabilities.

#include <Fl_Table_Row.H>

Inheritance diagram for Fl_Table_Row::

Fl_Table_Row

Fl_Table

Fl_Group

Fl_Widget

Classes

• class CharVector

Public Types

• enum TableRowSelectMode { SELECT_NONE, SELECT_SINGLE, SELECT_MULTI }

Public Member Functions

• void clear ()

Clears the table to zero rows, zero columns.

• Fl_Table_Row (int X, int Y, int W, int H, const char ∗l=0)

The constructor for the Fl_Table_Row.

• int row_selected (int row)

Checks to see if ’row’ is selected.

• int rows ()

Returns the number of rows in the table.

• void rows (int val)

Sets the number of rows in the table, and the table is redrawn.

• void select_all_rows (int flag=1)

This convenience function changes the selection state for all rows based on ’flag’.

• int select_row (int row, int flag=1)

Changes the selection state for ’row’, depending on the value of ’flag’.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

720 Class Documentation

• TableRowSelectMode type () const

Gets the widget type.

• void type (TableRowSelectMode val)

Sets the table selection mode.

• ∼Fl_Table_Row ()

The destructor for the Fl_Table_Row.

Protected Member Functions

• int find_cell (TableContext context, int R, int C, int &X, int &Y, int &W, int &H)
• int handle (int event)

Handles the specified event.

30.99.1 Detailed Description

A table with row selection capabilities.

This class implements a simple table of rows and columns that specializes in the selection of rows. This
widget is similar in behavior to a "mail subject browser", similar to that found in mozilla, netscape and
outlook mail browsers.

Most methods of importance will be found in the Fl_Table widget, such as Fl_Table::rows() and Fl_-
Table::cols().

To be useful it must be subclassed and at minimum the draw_cell() method must be overridden to provide
the content of the cells. This widget does not manage the cell’s data content; it is up to the parent class’s
draw_cell() method override to provide this.

Events on the cells and/or headings generate callbacks when they are clicked by the user. You control when
events are generated based on the values you supply for Fl_Table::when().

30.99.2 Constructor & Destructor Documentation

30.99.2.1 Fl_Table_Row::Fl_Table_Row (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

The constructor for the Fl_Table_Row.

This creates an empty table with no rows or columns, with headers and row/column resize behavior dis-
abled.

30.99.2.2 Fl_Table_Row::∼Fl_Table_Row () [inline]

The destructor for the Fl_Table_Row.

Destroys the table and its associated widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.99 Fl_Table_Row Class Reference 721

30.99.3 Member Function Documentation

30.99.3.1 void Fl_Table_Row::clear () [inline, virtual]

Clears the table to zero rows, zero columns.

Same as rows(0); cols(0);

See also:

rows(int), cols(int)

Reimplemented from Fl_Table.

30.99.3.2 int Fl_Table_Row::handle (int event) [protected, virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Table.

30.99.3.3 int Fl_Table_Row::row_selected (int row)

Checks to see if ’row’ is selected.

Returns 1 if selected, 0 if not. You can change the selection of a row by clicking on it, or by using select_-
row(row, flag)

30.99.3.4 void Fl_Table_Row::select_all_rows (int flag = 1)

This convenience function changes the selection state for all rows based on ’flag’.

0=deselect, 1=select, 2=toggle existing state.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

722 Class Documentation

30.99.3.5 int Fl_Table_Row::select_row (int row, int flag = 1)

Changes the selection state for ’row’, depending on the value of ’flag’.

0=deselected, 1=select, 2=toggle existing state.

30.99.3.6 TableRowSelectMode Fl_Table_Row::type () const [inline]

Gets the widget type.

Returns the widget type value, which is used for Forms compatibility and to simulate RTTI.

Todo

Explain "simulate RTTI" (currently only used to decide if a widget is a window, i.e. type()>=FL_-
WINDOW ?). Is type() really used in a way that ensures "Forms compatibility" ?

Reimplemented from Fl_Widget.

30.99.3.7 void Fl_Table_Row::type (TableRowSelectMode val)

Sets the table selection mode.

• Fl_Table_Row::SELECT_NONE - No selection allowed

• Fl_Table_Row::SELECT_SINGLE - Only single rows can be selected

• Fl_Table_Row::SELECT_MULTI - Multiple rows can be selected

The documentation for this class was generated from the following files:

• Fl_Table_Row.H
• Fl_Table_Row.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.100 Fl_Tabs Class Reference 723

30.100 Fl_Tabs Class Reference

The Fl_Tabs widget is the "file card tabs" interface that allows you to put lots and lots of buttons and
switches in a panel, as popularized by many toolkits.

#include <Fl_Tabs.H>

Inheritance diagram for Fl_Tabs::

Fl_Tabs

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Tabs (int, int, int, int, const char ∗=0)

Creates a new Fl_Tabs widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• int push (Fl_Widget ∗)
• Fl_Widget ∗ push () const
• int value (Fl_Widget ∗)

Sets the widget to become the current visible widget/tab.

• Fl_Widget ∗ value ()

Gets the currently visible widget/tab.

• Fl_Widget ∗ which (int event_x, int event_y)

Protected Member Functions

• void draw ()

Draws the widget.

• void redraw_tabs ()

30.100.1 Detailed Description

The Fl_Tabs widget is the "file card tabs" interface that allows you to put lots and lots of buttons and
switches in a panel, as popularized by many toolkits.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

724 Class Documentation

Figure 30.30: Fl_Tabs

Clicking the tab makes a child visible() by calling show() on it, and all other children are made invisible by
calling hide() on them. Usually the children are Fl_Group widgets containing several widgets themselves.

Each child makes a card, and its label() is printed on the card tab, including the label font and style. The
selection color of that child is used to color the tab, while the color of the child determines the background
color of the pane.

The size of the tabs is controlled by the bounding box of the children (there should be some space between
the children and the edge of the Fl_Tabs), and the tabs may be placed "inverted" on the bottom - this is
determined by which gap is larger. It is easiest to lay this out in fluid, using the fluid browser to select each
child group and resize them until the tabs look the way you want them to.

30.100.2 Constructor & Destructor Documentation

30.100.2.1 Fl_Tabs::Fl_Tabs (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Tabs widget using the given position, size, and label string.

The default boxtype is FL_THIN_UP_BOX.

Use add(Fl_Widget) to add each child, which are usually Fl_Group widgets. The children should be sized
to stay away from the top or bottom edge of the Fl_Tabs widget, which is where the tabs will be drawn.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Tabs and all of
its children can be automatic (local) variables, but you must declare the Fl_Tabs widget first so that it is

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.100 Fl_Tabs Class Reference 725

destroyed last.

30.100.3 Member Function Documentation

30.100.3.1 void Fl_Tabs::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

30.100.3.2 int Fl_Tabs::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

30.100.3.3 int Fl_Tabs::value (Fl_Widget ∗ newvalue)

Sets the widget to become the current visible widget/tab.

Setting the value hides all other children, and makes this one visible, if it is really a child.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

726 Class Documentation

30.100.3.4 Fl_Widget ∗ Fl_Tabs::value ()

Gets the currently visible widget/tab.

The value() is the first visible child (or the last child if none are visible) and this also hides any other
children. This allows the tabs to be deleted, moved to other groups, and show()/hide() called without it
screwing up.

The documentation for this class was generated from the following files:

• Fl_Tabs.H
• Fl_Tabs.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 727

30.101 Fl_Text_Buffer Class Reference

This class manages unicode displayed in one or more Fl_Text_Display widgets.

#include <Fl_Text_Buffer.H>

Public Member Functions

• void add_modify_callback (Fl_Text_Modify_Cb bufModifiedCB, void ∗cbArg)

Adds a callback function that is called whenever the text buffer is modified.

• void add_predelete_callback (Fl_Text_Predelete_Cb bufPredelCB, void ∗cbArg)

Adds a callback routine to be called before text is deleted from the buffer.

• void append (const char ∗t)
Appends the text string to the end of the buffer.

• int appendfile (const char ∗file, int buflen=128 ∗1024)

Appends the named file to the end of the buffer.

• void call_modify_callbacks ()

Calls all modify callbacks that have been registered using the add_modify_callback() method.

• void call_predelete_callbacks ()

Calls the stored pre-delete callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

• void canUndo (char flag=1)

Lets the undo system know if we can undo changes.

• unsigned int character (int pos) const

Returns the character at the specified position pos in the buffer.

• void clear_rectangular (int start, int end, int rectStart, int rectEnd)

Clears text in the specified area.

• void copy (Fl_Text_Buffer ∗fromBuf, int fromStart, int fromEnd, int toPos)

Copies text from one buffer to this one; fromBuf may be the same as this.

• int count_displayed_characters (int lineStartPos, int targetPos) const

Count the number of displayed characters between buffer position lineStartPos and targetPos.

• int count_lines (int startPos, int endPos) const

Counts the number of newlines between startPos and endPos in buffer.

• int expand_character (int pos, int indent, char ∗outStr) const

Expands the given character to a displayable format.

• int findchar_backward (int startPos, char searchChar, int ∗foundPos) const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

728 Class Documentation

Search backwards in buffer buf for character searchChar, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

• int findchar_forward (int startPos, char searchChar, int ∗foundPos) const

Finds the next occurrence of the specified character.

• int findchars_backward (int startPos, const char ∗searchChars, int ∗foundPos) const

Finds the previous occurrence of the specified characters.

• int findchars_forward (int startPos, const char ∗searchChars, int ∗foundPos) const

Finds the next occurrence of the specified characters.

• Fl_Text_Buffer (int requestedSize=0, int preferredGapSize=1024)

Create an empty text buffer of a pre-determined size.

• int highlight ()

Returns the highlighted text.

• void highlight (int start, int end)

Highlights the specified text within the buffer.

• int highlight_position (int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd)

Highlights the specified rectangle of text within the buffer.

• int highlight_position (int ∗start, int ∗end)

Highlights the specified text between start and end within the buffer.

• void highlight_rectangular (int start, int end, int rectStart, int rectEnd)

Highlights a rectangular selection in the buffer.

• const Fl_Text_Selection ∗ highlight_selection () const

Returns the current highlight selection.

• char ∗ highlight_text ()

Returns the highlighted text.

• void insert (int pos, const char ∗text)

Inserts null-terminated string text at position pos.

• void insert_column (int column, int startPos, const char ∗text, int ∗charsInserted, int
∗charsDeleted)

Insert s columnwise into buffer starting at displayed character position column on the line beginning at
startPos.

• int insertfile (const char ∗file, int pos, int buflen=128 ∗1024)

Inserts a file at the specified position.

• int length () const

Returns the number of bytes in the buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 729

• int line_end (int pos) const
Finds and returns the position of the end of the line containing position pos (which is either a pointer to
the newline character ending the line, or a pointer to one character beyond the end of the buffer).

• int line_start (int pos) const
Returns the position of the start of the line containing position pos.

• char ∗ line_text (int pos) const
Returns the text from the entire line containing the specified character position.

• int loadfile (const char ∗file, int buflen=128 ∗1024)
Loads a text file into the buffer.

• int outputfile (const char ∗file, int start, int end, int buflen=128 ∗1024)
Writes the specified portions of the file to a file.

• void overlay_rectangular (int startPos, int rectStart, int rectEnd, const char ∗text, int ∗charsInserted,
int ∗charsDeleted)

Overlay text between displayed character positions rectStart and rectEnd on the line beginning at
startPos.

• Fl_Text_Selection ∗ primary_selection ()
Returns the primary selection.

• const Fl_Text_Selection ∗ primary_selection () const
Returns the primary selection.

• void remove (int start, int end)
Deletes a range of characters in the buffer.

• void remove_modify_callback (Fl_Text_Modify_Cb bufModifiedCB, void ∗cbArg)
Removes a modify callback.

• void remove_predelete_callback (Fl_Text_Predelete_Cb predelCB, void ∗cbArg)
Removes a callback routine bufPreDeleteCB associated with argument cbArg to be called before text
is deleted from the buffer.

• void remove_rectangular (int start, int end, int rectStart, int rectEnd)
Removes a rectangular swath of characters between character positions start and end and horizontal
displayed-character offsets rectStart and rectEnd.

• void remove_secondary_selection ()
Removes the text from the buffer corresponding to the secondary text selection object.

• void remove_selection ()
Removes the text in the primary selection.

• void replace (int start, int end, const char ∗text)
Deletes the characters between start and end, and inserts the null-terminated string text in their place
in the buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

730 Class Documentation

• void replace_rectangular (int start, int end, int rectStart, int rectEnd, const char ∗text)

Replaces a rectangular area in the buffer, given by start, end, rectStart, and rectEnd, with text.

• void replace_secondary_selection (const char ∗text)

Replaces the text from the buffer corresponding to the secondary text selection object with the new string
text.

• void replace_selection (const char ∗text)

Replaces the text in the primary selection.

• int rewind_lines (int startPos, int nLines)

Finds and returns the position of the first character of the line nLines backwards from startPos (not
counting the character pointed to by startpos if that is a newline) in the buffer.

• int savefile (const char ∗file, int buflen=128 ∗1024)

Saves a text file from the current buffer.

• int search_backward (int startPos, const char ∗searchString, int ∗foundPos, int matchCase=0) const

Search backwards in buffer for string searchCharssearchString, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

• int search_forward (int startPos, const char ∗searchString, int ∗foundPos, int matchCase=0) const

Search forwards in buffer for string searchString, starting with the character startPos, and return-
ing the result in foundPos returns 1 if found, 0 if not.

• void secondary_select (int start, int end)

Selects a range of characters in the secondary selection.

• void secondary_select_rectangular (int start, int end, int rectStart, int rectEnd)

Achieves a rectangular selection on the secondary text selection object.

• int secondary_selected ()

Returns a non 0 value if text has been selected in the secondary text selection, 0 otherwise.

• const Fl_Text_Selection ∗ secondary_selection () const

Returns the secondary selection.

• int secondary_selection_position (int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd)

Returns the current selection in the secondary text selection object.

• int secondary_selection_position (int ∗start, int ∗end)

Returns the current selection in the secondary text selection object.

• char ∗ secondary_selection_text ()

Returns the text in the secondary selection.

• void secondary_unselect ()

Clears any selection in the secondary text selection object.

• void select (int start, int end)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 731

Selects a range of characters in the buffer.

• void select_rectangular (int start, int end, int rectStart, int rectEnd)

Achieves a rectangular selection on the primary text selection object.

• int selected () const

Returns a non 0 value if text has been selected, 0 otherwise.

• int selection_position (int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd)

Gets the selection position, and rectangular selection info.

• int selection_position (int ∗start, int ∗end)

Gets the selection position.

• char ∗ selection_text ()

Returns the currently selected text.

• int skip_displayed_characters (int lineStartPos, int nChars)

Count forward from buffer position startPos in displayed characters (displayed characters are the char-
acters shown on the screen to represent characters in the buffer, where tabs and control characters are
expanded).

• int skip_lines (int startPos, int nLines)

Finds the first character of the line nLines forward from startPos in the buffer and returns its position.

• void tab_distance (int tabDist)

Set the hardware tab distance (width) used by all displays for this buffer, and used in computing offsets for
rectangular selection operations.

• int tab_distance () const

Gets the tab width.

• void text (const char ∗text)

Replaces the entire contents of the text buffer.

• char ∗ text () const

Get a copy of the entire contents of the text buffer.

• char ∗ text_in_rectangle (int start, int end, int rectStart, int rectEnd) const

Returns the text from the given rectangle.

• char ∗ text_range (int start, int end) const

Get a copy of a part of the text buffer.

• int undo (int ∗cp=0)

Undo text modification according to the undo variables or insert text from the undo buffer.

• void unhighlight ()

Unhighlights text in the buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

732 Class Documentation

• void unselect ()

Cancels any previous selection on the primary text selection object.

• int word_end (int pos) const

Returns the position corresponding to the end of the word.

• int word_start (int pos) const

Returns the position corresponding to the start of the word.

• ∼Fl_Text_Buffer ()

Frees a text buffer.

Static Public Member Functions

• static int character_width (const char ∗src, int indent, int tabDist)

Return the length in displayed characters of character c expanded for display (as discussed above in
expand_character()).

• static int expand_character (const char ∗src, int indent, char ∗outStr, int tabDist)

Expand a single character c from the text buffer into it’s displayable screen representation (which may be
several characters for a tab or a control code).

Protected Member Functions

• char ∗ address (int pos)

Convert a byte offset in buffer into a memory address.

• const char ∗ address (int pos) const

Convert a byte offset in buffer into a memory address.

• void call_modify_callbacks (int pos, int nDeleted, int nInserted, int nRestyled, const char
∗deletedText) const

Calls the stored modify callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

• void call_predelete_callbacks (int pos, int nDeleted) const

Calls the stored pre-delete callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

• int insert_ (int pos, const char ∗text)

Internal (non-redisplaying) version of BufInsert.

• void insert_column_ (int column, int startPos, const char ∗insText, int ∗nDeleted, int ∗nInserted, int
∗endPos)

Inserts a column of text without calling the modify callbacks.

• void move_gap (int pos)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 733

• void overlay_rectangular_ (int startPos, int rectStart, int rectEnd, const char ∗insText, int ∗nDeleted,
int ∗nInserted, int ∗endPos)

Overlay a rectangular area of text without calling the modify callbacks.

• void reallocate_with_gap (int newGapStart, int newGapLen)
Reallocates the text storage in the buffer to have a gap starting at newGapStart and a gap size of
newGapLen, preserving the buffer’s current contents.

• void rectangular_selection_boundaries (int lineStartPos, int rectStart, int rectEnd, int ∗selStart, int
∗selEnd) const

Finds the first and last character position in a line within a rectangular selection (for copying).

• void redisplay_selection (Fl_Text_Selection ∗oldSelection, Fl_Text_Selection ∗newSelection)
const

Calls the stored redisplay procedure(s) for this buffer to update the screen for a change in a selection.

• void remove_ (int start, int end)
Internal (non-redisplaying) version of BufRemove.

• void remove_rectangular_ (int start, int end, int rectStart, int rectEnd, int ∗replaceLen, int ∗endPos)
Deletes a rectangle of text without calling the modify callbacks.

• void remove_selection_ (Fl_Text_Selection ∗sel)
Removes the text from the buffer corresponding to sel.

• void replace_selection_ (Fl_Text_Selection ∗sel, const char ∗text)
Replaces the text in selection sel.

• char ∗ selection_text_ (Fl_Text_Selection ∗sel) const
• void update_selections (int pos, int nDeleted, int nInserted)

Updates all of the selections in the buffer for changes in the buffer’s text.

Protected Attributes

• char ∗ mBuf
allocated memory where the text is stored

• char mCanUndo
if this buffer is used for attributes, it must not do any undo calls

• void ∗∗ mCbArgs
caller arguments for modifyProcs above

• int mCursorPosHint
hint for reasonable cursor position after a buffer modification operation

• int mGapEnd
points to the first char after the gap

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

734 Class Documentation

• int mGapStart
points to the first character of the gap

• Fl_Text_Selection mHighlight
highlighted areas

• int mLength
length of the text in the buffer (the length of the buffer itself must be calculated: gapEnd - gapStart + length)

• Fl_Text_Modify_Cb ∗ mModifyProcs
< procedures to call when buffer is

• int mNModifyProcs
number of modify-redisplay procs attached

• int mNPredeleteProcs
number of pre-delete procs attached

• void ∗∗ mPredeleteCbArgs
caller argument for pre-delete proc above

• Fl_Text_Predelete_Cb ∗ mPredeleteProcs
< procedure to call before text is deleted

• int mPreferredGapSize
the default allocation for the text gap is 1024 bytes and should only be increased if frequent and large
changes in buffer size are expected

• Fl_Text_Selection mPrimary
highlighted areas

• Fl_Text_Selection mSecondary
highlighted areas

• int mTabDist
equiv.

• int mUseTabs
True if buffer routines are allowed to use tabs for padding in rectangular operations.

30.101.1 Detailed Description

This class manages unicode displayed in one or more Fl_Text_Display widgets.

The Fl_Text_Buffer class is used by the Fl_Text_Display and Fl_Text_Editor to manage complex text data
and is based upon the excellent NEdit text editor engine - see http://www.nedit.org/.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

http://www.nedit.org/.

30.101 Fl_Text_Buffer Class Reference 735

30.101.2 Constructor & Destructor Documentation

30.101.2.1 Fl_Text_Buffer::Fl_Text_Buffer (int requestedSize = 0, int preferredGapSize = 1024)

Create an empty text buffer of a pre-determined size.

Parameters:

requestedSize use this to avoid unnecessary re-allocation if you know exactly how much the buffer
will need to hold

preferredGapSize Initial size for the buffer gap (empty space in the buffer where text might be inserted
if the user is typing sequential chars)

30.101.3 Member Function Documentation

30.101.3.1 void Fl_Text_Buffer::add_modify_callback (Fl_Text_Modify_Cb bufModifiedCB, void
∗ cbArg)

Adds a callback function that is called whenever the text buffer is modified.

The callback function is declared as follows:

typedef void (*Fl_Text_Modify_Cb)(int pos, int nInserted, int nDeleted,
int nRestyled, const char* deletedText,
void* cbArg);

Todo

unicode check

30.101.3.2 void Fl_Text_Buffer::add_predelete_callback (Fl_Text_Predelete_Cb bufPredelCB,
void ∗ cbArg)

Adds a callback routine to be called before text is deleted from the buffer.

Todo

unicode check

30.101.3.3 void Fl_Text_Buffer::append (const char ∗ t) [inline]

Appends the text string to the end of the buffer.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

736 Class Documentation

30.101.3.4 int Fl_Text_Buffer::appendfile (const char ∗ file, int buflen = 128∗1024) [inline]

Appends the named file to the end of the buffer.

Returns 0 on success, non-zero on error (strerror() contains reason). 1 indicates open for read failed (no
data loaded). 2 indicates error occurred while reading data (data was partially loaded).

Todo

unicode check

30.101.3.5 void Fl_Text_Buffer::call_modify_callbacks (int pos, int nDeleted, int nInserted, int
nRestyled, const char ∗ deletedText) const [protected]

Calls the stored modify callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

Todo

unicode check

30.101.3.6 void Fl_Text_Buffer::call_modify_callbacks () [inline]

Calls all modify callbacks that have been registered using the add_modify_callback() method.

Todo

unicode check

30.101.3.7 void Fl_Text_Buffer::call_predelete_callbacks (int pos, int nDeleted) const
[protected]

Calls the stored pre-delete callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

Todo

unicode check

30.101.3.8 void Fl_Text_Buffer::call_predelete_callbacks () [inline]

Calls the stored pre-delete callback procedure(s) for this buffer to update the changed area(s) on the screen
and any other listeners.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 737

30.101.3.9 unsigned int Fl_Text_Buffer::character (int pos) const

Returns the character at the specified position pos in the buffer.

Positions start at 0

Parameters:

pos byte offset into buffer

Returns:

Unicode UCS-4 encoded character

30.101.3.10 int Fl_Text_Buffer::character_width (const char ∗ src, int indent, int tabDist)
[static]

Return the length in displayed characters of character c expanded for display (as discussed above in
expand_character()).

Parameters:

src address of utf-8 text

indent

tabDist

Returns:

number of byte in substitution

30.101.3.11 void Fl_Text_Buffer::clear_rectangular (int start, int end, int rectStart, int rectEnd)

Clears text in the specified area.

It clears a rectangular "hole" out of the buffer between character positions start and end and horizontal
displayed-character offsets rectStart and rectEnd.

Todo

unicode check

30.101.3.12 void Fl_Text_Buffer::copy (Fl_Text_Buffer ∗ fromBuf, int fromStart, int fromEnd,
int toPos)

Copies text from one buffer to this one; fromBuf may be the same as this.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

738 Class Documentation

30.101.3.13 int Fl_Text_Buffer::count_displayed_characters (int lineStartPos, int targetPos) const

Count the number of displayed characters between buffer position lineStartPos and targetPos.

(displayed characters are the characters shown on the screen to represent characters in the buffer, where
tabs and control characters are expanded)

Todo

unicode check

30.101.3.14 int Fl_Text_Buffer::count_lines (int startPos, int endPos) const

Counts the number of newlines between startPos and endPos in buffer.

The character at position endPos is not counted.

Todo

unicode check

30.101.3.15 int Fl_Text_Buffer::expand_character (const char ∗ src, int indent, char ∗ outStr, int
tabDist) [static]

Expand a single character c from the text buffer into it’s displayable screen representation (which may be
several characters for a tab or a control code).

Returns the number of characters added to outStr. indent is the number of characters from the start of
the line for figuring tabs of length tabDist. Output string is guaranteed to be shorter or equal in length
to FL_TEXT_MAX_EXP_CHAR_LEN Tabs and other control characters are given special treatment.

Parameters:

src address of utf-8 text
indent
→ outStr write substitution here
tabDist

Returns:

number of byte in substitution

30.101.3.16 int Fl_Text_Buffer::expand_character (int pos, int indent, char ∗ outStr) const

Expands the given character to a displayable format.

Tabs and other control characters are given special treatment. Get a character from the text buffer expanded
into its screen representation (which may be several characters for a tab or a control code). Returns the
number of characters written to outStr. indent is the number of characters from the start of the line
for figuring tabs. Output string is guranteed to be shorter or equal in length to FL_TEXT_MAX_EXP_-
CHAR_LEN

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 739

30.101.3.17 int Fl_Text_Buffer::findchar_backward (int startPos, char searchChar, int ∗
foundPos) const

Search backwards in buffer buf for character searchChar, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

(The difference between this and BufSearchBackward is that it’s optimized for single characters. The
overall performance of the text widget is dependent on its ability to count lines quickly, hence searching
for a single character: newline)

Todo

unicode check

30.101.3.18 int Fl_Text_Buffer::findchar_forward (int startPos, char searchChar, int ∗ foundPos)
const

Finds the next occurrence of the specified character.

Search forwards in buffer for character searchChar, starting with the character startPos, and return-
ing the result in foundPos returns 1 if found, 0 if not. (The difference between this and BufSearchFor-
ward is that it’s optimized for single characters. The overall performance of the text widget is dependent
on its ability to count lines quickly, hence searching for a single character: newline)

Todo

unicode check

30.101.3.19 int Fl_Text_Buffer::findchars_backward (int startPos, const char ∗ searchChars, int ∗
foundPos) const

Finds the previous occurrence of the specified characters.

Search backwards in buffer for characters in searchChars, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

Todo

unicode check

30.101.3.20 int Fl_Text_Buffer::findchars_forward (int startPos, const char ∗ searchChars, int ∗
foundPos) const

Finds the next occurrence of the specified characters.

Search forwards in buffer for characters in searchChars, starting with the character startPos, and
returning the result in foundPos returns 1 if found, 0 if not.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

740 Class Documentation

30.101.3.21 int Fl_Text_Buffer::highlight () [inline]

Returns the highlighted text.

When you are done with the text, free it using the free() function.

30.101.3.22 void Fl_Text_Buffer::highlight (int start, int end)

Highlights the specified text within the buffer.

Todo

unicode check

30.101.3.23 int Fl_Text_Buffer::highlight_position (int ∗ start, int ∗ end, int ∗ isRect, int ∗
rectStart, int ∗ rectEnd)

Highlights the specified rectangle of text within the buffer.

Todo

unicode check

30.101.3.24 int Fl_Text_Buffer::highlight_position (int ∗ start, int ∗ end)

Highlights the specified text between start and end within the buffer.

Todo

unicode check

30.101.3.25 void Fl_Text_Buffer::highlight_rectangular (int start, int end, int rectStart, int
rectEnd)

Highlights a rectangular selection in the buffer.

Todo

unicode check

30.101.3.26 char ∗ Fl_Text_Buffer::highlight_text ()

Returns the highlighted text.

When you are done with the text, free it using the free() function.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 741

30.101.3.27 void Fl_Text_Buffer::insert (int pos, const char ∗ text)

Inserts null-terminated string text at position pos.

Parameters:

pos insertion position as byte offset (must be utf-8 character aligned)

text utf-8 encoded and nul terminated text

30.101.3.28 int Fl_Text_Buffer::insert_ (int pos, const char ∗ text) [protected]

Internal (non-redisplaying) version of BufInsert.

Returns the length of text inserted (this is just strlen(text), however this calculation can be expensive and
the length will be required by any caller who will continue on to call redisplay). pos must be contiguous
with the existing text in the buffer (i.e. not past the end).

Todo

unicode check

30.101.3.29 void Fl_Text_Buffer::insert_column (int column, int startPos, const char ∗ text, int ∗
charsInserted, int ∗ charsDeleted)

Insert s columnwise into buffer starting at displayed character position column on the line beginning at
startPos.

Opens a rectangular space the width and height of s, by moving all text to the right of column right. If
charsInserted and charsDeleted are not NULL, the number of characters inserted and deleted in
the operation (beginning at startPos) are returned in these arguments.

Todo

unicode check

30.101.3.30 void Fl_Text_Buffer::insert_column_ (int column, int startPos, const char ∗ insText,
int ∗ nDeleted, int ∗ nInserted, int ∗ endPos) [protected]

Inserts a column of text without calling the modify callbacks.

Note that in some pathological cases, inserting can actually decrease the size of the buffer because of
spaces being coalesced into tabs. nDeleted and nInserted return the number of characters deleted
and inserted beginning at the start of the line containing startPos. endPos returns buffer position of
the lower left edge of the inserted column (as a hint for routines which need to set a cursor position).

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

742 Class Documentation

30.101.3.31 int Fl_Text_Buffer::insertfile (const char ∗ file, int pos, int buflen = 128∗1024)

Inserts a file at the specified position.

Returns 0 on success, non-zero on error (strerror() contains reason). 1 indicates open for read failed (no
data loaded). 2 indicates error occurred while reading data (data was partially loaded).

Todo

unicode check

30.101.3.32 int Fl_Text_Buffer::length () const [inline]

Returns the number of bytes in the buffer.

Returns:

size of text in bytes

30.101.3.33 int Fl_Text_Buffer::line_end (int pos) const

Finds and returns the position of the end of the line containing position pos (which is either a pointer to
the newline character ending the line, or a pointer to one character beyond the end of the buffer).

Todo

unicode check

30.101.3.34 int Fl_Text_Buffer::line_start (int pos) const

Returns the position of the start of the line containing position pos.

Todo

unicode check

30.101.3.35 char ∗ Fl_Text_Buffer::line_text (int pos) const

Returns the text from the entire line containing the specified character position.

When you are done with the text, free it using the free() function.

Todo

unicode check

30.101.3.36 int Fl_Text_Buffer::loadfile (const char ∗ file, int buflen = 128∗1024) [inline]

Loads a text file into the buffer.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 743

30.101.3.37 void Fl_Text_Buffer::move_gap (int pos) [protected]

Todo

unicode check

30.101.3.38 int Fl_Text_Buffer::outputfile (const char ∗ file, int start, int end, int buflen =
128∗1024)

Writes the specified portions of the file to a file.

Returns 0 on success, non-zero on error (strerror() contains reason). 1 indicates open for write failed (no
data saved). 2 indicates error occurred while writing data (data was partially saved).

Todo

unicode check

30.101.3.39 void Fl_Text_Buffer::overlay_rectangular (int startPos, int rectStart, int rectEnd,
const char ∗ text, int ∗ charsInserted, int ∗ charsDeleted)

Overlay text between displayed character positions rectStart and rectEnd on the line beginning
at startPos.

If charsInserted and charsDeleted are not NULL, the number of characters inserted and deleted
in the operation (beginning at startPos) are returned in these arguments.

Todo

unicode check

30.101.3.40 void Fl_Text_Buffer::overlay_rectangular_ (int startPos, int rectStart, int rectEnd,
const char ∗ insText, int ∗ nDeleted, int ∗ nInserted, int ∗ endPos) [protected]

Overlay a rectangular area of text without calling the modify callbacks.

nDeleted and nInserted return the number of characters deleted and inserted beginning at the start
of the line containing startPos. endPos returns buffer position of the lower left edge of the inserted
column (as a hint for routines which need to set a cursor position).

Todo

unicode check

30.101.3.41 void Fl_Text_Buffer::reallocate_with_gap (int newGapStart, int newGapLen)
[protected]

Reallocates the text storage in the buffer to have a gap starting at newGapStart and a gap size of
newGapLen, preserving the buffer’s current contents.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

744 Class Documentation

30.101.3.42 void Fl_Text_Buffer::rectangular_selection_boundaries (int lineStartPos, int rectStart,
int rectEnd, int ∗ selStart, int ∗ selEnd) const [protected]

Finds the first and last character position in a line within a rectangular selection (for copying).

Includes tabs which cross rectStart, but not control characters which do so. Leaves off tabs which cross
rectEnd.

Technically, the calling routine should convert tab characters which cross the right boundary of the selection
to spaces which line up with the edge of the selection. Unfortunately, the additional memory management
required in the parent routine to allow for the changes in string size is not worth all the extra work just for
a couple of shifted characters, so if a tab protrudes, just lop it off and hope that there are other characters
in the selection to establish the right margin for subsequent columnar pastes of this data.

Todo

unicode check

30.101.3.43 void Fl_Text_Buffer::redisplay_selection (Fl_Text_Selection ∗ oldSelection,
Fl_Text_Selection ∗ newSelection) const [protected]

Calls the stored redisplay procedure(s) for this buffer to update the screen for a change in a selection.

Todo

unicode check

30.101.3.44 void Fl_Text_Buffer::remove (int start, int end)

Deletes a range of characters in the buffer.

Parameters:

start byte offset to first character to be removed
end byte offset to charcatre after last character to be removed

30.101.3.45 void Fl_Text_Buffer::remove_ (int start, int end) [protected]

Internal (non-redisplaying) version of BufRemove.

Removes the contents of the buffer between start and end (and moves the gap to the site of the delete).

Todo

unicode check

30.101.3.46 void Fl_Text_Buffer::remove_modify_callback (Fl_Text_Modify_Cb bufModifiedCB,
void ∗ cbArg)

Removes a modify callback.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 745

30.101.3.47 void Fl_Text_Buffer::remove_predelete_callback (Fl_Text_Predelete_Cb predelCB,
void ∗ cbArg)

Removes a callback routine bufPreDeleteCB associated with argument cbArg to be called before text
is deleted from the buffer.

Todo

unicode check

30.101.3.48 void Fl_Text_Buffer::remove_rectangular (int start, int end, int rectStart, int rectEnd)

Removes a rectangular swath of characters between character positions start and end and horizontal
displayed-character offsets rectStart and rectEnd.

Todo

unicode check

30.101.3.49 void Fl_Text_Buffer::remove_rectangular_ (int start, int end, int rectStart, int
rectEnd, int ∗ replaceLen, int ∗ endPos) [protected]

Deletes a rectangle of text without calling the modify callbacks.

Returns the number of characters replacing those between start and end. Note that in some pathological
cases, deleting can actually increase the size of the buffer because of tab expansions. endPos returns the
buffer position of the point in the last line where the text was removed (as a hint for routines which need to
position the cursor after a delete operation)

Todo

unicode check

30.101.3.50 void Fl_Text_Buffer::remove_secondary_selection ()

Removes the text from the buffer corresponding to the secondary text selection object.

Todo

unicode check

30.101.3.51 void Fl_Text_Buffer::remove_selection ()

Removes the text in the primary selection.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

746 Class Documentation

30.101.3.52 void Fl_Text_Buffer::remove_selection_ (Fl_Text_Selection ∗ sel) [protected]

Removes the text from the buffer corresponding to sel.

Todo

unicode check

30.101.3.53 void Fl_Text_Buffer::replace (int start, int end, const char ∗ text)

Deletes the characters between start and end, and inserts the null-terminated string text in their place
in the buffer.

Parameters:

start byte offset to first character to be removed and new insert position

end byte offset to charcatre after last character to be removed

text utf-8 encoded and nul terminated text

30.101.3.54 void Fl_Text_Buffer::replace_rectangular (int start, int end, int rectStart, int rectEnd,
const char ∗ text)

Replaces a rectangular area in the buffer, given by start, end, rectStart, and rectEnd, with text.

If text is vertically longer than the rectangle, add extra lines to make room for it.

Todo

unicode check

30.101.3.55 void Fl_Text_Buffer::replace_secondary_selection (const char ∗ text)

Replaces the text from the buffer corresponding to the secondary text selection object with the new string
text.

Todo

unicode check

30.101.3.56 void Fl_Text_Buffer::replace_selection (const char ∗ text)

Replaces the text in the primary selection.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 747

30.101.3.57 void Fl_Text_Buffer::replace_selection_ (Fl_Text_Selection ∗ sel, const char ∗ text)
[protected]

Replaces the text in selection sel.

Todo

unicode check

30.101.3.58 int Fl_Text_Buffer::rewind_lines (int startPos, int nLines)

Finds and returns the position of the first character of the line nLines backwards from startPos (not
counting the character pointed to by startpos if that is a newline) in the buffer.

nLines == 0 means find the beginning of the line

Todo

unicode check

30.101.3.59 int Fl_Text_Buffer::savefile (const char ∗ file, int buflen = 128∗1024) [inline]

Saves a text file from the current buffer.

Todo

unicode check

30.101.3.60 int Fl_Text_Buffer::search_backward (int startPos, const char ∗ searchString, int ∗
foundPos, int matchCase = 0) const

Search backwards in buffer for string searchCharssearchString, starting with the character BEFORE
startPos, returning the result in foundPos returns 1 if found, 0 if not.

Todo

unicode check

30.101.3.61 int Fl_Text_Buffer::search_forward (int startPos, const char ∗ searchString, int ∗
foundPos, int matchCase = 0) const

Search forwards in buffer for string searchString, starting with the character startPos, and return-
ing the result in foundPos returns 1 if found, 0 if not.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

748 Class Documentation

30.101.3.62 void Fl_Text_Buffer::secondary_select (int start, int end)

Selects a range of characters in the secondary selection.

Todo

unicode check

30.101.3.63 void Fl_Text_Buffer::secondary_select_rectangular (int start, int end, int rectStart,
int rectEnd)

Achieves a rectangular selection on the secondary text selection object.

Todo

unicode check

30.101.3.64 int Fl_Text_Buffer::secondary_selection_position (int ∗ start, int ∗ end, int ∗ isRect,
int ∗ rectStart, int ∗ rectEnd)

Returns the current selection in the secondary text selection object.

Todo

unicode check

30.101.3.65 int Fl_Text_Buffer::secondary_selection_position (int ∗ start, int ∗ end)

Returns the current selection in the secondary text selection object.

Todo

unicode check

30.101.3.66 char ∗ Fl_Text_Buffer::secondary_selection_text ()

Returns the text in the secondary selection.

When you are done with the text, free it using the free() function.

Todo

unicode check

30.101.3.67 void Fl_Text_Buffer::secondary_unselect ()

Clears any selection in the secondary text selection object.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 749

30.101.3.68 void Fl_Text_Buffer::select (int start, int end)

Selects a range of characters in the buffer.

Todo

unicode check

30.101.3.69 void Fl_Text_Buffer::select_rectangular (int start, int end, int rectStart, int rectEnd)

Achieves a rectangular selection on the primary text selection object.

Todo

unicode check

30.101.3.70 int Fl_Text_Buffer::selection_position (int ∗ start, int ∗ end, int ∗ isRect, int ∗
rectStart, int ∗ rectEnd)

Gets the selection position, and rectangular selection info.

Todo

unicode check

30.101.3.71 int Fl_Text_Buffer::selection_position (int ∗ start, int ∗ end)

Gets the selection position.

Todo

unicode check

30.101.3.72 char ∗ Fl_Text_Buffer::selection_text ()

Returns the currently selected text.

When you are done with the text, free it using the free() function.

Todo

unicode check

30.101.3.73 int Fl_Text_Buffer::skip_displayed_characters (int lineStartPos, int nChars)

Count forward from buffer position startPos in displayed characters (displayed characters are the char-
acters shown on the screen to represent characters in the buffer, where tabs and control characters are
expanded).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

750 Class Documentation

Parameters:

lineStartPos byte offset into buffer

nChars number of bytes that are sent to the display

Returns:

byte offset in input after all output bytes are sent

Todo

unicode check

30.101.3.74 int Fl_Text_Buffer::skip_lines (int startPos, int nLines)

Finds the first character of the line nLines forward from startPos in the buffer and returns its position.

Todo

unicode check

30.101.3.75 void Fl_Text_Buffer::tab_distance (int tabDist)

Set the hardware tab distance (width) used by all displays for this buffer, and used in computing offsets for
rectangular selection operations.

Todo

unicode check

30.101.3.76 int Fl_Text_Buffer::tab_distance () const [inline]

Gets the tab width.

Todo

unicode check

30.101.3.77 void Fl_Text_Buffer::text (const char ∗ text)

Replaces the entire contents of the text buffer.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 751

30.101.3.78 char ∗ Fl_Text_Buffer::text () const

Get a copy of the entire contents of the text buffer.

Memory is allocated to contain the returned string, which the caller must free.

Returns:

newly allocated text buffer - must be free’d

30.101.3.79 char ∗ Fl_Text_Buffer::text_in_rectangle (int start, int end, int rectStart, int rectEnd)
const

Returns the text from the given rectangle.

When you are done with the text, free it using the free() function.

Todo

unicode check

30.101.3.80 char ∗ Fl_Text_Buffer::text_range (int start, int end) const

Get a copy of a part of the text buffer.

Return a copy of the text between start and end character positions from text buffer buf. Positions
start at 0, and the range does not include the character pointed to by end. When you are done with the text,
free it using the free() function.

Parameters:

start byte offset to first character

end byte offset after last character in range

Returns:

newly allocated text buffer - must be free’d

30.101.3.81 int Fl_Text_Buffer::undo (int ∗ cp = 0)

Undo text modification according to the undo variables or insert text from the undo buffer.

Todo

unicode check

30.101.3.82 void Fl_Text_Buffer::unhighlight ()

Unhighlights text in the buffer.

Todo

unicode check

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

752 Class Documentation

30.101.3.83 void Fl_Text_Buffer::unselect ()

Cancels any previous selection on the primary text selection object.

Todo

unicode check

30.101.3.84 void Fl_Text_Buffer::update_selections (int pos, int nDeleted, int nInserted)
[protected]

Updates all of the selections in the buffer for changes in the buffer’s text.

Todo

unicode check

30.101.3.85 int Fl_Text_Buffer::word_end (int pos) const

Returns the position corresponding to the end of the word.

Todo

unicode check

30.101.3.86 int Fl_Text_Buffer::word_start (int pos) const

Returns the position corresponding to the start of the word.

Todo

unicode check

30.101.4 Member Data Documentation

30.101.4.1 Fl_Text_Modify_Cb∗ Fl_Text_Buffer::mModifyProcs [protected]

< procedures to call when buffer is

modified to redisplay contents

30.101.4.2 Fl_Text_Predelete_Cb∗ Fl_Text_Buffer::mPredeleteProcs [protected]

< procedure to call before text is deleted

from the buffer; at most one is supported.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.101 Fl_Text_Buffer Class Reference 753

30.101.4.3 int Fl_Text_Buffer::mTabDist [protected]

equiv.

number of characters in a tab

The documentation for this class was generated from the following files:

• Fl_Text_Buffer.H
• Fl_Text_Buffer.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

754 Class Documentation

30.102 Fl_Text_Display Class Reference

This is the FLTK text display widget.

#include <Fl_Text_Display.H>

Inheritance diagram for Fl_Text_Display::

Fl_Text_Display

Fl_Group

Fl_Widget

Fl_Text_Editor

Classes

• struct Style_Table_Entry
This structure associates the color,font,size of a string to draw with an attribute mask matching attr.

Public Types

• enum {

NORMAL_CURSOR, CARET_CURSOR, DIM_CURSOR, BLOCK_CURSOR,

HEAVY_CURSOR }
text display cursor shapes enumeration

• enum { CURSOR_POS, CHARACTER_POS }
• enum { DRAG_CHAR = 0, DRAG_WORD = 1, DRAG_LINE = 2 }

drag types- they match Fl::event_clicks() so that single clicking to start a collection selects by character,
double clicking selects by word and triple clicking selects by line.

• enum { ATTR_NONE = 0, ATTR_UNDERLINE = 1, ATTR_HIDDEN = 2 }
style attributes - currently not implemented!

• typedef void(∗ Unfinished_Style_Cb)(int, void ∗)

Public Member Functions

• Fl_Text_Buffer ∗ buffer () const
Gets the current text buffer associated with the text widget.

• void buffer (Fl_Text_Buffer &buf)
Sets or gets the current text buffer associated with the text widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 755

• void buffer (Fl_Text_Buffer ∗buf)
Attach a text buffer to display, replacing the current buffer (if any).

• int count_lines (int start, int end, bool start_pos_is_line_start) const
Same as BufCountLines, but takes in to account wrapping if wrapping is turned on.

• void cursor_color (Fl_Color n)
Sets or gets the text cursor color.

• Fl_Color cursor_color () const
Sets or gets the text cursor color.

• void cursor_style (int style)
Sets the text cursor style to one of the following:.

• Fl_Text_Display (int X, int Y, int W, int H, const char ∗l=0)
Creates a new text display widget.

• virtual int handle (int e)
Handles the specified event.

• void hide_cursor ()
Hides the text cursor.

• void highlight_data (Fl_Text_Buffer ∗styleBuffer, const Style_Table_Entry ∗styleTable, int nStyles,
char unfinishedStyle, Unfinished_Style_Cb unfinishedHighlightCB, void ∗cbArg)

Attach (or remove) highlight information in text display and redisplay.

• int in_selection (int x, int y) const
Return 1 if position (X, Y) is inside of the primary Fl_Text_Selection.

• void insert (const char ∗text)
Inserts "text" at the current cursor location.

• int insert_position () const
Gets the position of the text insertion cursor for text display.

• void insert_position (int newPos)
Sets the position of the text insertion cursor for text display.

• int line_end (int pos, bool start_pos_is_line_start) const
Same as BufEndOfLine, but takes in to account line breaks when wrapping is turned on.

• int line_start (int pos) const
Same as BufStartOfLine, but returns the character after last wrap point rather than the last newline.

• int move_down ()
Moves the current insert position down one line.

• int move_left ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

756 Class Documentation

Moves the current insert position left one character.

• int move_right ()
Moves the current insert position right one character.

• int move_up ()
Moves the current insert position up one line.

• void next_word (void)
Moves the current insert position right one word.

• void overstrike (const char ∗text)
Replaces text at the current insert position.

• int position_style (int lineStartPos, int lineLen, int lineIndex, int dispIndex) const
Determine the drawing method to use to draw a specific character from "buf".

• void previous_word (void)
Moves the current insert position left one word.

• void redisplay_range (int start, int end)
Marks text from start to end as needing a redraw.

• virtual void resize (int X, int Y, int W, int H)
Change the size of the displayed text area.

• int rewind_lines (int startPos, int nLines)
Same as BufCountBackwardNLines, but takes in to account line breaks when wrapping is turned on.

• void scroll (int topLineNum, int horizOffset)
Scrolls the current buffer to start at the specified line and column.

• void scrollbar_align (Fl_Align a)
Sets the scrollbar alignment type.

• Fl_Align scrollbar_align () const
Gets the scrollbar alignment type.

• void scrollbar_width (int W)
Sets or gets the width/height of the scrollbars.

• int scrollbar_width () const
Sets or gets the width/height of the scrollbars.

• void shortcut (int s)
• int shortcut () const
• void show_cursor (int b=1)

Shows the text cursor.

• void show_insert_position ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 757

Scrolls the text buffer to show the current insert position.

• int skip_lines (int startPos, int nLines, bool startPosIsLineStart)

Same as BufCountForwardNLines, but takes in to account line breaks when wrapping is turned on.

• void textcolor (Fl_Color n)

Sets the default color of text in the widget.

• Fl_Color textcolor () const

Gets the default color of text in the widget.

• void textfont (Fl_Font s)

Sets the default font used when drawing text in the widget.

• Fl_Font textfont () const

Gets the default font used when drawing text in the widget.

• void textsize (Fl_Fontsize s)

Sets the default size of text in the widget.

• Fl_Fontsize textsize () const

Gets the default size of text in the widget.

• int word_end (int pos) const

Moves the insert position to the end of the current word.

• int word_start (int pos) const

Moves the insert position to the beginning of the current word.

• void wrap_mode (int wrap, int wrap_margin)

If mode is not zero, this call enables automatic word wrapping at column pos.

• int wrapped_column (int row, int column) const

Correct a column number based on an unconstrained position (as returned by TextDXYToUnconstrained-
Position) to be relative to the last actual newline in the buffer before the row and column position given,
rather than the last line start created by line wrapping.

• int wrapped_row (int row) const

Correct a row number from an unconstrained position (as returned by TextDXYToUnconstrainedPosition)
to a straight number of newlines from the top line of the display.

• ∼Fl_Text_Display ()

Free a text display and release its associated memory.

Protected Member Functions

• void absolute_top_line_number (int oldFirstChar)

Re-calculate absolute top line number for a change in scroll position.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

758 Class Documentation

• void calc_last_char ()
Given a Fl_Text_Display with a complete, up-to-date lineStarts array, update the lastChar entry to point to
the last buffer position displayed.

• void calc_line_starts (int startLine, int endLine)
Scan through the text in the "textD"’s buffer and recalculate the line starts array values beginning at index
"startLine" and continuing through (including) "endLine".

• void clear_rect (int style, int x, int y, int width, int height)
Clear a rectangle with the appropriate background color for "style".

• void display_insert ()
Scroll the display to bring insertion cursor into view.

• virtual void draw ()
Draws the widget.

• void draw_cursor (int, int)
Draw a cursor with top center at X, y.

• void draw_line_numbers (bool clearAll)
Refresh the line number area.

• void draw_range (int start, int end)
Refresh all of the text between buffer positions "start" and "end" not including the character at the position
"end".

• void draw_string (int style, int x, int y, int toX, const char ∗string, int nChars)
Draw a string or blank area according to parameter "style", using the appropriate colors and drawing
method for that style, with top left corner at X, y.

• void draw_text (int X, int Y, int W, int H)
Refresh a rectangle of the text display.

• void draw_vline (int visLineNum, int leftClip, int rightClip, int leftCharIndex, int rightCharIndex)
Draw the text on a single line represented by "visLineNum" (the number of lines down from the top of the dis-
play), limited by "leftClip" and "rightClip" window coordinates and "leftCharIndex" and "rightCharIndex"
character positions (not including the character at position "rightCharIndex").

• int empty_vlines () const
Return true if there are lines visible with no corresponding buffer text.

• void extend_range_for_styles (int ∗start, int ∗end)
Extend the range of a redraw request (from ∗start to ∗end) with additional redraw requests resulting from
changes to the attached style buffer (which contains auxiliary information for coloring or styling text).

• void find_line_end (int pos, bool start_pos_is_line_start, int ∗lineEnd, int ∗nextLineStart) const
Finds both the end of the current line and the start of the next line.

• void find_wrap_range (const char ∗deletedText, int pos, int nInserted, int nDeleted, int
∗modRangeStart, int ∗modRangeEnd, int ∗linesInserted, int ∗linesDeleted)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 759

When continuous wrap is on, and the user inserts or deletes characters, wrapping can happen before and
beyond the changed position.

• int get_absolute_top_line_number () const
Returns the absolute (non-wrapped) line number of the first line displayed.

• int longest_vline () const
• void maintain_absolute_top_line_number (int state)

In continuous wrap mode, internal line numbers are calculated after wrapping.

• int maintaining_absolute_top_line_number () const
Return true if a separate absolute top line number is being maintained (for displaying line numbers or
showing in the statistics line).

• void measure_deleted_lines (int pos, int nDeleted)
This is a stripped-down version of the findWrapRange() function above, intended to be used to calculate the
number of "deleted" lines during a buffer modification.

• int measure_proportional_character (char c, int colNum, int pos) const
Measure the width in pixels of a character "c" at a particular column "colNum" and buffer position "pos".

• int measure_vline (int visLineNum) const
Return the width in pixels of the displayed line pointed to by "visLineNum".

• void offset_line_starts (int newTopLineNum)
Offset the line starts array, mTopLineNum, mFirstChar and lastChar, for a new vertical scroll position given
by newTopLineNum.

• int position_to_line (int pos, int ∗lineNum) const
Find the line number of position "pos" relative to the first line of displayed text.

• int position_to_linecol (int pos, int ∗lineNum, int ∗column) const
Find the line number of position "pos".

• int position_to_xy (int pos, int ∗x, int ∗y) const
Translate a buffer text position to the XY location where the top left of the cursor would be positioned to
point to that character.

• int range_touches_selection (const Fl_Text_Selection ∗sel, int rangeStart, int rangeEnd) const
Return true if the selection "sel" is rectangular, and touches a buffer position withing "rangeStart" to
"rangeEnd".

• void reset_absolute_top_line_number ()
Count lines from the beginning of the buffer to reestablish the absolute (non-wrapped) top line number.

• void scroll_ (int topLineNum, int horizOffset)
• int string_width (const char ∗string, int length, int style) const

Find the width of a string in the font of a particular style.

• void update_h_scrollbar ()
Update the minimum, maximum, slider size, page increment, and value for the horizontal scroll bar.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

760 Class Documentation

• void update_line_starts (int pos, int charsInserted, int charsDeleted, int linesInserted, int lines-
Deleted, int ∗scrolled)

Update the line starts array, mTopLineNum, mFirstChar and lastChar for text display "textD" after a modi-
fication to the text buffer, given by the position where the change began "pos", and the nmubers of characters
and lines inserted and deleted.

• void update_v_scrollbar ()

Update the minimum, maximum, slider size, page increment, and value for vertical scroll bar.

• int vline_length (int visLineNum) const

Return the length of a line (number of displayable characters) by examining entries in the line starts array
rather than by scanning for newlines.

• int wrap_uses_character (int lineEndPos) const

Line breaks in continuous wrap mode usually happen at newlines or whitespace.

• void wrapped_line_counter (Fl_Text_Buffer ∗buf, int startPos, int maxPos, int maxLines, bool start-
PosIsLineStart, int styleBufOffset, int ∗retPos, int ∗retLines, int ∗retLineStart, int ∗retLineEnd, bool
countLastLineMissingNewLine=true) const

Count forward from startPos to either maxPos or maxLines (whichever is reached first), and return all
relevant positions and line count.

• int xy_to_position (int x, int y, int PosType=CHARACTER_POS) const

Translate window coordinates to the nearest (insert cursor or character cell) text position.

• void xy_to_rowcol (int x, int y, int ∗row, int ∗column, int PosType=CHARACTER_POS) const

Translate window coordinates to the nearest row and column number for positioning the cursor.

Static Protected Member Functions

• static void buffer_modified_cb (int pos, int nInserted, int nDeleted, int nRestyled, const char
∗deletedText, void ∗cbArg)

Callback attached to the text buffer to receive modification information.

• static void buffer_predelete_cb (int pos, int nDeleted, void ∗cbArg)

Callback attached to the text buffer to receive delete information before the modifications are actually made.

• static void h_scrollbar_cb (Fl_Scrollbar ∗w, Fl_Text_Display ∗d)
• static void scroll_timer_cb (void ∗)
• static void v_scrollbar_cb (Fl_Scrollbar ∗w, Fl_Text_Display ∗d)

Callbacks for drag or valueChanged on scroll bars.

Friends

• void fl_text_drag_me (int pos, Fl_Text_Display ∗d)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 761

30.102.1 Detailed Description

This is the FLTK text display widget.

It allows the user to view multiple lines of text and supports highlighting and scrolling. The buffer that is
displayed in the widget is managed by the Fl_Text_Buffer class.

30.102.2 Constructor & Destructor Documentation

30.102.2.1 Fl_Text_Display::Fl_Text_Display (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new text display widget.

30.102.2.2 Fl_Text_Display::∼Fl_Text_Display ()

Free a text display and release its associated memory.

Note, the text BUFFER that the text display displays is a separate entity and is not freed, nor are the style
buffer or style table.

30.102.3 Member Function Documentation

30.102.3.1 Fl_Text_Buffer∗ Fl_Text_Display::buffer () const [inline]

Gets the current text buffer associated with the text widget.

Multiple text widgets can be associated with the same text buffer.

30.102.3.2 void Fl_Text_Display::buffer (Fl_Text_Buffer & buf) [inline]

Sets or gets the current text buffer associated with the text widget.

Multiple text widgets can be associated with the same text buffer.

30.102.3.3 void Fl_Text_Display::calc_line_starts (int startLine, int endLine) [protected]

Scan through the text in the "textD"’s buffer and recalculate the line starts array values beginning at index
"startLine" and continuing through (including) "endLine".

It assumes that the line starts entry preceding "startLine" (or mFirstChar if startLine is 0) is good, and
re-counts newlines to fill in the requested entries. Out of range values for "startLine" and "endLine" are
acceptable.

30.102.3.4 int Fl_Text_Display::count_lines (int startPos, int endPos, bool startPosIsLineStart)
const

Same as BufCountLines, but takes in to account wrapping if wrapping is turned on.

If the caller knows that startPos is at a line start, it can pass "startPosIsLineStart" as True to make the call
more efficient by avoiding the additional step of scanning back to the last newline.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

762 Class Documentation

30.102.3.5 void Fl_Text_Display::cursor_color (Fl_Color n) [inline]

Sets or gets the text cursor color.

30.102.3.6 Fl_Color Fl_Text_Display::cursor_color () const [inline]

Sets or gets the text cursor color.

30.102.3.7 void Fl_Text_Display::cursor_style (int style)

Sets the text cursor style to one of the following:.

• Fl_Text_Display::NORMAL_CURSOR - Shows an I beam.

• Fl_Text_Display::CARET_CURSOR - Shows a caret under the text.

• Fl_Text_Display::DIM_CURSOR - Shows a dimmed I beam.

• Fl_Text_Display::BLOCK_CURSOR - Shows an unfilled box around the current character.

• Fl_Text_Display::HEAVY_CURSOR - Shows a thick I beam.

30.102.3.8 void Fl_Text_Display::display_insert () [protected]

Scroll the display to bring insertion cursor into view.

Note: it would be nice to be able to do this without counting lines twice (scroll_() counts them too) and/or
to count from the most efficient starting point, but the efficiency of this routine is not as important to the
overall performance of the text display.

30.102.3.9 void Fl_Text_Display::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

30.102.3.10 void Fl_Text_Display::draw_line_numbers (bool clearAll) [protected]

Refresh the line number area.

If clearAll is False, writes only over the character cell areas. Setting clearAll to True will clear out any stray
marks outside of the character cell area, which might have been left from before a resize or font change.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 763

30.102.3.11 void Fl_Text_Display::draw_range (int startpos, int endpos) [protected]

Refresh all of the text between buffer positions "start" and "end" not including the character at the position
"end".

If end points beyond the end of the buffer, refresh the whole display after pos, including blank lines which
are not technically part of any range of characters.

30.102.3.12 void Fl_Text_Display::draw_string (int style, int X, int Y, int toX, const char ∗ string,
int nChars) [protected]

Draw a string or blank area according to parameter "style", using the appropriate colors and drawing
method for that style, with top left corner at X, y.

If style says to draw text, use "string" as source of characters, and draw "nChars", if style is FILL, erase
rectangle where text would have drawn from X to toX and from Y to the maximum Y extent of the current
font(s).

30.102.3.13 void Fl_Text_Display::draw_text (int left, int top, int width, int height)
[protected]

Refresh a rectangle of the text display.

left and top are in coordinates of the text drawing window

30.102.3.14 void Fl_Text_Display::find_line_end (int startPos, bool startPosIsLineStart, int ∗
lineEnd, int ∗ nextLineStart) const [protected]

Finds both the end of the current line and the start of the next line.

Why? In continuous wrap mode, if you need to know both, figuring out one from the other can be expensive
or error prone. The problem comes when there’s a trailing space or tab just before the end of the buffer. To
translate an end of line value to or from the next lines start value, you need to know whether the trailing
space or tab is being used as a line break or just a normal character, and to find that out would otherwise
require counting all the way back to the beginning of the line.

30.102.3.15 void Fl_Text_Display::find_wrap_range (const char ∗ deletedText, int pos, int
nInserted, int nDeleted, int ∗ modRangeStart, int ∗ modRangeEnd, int ∗ linesInserted,
int ∗ linesDeleted) [protected]

When continuous wrap is on, and the user inserts or deletes characters, wrapping can happen before and
beyond the changed position.

This routine finds the extent of the changes, and counts the deleted and inserted lines over that range. It
also attempts to minimize the size of the range to what has to be counted and re-displayed, so the results
can be useful both for delimiting where the line starts need to be recalculated, and for deciding what part
of the text to redisplay.

30.102.3.16 int Fl_Text_Display::get_absolute_top_line_number () const [protected]

Returns the absolute (non-wrapped) line number of the first line displayed.

Returns 0 if the absolute top line number is not being maintained.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

764 Class Documentation

30.102.3.17 int Fl_Text_Display::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

Reimplemented in Fl_Text_Editor.

30.102.3.18 void Fl_Text_Display::highlight_data (Fl_Text_Buffer ∗ styleBuffer,
const Style_Table_Entry ∗ styleTable, int nStyles, char unfinishedStyle,
Unfinished_Style_Cb unfinishedHighlightCB, void ∗ cbArg)

Attach (or remove) highlight information in text display and redisplay.

Highlighting information consists of a style buffer which parallels the normal text buffer, but codes font
and color information for the display; a style table which translates style buffer codes (indexed by buffer
character - ’A’) into fonts and colors; and a callback mechanism for as-needed highlighting, triggered by a
style buffer entry of "unfinishedStyle". Style buffer can trigger additional redisplay during a normal buffer
modification if the buffer contains a primary Fl_Text_Selection (see extendRangeForStyleMods for more
information on this protocol).

Style buffers, tables and their associated memory are managed by the caller.

30.102.3.19 void Fl_Text_Display::insert (const char ∗ text)

Inserts "text" at the current cursor location.

This has the same effect as inserting the text into the buffer using BufInsert and then moving the insert
position after the newly inserted text, except that it’s optimized to do less redrawing.

30.102.3.20 int Fl_Text_Display::line_end (int pos, bool startPosIsLineStart) const

Same as BufEndOfLine, but takes in to account line breaks when wrapping is turned on.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 765

If the caller knows that startPos is at a line start, it can pass "startPosIsLineStart" as True to make the call
more efficient by avoiding the additional step of scanning back to the last newline.

Note that the definition of the end of a line is less clear when continuous wrap is on. With continuous
wrap off, it’s just a pointer to the newline that ends the line. When it’s on, it’s the character beyond the
last DISPLAYABLE character on the line, where a whitespace character which has been "converted" to
a newline for wrapping is not considered displayable. Also note that, a line can be wrapped at a non-
whitespace character if the line had no whitespace. In this case, this routine returns a pointer to the start of
the next line. This is also consistent with the model used by visLineLength.

30.102.3.21 void Fl_Text_Display::maintain_absolute_top_line_number (int state)
[protected]

In continuous wrap mode, internal line numbers are calculated after wrapping.

A separate non-wrapped line count is maintained when line numbering is turned on. There is some per-
formance cost to maintaining this line count, so normally absolute line numbers are not tracked if line
numbering is off. This routine allows callers to specify that they still want this line count maintained (for
use via TextDPosToLineAndCol). More specifically, this allows the line number reported in the statistics
line to be calibrated in absolute lines, rather than post-wrapped lines.

30.102.3.22 void Fl_Text_Display::measure_deleted_lines (int pos, int nDeleted) [protected]

This is a stripped-down version of the findWrapRange() function above, intended to be used to calculate
the number of "deleted" lines during a buffer modification.

It is called _before_ the modification takes place.

This function should only be called in continuous wrap mode with a non-fixed font width. In that case, it
is impossible to calculate the number of deleted lines, because the necessary style information is no longer
available _after_ the modification. In other cases, we can still perform the calculation afterwards (possibly
even more efficiently).

30.102.3.23 int Fl_Text_Display::measure_proportional_character (char c, int colNum, int pos)
const [protected]

Measure the width in pixels of a character "c" at a particular column "colNum" and buffer position "pos".

This is for measuring characters in proportional or mixed-width highlighting fonts.

A note about proportional and mixed-width fonts: the mixed width and proportional font code in nedit
does not get much use in general editing, because nedit doesn’t allow per-language-mode fonts, and editing
programs in a proportional font is usually a bad idea, so very few users would choose a proportional font as a
default. There are still probably mixed- width syntax highlighting cases where things don’t redraw properly
for insertion/deletion, though static display and wrapping and resizing should now be solid because they
are now used for online help display.

30.102.3.24 int Fl_Text_Display::move_down ()

Moves the current insert position down one line.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

766 Class Documentation

30.102.3.25 int Fl_Text_Display::move_left ()

Moves the current insert position left one character.

30.102.3.26 int Fl_Text_Display::move_right ()

Moves the current insert position right one character.

30.102.3.27 int Fl_Text_Display::move_up ()

Moves the current insert position up one line.

30.102.3.28 void Fl_Text_Display::next_word (void)

Moves the current insert position right one word.

30.102.3.29 void Fl_Text_Display::offset_line_starts (int newTopLineNum) [protected]

Offset the line starts array, mTopLineNum, mFirstChar and lastChar, for a new vertical scroll position given
by newTopLineNum.

If any currently displayed lines will still be visible, salvage the line starts values, otherwise, count lines
from the nearest known line start (start or end of buffer, or the closest value in the mLineStarts array)

30.102.3.30 void Fl_Text_Display::overstrike (const char ∗ text)

Replaces text at the current insert position.

30.102.3.31 int Fl_Text_Display::position_style (int lineStartPos, int lineLen, int lineIndex, int
dispIndex) const

Determine the drawing method to use to draw a specific character from "buf".

"lineStartPos" gives the character index where the line begins, "lineIndex", the number of characters past
the beginning of the line, and "dispIndex", the number of displayed characters past the beginning of the
line. Passing lineStartPos of -1 returns the drawing style for "no text".

Why not just: position_style(pos)? Because style applies to blank areas of the window beyond the text
boundaries, and because this routine must also decide whether a position is inside of a rectangular Fl_-
Text_Selection, and do so efficiently, without re-counting character positions from the start of the line.

Note that style is a somewhat incorrect name, drawing method would be more appropriate.

30.102.3.32 int Fl_Text_Display::position_to_line (int pos, int ∗ lineNum) const [protected]

Find the line number of position "pos" relative to the first line of displayed text.

Returns 0 if the line is not displayed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 767

30.102.3.33 int Fl_Text_Display::position_to_linecol (int pos, int ∗ lineNum, int ∗ column) const
[protected]

Find the line number of position "pos".

Note: this only works for displayed lines. If the line is not displayed, the function returns 0 (without the
mLineStarts array it could turn in to very long calculation involving scanning large amounts of text in the
buffer). If continuous wrap mode is on, returns the absolute line number (as opposed to the wrapped line
number which is used for scrolling).

30.102.3.34 int Fl_Text_Display::position_to_xy (int pos, int ∗ X, int ∗ Y) const [protected]

Translate a buffer text position to the XY location where the top left of the cursor would be positioned to
point to that character.

Returns 0 if the position is not displayed because it is VERTICALLY out of view. If the position is
horizontally out of view, returns the X coordinate where the position would be if it were visible.

30.102.3.35 void Fl_Text_Display::previous_word (void)

Moves the current insert position left one word.

30.102.3.36 void Fl_Text_Display::redisplay_range (int startpos, int endpos)

Marks text from start to end as needing a redraw.

30.102.3.37 void Fl_Text_Display::reset_absolute_top_line_number () [protected]

Count lines from the beginning of the buffer to reestablish the absolute (non-wrapped) top line number.

If mode is not continuous wrap, or the number is not being maintained, does nothing.

30.102.3.38 void Fl_Text_Display::scroll (int topLineNum, int horizOffset)

Scrolls the current buffer to start at the specified line and column.

30.102.3.39 void Fl_Text_Display::scrollbar_width (int W) [inline]

Sets or gets the width/height of the scrollbars.

30.102.3.40 int Fl_Text_Display::scrollbar_width () const [inline]

Sets or gets the width/height of the scrollbars.

30.102.3.41 void Fl_Text_Display::shortcut (int s) [inline]

Todo

FIXME : get set methods pointing on shortcut_ have no effects as shortcut_ is unused in this class and
derived!

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

768 Class Documentation

30.102.3.42 int Fl_Text_Display::shortcut () const [inline]

Todo

FIXME : get set methods pointing on shortcut_ have no effects as shortcut_ is unused in this class and
derived!

30.102.3.43 void Fl_Text_Display::show_insert_position ()

Scrolls the text buffer to show the current insert position.

30.102.3.44 int Fl_Text_Display::skip_lines (int startPos, int nLines, bool startPosIsLineStart)

Same as BufCountForwardNLines, but takes in to account line breaks when wrapping is turned on.

If the caller knows that startPos is at a line start, it can pass "startPosIsLineStart" as True to make the call
more efficient by avoiding the additional step of scanning back to the last newline.

30.102.3.45 void Fl_Text_Display::textcolor (Fl_Color n) [inline]

Sets the default color of text in the widget.

30.102.3.46 Fl_Color Fl_Text_Display::textcolor () const [inline]

Gets the default color of text in the widget.

30.102.3.47 void Fl_Text_Display::textfont (Fl_Font s) [inline]

Sets the default font used when drawing text in the widget.

30.102.3.48 Fl_Font Fl_Text_Display::textfont () const [inline]

Gets the default font used when drawing text in the widget.

30.102.3.49 void Fl_Text_Display::textsize (Fl_Fontsize s) [inline]

Sets the default size of text in the widget.

30.102.3.50 Fl_Fontsize Fl_Text_Display::textsize () const [inline]

Gets the default size of text in the widget.

30.102.3.51 int Fl_Text_Display::word_end (int pos) const [inline]

Moves the insert position to the end of the current word.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.102 Fl_Text_Display Class Reference 769

30.102.3.52 int Fl_Text_Display::word_start (int pos) const [inline]

Moves the insert position to the beginning of the current word.

30.102.3.53 void Fl_Text_Display::wrap_mode (int wrap, int wrapMargin)

If mode is not zero, this call enables automatic word wrapping at column pos.

Word-wrapping does not change the text buffer itself, only the way that the text is displayed.

30.102.3.54 int Fl_Text_Display::wrap_uses_character (int lineEndPos) const [protected]

Line breaks in continuous wrap mode usually happen at newlines or whitespace.

This line-terminating character is not included in line width measurements and has a special status as a non-
visible character. However, lines with no whitespace are wrapped without the benefit of a line terminating
character, and this distinction causes endless trouble with all of the text display code which was originally
written without continuous wrap mode and always expects to wrap at a newline character.

Given the position of the end of the line, as returned by TextDEndOfLine or BufEndOfLine, this returns
true if there is a line terminating character, and false if there’s not. On the last character in the buffer, this
function can’t tell for certain whether a trailing space was used as a wrap point, and just guesses that it
wasn’t. So if an exact accounting is necessary, don’t use this function.

30.102.3.55 int Fl_Text_Display::wrapped_column (int row, int column) const

Correct a column number based on an unconstrained position (as returned by TextDXYToUnconstrained-
Position) to be relative to the last actual newline in the buffer before the row and column position given,
rather than the last line start created by line wrapping.

This is an adapter for rectangular selections and code written before continuous wrap mode, which thinks
that the unconstrained column is the number of characters from the last newline. Obviously this is time
consuming, because it invloves character re-counting.

30.102.3.56 void Fl_Text_Display::wrapped_line_counter (Fl_Text_Buffer ∗ buf, int startPos, int
maxPos, int maxLines, bool startPosIsLineStart, int styleBufOffset, int ∗ retPos, int ∗
retLines, int ∗ retLineStart, int ∗ retLineEnd, bool countLastLineMissingNewLine =
true) const [protected]

Count forward from startPos to either maxPos or maxLines (whichever is reached first), and return all
relevant positions and line count.

The provided textBuffer may differ from the actual text buffer of the widget. In that case it must be a
(partial) copy of the actual text buffer and the styleBufOffset argument must indicate the starting position
of the copy, to take into account the correct style information.

Returned values:

retPos: Position where counting ended. When counting lines, the position returned is the start of the line
"maxLines" lines beyond "startPos". retLines: Number of line breaks counted retLineStart: Start of the
line where counting ended retLineEnd: End position of the last line traversed

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

770 Class Documentation

30.102.3.57 int Fl_Text_Display::wrapped_row (int row) const

Correct a row number from an unconstrained position (as returned by TextDXYToUnconstrainedPosition)
to a straight number of newlines from the top line of the display.

Because rectangular selections are based on newlines, rather than display wrapping, and anywhere a rect-
angular selection needs a row, it needs it in terms of un-wrapped lines.

30.102.3.58 int Fl_Text_Display::xy_to_position (int X, int Y, int posType = CHARACTER_POS)
const [protected]

Translate window coordinates to the nearest (insert cursor or character cell) text position.

The parameter posType specifies how to interpret the position: CURSOR_POS means translate the coor-
dinates to the nearest cursor position, and CHARACTER_POS means return the position of the character
closest to (X, Y).

30.102.3.59 void Fl_Text_Display::xy_to_rowcol (int X, int Y, int ∗ row, int ∗ column, int posType
= CHARACTER_POS) const [protected]

Translate window coordinates to the nearest row and column number for positioning the cursor.

This, of course, makes no sense when the font is proportional, since there are no absolute columns. The
parameter posType specifies how to interpret the position: CURSOR_POS means translate the coordinates
to the nearest position between characters, and CHARACTER_POS means translate the position to the
nearest character cell.

The documentation for this class was generated from the following files:

• Fl_Text_Display.H
• Fl_Text_Display.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.103 Fl_Text_Display::Style_Table_Entry Struct Reference 771

30.103 Fl_Text_Display::Style_Table_Entry Struct Reference

This structure associates the color,font,size of a string to draw with an attribute mask matching attr.

#include <Fl_Text_Display.H>

Public Attributes

• unsigned attr
• Fl_Color color
• Fl_Font font
• int size

30.103.1 Detailed Description

This structure associates the color,font,size of a string to draw with an attribute mask matching attr.

The documentation for this struct was generated from the following file:

• Fl_Text_Display.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

772 Class Documentation

30.104 Fl_Text_Editor Class Reference

This is the FLTK text editor widget.

#include <Fl_Text_Editor.H>

Inheritance diagram for Fl_Text_Editor::

Fl_Text_Editor

Fl_Text_Display

Fl_Group

Fl_Widget

Classes

• struct Key_Binding
Simple linked list associating a key/state to a function.

Public Types

• typedef int(∗ Key_Func)(int key, Fl_Text_Editor ∗editor)
Key function binding callback type.

Public Member Functions

• void add_default_key_bindings (Key_Binding ∗∗list)
Adds all of the default editor key bindings to the specified key binding list.

• void add_key_binding (int key, int state, Key_Func f)
Adds a key of state "state" with the function "function".

• void add_key_binding (int key, int state, Key_Func f, Key_Binding ∗∗list)
Adds a key of state "state" with the function "function".

• Key_Func bound_key_function (int key, int state)
Returns the function associated with a key binding.

• Key_Func bound_key_function (int key, int state, Key_Binding ∗list)
Returns the function associated with a key binding.

• void default_key_function (Key_Func f)
Sets the default key function for unassigned keys.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.104 Fl_Text_Editor Class Reference 773

• Fl_Text_Editor (int X, int Y, int W, int H, const char ∗l=0)

The constructor creates a new text editor widget.

• virtual int handle (int e)

Handles the specified event.

• int insert_mode ()

Gets the current insert mode; if non-zero, new text is inserted before the current cursor position.

• void insert_mode (int b)

Sets the current insert mode; if non-zero, new text is inserted before the current cursor position.

• void remove_all_key_bindings ()

Removes all of the key bindings associated with the text editor or list.

• void remove_all_key_bindings (Key_Binding ∗∗list)

Removes all of the key bindings associated with the text editor or list.

• void remove_key_binding (int key, int state)

Removes the key binding associated with the key "key" of state "state".

• void remove_key_binding (int key, int state, Key_Binding ∗∗list)

Removes the key binding associated with the key "key" of state "state".

Static Public Member Functions

• static int kf_backspace (int c, Fl_Text_Editor ∗e)

Does a backspace in the current buffer.

• static int kf_c_s_move (int c, Fl_Text_Editor ∗e)

Extends the current selection in the direction indicated by control key c.

• static int kf_copy (int c, Fl_Text_Editor ∗e)

Does a copy of selected text or the current character in the current buffer.

• static int kf_ctrl_move (int c, Fl_Text_Editor ∗e)

Moves the current text cursor in the direction indicated by control key.

• static int kf_cut (int c, Fl_Text_Editor ∗e)

Does a cut of selected text in the current buffer.

• static int kf_default (int c, Fl_Text_Editor ∗e)

Inserts the text associated with the key.

• static int kf_delete (int c, Fl_Text_Editor ∗e)

Does a delete of selected text or the current character in the current buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

774 Class Documentation

• static int kf_down (int c, Fl_Text_Editor ∗e)
Moves the text cursor one line down.

• static int kf_end (int c, Fl_Text_Editor ∗e)
Moves the text cursor to the end of the current line.

• static int kf_enter (int c, Fl_Text_Editor ∗e)
Inserts a newline at the current cursor position.

• static int kf_home (int, Fl_Text_Editor ∗e)
Moves the text cursor to the beginning of the current line.

• static int kf_ignore (int c, Fl_Text_Editor ∗e)
Ignores the keypress.

• static int kf_insert (int c, Fl_Text_Editor ∗e)
Toggles the insert mode in the text editor.

• static int kf_left (int c, Fl_Text_Editor ∗e)
Moves the text cursor one character to the left.

• static int kf_m_s_move (int c, Fl_Text_Editor ∗e)
Extends the current selection in the direction indicated by meta key c.

• static int kf_meta_move (int c, Fl_Text_Editor ∗e)
Moves the current text cursor in the direction indicated by meta key.

• static int kf_move (int c, Fl_Text_Editor ∗e)
Moves the text cursor in the direction indicated by key c.

• static int kf_page_down (int c, Fl_Text_Editor ∗e)
Moves the text cursor down one page.

• static int kf_page_up (int c, Fl_Text_Editor ∗e)
Moves the text cursor up one page.

• static int kf_paste (int c, Fl_Text_Editor ∗e)
Does a paste of selected text in the current buffer.

• static int kf_right (int c, Fl_Text_Editor ∗e)
Moves the text cursor one character to the right.

• static int kf_select_all (int c, Fl_Text_Editor ∗e)
Selects all text in the current buffer.

• static int kf_shift_move (int c, Fl_Text_Editor ∗e)
Extends the current selection in the direction of key c.

• static int kf_undo (int c, Fl_Text_Editor ∗e)
Undo last edit in the current buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.104 Fl_Text_Editor Class Reference 775

• static int kf_up (int c, Fl_Text_Editor ∗e)

Moves the text cursor one line up.

Protected Member Functions

• int handle_key ()

Handles a key press in the editor.

• void maybe_do_callback ()

does or does not a callback according to changed() and when() settings

30.104.1 Detailed Description

This is the FLTK text editor widget.

It allows the user to edit multiple lines of text and supports highlighting and scrolling. The buffer that is
displayed in the widget is managed by the Fl_Text_Buffer class.

30.104.2 Constructor & Destructor Documentation

30.104.2.1 Fl_Text_Editor::Fl_Text_Editor (int X, int Y, int W, int H, const char ∗ l = 0)

The constructor creates a new text editor widget.

30.104.3 Member Function Documentation

30.104.3.1 void Fl_Text_Editor::add_default_key_bindings (Key_Binding ∗∗ list)

Adds all of the default editor key bindings to the specified key binding list.

30.104.3.2 Key_Func Fl_Text_Editor::bound_key_function (int key, int state) [inline]

Returns the function associated with a key binding.

30.104.3.3 Fl_Text_Editor::Key_Func Fl_Text_Editor::bound_key_function (int key, int state,
Key_Binding ∗ list)

Returns the function associated with a key binding.

30.104.3.4 void Fl_Text_Editor::default_key_function (Key_Func f) [inline]

Sets the default key function for unassigned keys.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

776 Class Documentation

30.104.3.5 int Fl_Text_Editor::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Text_Display.

30.104.3.6 int Fl_Text_Editor::insert_mode () [inline]

Gets the current insert mode; if non-zero, new text is inserted before the current cursor position.

Otherwise, new text replaces text at the current cursor position.

30.104.3.7 void Fl_Text_Editor::insert_mode (int b) [inline]

Sets the current insert mode; if non-zero, new text is inserted before the current cursor position.

Otherwise, new text replaces text at the current cursor position.

30.104.3.8 int Fl_Text_Editor::kf_backspace (int c, Fl_Text_Editor ∗ e) [static]

Does a backspace in the current buffer.

30.104.3.9 int Fl_Text_Editor::kf_c_s_move (int c, Fl_Text_Editor ∗ e) [static]

Extends the current selection in the direction indicated by control key c.

30.104.3.10 int Fl_Text_Editor::kf_copy (int c, Fl_Text_Editor ∗ e) [static]

Does a copy of selected text or the current character in the current buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.104 Fl_Text_Editor Class Reference 777

30.104.3.11 int Fl_Text_Editor::kf_cut (int c, Fl_Text_Editor ∗ e) [static]

Does a cut of selected text in the current buffer.

30.104.3.12 int Fl_Text_Editor::kf_delete (int c, Fl_Text_Editor ∗ e) [static]

Does a delete of selected text or the current character in the current buffer.

30.104.3.13 int Fl_Text_Editor::kf_down (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one line down.

30.104.3.14 int Fl_Text_Editor::kf_end (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor to the end of the current line.

30.104.3.15 int Fl_Text_Editor::kf_home (int, Fl_Text_Editor ∗ e) [static]

Moves the text cursor to the beginning of the current line.

30.104.3.16 int Fl_Text_Editor::kf_insert (int c, Fl_Text_Editor ∗ e) [static]

Toggles the insert mode in the text editor.

30.104.3.17 int Fl_Text_Editor::kf_left (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one character to the left.

30.104.3.18 int Fl_Text_Editor::kf_m_s_move (int c, Fl_Text_Editor ∗ e) [static]

Extends the current selection in the direction indicated by meta key c.

30.104.3.19 int Fl_Text_Editor::kf_move (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor in the direction indicated by key c.

30.104.3.20 int Fl_Text_Editor::kf_page_down (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor down one page.

30.104.3.21 int Fl_Text_Editor::kf_page_up (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor up one page.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

778 Class Documentation

30.104.3.22 int Fl_Text_Editor::kf_paste (int c, Fl_Text_Editor ∗ e) [static]

Does a paste of selected text in the current buffer.

30.104.3.23 int Fl_Text_Editor::kf_right (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one character to the right.

30.104.3.24 int Fl_Text_Editor::kf_select_all (int c, Fl_Text_Editor ∗ e) [static]

Selects all text in the current buffer.

30.104.3.25 int Fl_Text_Editor::kf_shift_move (int c, Fl_Text_Editor ∗ e) [static]

Extends the current selection in the direction of key c.

30.104.3.26 int Fl_Text_Editor::kf_undo (int c, Fl_Text_Editor ∗ e) [static]

Undo last edit in the current buffer.

Also deselect previous selection.

30.104.3.27 int Fl_Text_Editor::kf_up (int c, Fl_Text_Editor ∗ e) [static]

Moves the text cursor one line up.

30.104.3.28 void Fl_Text_Editor::remove_all_key_bindings () [inline]

Removes all of the key bindings associated with the text editor or list.

30.104.3.29 void Fl_Text_Editor::remove_all_key_bindings (Key_Binding ∗∗ list)

Removes all of the key bindings associated with the text editor or list.

30.104.3.30 void Fl_Text_Editor::remove_key_binding (int key, int state) [inline]

Removes the key binding associated with the key "key" of state "state".

The documentation for this class was generated from the following files:

• Fl_Text_Editor.H
• Fl_Text_Editor.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.105 Fl_Text_Editor::Key_Binding Struct Reference 779

30.105 Fl_Text_Editor::Key_Binding Struct Reference

Simple linked list associating a key/state to a function.

#include <Fl_Text_Editor.H>

Public Attributes

• Key_Func function
associated function

• int key
the key pressed

• Key_Binding ∗ next
next key binding in the list

• int state
the state of key modifiers

30.105.1 Detailed Description

Simple linked list associating a key/state to a function.

The documentation for this struct was generated from the following file:

• Fl_Text_Editor.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

780 Class Documentation

30.106 Fl_Text_Selection Class Reference

This is an internal class for Fl_Text_Buffer to manage text selections.

#include <Fl_Text_Buffer.H>

Public Member Functions

• int end () const

Return the byte ofsset to the character after the last selected character.

• int includes (int pos, int lineStartPos, int dispIndex) const

Return true if position pos with indentation dispIndex is in the Fl_Text_Selection.

• int position (int ∗start, int ∗end, int ∗isRect, int ∗rectStart, int ∗rectEnd) const

Return the positions of this rectangular selection.

• int position (int ∗start, int ∗end) const

Return the positions of this selection.

• int rect_end () const

Return the last column of the rectangular selection + 1.

• int rect_start () const

Return the first column of the rectangular selection.

• char rectangular () const

Returns true if the selection is rectangular.

• void selected (char b)

Modify the ’selected’ flag.

• char selected () const

Returns true if any text is selected.

• void set (int start, int end)

Set the selection range.

• void set_rectangular (int start, int end, int rectStart, int rectEnd)

Set a regtangular selection range.

• int start () const

Return the byte offset to the first selected character.

• void update (int pos, int nDeleted, int nInserted)

Updates a selection afer text was modified.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.106 Fl_Text_Selection Class Reference 781

Protected Attributes

• int mEnd
byte offset to the character after the last selected character

• char mRectangular
this flag is set if the selection is rectangular

• int mRectEnd
last selected column +1 (see "column")

• int mRectStart
first selected column (see "column")

• char mSelected
this flag is set if any text is selected

• int mStart
byte offset to the first selected character

Friends

• class Fl_Text_Buffer

30.106.1 Detailed Description

This is an internal class for Fl_Text_Buffer to manage text selections.

This class works correctly with utf-8 strings assuming that the parameters for all calls are on character
boundaries.

30.106.2 Member Function Documentation

30.106.2.1 int Fl_Text_Selection::end () const [inline]

Return the byte ofsset to the character after the last selected character.

Returns:

byte offset

30.106.2.2 int Fl_Text_Selection::position (int ∗ start, int ∗ end, int ∗ isRect, int ∗ rectStart, int ∗
rectEnd) const

Return the positions of this rectangular selection.

Parameters:

start return byte offset to first selected character

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

782 Class Documentation

end return byte offset pointing after last selected character

isRect return if the selection is rectangular

rectStart return first selected column

rectEnd return last selected column +1

Returns:

true if selected

30.106.2.3 int Fl_Text_Selection::position (int ∗ start, int ∗ end) const

Return the positions of this selection.

Parameters:

start retrun byte offset to first selected character

end retrun byte offset pointing after last selected character

Returns:

true if selected

30.106.2.4 int Fl_Text_Selection::rect_end () const [inline]

Return the last column of the rectangular selection + 1.

Returns:

last column of rectangular selection +1

30.106.2.5 int Fl_Text_Selection::rect_start () const [inline]

Return the first column of the rectangular selection.

Returns:

first column of rectangular selection

30.106.2.6 char Fl_Text_Selection::rectangular () const [inline]

Returns true if the selection is rectangular.

Returns:

flag

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.106 Fl_Text_Selection Class Reference 783

30.106.2.7 void Fl_Text_Selection::selected (char b) [inline]

Modify the ’selected’ flag.

Parameters:

b new flag

30.106.2.8 char Fl_Text_Selection::selected () const [inline]

Returns true if any text is selected.

Returns:

a non-zero number if any text has been selected, or 0 if no text is selected.

30.106.2.9 void Fl_Text_Selection::set (int start, int end)

Set the selection range.

Parameters:

start byte offset to first selected character

end byte offset pointing after last selected character

30.106.2.10 void Fl_Text_Selection::set_rectangular (int start, int end, int rectStart, int rectEnd)

Set a regtangular selection range.

Parameters:

start byte offset to first selected character

end byte offset pointing after last selected character

rectStart first selected column

rectEnd last selected column +1

30.106.2.11 int Fl_Text_Selection::start () const [inline]

Return the byte offset to the first selected character.

Returns:

byte offset

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

784 Class Documentation

30.106.2.12 void Fl_Text_Selection::update (int pos, int nDeleted, int nInserted)

Updates a selection afer text was modified.

Updates an individual selection for changes in the corresponding text

Parameters:

pos byte offset into text buffer at which the change occured

nDeleted number of bytes deleted from the buffer

nInserted number of bytes inserted into the buffer

The documentation for this class was generated from the following files:

• Fl_Text_Buffer.H
• Fl_Text_Buffer.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.107 Fl_Tile Class Reference 785

30.107 Fl_Tile Class Reference

The Fl_Tile class lets you resize the children by dragging the border between them:.

#include <Fl_Tile.H>

Inheritance diagram for Fl_Tile::

Fl_Tile

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Tile (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Tile widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void position (int, int, int, int)
Drag the intersection at from_x,from_y to to_x,to_y.

• void resize (int, int, int, int)
Resizes the Fl_Group widget and all of its children.

30.107.1 Detailed Description

The Fl_Tile class lets you resize the children by dragging the border between them:.

Figure 30.31: Fl_Tile

For the tiling to work correctly, the children of an Fl_Tile must cover the entire area of the widget, but not
overlap. This means that all children must touch each other at their edges, and no gaps can’t be left inside
the Fl_Tile.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

786 Class Documentation

Fl_Tile does not normailly draw any graphics of its own. The "borders" which can be seen in the snapshot
above are actually part of the children. Their boxtypes have been set to FL_DOWN_BOX creating the
impression of "ridges" where the boxes touch. What you see are actually two adjacent FL_DOWN_BOX’s
drawn next to each other. All neighboring widgets share the same edge - the widget’s thick borders make
it appear as though the widgets aren’t actually touching, but they are. If the edges of adjacent widgets do
not touch, then it will be impossible to drag the corresponding edges.

Fl_Tile allows objects to be resized to zero dimensions. To prevent this you can use the resizable() to limit
where corners can be dragged to.

Even though objects can be resized to zero sizes, they must initially have non-zero sizes so the Fl_Tile
can figure out their layout. If desired, call position() after creating the children but before displaying the
window to set the borders where you want.

Note on resizable(Fl_Widget &w) : The "resizable" child widget (which should be invisible) limits where
the border can be dragged to. If you don’t set it, it will be possible to drag the borders right to the edge, and
thus resize objects on the edge to zero width or height. The resizable() widget is not resized by dragging
any borders. See also void Fl_Group::resizable(Fl_Widget &w)

30.107.2 Constructor & Destructor Documentation

30.107.2.1 Fl_Tile::Fl_Tile (int X, int Y, int W, int H, const char ∗ l = 0) [inline]

Creates a new Fl_Tile widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having
to keep a pointer to all the children in the user code. A kludge has been done so the Fl_Tile and all of it’s
children can be automatic (local) variables, but you must declare the Fl_Tile first, so that it is destroyed
last.

30.107.3 Member Function Documentation

30.107.3.1 int Fl_Tile::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.107 Fl_Tile Class Reference 787

See also:

Fl_Event

Reimplemented from Fl_Group.

30.107.3.2 void Fl_Tile::position (int oix, int oiy, int newx, int newy)

Drag the intersection at from_x,from_y to to_x,to_y.

This redraws all the necessary children.

30.107.3.3 void Fl_Tile::resize (int X, int Y, int W, int H) [virtual]

Resizes the Fl_Group widget and all of its children.

The Fl_Group widget first resizes itself, and then it moves and resizes all its children according to the rules
documented for Fl_Group::resizable(Fl_Widget∗)

See also:

Fl_Group::resizable(Fl_Widget∗)
Fl_Group::resizable()
Fl_Widget::resize(int,int,int,int)

Reimplemented from Fl_Group.

The documentation for this class was generated from the following files:

• Fl_Tile.H
• Fl_Tile.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

788 Class Documentation

30.108 Fl_Tiled_Image Class Reference

This class supports tiling of images over a specified area.

#include <Fl_Tiled_Image.H>

Inheritance diagram for Fl_Tiled_Image::

Fl_Tiled_Image

Fl_Image

Public Member Functions

• virtual void color_average (Fl_Color c, float i)

The color_average() method averages the colors in the image with the FLTK color value c.

• Fl_Image ∗ copy ()

The copy() method creates a copy of the specified image.

• virtual Fl_Image ∗ copy (int W, int H)

The copy() method creates a copy of the specified image.

• virtual void desaturate ()

The desaturate() method converts an image to grayscale.

• void draw (int X, int Y)

The draw() methods draw the image.

• virtual void draw (int X, int Y, int W, int H, int cx, int cy)

The draw() methods draw the image.

• Fl_Tiled_Image (Fl_Image ∗i, int W=0, int H=0)

The constructors create a new tiled image containing the specified image.

• Fl_Image ∗ image ()

Gets The image that is shared.

• virtual ∼Fl_Tiled_Image ()

The destructor frees all memory and server resources that are used by the tiled image.

Protected Attributes

• int alloc_image_
• Fl_Image ∗ image_

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.108 Fl_Tiled_Image Class Reference 789

30.108.1 Detailed Description

This class supports tiling of images over a specified area.

The source (tile) image is not copied unless you call the color_average(), desaturate(), or inactive() meth-
ods.

30.108.2 Constructor & Destructor Documentation

30.108.2.1 Fl_Tiled_Image::Fl_Tiled_Image (Fl_Image ∗ i, int W = 0, int H = 0)

The constructors create a new tiled image containing the specified image.

Use a width and height of 0 to tile the whole window/widget.

30.108.3 Member Function Documentation

30.108.3.1 void Fl_Tiled_Image::color_average (Fl_Color c, float i) [virtual]

The color_average() method averages the colors in the image with the FLTK color value c.

The i argument specifies the amount of the original image to combine with the color, so a value of 1.0
results in no color blend, and a value of 0.0 results in a constant image of the specified color. The original
image data is not altered by this method.

Reimplemented from Fl_Image.

30.108.3.2 Fl_Image∗ Fl_Tiled_Image::copy () [inline]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.108.3.3 Fl_Image ∗ Fl_Tiled_Image::copy (int W, int H) [virtual]

The copy() method creates a copy of the specified image.

If the width and height are provided, the image is resized to the specified size. The image should be deleted
(or in the case of Fl_Shared_Image, released) when you are done with it.

Reimplemented from Fl_Image.

30.108.3.4 void Fl_Tiled_Image::desaturate () [virtual]

The desaturate() method converts an image to grayscale.

If the image contains an alpha channel (depth = 4), the alpha channel is preserved. This method does not
alter the original image data.

Reimplemented from Fl_Image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

790 Class Documentation

30.108.3.5 void Fl_Tiled_Image::draw (int X, int Y) [inline]

The draw() methods draw the image.

This form specifies the upper-lefthand corner of the image

Reimplemented from Fl_Image.

30.108.3.6 void Fl_Tiled_Image::draw (int X, int Y, int W, int H, int cx, int cy) [virtual]

The draw() methods draw the image.

This form specifies a bounding box for the image, with the origin (upper-lefthand corner) of the image
offset by the cx and cy arguments.

Reimplemented from Fl_Image.

The documentation for this class was generated from the following files:

• Fl_Tiled_Image.H
• Fl_Tiled_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.109 Fl_Timer Class Reference 791

30.109 Fl_Timer Class Reference

This is provided only to emulate the Forms Timer widget.

#include <Fl_Timer.H>

Inheritance diagram for Fl_Timer::

Fl_Timer

Fl_Widget

Public Member Functions

• void direction (char d)

Gets or sets the direction of the timer.

• char direction () const

Gets or sets the direction of the timer.

• Fl_Timer (uchar t, int x, int y, int w, int h, const char ∗l)
Creates a new Fl_Timer widget using the given type, position, size, and label string.

• int handle (int)

Handles the specified event.

• void suspended (char d)

Gets or sets whether the timer is suspended.

• char suspended () const

Gets or sets whether the timer is suspended.

• double value () const

See void Fl_Timer::value(double).

• void value (double)

Sets the current timer value.

• ∼Fl_Timer ()

Destroys the timer and removes the timeout.

Protected Member Functions

• void draw ()

Draws the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

792 Class Documentation

30.109.1 Detailed Description

This is provided only to emulate the Forms Timer widget.

It works by making a timeout callback every 1/5 second. This is wasteful and inaccurate if you just want
something to happen a fixed time in the future. You should directly call Fl::add_timeout() instead.

30.109.2 Constructor & Destructor Documentation

30.109.2.1 Fl_Timer::Fl_Timer (uchar t, int X, int Y, int W, int H, const char ∗ l)

Creates a new Fl_Timer widget using the given type, position, size, and label string.

The type parameter can be any of the following symbolic constants:

• FL_NORMAL_TIMER - The timer just does the callback and displays the string "Timer" in the
widget.

• FL_VALUE_TIMER - The timer does the callback and displays the current timer value in the widget.

• FL_HIDDEN_TIMER - The timer just does the callback and does not display anything.

30.109.3 Member Function Documentation

30.109.3.1 void Fl_Timer::direction (char d) [inline]

Gets or sets the direction of the timer.

If the direction is zero then the timer will count up, otherwise it will count down from the initial value().

30.109.3.2 char Fl_Timer::direction () const [inline]

Gets or sets the direction of the timer.

If the direction is zero then the timer will count up, otherwise it will count down from the initial value().

30.109.3.3 void Fl_Timer::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.109 Fl_Timer Class Reference 793

30.109.3.4 int Fl_Timer::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.109.3.5 void Fl_Timer::suspended (char d)

Gets or sets whether the timer is suspended.

30.109.3.6 char Fl_Timer::suspended () const [inline]

Gets or sets whether the timer is suspended.

The documentation for this class was generated from the following files:

• Fl_Timer.H
• forms_timer.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

794 Class Documentation

30.110 Fl_Toggle_Button Class Reference

The toggle button is a push button that needs to be clicked once to toggle on, and one more time to toggle
off.

#include <Fl_Toggle_Button.H>

Inheritance diagram for Fl_Toggle_Button::

Fl_Toggle_Button

Fl_Button

Fl_Widget

Public Member Functions

• Fl_Toggle_Button (int X, int Y, int W, int H, const char ∗l=0)
Creates a new Fl_Toggle_Button widget using the given position, size, and label string.

30.110.1 Detailed Description

The toggle button is a push button that needs to be clicked once to toggle on, and one more time to toggle
off.

The Fl_Toggle_Button subclass displays the "on" state by drawing a pushed-in button.

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

30.110.2 Constructor & Destructor Documentation

30.110.2.1 Fl_Toggle_Button::Fl_Toggle_Button (int X, int Y, int W, int H, const char ∗ l = 0)
[inline]

Creates a new Fl_Toggle_Button widget using the given position, size, and label string.

The inherited destructor deletes the toggle button.

The documentation for this class was generated from the following file:

• Fl_Toggle_Button.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.111 Fl_Tooltip Class Reference 795

30.111 Fl_Tooltip Class Reference

The Fl_Tooltip class provides tooltip support for all FLTK widgets.

#include <Fl_Tooltip.H>

Static Public Member Functions

• static void color (Fl_Color c)
Sets the background color for tooltips.

• static Fl_Color color ()
Gets the background color for tooltips.

• static void current (Fl_Widget ∗)
Sets the current widget target.

• static Fl_Widget ∗ current ()
Gets the current widget target.

• static void delay (float f)
Sets the tooltip delay.

• static float delay ()
Gets the tooltip delay.

• static void disable ()
Same as enable(0), disables tooltips on all widgets.

• static void enable (int b=1)
Enables tooltips on all widgets (or disables if b is false).

• static int enabled ()
Returns non-zero if tooltips are enabled.

• static void enter_area (Fl_Widget ∗w, int X, int Y, int W, int H, const char ∗tip)
You may be able to use this to provide tooltips for internal pieces of your widget.

• static void font (Fl_Font i)
Sets the typeface for the tooltip text.

• static Fl_Font font ()
Gets the typeface for the tooltip text.

• static void hoverdelay (float f)
Sets the tooltip hover delay, the delay between tooltips.

• static float hoverdelay ()
Gets the tooltip hover delay, the delay between tooltips.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

796 Class Documentation

• static void size (Fl_Fontsize s)

Sets the size of the tooltip text.

• static Fl_Fontsize size ()

Gets the size of the tooltip text.

• static void textcolor (Fl_Color c)

Sets the color of the text in the tooltip.

• static Fl_Color textcolor ()

Gets the color of the text in the tooltip.

Static Public Attributes

• static void(∗ enter)(Fl_Widget ∗w) = nothing
• static void(∗ exit)(Fl_Widget ∗w) = nothing

Friends

• void Fl_Widget::tooltip (const char ∗)

30.111.1 Detailed Description

The Fl_Tooltip class provides tooltip support for all FLTK widgets.

It contains only static methods.

30.111.2 Member Function Documentation

30.111.2.1 static void Fl_Tooltip::color (Fl_Color c) [inline, static]

Sets the background color for tooltips.

The default background color is a pale yellow.

30.111.2.2 static Fl_Color Fl_Tooltip::color () [inline, static]

Gets the background color for tooltips.

The default background color is a pale yellow.

30.111.2.3 void Fl_Tooltip::current (Fl_Widget ∗ w) [static]

Sets the current widget target.

Acts as though enter(widget) was done but does not pop up a tooltip. This is useful to prevent a tooltip
from reappearing when a modal overlapping window is deleted. FLTK does this automatically when you
click the mouse button.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.111 Fl_Tooltip Class Reference 797

30.111.2.4 static void Fl_Tooltip::delay (float f) [inline, static]

Sets the tooltip delay.

The default delay is 1.0 seconds.

30.111.2.5 static float Fl_Tooltip::delay () [inline, static]

Gets the tooltip delay.

The default delay is 1.0 seconds.

30.111.2.6 static void Fl_Tooltip::disable () [inline, static]

Same as enable(0), disables tooltips on all widgets.

30.111.2.7 static void Fl_Tooltip::enable (int b = 1) [inline, static]

Enables tooltips on all widgets (or disables if b is false).

30.111.2.8 static int Fl_Tooltip::enabled () [inline, static]

Returns non-zero if tooltips are enabled.

30.111.2.9 void Fl_Tooltip::enter_area (Fl_Widget ∗ wid, int x, int y, int w, int h, const char ∗ t)
[static]

You may be able to use this to provide tooltips for internal pieces of your widget.

Call this after setting Fl::belowmouse() to your widget (because that calls the above enter() method). Then
figure out what thing the mouse is pointing at, and call this with the widget (this pointer is used to remove
the tooltip if the widget is deleted or hidden, and to locate the tooltip), the rectangle surrounding the area,
relative to the top-left corner of the widget (used to calculate where to put the tooltip), and the text of the
tooltip (which must be a pointer to static data as it is not copied).

30.111.2.10 static void Fl_Tooltip::font (Fl_Font i) [inline, static]

Sets the typeface for the tooltip text.

30.111.2.11 static Fl_Font Fl_Tooltip::font () [inline, static]

Gets the typeface for the tooltip text.

30.111.2.12 static void Fl_Tooltip::hoverdelay (float f) [inline, static]

Sets the tooltip hover delay, the delay between tooltips.

The default delay is 0.2 seconds.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

798 Class Documentation

30.111.2.13 static float Fl_Tooltip::hoverdelay () [inline, static]

Gets the tooltip hover delay, the delay between tooltips.

The default delay is 0.2 seconds.

30.111.2.14 static void Fl_Tooltip::size (Fl_Fontsize s) [inline, static]

Sets the size of the tooltip text.

30.111.2.15 static Fl_Fontsize Fl_Tooltip::size () [inline, static]

Gets the size of the tooltip text.

30.111.2.16 static void Fl_Tooltip::textcolor (Fl_Color c) [inline, static]

Sets the color of the text in the tooltip.

The default is black.

30.111.2.17 static Fl_Color Fl_Tooltip::textcolor () [inline, static]

Gets the color of the text in the tooltip.

The default is black.

The documentation for this class was generated from the following files:

• Fl_Tooltip.H
• Fl.cxx
• Fl_Tooltip.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 799

30.112 Fl_Tree Class Reference

Tree widget.

#include <Fl_Tree.H>

Inheritance diagram for Fl_Tree::

Fl_Tree

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Tree_Item ∗ add (Fl_Tree_Item ∗item, const char ∗name)
Add a new child to a tree-item.

• Fl_Tree_Item ∗ add (const char ∗path)
Adds a new item, given a ’menu style’ path, eg: "/Parent/Child/item".

• void clear ()
Clear all children from the tree.

• void clear_children (Fl_Tree_Item ∗item)
Clear all the children of a particular node in the tree.

• int close (const char ∗path)
Closes the item specified by ’path’, eg: "Parent/child/item".

• void close (Fl_Tree_Item ∗item)
Closes the ’item’.

• void closeicon (Fl_Image ∗val)
Sets the icon to be used as the ’close’ icon.

• Fl_Image ∗ closeicon () const
Returns the icon to be used as the ’close’ icon.

• void connectorstyle (Fl_Tree_Connector val)
Sets the line drawing style for inter-connecting items.

• Fl_Tree_Connector connectorstyle () const
Returns the line drawing style for inter-connecting items.

• void connectorwidth (int val)
Sets the width of the horizontal connection lines (in pixels) that appear to the left of each tree item’s label.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

800 Class Documentation

• int connectorwidth () const
Gets the width of the horizontal connection lines (in pixels) that appear to the left of each tree item’s label.

• int deselect (const char ∗path)
De-select an item specified by ’path’ (eg: "Parent/child/item").

• void deselect (Fl_Tree_Item ∗item)
De-select the specified item.

• int deselect_all (Fl_Tree_Item ∗item=0)
Deselect item and all its children.

• void draw ()
Standard FLTK draw() method, handles draws the tree widget.

• const Fl_Tree_Item ∗ find_clicked () const
Find the item that was clicked.

• const Fl_Tree_Item ∗ find_item (const char ∗path) const
A const version of Fl_Tree::find_item(const char ∗path).

• Fl_Tree_Item ∗ find_item (const char ∗path)
Find the item, given a menu style path, eg: "/Parent/Child/item".

• Fl_Tree_Item ∗ first ()
Returns the first item in the tree.

• Fl_Tree (int X, int Y, int W, int H, const char ∗L=0)
Constructor.

• int handle (int e)
Standard FLTK event handler for this widget.

• Fl_Tree_Item ∗ insert (Fl_Tree_Item ∗item, const char ∗name, int pos)
Insert a new item into a tree-item’s children at a specified position.

• Fl_Tree_Item ∗ insert_above (Fl_Tree_Item ∗above, const char ∗name)
Inserts a new item above the specified Fl_Tree_Item, with the label set to ’name’.

• int is_close (const char ∗path) const
See if item specified by ’path’ (eg: "Parent/child/item") is closed.

• int is_close (Fl_Tree_Item ∗item) const
See if item is closed.

• int is_open (const char ∗path) const
See if item specified by ’path’ (eg: "Parent/child/item") is open.

• int is_open (Fl_Tree_Item ∗item) const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 801

See if item is open.

• int is_selected (const char ∗path)
See if item specified by ’path’ (eg: "Parent/child/item") is selected.

• int is_selected (Fl_Tree_Item ∗item) const
See if the specified item is selected.

• Fl_Tree_Item ∗ item_clicked ()
Return the item that was last clicked.

• void labelfont (int val)
Set the default font face used for item’s labels when new items are created.

• int labelfont () const
Get the default font face used for item’s labels when new items are created.

• void labelsize (int val)
Set the default label font size used for creating new items.

• int labelsize () const
Get the default label fontsize used for creating new items.

• Fl_Tree_Item ∗ last ()
Returns the last item in the tree.

• void marginleft (int val)
Set the amount of white space (in pixels) that should appear between the widget’s left border and the left
side of the tree’s contents.

• int marginleft () const
Get the amount of white space (in pixels) that should appear between the widget’s left border and the tree’s
contents.

• void margintop (int val)
Sets the amount of white space (in pixels) that should appear between the widget’s top border and the top
of the tree’s contents.

• int margintop () const
Get the amount of white space (in pixels) that should appear between the widget’s top border and the top of
the tree’s contents.

• int open (const char ∗path)
Opens the item specified by a ’menu item’ style pathname (eg: "Parent/child/item").

• void open (Fl_Tree_Item ∗item)
Open the specified ’item’.

• void openchild_marginbottom (int val)
Set the amount of white space (in pixels) that should appear below an open child tree’s contents.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

802 Class Documentation

• int openchild_marginbottom () const
Get the amount of white space (in pixels) that should appear below an open child tree’s contents.

• void openicon (Fl_Image ∗val)
Sets the icon to be used as the ’open’ icon.

• Fl_Image ∗ openicon () const
Returns the icon to be used as the ’open’ icon.

• Fl_Tree_Item ∗ parent (Fl_Tree_Item ∗item)
Return the parent for specified ’item’.

• int remove (Fl_Tree_Item ∗item)
Remove the specified ’item’ from the tree.

• Fl_Tree_Item ∗ root ()
Returns the root item.

• void root_label (const char ∗new_label)
Set the label for the root item.

• int select (const char ∗path)
Select an item specified by ’path’ (eg: "Parent/child/item").

• void select (Fl_Tree_Item ∗item)
Select the specified item.

• int select_all (Fl_Tree_Item ∗item=0)
Select item and all its children.

• int select_only (Fl_Tree_Item ∗selitem)
Select only this item.

• void select_toggle (Fl_Tree_Item ∗item)
Toggle item’s select state.

• void selectbox (Fl_Boxtype val)
Gets the style of box used to draw selected items.

• Fl_Boxtype selectbox () const
Sets the style of box used to draw selected items.

• void selectmode (Fl_Tree_Select val)
Sets the tree’s selection mode.

• Fl_Tree_Select selectmode () const
Gets the tree’s current selection mode.

• void show_self ()
Print the tree as ’ascii art’ to stdout.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 803

• void showcollapse (int val)
Set if we should show the collapse icon or not.

• int showcollapse () const
Returns 1 if the collapse icon is enabled, 0 if not.

• void showroot (int val)
Set if the root item should be shown or not.

• int showroot () const
Returns 1 if the root item is to be shown, or 0 if not.

• void sortorder (Fl_Tree_Sort val)
Gets the sort order used to add items to the tree.

• Fl_Tree_Sort sortorder () const
Set the default sort order used when items are added to the tree.

• void usericon (Fl_Image ∗val)
Sets the Fl_Image to be used as the default user icon for all newly created items.

• Fl_Image ∗ usericon () const
Returns the Fl_Image being used as the default user icon for newly created items.

• ∼Fl_Tree ()
Destructor.

Protected Member Functions

• void item_clicked (Fl_Tree_Item ∗val)
Set the item that was last clicked.

30.112.1 Detailed Description

Tree widget.

Fl_Tree // Top level widget
|--- Fl_Tree_Item // Items in the tree
|--- Fl_Tree_Prefs // Preferences for the tree

|--- Fl_Tree_Connector (enum) // Connection modes
|--- Fl_Tree_Select (enum) // Selection modes
|--- Fl_Tree_Sort (enum) // Sort behavior

An expandable tree widget.

Similar to Fl_Browser, Fl_Tree is browser of Fl_Tree_Item’s, which can be in a parented hierarchy. Sub-
trees can be expanded or closed. Items can be added, deleted, inserted, sorted and re-ordered.

The tree items may also contain other FLTK widgets, like buttons, input fields, or even "custom" widgets.

The simple way to define a tree:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

804 Class Documentation

#include <FL/Fl_Tree.H>
[..]
Fl_Tree tree(X,Y,W,H);
tree.begin();

tree.add("Flintstones/Fred");
tree.add("Flintstones/Wilma");
tree.add("Flintstones/Pebbles");
tree.add("Simpsons/Homer");
tree.add("Simpsons/Marge");
tree.add("Simpsons/Bart");
tree.add("Simpsons/Lisa");

tree.end();

Items can be added with Fl_Tree::add(), removed with Fl_Tree::remove(), inserted with Fl_Tree::insert_-
above(), selected/deselected with Fl_Tree::select() and Fl_Tree::deselect(). Items can be swapped with
Fl_Tree_Item::swap_children(), sorting control via Fl_Tree::sortorder().

The tree can have different selection behaviors controlled by Fl_Tree::selectmode().

FLTK and custom FLTK widgets can be assigned to tree items via Fl_Tree_Item::widget().

Parent nodes can be open/closed with open() and close(), icons can be assigned or redefined with some or
all items via Fl_Tree_Item::openicon(), Fl_Tree_Item::closeicon(), Fl_Tree_Item::usericon().

Various default preferences can be manipulated via Fl_Tree_Prefs, including colors, margins, connection
lines.

30.112.2 Member Function Documentation

30.112.2.1 Fl_Tree_Item ∗ Fl_Tree::add (Fl_Tree_Item ∗ item, const char ∗ name)

Add a new child to a tree-item.

Returns:

the item that was added.

30.112.2.2 Fl_Tree_Item ∗ Fl_Tree::add (const char ∗ path)

Adds a new item, given a ’menu style’ path, eg: "/Parent/Child/item".

Any parent nodes that don’t already exist are created automatically. Adds the item based on the value of
sortorder().

Returns:

the child item created, or 0 on error.

30.112.2.3 void Fl_Tree::clear () [inline]

Clear all children from the tree.

The tree will be left completely empty.

Reimplemented from Fl_Group.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 805

30.112.2.4 int Fl_Tree::close (const char ∗ path) [inline]

Closes the item specified by ’path’, eg: "Parent/child/item".

Handles redrawing if anything was actually changed.

Returns:

• 0 – OK

• -1 – item was not found

30.112.2.5 void Fl_Tree::close (Fl_Tree_Item ∗ item) [inline]

Closes the ’item’.

Handles redrawing if anything was actually changed.

30.112.2.6 void Fl_Tree::closeicon (Fl_Image ∗ val) [inline]

Sets the icon to be used as the ’close’ icon.

This overrides the built in default ’[-]’ icon.

Parameters:

← val – The new image, or zero to use the default [-] icon.

30.112.2.7 Fl_Image∗ Fl_Tree::closeicon () const [inline]

Returns the icon to be used as the ’close’ icon.

If none was set, the internal default is returned, a simple ’[-]’ icon.

30.112.2.8 int Fl_Tree::deselect (const char ∗ path) [inline]

De-select an item specified by ’path’ (eg: "Parent/child/item").

Handles redrawing if anything was actually changed.

Returns:

• 0 : OK

• -1 : item was not found

30.112.2.9 void Fl_Tree::deselect (Fl_Tree_Item ∗ item) [inline]

De-select the specified item.

Handles redrawing if anything was actually changed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

806 Class Documentation

30.112.2.10 int Fl_Tree::deselect_all (Fl_Tree_Item ∗ item = 0)

Deselect item and all its children.

If item is NULL, root() is used. Handles calling redraw() if anything was changed. Returns count of how
many items were in the ’selected’ state, ie. how many items were "changed".

30.112.2.11 const Fl_Tree_Item∗ Fl_Tree::find_clicked () const [inline]

Find the item that was clicked.

You probably want to use item_clicked() instead, which is fast.

This method walks the entire tree looking for the first item that is under the mouse (ie. at Fl::event_-
x()/Fl:event_y().

Use this method /only/ if you’ve subclassed Fl_Tree, and are receiving events before Fl_Tree has been able
to process and update item_clicked().

Returns:

the item clicked, or 0 if no item was under the current event.

30.112.2.12 Fl_Tree_Item ∗ Fl_Tree::find_item (const char ∗ path)

Find the item, given a menu style path, eg: "/Parent/Child/item".

There is both a const and non-const version of this method. Const version allows pure const methods to
use this method to do lookups without causing compiler errors.

Returns:

the item, or 0 if not found.

30.112.2.13 Fl_Tree_Item∗ Fl_Tree::first () [inline]

Returns the first item in the tree.

Use this to walk the tree in the forward direction, eg:

for (Fl_Tree_Item *item = tree->first(); item; item = item->next()) {
printf("Item: %s\n", item->label());

}

Returns:

first item in tree, or 0 if none (tree empty).

30.112.2.14 Fl_Tree_Item ∗ Fl_Tree::insert (Fl_Tree_Item ∗ item, const char ∗ name, int pos)

Insert a new item into a tree-item’s children at a specified position.

Returns:

the item that was added.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 807

30.112.2.15 Fl_Tree_Item ∗ Fl_Tree::insert_above (Fl_Tree_Item ∗ above, const char ∗ name)

Inserts a new item above the specified Fl_Tree_Item, with the label set to ’name’.

Returns:

the item that was added, or 0 if ’above’ could not be found.

30.112.2.16 int Fl_Tree::is_close (const char ∗ path) const [inline]

See if item specified by ’path’ (eg: "Parent/child/item") is closed.

Returns:

• 1 : item is closed

• 0 : item is open

• -1 : item was not found

30.112.2.17 int Fl_Tree::is_close (Fl_Tree_Item ∗ item) const [inline]

See if item is closed.

Returns:

• 1 : item is open

• 0 : item is closed

30.112.2.18 int Fl_Tree::is_open (const char ∗ path) const [inline]

See if item specified by ’path’ (eg: "Parent/child/item") is open.

Items that are ’open’ are themselves not necessarily visible; one of the item’s parents might be closed.

Returns:

• 1 : item is open

• 0 : item is closed

• -1 : item was not found

30.112.2.19 int Fl_Tree::is_open (Fl_Tree_Item ∗ item) const [inline]

See if item is open.

Items that are ’open’ are themselves not necessarily visible; one of the item’s parents might be closed.

Returns:

• 1 : item is open

• 0 : item is closed

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

808 Class Documentation

30.112.2.20 int Fl_Tree::is_selected (const char ∗ path) [inline]

See if item specified by ’path’ (eg: "Parent/child/item") is selected.

Returns:

• 1 : item selected

• 0 : item deselected

• -1 : item was not found

30.112.2.21 int Fl_Tree::is_selected (Fl_Tree_Item ∗ item) const [inline]

See if the specified item is selected.

Returns:

• 1 : item selected

• 0 : item deselected

30.112.2.22 Fl_Tree_Item∗ Fl_Tree::item_clicked () [inline]

Return the item that was last clicked.

Valid only from within an Fl_Tree::callback().

Returns:

the item clicked, or 0 if none.

30.112.2.23 void Fl_Tree::item_clicked (Fl_Tree_Item ∗ val) [inline, protected]

Set the item that was last clicked.

Should only be used by subclasses needing to change this value. Normally Fl_Tree manages this value.

30.112.2.24 void Fl_Tree::labelfont (int val) [inline]

Set the default font face used for item’s labels when new items are created.

Don’t use this if you want to change an existing label() size; use item->labelfont(int) instead.

Reimplemented from Fl_Widget.

30.112.2.25 int Fl_Tree::labelfont () const [inline]

Get the default font face used for item’s labels when new items are created.

Don’t use this if you want to change an existing label() size; use item->labelfont() instead.

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 809

30.112.2.26 void Fl_Tree::labelsize (int val) [inline]

Set the default label font size used for creating new items.

To change the font size on a per-item basis, use Fl_Tree_Item::labelsize(int)

Reimplemented from Fl_Widget.

30.112.2.27 Fl_Tree_Item∗ Fl_Tree::last () [inline]

Returns the last item in the tree.

Use this to walk the tree in reverse, eg:

for (Fl_Tree_Item *item = tree->last(); item; item = item->prev()) {
printf("Item: %s\n", item->label());

}

Returns:

last item in the tree, or 0 if none (tree empty).

30.112.2.28 int Fl_Tree::open (const char ∗ path) [inline]

Opens the item specified by a ’menu item’ style pathname (eg: "Parent/child/item").

This causes the item’s children (if any) to be shown. Handles redrawing if anything was actually changed.

Returns:

• 0 : OK
• -1 : item was not found

30.112.2.29 void Fl_Tree::open (Fl_Tree_Item ∗ item) [inline]

Open the specified ’item’.

This causes the item’s children (if any) to be shown. Handles redrawing if anything was actually changed.

30.112.2.30 void Fl_Tree::openicon (Fl_Image ∗ val) [inline]

Sets the icon to be used as the ’open’ icon.

This overrides the built in default ’[+]’ icon.

Parameters:

← val – The new image, or zero to use the default [+] icon.

30.112.2.31 Fl_Image∗ Fl_Tree::openicon () const [inline]

Returns the icon to be used as the ’open’ icon.

If none was set, the internal default is returned, a simple ’[+]’ icon.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

810 Class Documentation

30.112.2.32 Fl_Tree_Item∗ Fl_Tree::parent (Fl_Tree_Item ∗ item) [inline]

Return the parent for specified ’item’.

Returns:

item’s parent, or 0 if none (root).

30.112.2.33 int Fl_Tree::remove (Fl_Tree_Item ∗ item) [inline]

Remove the specified ’item’ from the tree.

If it has children, all those are removed too.

Returns:

0 if done, -1 if ’item’ not found.

30.112.2.34 void Fl_Tree::root_label (const char ∗ new_label) [inline]

Set the label for the root item.

Makes an internally managed copy of ’new_label’.

30.112.2.35 int Fl_Tree::select (const char ∗ path) [inline]

Select an item specified by ’path’ (eg: "Parent/child/item").

Handles redrawing if anything was actually changed.

Returns:

• 0 : OK
• -1 : item was not found

30.112.2.36 void Fl_Tree::select (Fl_Tree_Item ∗ item) [inline]

Select the specified item.

Use ’deselect()’ to de-select it. Handles redrawing if anything was actually changed.

30.112.2.37 int Fl_Tree::select_all (Fl_Tree_Item ∗ item = 0)

Select item and all its children.

If item is NULL, root() is used. Handles calling redraw() if anything was changed. Returns count of how
many items were in the ’deselected’ state, ie. how many items were "changed".

30.112.2.38 int Fl_Tree::select_only (Fl_Tree_Item ∗ selitem)

Select only this item.

If item is NULL, root() is used. Handles calling redraw() if anything was changed. Returns how many
items were changed, if any.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.112 Fl_Tree Class Reference 811

30.112.2.39 void Fl_Tree::select_toggle (Fl_Tree_Item ∗ item) [inline]

Toggle item’s select state.

Handles redrawing.

30.112.2.40 void Fl_Tree::selectbox (Fl_Boxtype val) [inline]

Gets the style of box used to draw selected items.

This is an fltk Fl_Boxtype. The default is influenced by FLTK’s current Fl::scheme()

30.112.2.41 Fl_Boxtype Fl_Tree::selectbox () const [inline]

Sets the style of box used to draw selected items.

This is an fltk Fl_Boxtype. The default is influenced by FLTK’s current Fl::scheme()

30.112.2.42 void Fl_Tree::show_self () [inline]

Print the tree as ’ascii art’ to stdout.

Used mainly for debugging.

30.112.2.43 void Fl_Tree::showcollapse (int val) [inline]

Set if we should show the collapse icon or not.

If collapse icons are disabled, the user will not be able to interactively collapse items in the tree, unless the
application provides some other means via open() and close().

Parameters:

← val 1: shows collapse icons (default),
0: hides collapse icons.

30.112.2.44 void Fl_Tree::showroot (int val) [inline]

Set if the root item should be shown or not.

Parameters:

← val 1 – show the root item (default)
0 – hide the root item.

30.112.2.45 Fl_Tree_Sort Fl_Tree::sortorder () const [inline]

Set the default sort order used when items are added to the tree.

See Fl_Tree_Sort for possible values.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

812 Class Documentation

30.112.2.46 void Fl_Tree::usericon (Fl_Image ∗ val) [inline]

Sets the Fl_Image to be used as the default user icon for all newly created items.

If you want to specify user icons on a per-item basis, use Fl_Tree_Item::usericon() instead.

Parameters:

← val – The new image to be used, or zero to disable user icons.

30.112.2.47 Fl_Image∗ Fl_Tree::usericon () const [inline]

Returns the Fl_Image being used as the default user icon for newly created items.

Returns zero if no icon has been set, which is the default.

The documentation for this class was generated from the following files:

• Fl_Tree.H
• Fl_Tree.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.113 Fl_Tree_Item Class Reference 813

30.113 Fl_Tree_Item Class Reference

Tree item.

#include <Fl_Tree_Item.H>

Public Member Functions

• void activate (int val=1)
Change the item’s activation state to the optionally specified ’val’.

• Fl_Tree_Item ∗ add (const Fl_Tree_Prefs &prefs, char ∗∗arr)
Descend into the path specified by arr, and add a new child there.

• Fl_Tree_Item ∗ add (const Fl_Tree_Prefs &prefs, const char ∗new_label)
Add a new child to this item with the name ’new_label’, with defaults from ’prefs’.

• const Fl_Tree_Item ∗ child (int t) const
Return the const child item for the given ’index’.

• Fl_Tree_Item ∗ child (int index)
Return the child item for the given ’index’.

• int children () const
Return the number of children this item has.

• void clear_children ()
Clear all the children for this item.

• void close ()
Close this item and all its children.

• void deactivate ()
Deactivate the item; the callback() won’t be invoked when clicked.

• int depth () const
Returns how many levels deep this item is in the hierarchy.

• void deselect ()
Disable the item’s selection state.

• int deselect_all ()
Deselect self and all children Returns count of how many items were in the ’selected’ state, ie.

• void draw (int X, int &Y, int W, Fl_Widget ∗tree, const Fl_Tree_Prefs &prefs, int lastchild=1)
Draw this item and its children.

• int event_on_collapse_icon (const Fl_Tree_Prefs &prefs) const
Was the event on the ’collapse’ button?

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

814 Class Documentation

• int event_on_label (const Fl_Tree_Prefs &prefs) const
Was event on the label()?

• int find_child (Fl_Tree_Item ∗item)
Find the index number for the specified ’item’ in the current item’s list of children.

• int find_child (const char ∗name)
Return the index of the immediate child of this item that has the label ’name’.

• Fl_Tree_Item ∗ find_clicked (const Fl_Tree_Prefs &prefs)
Non-const version of the above.

• const Fl_Tree_Item ∗ find_clicked (const Fl_Tree_Prefs &prefs) const
Find the item that the last event was over.

• Fl_Tree_Item ∗ find_item (char ∗∗arr)
Find item by by descending array of names.

• const Fl_Tree_Item ∗ find_item (char ∗∗arr) const
Find item by descending array of names.

• Fl_Tree_Item (const Fl_Tree_Item ∗o)
Copy constructor.

• Fl_Tree_Item (const Fl_Tree_Prefs &prefs)
Constructor.

• int has_children () const
See if this item has children.

• Fl_Tree_Item ∗ insert (const Fl_Tree_Prefs &prefs, const char ∗new_label, int pos=0)
Insert a new item into current item’s children at a specified position.

• Fl_Tree_Item ∗ insert_above (const Fl_Tree_Prefs &prefs, const char ∗new_label)
Insert a new item above this item.

• char is_activated () const
See if the item is activated.

• char is_active () const
See if the item is activated.

• int is_close () const
See if the item is ’closed’.

• int is_open () const
See if the item is ’open’.

• int is_root () const
Is this item the root of the tree?

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.113 Fl_Tree_Item Class Reference 815

• char is_selected () const
See if the item is selected.

• const char ∗ label () const
Return the label.

• void label (const char ∗val)
Set the label. Makes a copy of the name.

• Fl_Color labelbgcolor () const
Return item’s background text color.

• void labelbgcolor (Fl_Color val)
Set item’s label background color.

• Fl_Color labelcolor () const
Return item’s label text color.

• void labelcolor (Fl_Color val)
Set item’s label text color.

• Fl_Color labelfgcolor () const
Return item’s label foreground text color.

• void labelfgcolor (Fl_Color val)
Set item’s label foreground text color.

• int labelfont () const
Get item’s label font face.

• void labelfont (int val)
Set item’s label font face.

• int labelsize () const
Get item’s label font size.

• void labelsize (int val)
Set item’s label font size.

• Fl_Tree_Item ∗ next ()
Return the next item in the tree.

• void open ()
Open this item and all its children.

• void open_toggle ()
Toggle the item’s open/closed state.

• void parent (Fl_Tree_Item ∗val)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

816 Class Documentation

Set the parent for this item.

• const Fl_Tree_Item ∗ parent () const
Return the const parent for this item.

• Fl_Tree_Item ∗ parent ()
Return the parent for this item.

• Fl_Tree_Item ∗ prev ()
Return the previous item in the tree.

• int remove_child (const char ∗new_label)
Remove immediate child (and its children) by its label ’name’.

• int remove_child (Fl_Tree_Item ∗item)
Remove child by item.

• void select (int val=1)
Change the item’s selection state to the optionally specified ’val’.

• int select_all ()
Select self and all children Returns count of how many items were in the ’deselected’ state, ie.

• void select_toggle ()
Toggle the item’s selection state.

• void show_self (const char ∗indent="") const
Print the tree as ’ascii art’ to stdout.

• int swap_children (Fl_Tree_Item ∗a, Fl_Tree_Item ∗b)
Swap two of our children, given item pointers.

• void swap_children (int ax, int bx)
Swap two of our children, given two child index values.

• void ∗ user_data () const
Retrieve the user-data value that has been assigned to the item.

• void user_data (void ∗data)
Set a user-data value for the item.

• Fl_Image ∗ usericon () const
Get the user icon. Returns ’0’ if disabled.

• void usericon (Fl_Image ∗val)
Set the user icon’s image. ’0’ will disable.

• Fl_Widget ∗ widget () const
Return FLTK widget assigned to this item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.113 Fl_Tree_Item Class Reference 817

• void widget (Fl_Widget ∗val)

Assign an FLTK widget to this item.

Protected Member Functions

• void draw_horizontal_connector (int x1, int x2, int y, const Fl_Tree_Prefs &prefs)

Internal: Horizontal connector line based on preference settings.

• void draw_vertical_connector (int x, int y1, int y2, const Fl_Tree_Prefs &prefs)

Internal: Vertical connector line based on preference settings.

• void hide_widgets ()

Internal: Hide the FLTK widget() for this item and all children.

• void show_widgets ()

Internal: Show the FLTK widget() for this item and all children.

30.113.1 Detailed Description

Tree item.

This class is a single tree item, and manages all of the item’s attributes. Fl_Tree_Item is used by Fl_Tree,
which is comprised of many instances of Fl_Tree_Item.

Fl_Tree_Item is hierarchical; it dynamically manages an Fl_Tree_Item_Array of children that are them-
selves instances of Fl_Tree_Item. Each item can have zero or more children. When an item has children,
close() and open() can be used to hide or show them.

Items have their own attributes; font size, face, color. Items maintain their own hierarchy of children.

When you make changes to items, you’ll need to tell the tree to redraw() for the changes to show up.

30.113.2 Constructor & Destructor Documentation

30.113.2.1 Fl_Tree_Item::Fl_Tree_Item (const Fl_Tree_Prefs & prefs)

Constructor.

Makes a new instance of Fl_Tree_Item using defaults from ’prefs’.

30.113.3 Member Function Documentation

30.113.3.1 void Fl_Tree_Item::activate (int val = 1) [inline]

Change the item’s activation state to the optionally specified ’val’.

When deactivated, the item will be ’grayed out’; the callback() won’t be invoked if the user clicks on the
label. If the item has a widget() associated with the item, its activation state will be changed as well.

If ’val’ is not specified, the item will be activated.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

818 Class Documentation

30.113.3.2 Fl_Tree_Item ∗ Fl_Tree_Item::add (const Fl_Tree_Prefs & prefs, char ∗∗ arr)

Descend into the path specified by arr, and add a new child there.

Should be used only by Fl_Tree’s internals. Adds the item based on the value of prefs.sortorder().

30.113.3.3 Fl_Tree_Item ∗ Fl_Tree_Item::add (const Fl_Tree_Prefs & prefs, const char ∗
new_label)

Add a new child to this item with the name ’new_label’, with defaults from ’prefs’.

An internally managed copy is made of the label string. Adds the item based on the value of
prefs.sortorder().

30.113.3.4 const Fl_Tree_Item ∗ Fl_Tree_Item::child (int t) const

Return the const child item for the given ’index’.

Return child item for the specified ’index’.

30.113.3.5 void Fl_Tree_Item::deactivate () [inline]

Deactivate the item; the callback() won’t be invoked when clicked.

Same as activate(0)

30.113.3.6 int Fl_Tree_Item::depth () const

Returns how many levels deep this item is in the hierarchy.

For instance; root has a depth of zero, and its immediate children would have a depth of 1, and so on.

30.113.3.7 int Fl_Tree_Item::deselect_all () [inline]

Deselect self and all children Returns count of how many items were in the ’selected’ state, ie.

how many items were "changed".

30.113.3.8 int Fl_Tree_Item::find_child (Fl_Tree_Item ∗ item)

Find the index number for the specified ’item’ in the current item’s list of children.

Returns:

the index, or -1 if not found.

30.113.3.9 int Fl_Tree_Item::find_child (const char ∗ name)

Return the index of the immediate child of this item that has the label ’name’.

Returns:

index of found item, or -1 if not found.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.113 Fl_Tree_Item Class Reference 819

30.113.3.10 Fl_Tree_Item ∗ Fl_Tree_Item::find_clicked (const Fl_Tree_Prefs & prefs)

Non-const version of the above.

Find the item that the last event was over.

Returns the item if its visible, and mouse is over it. Works even if widget deactivated. Use event_on_-
collapse_icon() to determine if collapse button was pressed.

Returns:

the visible item under the event if found, or 0 if none.

30.113.3.11 const Fl_Tree_Item ∗ Fl_Tree_Item::find_clicked (const Fl_Tree_Prefs & prefs) const

Find the item that the last event was over.

Returns the item if its visible, and mouse is over it. Works even if widget deactivated. Use event_on_-
collapse_icon() to determine if collapse button was pressed.

Returns:

const visible item under the event if found, or 0 if none.

30.113.3.12 Fl_Tree_Item ∗ Fl_Tree_Item::find_item (char ∗∗ arr)

Find item by by descending array of names.

Only Fl_Tree should need this method.

Returns:

item, or 0 if not found

30.113.3.13 const Fl_Tree_Item ∗ Fl_Tree_Item::find_item (char ∗∗ arr) const

Find item by descending array of names.

Only Fl_Tree should need this method.

Returns:

item, or 0 if not found

30.113.3.14 void Fl_Tree_Item::hide_widgets () [protected]

Internal: Hide the FLTK widget() for this item and all children.

Used by close() to hide widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

820 Class Documentation

30.113.3.15 Fl_Tree_Item ∗ Fl_Tree_Item::next ()

Return the next item in the tree.

This method can be used to walk the tree forward. For an example of how to use this method, see Fl_-
Tree::first().

Returns:

the next item in the tree, or 0 if there’s no more items.

30.113.3.16 void Fl_Tree_Item::parent (Fl_Tree_Item ∗ val) [inline]

Set the parent for this item.

Should only be used by Fl_Tree’s internals.

30.113.3.17 Fl_Tree_Item ∗ Fl_Tree_Item::prev ()

Return the previous item in the tree.

This method can be used to walk the tree backwards. For an example of how to use this method, see
Fl_Tree::last().

Returns:

the previous item in the tree, or 0 if there’s no item above this one (hit the root).

30.113.3.18 int Fl_Tree_Item::remove_child (const char ∗ name)

Remove immediate child (and its children) by its label ’name’.

Returns 0 if removed, -1 if not found.

30.113.3.19 int Fl_Tree_Item::remove_child (Fl_Tree_Item ∗ item)

Remove child by item.

Returns 0 if removed, -1 if item not an immediate child.

30.113.3.20 void Fl_Tree_Item::select (int val = 1) [inline]

Change the item’s selection state to the optionally specified ’val’.

If ’val’ is not specified, the item will be selected.

30.113.3.21 int Fl_Tree_Item::select_all () [inline]

Select self and all children Returns count of how many items were in the ’deselected’ state, ie.

how many items were "changed".

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.113 Fl_Tree_Item Class Reference 821

30.113.3.22 void Fl_Tree_Item::show_self (const char ∗ indent = "") const

Print the tree as ’ascii art’ to stdout.

Used mainly for debugging.

30.113.3.23 void Fl_Tree_Item::show_widgets () [protected]

Internal: Show the FLTK widget() for this item and all children.

Used by open() to re-show widgets that were hidden by a previous close()

30.113.3.24 int Fl_Tree_Item::swap_children (Fl_Tree_Item ∗ a, Fl_Tree_Item ∗ b)

Swap two of our children, given item pointers.

Use this eg. for sorting.

This method is SLOW because it involves linear lookups. For speed, use swap_children(int,int) instead.

Returns:

• 0 : OK

• -1 : failed: ’a’ or ’b’ is not our immediate child

30.113.3.25 void Fl_Tree_Item::swap_children (int ax, int bx)

Swap two of our children, given two child index values.

Use this eg. for sorting.

This method is FAST, and does not involve lookups.

No range checking is done on either index value.

Returns:

• 0 : OK

• -1 : failed: ’a’ or ’b’ is not our immediate child

The documentation for this class was generated from the following files:

• Fl_Tree_Item.H
• Fl_Tree_Item.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

822 Class Documentation

30.114 Fl_Tree_Item_Array Class Reference

Manages an array of Fl_Tree_Item pointers.

#include <Fl_Tree_Item_Array.H>

Public Member Functions

• void add (Fl_Tree_Item ∗val)

Add an item∗ to the end of the array.

• void clear ()

Clear the entire array.

• Fl_Tree_Item_Array (const Fl_Tree_Item_Array ∗o)

Copy constructor. Makes new copy of array, with new instances of each item.

• Fl_Tree_Item_Array (int new_chunksize=10)

Constructor; creates an empty array.

• void insert (int pos, Fl_Tree_Item ∗new_item)

Insert an item at index position pos.

• const Fl_Tree_Item ∗ operator[] (int i) const

Const version of operator[](int i).

• Fl_Tree_Item ∗ operator[] (int i)

Return the item and index i.

• int remove (Fl_Tree_Item ∗item)

Remove the item from the array.

• void remove (int index)

Remove the item at.

• void swap (int ax, int bx)

Swap the two items at index positions ax and bx.

• int total () const

Return the total items in the array, or 0 if empty.

• ∼Fl_Tree_Item_Array ()

Destructor. Calls each item’s destructor, destroys internal _items array.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.114 Fl_Tree_Item_Array Class Reference 823

30.114.1 Detailed Description

Manages an array of Fl_Tree_Item pointers.

Because FLTK 1.x.x. has mandated that templates and STL not be used, we use this class to dynamically
manage the arrays.

None of the methods do range checking on index values; the caller must be sure that index values are within
the range 0<index<total() (unless otherwise noted).

30.114.2 Constructor & Destructor Documentation

30.114.2.1 Fl_Tree_Item_Array::Fl_Tree_Item_Array (int new_chunksize = 10)

Constructor; creates an empty array.

The optional ’chunksize’ can be specified to optimize memory allocation for potentially large arrays. De-
fault chunksize is 10.

30.114.3 Member Function Documentation

30.114.3.1 void Fl_Tree_Item_Array::add (Fl_Tree_Item ∗ val)

Add an item∗ to the end of the array.

Assumes the item was created with ’new’, and will remain allocated.. Fl_Tree_Item_Array will handle
calling the item’s destructor when the array is cleared or the item remove()’ed.

30.114.3.2 void Fl_Tree_Item_Array::clear ()

Clear the entire array.

Each item will be deleted (destructors will be called), and the array will be cleared. total() will return 0.

30.114.3.3 void Fl_Tree_Item_Array::insert (int pos, Fl_Tree_Item ∗ new_item)

Insert an item at index position pos.

Handles enlarging array if needed, total increased by 1. If pos == total(), an empty item is appended to
the array.

30.114.3.4 int Fl_Tree_Item_Array::remove (Fl_Tree_Item ∗ item)

Remove the item from the array.

Returns:

0 if removed, or -1 if the item was not in the array.

30.114.3.5 void Fl_Tree_Item_Array::remove (int index)

Remove the item at.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

824 Class Documentation

Parameters:

← index from the array.

The item will be delete’d (if non-NULL), so its destructor will be called.

The documentation for this class was generated from the following files:

• Fl_Tree_Item_Array.H
• Fl_Tree_Item_Array.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.115 Fl_Tree_Prefs Class Reference 825

30.115 Fl_Tree_Prefs Class Reference

Tree widget’s preferences.

#include <Fl_Tree_Prefs.H>

Public Member Functions

• void bgcolor (Fl_Color val)
Set the default label background color.

• Fl_Color bgcolor () const
Get the default label background color.

• void closeicon (Fl_Image ∗val)
Sets the icon to be used as the ’close’ icon.

• Fl_Image ∗ closeicon () const
Gets the default ’close’ icon Returns the Fl_Image∗ of the icon, or 0 if none.

• void connectorcolor (Fl_Color val)
Set the connector color; the color used for tree connection lines.

• Fl_Color connectorcolor () const
Get the connector color; the color used for tree connection lines.

• void connectorstyle (int val)
Set the connector style [integer].

• void connectorstyle (Fl_Tree_Connector val)
Set the connector style.

• Fl_Tree_Connector connectorstyle () const
Get the connector style.

• void connectorwidth (int val)
Set the tree connection line’s width.

• int connectorwidth () const
Get the tree connection line’s width.

• void fgcolor (Fl_Color val)
Set the default label foreground color.

• Fl_Color fgcolor () const
Get the default label foreground color.

• Fl_Tree_Prefs ()
Fl_Tree_Prefs constructor.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

826 Class Documentation

• void inactivecolor (Fl_Color val)
Set the default inactive color.

• Fl_Color inactivecolor () const
Get the default inactive color.

• void labelfont (int val)
Set the label’s font to val.

• int labelfont () const
Return the label’s font.

• void labelmarginleft (int val)
Set the label’s left margin value in pixels.

• int labelmarginleft () const
Get the label’s left margin value in pixels.

• void labelsize (int val)
Set the label’s size in pixels to val.

• int labelsize () const
Return the label’s size in pixels.

• void linespacing (int val)
Set the line spacing value in pixels.

• int linespacing () const
Get the line spacing value in pixels.

• void marginleft (int val)
Set the left margin’s value in pixels.

• int marginleft () const
Get the left margin’s value in pixels.

• void margintop (int val)
Set the top margin’s value in pixels.

• int margintop () const
Get the top margin’s value in pixels.

• void openchild_marginbottom (int val)
Set the margin below an open child in pixels.

• int openchild_marginbottom () const
Get the margin below an open child in pixels.

• void openicon (Fl_Image ∗val)
Sets the default icon to be used as the ’open’ icon when items are add()ed to the tree.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.115 Fl_Tree_Prefs Class Reference 827

• Fl_Image ∗ openicon () const
Get the current default ’open’ icon.

• void selectbox (Fl_Boxtype val)
Set the default selection box’s box drawing style to val.

• Fl_Boxtype selectbox () const
Get the default selection box’s box drawing style as an Fl_Boxtype.

• void selectcolor (Fl_Color val)
Set the default selection color.

• Fl_Color selectcolor () const
Get the default selection color.

• void selectmode (Fl_Tree_Select val)
Set the selection mode used for the tree to val.

• Fl_Tree_Select selectmode () const
Get the selection mode used for the tree.

• void showcollapse (int val)
Set if we should show the collapse icon or not.

• char showcollapse () const
Returns 1 if the collapse icon is enabled, 0 if not.

• void showroot (int val)
Set if the root item should be shown or not.

• int showroot () const
Returns 1 if the root item is to be shown, or 0 if not.

• void sortorder (Fl_Tree_Sort val)
Set the default sort order value.

• Fl_Tree_Sort sortorder () const
Get the default sort order value.

• void usericon (Fl_Image ∗val)
Sets the default ’user icon’ Returns the Fl_Image∗ of the icon, or 0 if none (default).

• Fl_Image ∗ usericon () const
Gets the default ’user icon’ (default is 0).

• void usericonmarginleft (int val)
Set the user icon’s left margin value in pixels.

• int usericonmarginleft () const
Get the user icon’s left margin value in pixels.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

828 Class Documentation

30.115.1 Detailed Description

Tree widget’s preferences.

Fl_Tree’s Preferences class.

This class manages the Fl_Tree’s defaults. You should probably be using the methods in Fl_Tree instead
of trying to accessing tree’s preferences settings directly.

30.115.2 Member Function Documentation

30.115.2.1 void Fl_Tree_Prefs::closeicon (Fl_Image ∗ val)

Sets the icon to be used as the ’close’ icon.

This overrides the built in default ’[-]’ icon.

Parameters:

← val – The new image, or zero to use the default [-] icon.

30.115.2.2 int Fl_Tree_Prefs::labelfont () const [inline]

Return the label’s font.

30.115.2.3 void Fl_Tree_Prefs::openicon (Fl_Image ∗ val)

Sets the default icon to be used as the ’open’ icon when items are add()ed to the tree.

This overrides the built in default ’[+]’ icon.

Parameters:

← val – The new image, or zero to use the default [+] icon.

30.115.2.4 Fl_Image∗ Fl_Tree_Prefs::openicon () const [inline]

Get the current default ’open’ icon.

Returns the Fl_Image∗ of the icon, or 0 if none.

30.115.2.5 void Fl_Tree_Prefs::selectmode (Fl_Tree_Select val) [inline]

Set the selection mode used for the tree to val.

This affects how items in the tree are selected when clicked on and dragged over by the mouse. See
Fl_Tree_Select for possible values.

30.115.2.6 void Fl_Tree_Prefs::showcollapse (int val) [inline]

Set if we should show the collapse icon or not.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.115 Fl_Tree_Prefs Class Reference 829

If collapse icons are disabled, the user will not be able to interactively collapse items in the tree, unless the
application provides some other means via open() and close().

Parameters:

← val 1: shows collapse icons (default),
0: hides collapse icons.

30.115.2.7 char Fl_Tree_Prefs::showcollapse () const [inline]

Returns 1 if the collapse icon is enabled, 0 if not.

30.115.2.8 void Fl_Tree_Prefs::showroot (int val) [inline]

Set if the root item should be shown or not.

Parameters:

← val 1 – show the root item (default)
0 – hide the root item.

30.115.2.9 void Fl_Tree_Prefs::sortorder (Fl_Tree_Sort val) [inline]

Set the default sort order value.

Defines the order new items appear when add()ed to the tree. See Fl_Tree_Sort for possible values.

The documentation for this class was generated from the following files:

• Fl_Tree_Prefs.H
• Fl_Tree_Prefs.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

830 Class Documentation

30.116 Fl_Valuator Class Reference

The Fl_Valuator class controls a single floating-point value and provides a consistent interface to set the
value, range, and step, and insures that callbacks are done the same for every object.

#include <Fl_Valuator.H>

Inheritance diagram for Fl_Valuator::

Fl_Valuator

Fl_Widget

Fl_Adjuster Fl_Counter Fl_Dial Fl_Roller Fl_Slider Fl_Value_Input Fl_Value_Output

Fl_Simple_Counter Fl_Fill_Dial Fl_Fill_Slider Fl_Scrollbar Fl_Value_Slider

Public Member Functions

• void bounds (double a, double b)

Sets the minimum (a) and maximum (b) values for the valuator widget.

• double clamp (double)

Clamps the passed value to the valuator range.

• virtual int format (char ∗)
Uses internal rules to format the fields numerical value into the character array pointed to by the passed
parameter.

• double increment (double, int)

Adds n times the step value to the passed value.

• void maximum (double a)

Sets the maximum value for the valuator.

• double maximum () const

Gets the maximum value for the valuator.

• void minimum (double a)

Sets the minimum value for the valuator.

• double minimum () const

Gets the minimum value for the valuator.

• void precision (int)

Sets the step value to 1/10digits .

• void range (double a, double b)

Sets the minimum and maximum values for the valuator.

• double round (double)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.116 Fl_Valuator Class Reference 831

Round the passed value to the nearest step increment.

• double step () const
Gets or sets the step value.

• void step (double s)
See double Fl_Valuator::step() const.

• void step (double a, int b)
See double Fl_Valuator::step() const.

• void step (int a)
See double Fl_Valuator::step() const.

• int value (double)
Sets the current value.

• double value () const
Gets the floating point(double) value.

Protected Member Functions

• Fl_Valuator (int X, int Y, int W, int H, const char ∗L)
Creates a new Fl_Valuator widget using the given position, size, and label string.

• void handle_drag (double newvalue)
Called during a drag operation, after an FL_WHEN_CHANGED event is received and before the callback.

• void handle_push ()
Stores the current value in the previous value.

• void handle_release ()
Called after an FL_WHEN_RELEASE event is received and before the callback.

• int horizontal () const
Tells if the valuator is an FL_HORIZONTAL one.

• double previous_value () const
Gets the previous floating point value before an event changed it.

• void set_value (double v)
Sets the current floating point value.

• double softclamp (double)
Clamps the value, but accepts v if the previous value is not already out of range.

• virtual void value_damage ()
Asks for partial redraw.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

832 Class Documentation

30.116.1 Detailed Description

The Fl_Valuator class controls a single floating-point value and provides a consistent interface to set the
value, range, and step, and insures that callbacks are done the same for every object.

There are probably more of these classes in FLTK than any others:

Figure 30.32: Valuators derived from Fl_Valuators

In the above diagram each box surrounds an actual subclass. These are further differentiated by setting
the type() of the widget t o the symbolic value labeling the widget. The ones labelled "0" are the default
versions with a type(0). For consistency the symbol FL_VERTICAL is defined as zero.

30.116.2 Constructor & Destructor Documentation

30.116.2.1 Fl_Valuator::Fl_Valuator (int X, int Y, int W, int H, const char ∗ L) [protected]

Creates a new Fl_Valuator widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

30.116.3 Member Function Documentation

30.116.3.1 void Fl_Valuator::bounds (double a, double b) [inline]

Sets the minimum (a) and maximum (b) values for the valuator widget.

Reimplemented in Fl_Slider.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.116 Fl_Valuator Class Reference 833

30.116.3.2 double Fl_Valuator::clamp (double v)

Clamps the passed value to the valuator range.

30.116.3.3 int Fl_Valuator::format (char ∗ buffer) [virtual]

Uses internal rules to format the fields numerical value into the character array pointed to by the passed
parameter.

The actual format used depends on the current step value. If the step value has been set to zero then a g
format is used. If the step value is non-zero, then a %.∗f format is used, where the precision is calculated
to show sufficient digits for the current step value. An integer step value, such as 1 or 1.0, gives a precision
of 0, so the formatted value will appear as an integer.

This method is used by the Fl_Value_... group of widgets to format the current value into a text string. The
return value is the length of the formatted text. The formatted value is written into in buffer. buffer should
have space for at least 128 bytes.

You may override this function to create your own text formatting.

30.116.3.4 void Fl_Valuator::handle_drag (double v) [protected]

Called during a drag operation, after an FL_WHEN_CHANGED event is received and before the callback.

30.116.3.5 void Fl_Valuator::handle_release () [protected]

Called after an FL_WHEN_RELEASE event is received and before the callback.

30.116.3.6 double Fl_Valuator::increment (double v, int n)

Adds n times the step value to the passed value.

If step was set to zero it uses fabs(maximum() - minimum()) / 100.

30.116.3.7 void Fl_Valuator::maximum (double a) [inline]

Sets the maximum value for the valuator.

30.116.3.8 double Fl_Valuator::maximum () const [inline]

Gets the maximum value for the valuator.

30.116.3.9 void Fl_Valuator::minimum (double a) [inline]

Sets the minimum value for the valuator.

30.116.3.10 double Fl_Valuator::minimum () const [inline]

Gets the minimum value for the valuator.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

834 Class Documentation

30.116.3.11 void Fl_Valuator::precision (int p)

Sets the step value to 1/10digits .

30.116.3.12 void Fl_Valuator::range (double a, double b) [inline]

Sets the minimum and maximum values for the valuator.

When the user manipulates the widget, the value is limited to this range. This clamping is done after
rounding to the step value (this makes a difference if the range is not a multiple of the step).

The minimum may be greater than the maximum. This has the effect of "reversing" the object so the larger
values are in the opposite direction. This also switches which end of the filled sliders is filled.

Some widgets consider this a "soft" range. This means they will stop at the range, but if the user releases
and grabs the control again and tries to move it further, it is allowed.

The range may affect the display. You must redraw() the widget after changing the range.

30.116.3.13 double Fl_Valuator::round (double v)

Round the passed value to the nearest step increment.

Does nothing if step is zero.

30.116.3.14 void Fl_Valuator::set_value (double v) [inline, protected]

Sets the current floating point value.

30.116.3.15 double Fl_Valuator::step () const [inline]

Gets or sets the step value.

As the user moves the mouse the value is rounded to the nearest multiple of the step value. This is done
before clamping it to the range. For most widgets the default step is zero.

For precision the step is stored as the ratio of two integers, A/B. You can set these integers directly. Cur-
rently setting a floating point value sets the nearest A/1 or 1/B value possible.

Reimplemented in Fl_Counter.

30.116.3.16 int Fl_Valuator::value (double v)

Sets the current value.

The new value is not clamped or otherwise changed before storing it. Use clamp() or round() to modify the
value before calling value(). The widget is redrawn if the new value is different than the current one. The
initial value is zero.

changed() will return true if the user has moved the slider, but it will be turned off by value(x) and just
before doing a callback (the callback can turn it back on if desired).

30.116.3.17 double Fl_Valuator::value () const [inline]

Gets the floating point(double) value.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.116 Fl_Valuator Class Reference 835

See int value(double)

Reimplemented in Fl_Scrollbar.

The documentation for this class was generated from the following files:

• Fl_Valuator.H
• Fl_Valuator.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

836 Class Documentation

30.117 Fl_Value_Input Class Reference

The Fl_Value_Input widget displays a numeric value.

#include <Fl_Value_Input.H>

Inheritance diagram for Fl_Value_Input::

Fl_Value_Input

Fl_Valuator

Fl_Widget

Public Member Functions

• void cursor_color (Fl_Color n)
Sets the color of the text cursor.

• Fl_Color cursor_color () const
Gets the color of the text cursor.

• Fl_Value_Input (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Value_Input widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void resize (int, int, int, int)
Changes the size or position of the widget.

• void shortcut (int s)
See int Fl_Value_Input::shortcut() const.

• int shortcut () const
The first form returns the current shortcut key for the Input.

• char soft () const
If "soft" is turned on, the user is allowed to drag the value outside the range.

• void soft (char s)
See void Fl_Value_Input::soft(char s).

• void textcolor (Fl_Color n)
Sets the color of the text in the value box.

• Fl_Color textcolor () const
Gets the color of the text in the value box.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.117 Fl_Value_Input Class Reference 837

• void textfont (Fl_Font s)

Sets the typeface of the text in the value box.

• Fl_Font textfont () const

Gets the typeface of the text in the value box.

• void textsize (Fl_Fontsize s)

Sets the size of the text in the value box.

• Fl_Fontsize textsize () const

Gets the size of the text in the value box.

Public Attributes

• Fl_Input input

Protected Member Functions

• void draw ()

Draws the widget.

30.117.1 Detailed Description

The Fl_Value_Input widget displays a numeric value.

The user can click in the text field and edit it - there is in fact a hidden Fl_Input widget with type(FL_-
FLOAT_INPUT) or type(FL_INT_INPUT) in there - and when they hit return or tab the value updates to
what they typed and the callback is done.

If step() is non-zero and integral, then the range of numbers is limited to integers instead of floating point
numbers. As well as displaying the value as an integer, typed input is also limited to integer values, even if
the hidden Fl_Input widget is of type(FL_FLOAT_INPUT).

If step() is non-zero, the user can also drag the mouse across the object and thus slide the value. The
left button moves one step() per pixel, the middle by 10 step(), and the right button by 100 ∗ step(). It
is therefore impossible to select text by dragging across it, although clicking can still move the insertion
cursor.

If step() is non-zero and integral, then the range of numbers are limited to integers instead of floating point
values.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

838 Class Documentation

Figure 30.33: Fl_Value_Input

30.117.2 Constructor & Destructor Documentation

30.117.2.1 Fl_Value_Input::Fl_Value_Input (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Value_Input widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

30.117.3 Member Function Documentation

30.117.3.1 void Fl_Value_Input::cursor_color (Fl_Color n) [inline]

Sets the color of the text cursor.

The text cursor is black by default.

30.117.3.2 Fl_Color Fl_Value_Input::cursor_color () const [inline]

Gets the color of the text cursor.

The text cursor is black by default.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.117 Fl_Value_Input Class Reference 839

30.117.3.3 void Fl_Value_Input::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.117.3.4 int Fl_Value_Input::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.117.3.5 void Fl_Value_Input::resize (int x, int y, int w, int h) [virtual]

Changes the size or position of the widget.

This is a virtual function so that the widget may implement its own handling of resizing. The default
version does not call the redraw() method, but instead relies on the parent widget to do so because the
parent may know a faster way to update the display, such as scrolling from the old position.

Some window managers under X11 call resize() a lot more often than needed. Please verify that the position
or size of a widget did actually change before doing any extensive calculations.

position(X, Y) is a shortcut for resize(X, Y, w(), h()), and size(W, H) is a shortcut for resize(x(), y(), W, H).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

840 Class Documentation

Parameters:

← x,y new position relative to the parent window

← w,h new size

See also:

position(int,int), size(int,int)

Reimplemented from Fl_Widget.

30.117.3.6 int Fl_Value_Input::shortcut () const [inline]

The first form returns the current shortcut key for the Input.

The second form sets the shortcut key to key. Setting this overrides the use of ’&’ in the label(). The value
is a bitwise OR of a key and a set of shift flags, for example FL_ALT | ’a’ , FL_ALT | (FL_F + 10), or just
’a’. A value of 0 disables the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a lower-case
letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don’t care" setting).

30.117.3.7 char Fl_Value_Input::soft () const [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. The default is true.

30.117.3.8 void Fl_Value_Input::textcolor (Fl_Color n) [inline]

Sets the color of the text in the value box.

30.117.3.9 Fl_Color Fl_Value_Input::textcolor () const [inline]

Gets the color of the text in the value box.

30.117.3.10 void Fl_Value_Input::textfont (Fl_Font s) [inline]

Sets the typeface of the text in the value box.

30.117.3.11 Fl_Font Fl_Value_Input::textfont () const [inline]

Gets the typeface of the text in the value box.

30.117.3.12 void Fl_Value_Input::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the value box.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.117 Fl_Value_Input Class Reference 841

30.117.3.13 Fl_Fontsize Fl_Value_Input::textsize () const [inline]

Gets the size of the text in the value box.

The documentation for this class was generated from the following files:

• Fl_Value_Input.H
• Fl_Value_Input.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

842 Class Documentation

30.118 Fl_Value_Output Class Reference

The Fl_Value_Output widget displays a floating point value.

#include <Fl_Value_Output.H>

Inheritance diagram for Fl_Value_Output::

Fl_Value_Output

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Value_Output (int x, int y, int w, int h, const char ∗l=0)

Creates a new Fl_Value_Output widget using the given position, size, and label string.

• int handle (int)

Handles the specified event.

• uchar soft () const

If "soft" is turned on, the user is allowed to drag the value outside the range.

• void soft (uchar s)

If "soft" is turned on, the user is allowed to drag the value outside the range.

• void textcolor (Fl_Color s)

Gets the color of the text in the value box.

• Fl_Color textcolor () const

Sets the color of the text in the value box.

• void textfont (Fl_Font s)

Sets the typeface of the text in the value box.

• Fl_Font textfont () const

Gets the typeface of the text in the value box.

• void textsize (Fl_Fontsize s)

• Fl_Fontsize textsize () const

Gets the size of the text in the value box.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.118 Fl_Value_Output Class Reference 843

Protected Member Functions

• void draw ()

Draws the widget.

30.118.1 Detailed Description

The Fl_Value_Output widget displays a floating point value.

If step() is not zero, the user can adjust the value by dragging the mouse left and right. The left button
moves one step() per pixel, the middle by 10 ∗ step(), and the right button by 100 ∗ step().

This is much lighter-weight than Fl_Value_Input because it contains no text editing code or character buffer.

Figure 30.34: Fl_Value_Output

30.118.2 Constructor & Destructor Documentation

30.118.2.1 Fl_Value_Output::Fl_Value_Output (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Value_Output widget using the given position, size, and label string.

The default boxtype is FL_NO_BOX.

Inherited destructor destroys the Valuator.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

844 Class Documentation

30.118.3 Member Function Documentation

30.118.3.1 void Fl_Value_Output::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Implements Fl_Widget.

30.118.3.2 int Fl_Value_Output::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Widget.

30.118.3.3 uchar Fl_Value_Output::soft () const [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.118 Fl_Value_Output Class Reference 845

30.118.3.4 void Fl_Value_Output::soft (uchar s) [inline]

If "soft" is turned on, the user is allowed to drag the value outside the range.

If they drag the value to one of the ends, let go, then grab again and continue to drag, they can get to any
value. Default is one.

30.118.3.5 void Fl_Value_Output::textcolor (Fl_Color s) [inline]

Gets the color of the text in the value box.

30.118.3.6 Fl_Color Fl_Value_Output::textcolor () const [inline]

Sets the color of the text in the value box.

30.118.3.7 void Fl_Value_Output::textfont (Fl_Font s) [inline]

Sets the typeface of the text in the value box.

30.118.3.8 Fl_Font Fl_Value_Output::textfont () const [inline]

Gets the typeface of the text in the value box.

30.118.3.9 Fl_Fontsize Fl_Value_Output::textsize () const [inline]

Gets the size of the text in the value box.

The documentation for this class was generated from the following files:

• Fl_Value_Output.H
• Fl_Value_Output.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

846 Class Documentation

30.119 Fl_Value_Slider Class Reference

The Fl_Value_Slider widget is a Fl_Slider widget with a box displaying the current value.

#include <Fl_Value_Slider.H>

Inheritance diagram for Fl_Value_Slider::

Fl_Value_Slider

Fl_Slider

Fl_Valuator

Fl_Widget

Public Member Functions

• Fl_Value_Slider (int x, int y, int w, int h, const char ∗l=0)
Creates a new Fl_Value_Slider widget using the given position, size, and label string.

• int handle (int)
Handles the specified event.

• void textcolor (Fl_Color s)
Sets the color of the text in the value box.

• Fl_Color textcolor () const
Gets the color of the text in the value box.

• void textfont (Fl_Font s)
Sets the typeface of the text in the value box.

• Fl_Font textfont () const
Gets the typeface of the text in the value box.

• void textsize (Fl_Fontsize s)
Sets the size of the text in the value box.

• Fl_Fontsize textsize () const
Gets the size of the text in the value box.

Protected Member Functions

• void draw ()
Draws the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.119 Fl_Value_Slider Class Reference 847

30.119.1 Detailed Description

The Fl_Value_Slider widget is a Fl_Slider widget with a box displaying the current value.

Figure 30.35: Fl_Value_Slider

30.119.2 Constructor & Destructor Documentation

30.119.2.1 Fl_Value_Slider::Fl_Value_Slider (int X, int Y, int W, int H, const char ∗ l = 0)

Creates a new Fl_Value_Slider widget using the given position, size, and label string.

The default boxtype is FL_DOWN_BOX.

30.119.3 Member Function Documentation

30.119.3.1 void Fl_Value_Slider::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Slider.

30.119.3.2 int Fl_Value_Slider::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

848 Class Documentation

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Slider.

30.119.3.3 void Fl_Value_Slider::textcolor (Fl_Color s) [inline]

Sets the color of the text in the value box.

30.119.3.4 Fl_Color Fl_Value_Slider::textcolor () const [inline]

Gets the color of the text in the value box.

30.119.3.5 void Fl_Value_Slider::textfont (Fl_Font s) [inline]

Sets the typeface of the text in the value box.

30.119.3.6 Fl_Font Fl_Value_Slider::textfont () const [inline]

Gets the typeface of the text in the value box.

30.119.3.7 void Fl_Value_Slider::textsize (Fl_Fontsize s) [inline]

Sets the size of the text in the value box.

30.119.3.8 Fl_Fontsize Fl_Value_Slider::textsize () const [inline]

Gets the size of the text in the value box.

The documentation for this class was generated from the following files:

• Fl_Value_Slider.H
• Fl_Value_Slider.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 849

30.120 Fl_Widget Class Reference

Fl_Widget is the base class for all widgets in FLTK.

#include <Fl_Widget.H>

Inheritance diagram for Fl_Widget::

Fl_Widget

Fl_Box

Fl_Button

Fl_Chart

Fl_Clock_Output

Fl_FormsBitmap

Fl_FormsPixmap

Fl_Free

Fl_Group

Fl_Input_

Fl_Menu_

Fl_Positioner

Fl_Progress

Fl_Timer

Fl_Valuator

Public Member Functions

• void activate ()

Activates the widget.

• unsigned int active () const

Returns whether the widget is active.

• int active_r () const

Returns whether the widget and all of its parents are active.

• void align (Fl_Align alignment)

Sets the label alignment.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

850 Class Documentation

• Fl_Align align () const
Gets the label alignment.

• void argument (long v)
Sets the current user data (long) argument that is passed to the callback function.

• long argument () const
Gets the current user data (long) argument that is passed to the callback function.

• virtual class Fl_Gl_Window ∗ as_gl_window ()
Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

• virtual Fl_Group ∗ as_group ()
Returns an Fl_Group pointer if this widget is an Fl_Group.

• virtual Fl_Window ∗ as_window ()
Returns an Fl_Window pointer if this widget is an Fl_Window.

• void box (Fl_Boxtype new_box)
Sets the box type for the widget.

• Fl_Boxtype box () const
Gets the box type of the widget.

• void callback (Fl_Callback1 ∗cb, long p=0)
Sets the current callback function for the widget.

• void callback (Fl_Callback0 ∗cb)
Sets the current callback function for the widget.

• void callback (Fl_Callback ∗cb)
Sets the current callback function for the widget.

• void callback (Fl_Callback ∗cb, void ∗p)
Sets the current callback function for the widget.

• Fl_Callback_p callback () const
Gets the current callback function for the widget.

• unsigned int changed () const
Checks if the widget value changed since the last callback.

• void clear_changed ()
Marks the value of the widget as unchanged.

• void clear_damage (uchar c=0)
Clears or sets the damage flags.

• void clear_output ()
Sets a widget to accept input.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 851

• void clear_visible ()
Hides the widget.

• void clear_visible_focus ()
Disables keyboard focus navigation with this widget.

• void color (Fl_Color bg, Fl_Color sel)
Sets the background and selection color of the widget.

• void color (Fl_Color bg)
Sets the background color of the widget.

• Fl_Color color () const
Gets the background color of the widget.

• void color2 (unsigned a)
For back compatibility only.

• Fl_Color color2 () const
For back compatibility only.

• int contains (const Fl_Widget ∗w) const
Checks if w is a child of this widget.

• void copy_label (const char ∗new_label)
Sets the current label.

• void damage (uchar c, int x, int y, int w, int h)
Sets the damage bits for an area inside the widget.

• void damage (uchar c)
Sets the damage bits for the widget.

• uchar damage () const
Returns non-zero if draw() needs to be called.

• int damage_resize (int, int, int, int)
Internal use only.

• void deactivate ()
Deactivates the widget.

• void deimage (Fl_Image &img)
Sets the image to use as part of the widget label.

• void deimage (Fl_Image ∗img)
Sets the image to use as part of the widget label.

• const Fl_Image ∗ deimage () const

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

852 Class Documentation

• Fl_Image ∗ deimage ()
Gets the image that is used as part of the widget label.

• void do_callback (Fl_Widget ∗o, void ∗arg=0)
Calls the widget callback.

• void do_callback (Fl_Widget ∗o, long arg)
Calls the widget callback.

• void do_callback ()
Calls the widget callback.

• virtual void draw ()=0
Draws the widget.

• void draw_label (int, int, int, int, Fl_Align) const
Draws the label in an arbitrary bounding box with an arbitrary alignment.

• int h () const
Gets the widget height.

• virtual int handle (int event)
Handles the specified event.

• virtual void hide ()
Makes a widget invisible.

• void image (Fl_Image &img)
Sets the image to use as part of the widget label.

• void image (Fl_Image ∗img)
Sets the image to use as part of the widget label.

• const Fl_Image ∗ image () const
• Fl_Image ∗ image ()

Gets the image that is used as part of the widget label.

• int inside (const Fl_Widget ∗w) const
Checks if this widget is a child of w.

• void label (Fl_Labeltype a, const char ∗b)
Shortcut to set the label text and type in one call.

• void label (const char ∗text)
Sets the current label pointer.

• const char ∗ label () const
Gets the current label text.

• void labelcolor (Fl_Color c)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 853

Sets the label color.

• Fl_Color labelcolor () const
Gets the label color.

• void labelfont (Fl_Font f)
Sets the font to use.

• Fl_Font labelfont () const
Gets the font to use.

• void labelsize (Fl_Fontsize pix)
Sets the font size in pixels.

• Fl_Fontsize labelsize () const
Gets the font size in pixels.

• void labeltype (Fl_Labeltype a)
Sets the label type.

• Fl_Labeltype labeltype () const
Gets the label type.

• void measure_label (int &ww, int &hh)
Sets width ww and height hh accordingly with the label size.

• unsigned int output () const
Returns if a widget is used for output only.

• void parent (Fl_Group ∗p)
Internal use only - "for hacks only".

• Fl_Group ∗ parent () const
Returns a pointer to the parent widget.

• void position (int X, int Y)
Repositions the window or widget.

• void redraw ()
Schedules the drawing of the widget.

• void redraw_label ()
Schedules the drawing of the label.

• virtual void resize (int x, int y, int w, int h)
Changes the size or position of the widget.

• void selection_color (Fl_Color a)
Sets the selection color.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

854 Class Documentation

• Fl_Color selection_color () const
Gets the selection color.

• void set_changed ()
Marks the value of the widget as changed.

• void set_output ()
Sets a widget to output only.

• void set_visible ()
Makes the widget visible.

• void set_visible_focus ()
Enables keyboard focus navigation with this widget.

• virtual void show ()
Makes a widget visible.

• void size (int W, int H)
Changes the size of the widget.

• int take_focus ()
Gives the widget the keyboard focus.

• unsigned int takesevents () const
Returns if the widget is able to take events.

• int test_shortcut ()
Internal use only.

• void tooltip (const char ∗t)
Sets the current tooltip text.

• const char ∗ tooltip () const
Gets the current tooltip text.

• void type (uchar t)
Sets the widget type.

• uchar type () const
Gets the widget type.

• void user_data (void ∗v)
Sets the user data for this widget.

• void ∗ user_data () const
Gets the user data for this widget.

• unsigned int visible () const
Returns whether a widget is visible.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 855

• unsigned int visible_focus ()

Checks whether this widget has a visible focus.

• void visible_focus (int v)

Modifies keyboard focus navigation.

• int visible_r () const

Returns whether a widget and all its parents are visible.

• int w () const

Gets the widget width.

• void when (uchar i)

Sets the flags used to decide when a callback is called.

• Fl_When when () const

Returns the conditions under which the callback is called.

• Fl_Window ∗ window () const

Returns a pointer to the primary Fl_Window widget.

• int x () const

Gets the widget position in its window.

• int y () const

Gets the widget position in its window.

• virtual ∼Fl_Widget ()

Destroys the widget.

Static Public Member Functions

• static void default_callback (Fl_Widget ∗cb, void ∗d)

Sets the default callback for all widgets.

• static unsigned int label_shortcut (const char ∗t)
Internal use only.

• static int test_shortcut (const char ∗)
Internal use only.

Protected Types

• enum {

INACTIVE = 1<<0, INVISIBLE = 1<<1, OUTPUT = 1<<2, NOBORDER = 1<<3,

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

856 Class Documentation

FORCE_POSITION = 1<<4, NON_MODAL = 1<<5, SHORTCUT_LABEL = 1<<6,
CHANGED = 1<<7,

OVERRIDE = 1<<8, VISIBLE_FOCUS = 1<<9, COPIED_LABEL = 1<<10, CLIP_-
CHILDREN = 1<<11,

MENU_WINDOW = 1<<12, TOOLTIP_WINDOW = 1<<13, MODAL = 1<<14, NO_-
OVERLAY = 1<<15,

GROUP_RELATIVE = 1<<16, USERFLAG3 = 1<<29, USERFLAG2 = 1<<30, USERFLAG1 =
1<<31 }

flags possible values enumeration.

Protected Member Functions

• void clear_flag (unsigned int c)

Clears a flag in the flags mask.

• void draw_backdrop () const

If FL_ALIGN_IMAGE_BACKDROP is set, the image or deimage will be drawn.

• void draw_box (Fl_Boxtype t, int x, int y, int w, int h, Fl_Color c) const

Draws a box of type t, of color c at the position X,Y and size W,H.

• void draw_box (Fl_Boxtype t, Fl_Color c) const

Draws a box of type t, of color c at the widget’s position and size.

• void draw_box () const

Draws the widget box according its box style.

• void draw_focus (Fl_Boxtype t, int x, int y, int w, int h) const

Draws a focus box for the widget at the given position and size.

• void draw_focus ()

draws a focus rectangle around the widget

• void draw_label (int, int, int, int) const

Draws the label in an arbitrary bounding box.

• void draw_label () const

Draws the widget’s label at the defined label position.

• Fl_Widget (int x, int y, int w, int h, const char ∗label=0L)

Creates a widget at the given position and size.

• unsigned int flags () const

Gets the widget flags mask.

• void h (int v)

Internal use only.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 857

• void set_flag (unsigned int c)

Sets a flag in the flags mask.

• void w (int v)

Internal use only.

• void x (int v)

Internal use only.

• void y (int v)

Internal use only.

Friends

• class Fl_Group

30.120.1 Detailed Description

Fl_Widget is the base class for all widgets in FLTK.

You can’t create one of these because the constructor is not public. However you can subclass it.

All "property" accessing methods, such as color(), parent(), or argument() are implemented as trivial inline
functions and thus are as fast and small as accessing fields in a structure. Unless otherwise noted, the
property setting methods such as color(n) or label(s) are also trivial inline functions, even if they change
the widget’s appearance. It is up to the user code to call redraw() after these.

30.120.2 Member Enumeration Documentation

30.120.2.1 anonymous enum [protected]

flags possible values enumeration.

See activate(), output(), visible(), changed(), set_visible_focus()

Enumerator:

INACTIVE the widget can’t receive focus, and is disabled but potentially visible

INVISIBLE the widget is not drawn but can receive events

OUTPUT for output only

NOBORDER don’t draw a decoration (Fl_Window)

FORCE_POSITION don’t let the window manager position the window (Fl_Window)

NON_MODAL thisis a hovering toolbar window (Fl_Window)

SHORTCUT_LABEL the label contains a shortcut we need to draw

CHANGED the widget value changed

OVERRIDE position window on top (Fl_Window)

VISIBLE_FOCUS accepts keyboard focus navigation if the widget can have the focus

COPIED_LABEL the widget label is internally copied, its destruction is handled by the widget

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

858 Class Documentation

CLIP_CHILDREN all drawing within this widget will be clipped (Fl_Group)

MENU_WINDOW a temporary popup window, dismissed by clicking outside (Fl_Window)

TOOLTIP_WINDOW a temporary popup, transparent to events, and dismissed easily (Fl_Window)

MODAL a window blocking input to all other winows (Fl_Window)

NO_OVERLAY window not using a hardware overlay plane (Fl_Menu_Window)

GROUP_RELATIVE position this idget relative to the parent group, not to the window

USERFLAG3 reserved for 3rd party extensions

USERFLAG2 reserved for 3rd party extensions

USERFLAG1 reserved for 3rd party extensions

30.120.3 Constructor & Destructor Documentation

30.120.3.1 Fl_Widget::Fl_Widget (int x, int y, int w, int h, const char ∗ label = 0L)
[protected]

Creates a widget at the given position and size.

The Fl_Widget is a protected constructor, but all derived widgets have a matching public constructor. It
takes a value for x(), y(), w(), h(), and an optional value for label().

Parameters:

← x,y the position of the widget relative to the enclosing window

← w,h size of the widget in pixels

← label optional text for the widget label

30.120.3.2 Fl_Widget::∼Fl_Widget () [virtual]

Destroys the widget.

Destroys the widget, taking care of throwing focus before if any.

Destroying single widgets is not very common. You almost always want to destroy the parent group instead,
which will destroy all of the child widgets and groups in that group.

Since:

FLTK 1.3, the widget’s destructor removes the widget from its parent group, if it is member of a group.

Destruction removes the widget from any parent group! And groups when destroyed destroy all their
children. This is convenient and fast.

30.120.4 Member Function Documentation

30.120.4.1 void Fl_Widget::activate ()

Activates the widget.

Changing this value will send FL_ACTIVATE to the widget if active_r() is true.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 859

See also:

active(), active_r(), deactivate()

30.120.4.2 unsigned int Fl_Widget::active () const [inline]

Returns whether the widget is active.

Return values:

0 if the widget is inactive

See also:

active_r(), activate(), deactivate()

30.120.4.3 int Fl_Widget::active_r () const

Returns whether the widget and all of its parents are active.

Return values:

0 if this or any of the parent widgets are inactive

See also:

active(), activate(), deactivate()

30.120.4.4 void Fl_Widget::align (Fl_Align alignment) [inline]

Sets the label alignment.

This controls how the label is displayed next to or inside the widget. The default value is FL_ALIGN_-
CENTER, which centers the label inside the widget.

Parameters:

← alignment new label alignment

See also:

align(), Fl_Align

30.120.4.5 Fl_Align Fl_Widget::align () const [inline]

Gets the label alignment.

Returns:

label alignment

See also:

label(), align(Fl_Align), Fl_Align

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

860 Class Documentation

Todo

This function should not take uchar as an argument. Apart from the fact that uchar is too short with
only 8 bits, it does not provide type safety (in which case we don’t need to declare Fl_Align an enum
to begin with). NOTE∗ The current (FLTK 1.3) implementation (Dec 2008) is such that Fl_Align is
(typedef’d to be) "unsigned" (int), but Fl_Widget’s "align_" member variable is a bit field of 8 bits
only !

30.120.4.6 void Fl_Widget::argument (long v) [inline]

Sets the current user data (long) argument that is passed to the callback function.

Todo

The user data value must be implemented using a union to avoid 64 bit machine incompatibilities.

30.120.4.7 virtual class Fl_Gl_Window∗ Fl_Widget::as_gl_window () [inline, virtual]

Returns an Fl_Gl_Window pointer if this widget is an Fl_Gl_Window.

Return values:

NULL if this widget is not derived from Fl_Gl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented in Fl_Gl_Window.

30.120.4.8 virtual Fl_Group∗ Fl_Widget::as_group () [inline, virtual]

Returns an Fl_Group pointer if this widget is an Fl_Group.

Return values:

NULL if this widget is not derived from Fl_Group.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented in Fl_Group.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 861

30.120.4.9 virtual Fl_Window∗ Fl_Widget::as_window () [inline, virtual]

Returns an Fl_Window pointer if this widget is an Fl_Window.

Return values:

NULL if this widget is not derived from Fl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented in Fl_Window.

30.120.4.10 void Fl_Widget::box (Fl_Boxtype new_box) [inline]

Sets the box type for the widget.

This identifies a routine that draws the background of the widget. See Fl_Boxtype for the available types.
The default depends on the widget, but is usually FL_NO_BOX or FL_UP_BOX.

Parameters:

← new_box the new box type

See also:

box(), Fl_Boxtype

30.120.4.11 Fl_Boxtype Fl_Widget::box () const [inline]

Gets the box type of the widget.

Returns:

the current box type

See also:

box(Fl_Boxtype), Fl_Boxtype

30.120.4.12 void Fl_Widget::callback (Fl_Callback1 ∗ cb, long p = 0) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

← p user data

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

862 Class Documentation

30.120.4.13 void Fl_Widget::callback (Fl_Callback0 ∗ cb) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

30.120.4.14 void Fl_Widget::callback (Fl_Callback ∗ cb) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

30.120.4.15 void Fl_Widget::callback (Fl_Callback ∗ cb, void ∗ p) [inline]

Sets the current callback function for the widget.

Each widget has a single callback.

Parameters:

← cb new callback

← p user data

30.120.4.16 Fl_Callback_p Fl_Widget::callback () const [inline]

Gets the current callback function for the widget.

Each widget has a single callback.

Returns:

current callback

30.120.4.17 unsigned int Fl_Widget::changed () const [inline]

Checks if the widget value changed since the last callback.

"Changed" is a flag that is turned on when the user changes the value stored in the widget. This is only used
by subclasses of Fl_Widget that store values, but is in the base class so it is easier to scan all the widgets in
a panel and do_callback() on the changed ones in response to an "OK" button.

Most widgets turn this flag off when they do the callback, and when the program sets the stored value.

Return values:

0 if the value did not change

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 863

See also:

set_changed(), clear_changed()

Reimplemented in Fl_Input_Choice.

30.120.4.18 void Fl_Widget::clear_changed () [inline]

Marks the value of the widget as unchanged.

See also:

changed(), set_changed()

Reimplemented in Fl_Input_Choice.

30.120.4.19 void Fl_Widget::clear_damage (uchar c = 0) [inline]

Clears or sets the damage flags.

Damage flags are cleared when parts of the widget drawing is repaired.

The optional argument c specifies the bits that are set after the call (default: 0) and not the bits that are
cleared!

Note:

Therefore it is possible to set damage bits with this method, but this should be avoided. Use dam-
age(uchar) instead.

Parameters:

← c new bitmask of damage flags (default: 0)

See also:

damage(uchar), damage()

30.120.4.20 void Fl_Widget::clear_output () [inline]

Sets a widget to accept input.

See also:

set_output(), output()

30.120.4.21 void Fl_Widget::clear_visible () [inline]

Hides the widget.

You must still redraw the parent to see a change in the window. Normally you want to use the hide() method
instead.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

864 Class Documentation

30.120.4.22 void Fl_Widget::clear_visible_focus () [inline]

Disables keyboard focus navigation with this widget.

Normally, all widgets participate in keyboard focus navigation.

See also:

set_visible_focus(), visible_focus(), visible_focus(int)

30.120.4.23 void Fl_Widget::color (Fl_Color bg, Fl_Color sel) [inline]

Sets the background and selection color of the widget.

The two color form sets both the background and selection colors.

Parameters:

← bg background color

← sel selection color

See also:

color(unsigned), selection_color(unsigned)

30.120.4.24 void Fl_Widget::color (Fl_Color bg) [inline]

Sets the background color of the widget.

The color is passed to the box routine. The color is either an index into an internal table of RGB colors or
an RGB color value generated using fl_rgb_color().

The default for most widgets is FL_BACKGROUND_COLOR. Use Fl::set_color() to redefine colors in
the color map.

Parameters:

← bg background color

See also:

color(), color(Fl_Color, Fl_Color), selection_color(Fl_Color)

30.120.4.25 Fl_Color Fl_Widget::color () const [inline]

Gets the background color of the widget.

Returns:

current background color

See also:

color(Fl_Color), color(Fl_Color, Fl_Color)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 865

30.120.4.26 void Fl_Widget::color2 (unsigned a) [inline]

For back compatibility only.

Deprecated

Use selection_color(unsigned) instead.

30.120.4.27 Fl_Color Fl_Widget::color2 () const [inline]

For back compatibility only.

Deprecated

Use selection_color() instead.

30.120.4.28 int Fl_Widget::contains (const Fl_Widget ∗ w) const

Checks if w is a child of this widget.

Parameters:

← w potential child widget

Returns:

Returns 1 if w is a child of this widget, or is equal to this widget. Returns 0 if w is NULL.

30.120.4.29 void Fl_Widget::copy_label (const char ∗ new_label)

Sets the current label.

Unlike label(), this method allocates a copy of the label string instead of using the original string pointer.

The internal copy will automatically be freed whenever you assign a new label or when the widget is
destroyed.

Parameters:

← new_label the new label text

See also:

label()

Reimplemented in Fl_Window.

30.120.4.30 void Fl_Widget::damage (uchar c, int x, int y, int w, int h)

Sets the damage bits for an area inside the widget.

Setting damage bits will schedule the widget for the next redraw.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

866 Class Documentation

Parameters:

← c bitmask of flags to set

← x,y,w,h size of damaged area

See also:

damage(), clear_damage(uchar)

30.120.4.31 void Fl_Widget::damage (uchar c)

Sets the damage bits for the widget.

Setting damage bits will schedule the widget for the next redraw.

Parameters:

← c bitmask of flags to set

See also:

damage(), clear_damage(uchar)

30.120.4.32 uchar Fl_Widget::damage () const [inline]

Returns non-zero if draw() needs to be called.

The damage value is actually a bit field that the widget subclass can use to figure out what parts to draw.

Returns:

a bitmap of flags describing the kind of damage to the widget

See also:

damage(uchar), clear_damage(uchar)

30.120.4.33 int Fl_Widget::damage_resize (int X, int Y, int W, int H)

Internal use only.

30.120.4.34 void Fl_Widget::deactivate ()

Deactivates the widget.

Inactive widgets will be drawn "grayed out", e.g. with less contrast than the active widget. Inactive widgets
will not receive any keyboard or mouse button events. Other events (including FL_ENTER, FL_MOVE,
FL_LEAVE, FL_SHORTCUT, and others) will still be sent. A widget is only active if active() is true on it
and all of its parents.

Changing this value will send FL_DEACTIVATE to the widget if active_r() is true.

Currently you cannot deactivate Fl_Window widgets.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 867

See also:

activate(), active(), active_r()

Reimplemented in Fl_Repeat_Button.

30.120.4.35 void Fl_Widget::default_callback (Fl_Widget ∗ cb, void ∗ d) [static]

Sets the default callback for all widgets.

Sets the default callback, which puts a pointer to the widget on the queue returned by Fl::readqueue(). You
may want to call this from your own callback.

Parameters:

← cb the new callback

← d user data associated with that callback

See also:

callback(), do_callback(), Fl::readqueue()

30.120.4.36 void Fl_Widget::deimage (Fl_Image & img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the inactive state.

Parameters:

← img the new image for the deactivated widget

30.120.4.37 void Fl_Widget::deimage (Fl_Image ∗ img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the inactive state.

Parameters:

← img the new image for the deactivated widget

30.120.4.38 Fl_Image∗ Fl_Widget::deimage () [inline]

Gets the image that is used as part of the widget label.

This image is used when drawing the widget in the inactive state.

Returns:

the current image for the deactivated widget

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

868 Class Documentation

30.120.4.39 void Fl_Widget::do_callback (Fl_Widget ∗ o, void ∗ arg = 0)

Calls the widget callback.

Causes a widget to invoke its callback function with arbitrary arguments.

Parameters:

← o call the callback with o as the widget argument

← arg use arg as the user data argument

See also:

callback()

30.120.4.40 void Fl_Widget::do_callback (Fl_Widget ∗ o, long arg) [inline]

Calls the widget callback.

Causes a widget to invoke its callback function with arbitrary arguments.

Parameters:

← o call the callback with o as the widget argument

← arg call the callback with arg as the user data argument

See also:

callback()

30.120.4.41 void Fl_Widget::do_callback () [inline]

Calls the widget callback.

Causes a widget to invoke its callback function with default arguments.

See also:

callback()

30.120.4.42 virtual void Fl_Widget::draw () [pure virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 869

Implemented in Fl_Adjuster, Fl_Box, Fl_Browser_, Fl_Button, Fl_Cairo_Window, Fl_Chart, Fl_Choice,
Fl_Clock_Output, Fl_Counter, Fl_Dial, Fl_File_Input, Fl_FormsBitmap, Fl_FormsPixmap, Fl_Free, Fl_-
Gl_Window, Fl_Group, Fl_Input, Fl_Light_Button, Fl_Menu_Bar, Fl_Menu_Button, Fl_Pack, Fl_-
Positioner, Fl_Progress, Fl_Return_Button, Fl_Roller, Fl_Scroll, Fl_Scrollbar, Fl_Slider, Fl_Sys_Menu_-
Bar, Fl_Table, Fl_Tabs, Fl_Text_Display, Fl_Timer, Fl_Tree, Fl_Value_Input, Fl_Value_Output, Fl_-
Value_Slider, Fl_Window, and Fl_Glut_Window.

30.120.4.43 void Fl_Widget::draw_box (Fl_Boxtype t, int X, int Y, int W, int H, Fl_Color c)
const [protected]

Draws a box of type t, of color c at the position X,Y and size W,H.

30.120.4.44 void Fl_Widget::draw_box (Fl_Boxtype t, Fl_Color c) const [protected]

Draws a box of type t, of color c at the widget’s position and size.

30.120.4.45 void Fl_Widget::draw_label (int X, int Y, int W, int H, Fl_Align a) const

Draws the label in an arbitrary bounding box with an arbitrary alignment.

Anybody can call this to force the label to draw anywhere.

30.120.4.46 void Fl_Widget::draw_label (int X, int Y, int W, int H) const [protected]

Draws the label in an arbitrary bounding box.

draw() can use this instead of draw_label(void) to change the bounding box

30.120.4.47 void Fl_Widget::draw_label (void) const [protected]

Draws the widget’s label at the defined label position.

This is the normal call for a widget’s draw() method.

30.120.4.48 int Fl_Widget::h () const [inline]

Gets the widget height.

Returns:

the height of the widget in pixels.

30.120.4.49 void Fl_Widget::h (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

870 Class Documentation

30.120.4.50 int Fl_Widget::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented in Fl_Adjuster, Fl_Box, Fl_Browser_, Fl_Button, Fl_Check_Browser, Fl_Choice, Fl_-
Clock, Fl_Counter, Fl_Dial, Fl_File_Input, Fl_Free, Fl_Group, Fl_Input, Fl_Light_Button, Fl_Menu_Bar,
Fl_Menu_Button, Fl_Positioner, Fl_Repeat_Button, Fl_Return_Button, Fl_Roller, Fl_Scroll, Fl_Scrollbar,
Fl_Slider, Fl_Spinner, Fl_Table, Fl_Table_Row, Fl_Tabs, Fl_Text_Display, Fl_Text_Editor, Fl_Tile, Fl_-
Timer, Fl_Tree, Fl_Value_Input, Fl_Value_Output, Fl_Value_Slider, Fl_Window, and Fl_Glut_Window.

30.120.4.51 void Fl_Widget::hide () [virtual]

Makes a widget invisible.

See also:

show(), visible(), visible_r()

Reimplemented in Fl_Browser, Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_-
Window, and Fl_Window.

30.120.4.52 void Fl_Widget::image (Fl_Image & img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the active state.

Parameters:

← img the new image for the label

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 871

30.120.4.53 void Fl_Widget::image (Fl_Image ∗ img) [inline]

Sets the image to use as part of the widget label.

This image is used when drawing the widget in the active state.

Parameters:

← img the new image for the label

30.120.4.54 Fl_Image∗ Fl_Widget::image () [inline]

Gets the image that is used as part of the widget label.

This image is used when drawing the widget in the active state.

Returns:

the current image

30.120.4.55 int Fl_Widget::inside (const Fl_Widget ∗ w) const [inline]

Checks if this widget is a child of w.

Returns 1 if this widget is a child of w, or is equal to w. Returns 0 if w is NULL.

Parameters:

← w the possible parent widget.

See also:

contains()

30.120.4.56 void Fl_Widget::label (Fl_Labeltype a, const char ∗ b) [inline]

Shortcut to set the label text and type in one call.

See also:

label(const char ∗), labeltype(Fl_Labeltype)

30.120.4.57 void Fl_Widget::label (const char ∗ text)

Sets the current label pointer.

The label is shown somewhere on or next to the widget. The passed pointer is stored unchanged in the
widget (the string is not copied), so if you need to set the label to a formatted value, make sure the buffer
is static, global, or allocated. The copy_label() method can be used to make a copy of the label string
automatically.

Parameters:

← text pointer to new label text

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

872 Class Documentation

See also:

copy_label()

Reimplemented in Fl_Window.

30.120.4.58 const char∗ Fl_Widget::label () const [inline]

Gets the current label text.

Returns:

a pointer to the current label text

See also:

label(const char ∗), copy_label(const char ∗)

Reimplemented in Fl_Window.

30.120.4.59 unsigned int Fl_Widget::label_shortcut (const char ∗ t) [static]

Internal use only.

30.120.4.60 void Fl_Widget::labelcolor (Fl_Color c) [inline]

Sets the label color.

The default color is FL_FOREGROUND_COLOR.

Parameters:

← c the new label color

30.120.4.61 Fl_Color Fl_Widget::labelcolor () const [inline]

Gets the label color.

The default color is FL_FOREGROUND_COLOR.

Returns:

the current label color

30.120.4.62 void Fl_Widget::labelfont (Fl_Font f) [inline]

Sets the font to use.

Fonts are identified by indexes into a table. The default value uses a Helvetica typeface (Arial for Mi-
crosoft®Windows®). The function Fl::set_font() can define new typefaces.

Parameters:

← f the new font for the label

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 873

See also:

Fl_Font

Reimplemented in Fl_Tree.

30.120.4.63 Fl_Font Fl_Widget::labelfont () const [inline]

Gets the font to use.

Fonts are identified by indexes into a table. The default value uses a Helvetica typeface (Arial for Mi-
crosoft®Windows®). The function Fl::set_font() can define new typefaces.

Returns:

current font used by the label

See also:

Fl_Font

Reimplemented in Fl_Tree.

30.120.4.64 void Fl_Widget::labelsize (Fl_Fontsize pix) [inline]

Sets the font size in pixels.

Parameters:

← pix the new font size

See also:

Fl_Fontsize labelsize()

Reimplemented in Fl_Tree.

30.120.4.65 Fl_Fontsize Fl_Widget::labelsize () const [inline]

Gets the font size in pixels.

The default size is 14 pixels.

Returns:

the current font size

Reimplemented in Fl_Tree.

30.120.4.66 void Fl_Widget::labeltype (Fl_Labeltype a) [inline]

Sets the label type.

The label type identifies the function that draws the label of the widget. This is generally used for special
effects such as embossing or for using the label() pointer as another form of data such as an icon. The value
FL_NORMAL_LABEL prints the label as plain text.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

874 Class Documentation

Parameters:

← a new label type

See also:

Fl_Labeltype

30.120.4.67 Fl_Labeltype Fl_Widget::labeltype () const [inline]

Gets the label type.

Returns:

the current label type.

See also:

Fl_Labeltype

30.120.4.68 void Fl_Widget::measure_label (int & ww, int & hh) [inline]

Sets width ww and height hh accordingly with the label size.

Labels with images will return w() and h() of the image.

30.120.4.69 unsigned int Fl_Widget::output () const [inline]

Returns if a widget is used for output only.

output() means the same as !active() except it does not change how the widget is drawn. The widget will
not receive any events. This is useful for making scrollbars or buttons that work as displays rather than
input devices.

Return values:

0 if the widget is used for input and output

See also:

set_output(), clear_output()

30.120.4.70 void Fl_Widget::parent (Fl_Group ∗ p) [inline]

Internal use only - "for hacks only".

It is STRONGLY recommended not to use this method, because it short-circuits Fl_Group’s normal widget
adding and removing methods, if the widget is already a child widget of another Fl_Group.

Use Fl_Group::add(Fl_Widget∗) and/or Fl_Group::remove(Fl_Widget∗) instead.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 875

30.120.4.71 Fl_Group∗ Fl_Widget::parent () const [inline]

Returns a pointer to the parent widget.

Usually this is a Fl_Group or Fl_Window.

Return values:

NULL if the widget has no parent

See also:

Fl_Group::add(Fl_Widget∗)

30.120.4.72 void Fl_Widget::position (int X, int Y) [inline]

Repositions the window or widget.

position(X, Y) is a shortcut for resize(X, Y, w(), h()).

Parameters:

← X,Y new position relative to the parent window

See also:

resize(int,int,int,int), size(int,int)

Reimplemented in Fl_Input_.

30.120.4.73 void Fl_Widget::redraw ()

Schedules the drawing of the widget.

Marks the widget as needing its draw() routine called.

30.120.4.74 void Fl_Widget::redraw_label ()

Schedules the drawing of the label.

Marks the widget or the parent as needing a redraw for the label area of a widget.

30.120.4.75 void Fl_Widget::resize (int x, int y, int w, int h) [virtual]

Changes the size or position of the widget.

This is a virtual function so that the widget may implement its own handling of resizing. The default
version does not call the redraw() method, but instead relies on the parent widget to do so because the
parent may know a faster way to update the display, such as scrolling from the old position.

Some window managers under X11 call resize() a lot more often than needed. Please verify that the position
or size of a widget did actually change before doing any extensive calculations.

position(X, Y) is a shortcut for resize(X, Y, w(), h()), and size(W, H) is a shortcut for resize(x(), y(), W, H).

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

876 Class Documentation

Parameters:

← x,y new position relative to the parent window

← w,h new size

See also:

position(int,int), size(int,int)

Reimplemented in Fl_Browser_, Fl_Double_Window, Fl_Gl_Window, Fl_Group, Fl_Help_View, Fl_-
Input_, Fl_Input_Choice, Fl_Overlay_Window, Fl_Scroll, Fl_Spinner, Fl_Table, Fl_Text_Display, Fl_-
Tile, Fl_Value_Input, and Fl_Window.

30.120.4.76 void Fl_Widget::selection_color (Fl_Color a) [inline]

Sets the selection color.

The selection color is defined for Forms compatibility and is usually used to color the widget when it is
selected, although some widgets use this color for other purposes. You can set both colors at once with
color(Fl_Color bg, Fl_Color sel).

Parameters:

← a the new selection color

See also:

selection_color(), color(Fl_Color, Fl_Color)

30.120.4.77 Fl_Color Fl_Widget::selection_color () const [inline]

Gets the selection color.

Returns:

the current selection color

See also:

selection_color(Fl_Color), color(Fl_Color, Fl_Color)

30.120.4.78 void Fl_Widget::set_changed () [inline]

Marks the value of the widget as changed.

See also:

changed(), clear_changed()

Reimplemented in Fl_Input_Choice.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 877

30.120.4.79 void Fl_Widget::set_output () [inline]

Sets a widget to output only.

See also:

output(), clear_output()

30.120.4.80 void Fl_Widget::set_visible () [inline]

Makes the widget visible.

You must still redraw the parent widget to see a change in the window. Normally you want to use the
show() method instead.

30.120.4.81 void Fl_Widget::set_visible_focus () [inline]

Enables keyboard focus navigation with this widget.

Note, however, that this will not necessarily mean that the widget will accept focus, but for widgets that
can accept focus, this method enables it if it has been disabled.

See also:

visible_focus(), clear_visible_focus(), visible_focus(int)

30.120.4.82 void Fl_Widget::show () [virtual]

Makes a widget visible.

An invisible widget never gets redrawn and does not get events. The visible() method returns true if the
widget is set to be visible. The visible_r() method returns true if the widget and all of its parents are visible.
A widget is only visible if visible() is true on it and all of its parents.

Changing it will send FL_SHOW or FL_HIDE events to the widget. Do not change it if the parent is not
visible, as this will send false FL_SHOW or FL_HIDE events to the widget. redraw() is called if necessary
on this or the parent.

See also:

hide(), visible(), visible_r()

Reimplemented in Fl_Browser, Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_-
Window, Fl_Single_Window, and Fl_Window.

30.120.4.83 void Fl_Widget::size (int W, int H) [inline]

Changes the size of the widget.

size(W, H) is a shortcut for resize(x(), y(), W, H).

Parameters:

←W,H new size

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

878 Class Documentation

See also:

position(int,int), resize(int,int,int,int)

Reimplemented in Fl_Browser, Fl_Chart, Fl_Help_View, Fl_Input_, and Fl_Menu_.

30.120.4.84 int Fl_Widget::take_focus ()

Gives the widget the keyboard focus.

Tries to make this widget be the Fl::focus() widget, by first sending it an FL_FOCUS event, and if it returns
non-zero, setting Fl::focus() to this widget. You should use this method to assign the focus to a widget.

Returns:

true if the widget accepted the focus.

30.120.4.85 unsigned int Fl_Widget::takesevents () const [inline]

Returns if the widget is able to take events.

This is the same as (active() && !output() && visible()) but is faster.

Return values:

0 if the widget takes no events

30.120.4.86 int Fl_Widget::test_shortcut (const char ∗ t) [static]

Internal use only.

30.120.4.87 int Fl_Widget::test_shortcut ()

Internal use only.

Reimplemented in Fl_Menu_.

30.120.4.88 void Fl_Widget::tooltip (const char ∗ t)

Sets the current tooltip text.

Sets a string of text to display in a popup tooltip window when the user hovers the mouse over the widget.
The string is not copied, so make sure any formatted string is stored in a static, global, or allocated buffer.

If no tooltip is set, the tooltip of the parent is inherited. Setting a tooltip for a group and setting no tooltip
for a child will show the group’s tooltip instead. To avoid this behavior, you can set the child’s tooltip to
an empty string ("").

Parameters:

← t new tooltip

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 879

30.120.4.89 const char∗ Fl_Widget::tooltip () const [inline]

Gets the current tooltip text.

Returns:

a pointer to the tooltip text or NULL

30.120.4.90 void Fl_Widget::type (uchar t) [inline]

Sets the widget type.

This is used for Forms compatibility.

Reimplemented in Fl_Spinner.

30.120.4.91 uchar Fl_Widget::type () const [inline]

Gets the widget type.

Returns the widget type value, which is used for Forms compatibility and to simulate RTTI.

Todo

Explain "simulate RTTI" (currently only used to decide if a widget is a window, i.e. type()>=FL_-
WINDOW ?). Is type() really used in a way that ensures "Forms compatibility" ?

Reimplemented in Fl_Spinner, and Fl_Table_Row.

30.120.4.92 void Fl_Widget::user_data (void ∗ v) [inline]

Sets the user data for this widget.

Sets the new user data (void ∗) argument that is passed to the callback function.

Parameters:

← v new user data

30.120.4.93 void∗ Fl_Widget::user_data () const [inline]

Gets the user data for this widget.

Gets the current user data (void ∗) argument that is passed to the callback function.

Returns:

user data as a pointer

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

880 Class Documentation

30.120.4.94 unsigned int Fl_Widget::visible () const [inline]

Returns whether a widget is visible.

Return values:

0 if the widget is not drawn and hence invisible.

See also:

show(), hide(), visible_r()

30.120.4.95 unsigned int Fl_Widget::visible_focus () [inline]

Checks whether this widget has a visible focus.

Return values:

0 if this widget has no visible focus.

See also:

visible_focus(int), set_visible_focus(), clear_visible_focus()

30.120.4.96 void Fl_Widget::visible_focus (int v) [inline]

Modifies keyboard focus navigation.

Parameters:

← v set or clear visible focus

See also:

set_visible_focus(), clear_visible_focus(), visible_focus()

30.120.4.97 int Fl_Widget::visible_r () const

Returns whether a widget and all its parents are visible.

Return values:

0 if the widget or any of its parents are invisible.

See also:

show(), hide(), visible()

30.120.4.98 int Fl_Widget::w () const [inline]

Gets the widget width.

Returns:

the width of the widget in pixels.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.120 Fl_Widget Class Reference 881

30.120.4.99 void Fl_Widget::w (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

30.120.4.100 void Fl_Widget::when (uchar i) [inline]

Sets the flags used to decide when a callback is called.

This controls when callbacks are done. The following values are useful, the default value is FL_WHEN_-
RELEASE:

• 0: The callback is not done, but changed() is turned on.

• FL_WHEN_CHANGED: The callback is done each time the text is changed by the user.

• FL_WHEN_RELEASE: The callback will be done when this widget loses the focus, including when
the window is unmapped. This is a useful value for text fields in a panel where doing the callback
on every change is wasteful. However the callback will also happen if the mouse is moved out of the
window, which means it should not do anything visible (like pop up an error message). You might
do better setting this to zero, and scanning all the items for changed() when the OK button on a panel
is pressed.

• FL_WHEN_ENTER_KEY: If the user types the Enter key, the entire text is selected, and the callback
is done if the text has changed. Normally the Enter key will navigate to the next field (or insert a
newline for a Fl_Multiline_Input) - this changes the behavior.

• FL_WHEN_ENTER_KEY|FL_WHEN_NOT_CHANGED: The Enter key will do the callback even
if the text has not changed. Useful for command fields. Fl_Widget::when() is a set of bitflags used
by subclasses of Fl_Widget to decide when to do the callback.

If the value is zero then the callback is never done. Other values are described in the individual widgets.
This field is in the base class so that you can scan a panel and do_callback() on all the ones that don’t do
their own callbacks in response to an "OK" button.

Parameters:

← i set of flags

30.120.4.101 Fl_When Fl_Widget::when () const [inline]

Returns the conditions under which the callback is called.

You can set the flags with when(uchar), the default value is FL_WHEN_RELEASE.

Returns:

set of flags

See also:

when(uchar)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

882 Class Documentation

30.120.4.102 Fl_Window ∗ Fl_Widget::window () const

Returns a pointer to the primary Fl_Window widget.

Return values:

NULL if no window is associated with this widget.

Note:

for an Fl_Window widget, this returns its parent window (if any), not this window.

30.120.4.103 int Fl_Widget::x () const [inline]

Gets the widget position in its window.

Returns:

the x position relative to the window

30.120.4.104 void Fl_Widget::x (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

30.120.4.105 int Fl_Widget::y () const [inline]

Gets the widget position in its window.

Returns:

the y position relative to the window

30.120.4.106 void Fl_Widget::y (int v) [inline, protected]

Internal use only.

Use position(int,int), size(int,int) or resize(int,int,int,int) instead.

The documentation for this class was generated from the following files:

• Fl_Widget.H
• Fl.cxx
• fl_boxtype.cxx
• fl_labeltype.cxx
• fl_shortcut.cxx
• Fl_Tooltip.cxx
• Fl_Widget.cxx
• Fl_Window.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.121 Fl_Widget_Tracker Class Reference 883

30.121 Fl_Widget_Tracker Class Reference

This class should be used to control safe widget deletion.

#include <Fl.H>

Public Member Functions

• int deleted ()

Returns 1, if the watched widget has been deleted.

• int exists ()

Returns 1, if the watched widget exists (has not been deleted).

• Fl_Widget_Tracker (Fl_Widget ∗wi)

The constructor adds a widget to the watch list.

• Fl_Widget ∗ widget ()

Returns a pointer to the watched widget.

• ∼Fl_Widget_Tracker ()

The destructor removes a widget from the watch list.

30.121.1 Detailed Description

This class should be used to control safe widget deletion.

You can use an Fl_Widget_Tracker object to watch another widget, if you need to know, if this widget has
been deleted during a callback.

This simplifies the use of the "safe widget deletion" methods Fl::watch_widget_pointer() and Fl::release_-
widget_pointer() and makes their use more reliable, because the destructor autmatically releases the widget
pointer from the widget watch list.

It is intended to be used as an automatic (local/stack) variable, such that the automatic destructor is called
when the object’s scope is left. This ensures that no stale widget pointers are left in the widget watch list
(see example below).

You can also create Fl_Widget_Tracker objects with new, but then it is your responsibility to delete the
object (and thus remove the widget pointer from the watch list) when it is not needed any more.

Example:

int MyClass::handle (int event) {

if (...) {
Fl_Widget_Tracker wp(this); // watch myself
do_callback(); // call the callback

if (wp.deleted()) return 1; // exit, if deleted

// Now we are sure that the widget has not been deleted.
// It is safe to access the widget

clear_changed(); // access the widget

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

884 Class Documentation

}
}

30.121.2 Member Function Documentation

30.121.2.1 int Fl_Widget_Tracker::deleted () [inline]

Returns 1, if the watched widget has been deleted.

This is a convenience method. You can also use something like

if (wp.widget() == 0) // ...

where wp is an Fl_Widget_Tracker object.

30.121.2.2 int Fl_Widget_Tracker::exists () [inline]

Returns 1, if the watched widget exists (has not been deleted).

This is a convenience method. You can also use something like

if (wp.widget() != 0) // ...

where wp is an Fl_Widget_Tracker object.

30.121.2.3 Fl_Widget∗ Fl_Widget_Tracker::widget () [inline]

Returns a pointer to the watched widget.

This pointer is NULL, if the widget has been deleted.

The documentation for this class was generated from the following files:

• Fl.H
• Fl.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 885

30.122 Fl_Window Class Reference

This widget produces an actual window.

#include <Fl_Window.H>

Inheritance diagram for Fl_Window::

Fl_Window

Fl_Group

Fl_Widget

Fl_Double_Window Fl_Gl_Window Fl_Single_Window

Fl_Cairo_Window Fl_Overlay_Window Fl_Glut_Window Fl_Menu_Window

Public Member Functions

• virtual Fl_Window ∗ as_window ()
Returns an Fl_Window pointer if this widget is an Fl_Window.

• unsigned int border () const
See void Fl_Window::border(int).

• void border (int b)
Sets whether or not the window manager border is around the window.

• void clear_border ()
Fast inline function to turn the window manager border off.

• void copy_label (const char ∗a)
Sets the current label.

• void cursor (Fl_Cursor, Fl_Color=FL_BLACK, Fl_Color=FL_WHITE)
Changes the cursor for this window.

• void default_cursor (Fl_Cursor, Fl_Color=FL_BLACK, Fl_Color=FL_WHITE)
Sets the default window cursor as well as its color.

• Fl_Window (int x, int y, int w, int h, const char ∗title=0)
Creates a window from the given position, size and title.

• Fl_Window (int w, int h, const char ∗title=0)
Creates a window from the given size and title.

• void free_position ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

886 Class Documentation

Undoes the effect of a previous resize() or show() so that the next time show() is called the window manager
is free to position the window.

• void fullscreen ()

Makes the window completely fill the screen, without any window manager border visible.

• void fullscreen_off (int, int, int, int)

Turns off any side effects of fullscreen() and does resize(x,y,w,h).

• virtual int handle (int)

Handles the specified event.

• virtual void hide ()

Removes the window from the screen.

• void hotspot (const Fl_Widget &p, int offscreen=0)

See void Fl_Window::hotspot(int x, int y, int offscreen = 0).

• void hotspot (const Fl_Widget ∗, int offscreen=0)

See void Fl_Window::hotspot(int x, int y, int offscreen = 0).

• void hotspot (int x, int y, int offscreen=0)

Positions the window so that the mouse is pointing at the given position, or at the center of the given widget,
which may be the window itself.

• void icon (const void ∗ic)

Sets the current icon window target dependent data.

• const void ∗ icon () const

Gets the current icon window target dependent data.

• void iconize ()

Iconifies the window.

• void iconlabel (const char ∗)
Sets the icon label.

• const char ∗ iconlabel () const

See void Fl_Window::iconlabel(const char∗).

• void label (const char ∗label, const char ∗iconlabel)

Sets the icon label.

• void label (const char ∗)
Sets the window title bar label.

• const char ∗ label () const

See void Fl_Window::label(const char∗).

• void make_current ()

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 887

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

• unsigned int menu_window () const

Returns true if this window is a menu window.

• unsigned int modal () const

Returns true if this window is modal.

• unsigned int non_modal () const

Returns true if this window is modal or non-modal.

• unsigned int override () const

Returns non zero if FL_OVERRIDE flag is set, 0 otherwise.

• virtual void resize (int, int, int, int)

Changes the size and position of the window.

• void set_menu_window ()

Marks the window as a menu window.

• void set_modal ()

A "modal" window, when shown(), will prevent any events from being delivered to other windows in the
same program, and will also remain on top of the other windows (if the X window manager supports the
"transient for" property).

• void set_non_modal ()

A "non-modal" window (terminology borrowed from Microsoft Windows) acts like a modal() one in that it
remains on top, but it has no effect on event delivery.

• void set_override ()

Activates the flags NOBORDER|FL_OVERRIDE.

• void set_tooltip_window ()

Marks the window as a tooltip window.

• void show (int, char ∗∗)
See virtual void Fl_Window::show().

• virtual void show ()

Puts the window on the screen.

• int shown ()

Returns non-zero if show() has been called (but not hide()).

• void size_range (int a, int b, int c=0, int d=0, int e=0, int f=0, int g=0)

Sets the allowable range the user can resize this window to.

• unsigned int tooltip_window () const

Returns true if this window is a tooltip window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

888 Class Documentation

• int x_root () const
Gets the x position of the window on the screen.

• void xclass (const char ∗c)
A string used to tell the system what type of window this is.

• const char ∗ xclass () const
See void Fl_Window::xclass(const char∗).

• int y_root () const
Gets the y position of the window on the screen.

• virtual ∼Fl_Window ()
The destructor also deletes all the children.

Static Public Member Functions

• static Fl_Window ∗ current ()
Returns the last window that was made current.

• static void default_callback (Fl_Window ∗, void ∗v)
Back compatibility: Sets the default callback v for win to call on close event.

Protected Member Functions

• virtual void draw ()
Draws the widget.

• virtual void flush ()
Forces the window to be drawn, this window is also made current and calls draw().

• int force_position () const
Returns the internal state of the window’s FORCE_POSITION flag.

• void force_position (int force)
Sets an internal flag that tells FLTK and the window manager to honor position requests.

Static Protected Attributes

• static Fl_Window ∗ current_
Stores the last window that was made current.

Friends

• class Fl_X

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 889

30.122.1 Detailed Description

This widget produces an actual window.

This can either be a main window, with a border and title and all the window management controls, or a
"subwindow" inside a window. This is controlled by whether or not the window has a parent().

Once you create a window, you usually add children Fl_Widget ’s to it by using window->add(child) for
each new widget. See Fl_Group for more information on how to add and remove children.

There are several subclasses of Fl_Window that provide double-buffering, overlay, menu, and OpenGL
support.

The window’s callback is done if the user tries to close a window using the window manager and
Fl::modal() is zero or equal to the window. Fl_Window has a default callback that calls Fl_Window::hide().

30.122.2 Constructor & Destructor Documentation

30.122.2.1 Fl_Window::Fl_Window (int w, int h, const char ∗ title = 0)

Creates a window from the given size and title.

If Fl_Group::current() is not NULL, the window is created as a subwindow of the parent window.

The first form of the constructor creates a top-level window and asks the window manager to position
the window. The second form of the constructor either creates a subwindow or a top-level window at
the specified location (x,y) , subject to window manager configuration. If you do not specify the position
of the window, the window manager will pick a place to show the window or allow the user to pick a
location. Use position(x,y) or hotspot() before calling show() to request a position on the screen. See
Fl_Window::resize() for some more details on positioning windows.

Top-level windows initially have visible() set to 0 and parent() set to NULL. Subwindows initially have
visible() set to 1 and parent() set to the parent window pointer.

Fl_Widget::box() defaults to FL_FLAT_BOX. If you plan to completely fill the window with children
widgets you should change this to FL_NO_BOX. If you turn the window border off you may want to
change this to FL_UP_BOX.

See also:

Fl_Window(int x, int y, int w, int h, const char∗ title = 0)

30.122.2.2 Fl_Window::Fl_Window (int x, int y, int w, int h, const char ∗ title = 0)

Creates a window from the given position, size and title.

See also:

Fl_Window::Fl_Window(int w, int h, const char ∗title = 0)

30.122.2.3 Fl_Window::∼Fl_Window () [virtual]

The destructor also deletes all the children.

This allows a whole tree to be deleted at once, without having to keep a pointer to all the children in the user
code. A kludge has been done so the Fl_Window and all of its children can be automatic (local) variables,
but you must declare the Fl_Window first so that it is destroyed last.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

890 Class Documentation

30.122.3 Member Function Documentation

30.122.3.1 virtual Fl_Window∗ Fl_Window::as_window () [inline, virtual]

Returns an Fl_Window pointer if this widget is an Fl_Window.

Return values:

NULL if this widget is not derived from Fl_Window.

Note:

This method is provided to avoid dynamic_cast.

Todo

More documentation ...

Reimplemented from Fl_Widget.

30.122.3.2 void Fl_Window::border (int b)

Sets whether or not the window manager border is around the window.

The default value is true. void border(int) can be used to turn the border on and off. Under most X window
managers this does not work after show() has been called, although SGI’s 4DWM does work.

30.122.3.3 void Fl_Window::clear_border () [inline]

Fast inline function to turn the window manager border off.

It only works before show() is called.

30.122.3.4 void Fl_Window::copy_label (const char ∗ new_label)

Sets the current label.

Unlike label(), this method allocates a copy of the label string instead of using the original string pointer.

The internal copy will automatically be freed whenever you assign a new label or when the widget is
destroyed.

Parameters:

← new_label the new label text

See also:

label()

Reimplemented from Fl_Widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 891

30.122.3.5 Fl_Window ∗ Fl_Window::current (void) [static]

Returns the last window that was made current.

See also:

Fl_Window::make_current()

Reimplemented from Fl_Group.

30.122.3.6 void Fl_Window::cursor (Fl_Cursor c, Fl_Color fg = FL_BLACK, Fl_Color bg =
FL_WHITE)

Changes the cursor for this window.

This always calls the system, if you are changing the cursor a lot you may want to keep track of how you
set it in a static variable and call this only if the new cursor is different.

The type Fl_Cursor is an enumeration defined in <FL/Enumerations.H>. (Under X you can get any XC_-
cursor value by passing Fl_Cursor((XC_foo/2)+1)). The colors only work on X, they are not implemented
on WIN32.

For back compatibility only.

30.122.3.7 void Fl_Window::default_cursor (Fl_Cursor c, Fl_Color fg = FL_BLACK, Fl_Color bg
= FL_WHITE)

Sets the default window cursor as well as its color.

For back compatibility only.

30.122.3.8 void Fl_Window::draw () [protected, virtual]

Draws the widget.

Never call this function directly. FLTK will schedule redrawing whenever needed. If your widget must be
redrawn as soon as possible, call redraw() instead.

Override this function to draw your own widgets.

If you ever need to call another widget’s draw method from within your own draw() method, e.g. for an
embedded scrollbar, you can do it (because draw() is virtual) like this:

Fl_Widget *s = &scroll; // scroll is an embedded Fl_Scrollbar
s->draw(); // calls Fl_Scrollbar::draw()

Reimplemented from Fl_Group.

Reimplemented in Fl_Cairo_Window, Fl_Gl_Window, and Fl_Glut_Window.

30.122.3.9 void Fl_Window::flush () [protected, virtual]

Forces the window to be drawn, this window is also made current and calls draw().

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_Window, and
Fl_Single_Window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

892 Class Documentation

30.122.3.10 int Fl_Window::force_position () const [inline, protected]

Returns the internal state of the window’s FORCE_POSITION flag.

Return values:

1 if flag is set

0 otherwise

See also:

force_position(int)

30.122.3.11 void Fl_Window::force_position (int force) [inline, protected]

Sets an internal flag that tells FLTK and the window manager to honor position requests.

This is used internally and should not be needed by user code.

Parameters:

← force 1 to set the FORCE_POSITION flag, 0 to clear it

30.122.3.12 void Fl_Window::free_position () [inline]

Undoes the effect of a previous resize() or show() so that the next time show() is called the window manager
is free to position the window.

This is for Forms compatibility only.

Deprecated

please use force_position(0) instead

30.122.3.13 void Fl_Window::fullscreen ()

Makes the window completely fill the screen, without any window manager border visible.

You must use fullscreen_off() to undo this. This may not work with all window managers.

30.122.3.14 int Fl_Window::handle (int event) [virtual]

Handles the specified event.

You normally don’t call this method directly, but instead let FLTK do it when the user interacts with the
widget.

When implemented in a widget, this function must return 0 if the widget does not use the event or 1
otherwise.

Most of the time, you want to call the inherited handle() method in your overridden method so that you
don’t short-circuit events that you don’t handle. In this last case you should return the callee retval.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 893

Parameters:

← event the kind of event received

Return values:

0 if the event was not used or understood

1 if the event was used and can be deleted

See also:

Fl_Event

Reimplemented from Fl_Group.

Reimplemented in Fl_Glut_Window.

30.122.3.15 void Fl_Window::hide () [virtual]

Removes the window from the screen.

If the window is already hidden or has not been shown then this does nothing and is harmless.

Reimplemented from Fl_Widget.

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, and Fl_Overlay_Window.

30.122.3.16 void Fl_Window::hotspot (int x, int y, int offscreen = 0)

Positions the window so that the mouse is pointing at the given position, or at the center of the given widget,
which may be the window itself.

If the optional offscreen parameter is non-zero, then the window is allowed to extend off the screen (this
does not work with some X window managers).

See also:

position()

30.122.3.17 void Fl_Window::icon (const void ∗ ic) [inline]

Sets the current icon window target dependent data.

30.122.3.18 const void∗ Fl_Window::icon () const [inline]

Gets the current icon window target dependent data.

30.122.3.19 void Fl_Window::iconize ()

Iconifies the window.

If you call this when shown() is false it will show() it as an icon. If the window is already iconified this
does nothing.

Call show() to restore the window.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

894 Class Documentation

When a window is iconified/restored (either by these calls or by the user) the handle() method is called
with FL_HIDE and FL_SHOW events and visible() is turned on and off.

There is no way to control what is drawn in the icon except with the string passed to Fl_Window::xclass().
You should not rely on window managers displaying the icons.

30.122.3.20 void Fl_Window::iconlabel (const char ∗ iname)

Sets the icon label.

30.122.3.21 void Fl_Window::label (const char ∗ label, const char ∗ iconlabel)

Sets the icon label.

30.122.3.22 void Fl_Window::label (const char ∗ name)

Sets the window title bar label.

Reimplemented from Fl_Widget.

30.122.3.23 void Fl_Window::make_current ()

Sets things up so that the drawing functions in <FL/fl_draw.H> will go into this window.

This is useful for incremental update of windows, such as in an idle callback, which will make your program
behave much better if it draws a slow graphic. Danger: incremental update is very hard to debug and
maintain!

This method only works for the Fl_Window and Fl_Gl_Window derived classes.

Reimplemented in Fl_Gl_Window, Fl_Single_Window, and Fl_Glut_Window.

30.122.3.24 unsigned int Fl_Window::menu_window () const [inline]

Returns true if this window is a menu window.

30.122.3.25 unsigned int Fl_Window::modal () const [inline]

Returns true if this window is modal.

30.122.3.26 unsigned int Fl_Window::non_modal () const [inline]

Returns true if this window is modal or non-modal.

30.122.3.27 unsigned int Fl_Window::override () const [inline]

Returns non zero if FL_OVERRIDE flag is set, 0 otherwise.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 895

30.122.3.28 virtual void Fl_Window::resize (int, int, int, int) [virtual]

Changes the size and position of the window.

If shown() is true, these changes are communicated to the window server (which may refuse that size and
cause a further resize). If shown() is false, the size and position are used when show() is called. See
Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers for this
virtual function.

A top-level window can not force, but merely suggest a position and size to the operating system. The
window manager may not be willing or able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window parameters after the resize request.

Reimplemented from Fl_Group.

Reimplemented in Fl_Double_Window, Fl_Gl_Window, and Fl_Overlay_Window.

30.122.3.29 void Fl_Window::set_menu_window () [inline]

Marks the window as a menu window.

This is intended for internal use, but it can also be used if you write your own menu handling. However,
this is not recommended.

This flag is used for correct "parenting" of windows in communication with the windowing system. Modern
X window managers can use different flags to distinguish menu and tooltip windows from normal windows.

This must be called before the window is shown and cannot be changed later.

30.122.3.30 void Fl_Window::set_modal () [inline]

A "modal" window, when shown(), will prevent any events from being delivered to other windows in the
same program, and will also remain on top of the other windows (if the X window manager supports the
"transient for" property).

Several modal windows may be shown at once, in which case only the last one shown gets events. You can
see which window (if any) is modal by calling Fl::modal().

30.122.3.31 void Fl_Window::set_non_modal () [inline]

A "non-modal" window (terminology borrowed from Microsoft Windows) acts like a modal() one in that
it remains on top, but it has no effect on event delivery.

There are three states for a window: modal, non-modal, and normal.

30.122.3.32 void Fl_Window::set_tooltip_window () [inline]

Marks the window as a tooltip window.

This is intended for internal use, but it can also be used if you write your own tooltip handling. However,
this is not recommended.

This flag is used for correct "parenting" of windows in communication with the windowing system. Modern
X window managers can use different flags to distinguish menu and tooltip windows from normal windows.

This must be called before the window is shown and cannot be changed later.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

896 Class Documentation

Note:

Since Fl_Tooltip_Window is derived from Fl_Menu_Window, this also clears the menu_window()
state.

30.122.3.33 virtual void Fl_Window::show () [virtual]

Puts the window on the screen.

Usually (on X) this has the side effect of opening the display. The second form is used for top-level
windows and allows standard arguments to be parsed from the command-line.

If the window is already shown then it is restored and raised to the top. This is really convenient because
your program can call show() at any time, even if the window is already up. It also means that show()
serves the purpose of raise() in other toolkits.

Reimplemented from Fl_Widget.

Reimplemented in Fl_Double_Window, Fl_Gl_Window, Fl_Menu_Window, Fl_Overlay_Window, and
Fl_Single_Window.

30.122.3.34 int Fl_Window::shown () [inline]

Returns non-zero if show() has been called (but not hide()).

You can tell if a window is iconified with (w->shown() && !w->visible()).

30.122.3.35 void Fl_Window::size_range (int a, int b, int c = 0, int d = 0, int e = 0, int f = 0, int
g = 0) [inline]

Sets the allowable range the user can resize this window to.

This only works for top-level windows.

• minw and minh are the smallest the window can be. Either value must be greater than 0.

• maxw and maxh are the largest the window can be. If either is equal to the minimum then you cannot
resize in that direction. If either is zero then FLTK picks a maximum size in that direction such that
the window will fill the screen.

• dw and dh are size increments. The window will be constrained to widths of minw + N ∗ dw, where
N is any non-negative integer. If these are less or equal to 1 they are ignored (this is ignored on
WIN32).

• aspect is a flag that indicates that the window should preserve its aspect ratio. This only works if both
the maximum and minimum have the same aspect ratio (ignored on WIN32 and by many X window
managers).

If this function is not called, FLTK tries to figure out the range from the setting of resizable():

• If resizable() is NULL (this is the default) then the window cannot be resized and the resize border
and max-size control will not be displayed for the window.

• If either dimension of resizable() is less than 100, then that is considered the minimum size. Other-
wise the resizable() has a minimum size of 100.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.122 Fl_Window Class Reference 897

• If either dimension of resizable() is zero, then that is also the maximum size (so the window cannot
resize in that direction).

It is undefined what happens if the current size does not fit in the constraints passed to size_range().

30.122.3.36 unsigned int Fl_Window::tooltip_window () const [inline]

Returns true if this window is a tooltip window.

30.122.3.37 void Fl_Window::xclass (const char ∗ c) [inline]

A string used to tell the system what type of window this is.

Mostly this identifies the picture to draw in the icon. Under X, this is turned into a XA_WM_CLASS pair
by truncating at the first non-alphanumeric character and capitalizing the first character, and the second
one if the first is ’x’. Thus "foo" turns into "foo, Foo", and "xprog.1" turns into "xprog, XProg". This only
works if called before calling show().

Under Microsoft Windows this string is used as the name of the WNDCLASS structure, though it is not
clear if this can have any visible effect. The passed pointer is stored unchanged. The string is not copied.

30.122.4 Member Data Documentation

30.122.4.1 Fl_Window∗ Fl_Window::current_ [static, protected]

Stores the last window that was made current.

See current() const

Reimplemented from Fl_Group.

The documentation for this class was generated from the following files:

• Fl_Window.H
• Fl.cxx
• Fl_arg.cxx
• fl_cursor.cxx
• Fl_Window.cxx
• Fl_Window_fullscreen.cxx
• Fl_Window_hotspot.cxx
• Fl_Window_iconize.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

898 Class Documentation

30.123 Fl_Wizard Class Reference

This widget is based off the Fl_Tabs widget, but instead of displaying tabs it only changes "tabs" under
program control.

#include <Fl_Wizard.H>

Inheritance diagram for Fl_Wizard::

Fl_Wizard

Fl_Group

Fl_Widget

Public Member Functions

• Fl_Wizard (int, int, int, int, const char ∗=0)
The constructor creates the Fl_Wizard widget at the specified position and size.

• void next ()
This method shows the next child of the wizard.

• void prev ()
Shows the previous child.

• void value (Fl_Widget ∗)
Sets the child widget that is visible.

• Fl_Widget ∗ value ()
Gets the current visible child widget.

30.123.1 Detailed Description

This widget is based off the Fl_Tabs widget, but instead of displaying tabs it only changes "tabs" under
program control.

Its primary purpose is to support "wizards" that step a user through configuration or troubleshooting tasks.

As with Fl_Tabs, wizard panes are composed of child (usually Fl_Group) widgets. Navigation buttons
must be added separately.

30.123.2 Constructor & Destructor Documentation

30.123.2.1 Fl_Wizard::Fl_Wizard (int xx, int yy, int ww, int hh, const char ∗ l = 0)

The constructor creates the Fl_Wizard widget at the specified position and size.

The inherited destructor destroys the widget and its children.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.123 Fl_Wizard Class Reference 899

30.123.3 Member Function Documentation

30.123.3.1 void Fl_Wizard::next ()

This method shows the next child of the wizard.

If the last child is already visible, this function does nothing.

30.123.3.2 void Fl_Wizard::prev ()

Shows the previous child.

30.123.3.3 void Fl_Wizard::value (Fl_Widget ∗ kid)

Sets the child widget that is visible.

30.123.3.4 Fl_Widget ∗ Fl_Wizard::value ()

Gets the current visible child widget.

The documentation for this class was generated from the following files:

• Fl_Wizard.H
• Fl_Wizard.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

900 Class Documentation

30.124 Fl_XBM_Image Class Reference

The Fl_XBM_Image class supports loading, caching, and drawing of X Bitmap (XBM) bitmap files.

#include <Fl_XBM_Image.H>

Inheritance diagram for Fl_XBM_Image::

Fl_XBM_Image

Fl_Bitmap

Fl_Image

Public Member Functions

• Fl_XBM_Image (const char ∗filename)
The constructor loads the named XBM file from the given name filename.

30.124.1 Detailed Description

The Fl_XBM_Image class supports loading, caching, and drawing of X Bitmap (XBM) bitmap files.

30.124.2 Constructor & Destructor Documentation

30.124.2.1 Fl_XBM_Image::Fl_XBM_Image (const char ∗ name)

The constructor loads the named XBM file from the given name filename.

The destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_XBM_Image.H
• Fl_XBM_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

30.125 Fl_Xlib_Display Class Reference 901

30.125 Fl_Xlib_Display Class Reference

The X11-specific display graphics class.

#include <Fl_Device.H>

Inheritance diagram for Fl_Xlib_Display::

Fl_Xlib_Display

Fl_Display

Fl_Device

30.125.1 Detailed Description

The X11-specific display graphics class.

The documentation for this class was generated from the following file:

• Fl_Device.H

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

902 Class Documentation

30.126 Fl_XPM_Image Class Reference

The Fl_XPM_Image class supports loading, caching, and drawing of X Pixmap (XPM) images, including
transparency.

#include <Fl_XPM_Image.H>

Inheritance diagram for Fl_XPM_Image::

Fl_XPM_Image

Fl_Pixmap

Fl_Image

Public Member Functions

• Fl_XPM_Image (const char ∗filename)
The constructor loads the XPM image from the name filename.

30.126.1 Detailed Description

The Fl_XPM_Image class supports loading, caching, and drawing of X Pixmap (XPM) images, including
transparency.

30.126.2 Constructor & Destructor Documentation

30.126.2.1 Fl_XPM_Image::Fl_XPM_Image (const char ∗ name)

The constructor loads the XPM image from the name filename.

The destructor free all memory and server resources that are used by the image.

The documentation for this class was generated from the following files:

• Fl_XPM_Image.H
• Fl_XPM_Image.cxx

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Chapter 31

File Documentation

31.1 Enumerations.H File Reference

This file contains type definitions and general enumerations.

#include "Fl_Export.H"

#include "fl_types.h"

Defines

Event States
The following constants define bits in the Fl::event_state() value.

• #define FL_ALT 0x00080000
One of the alt keys is down.

• #define FL_BUTTON(n) (0x00800000<<(n))
Mouse button n (n > 0) is pushed.

• #define FL_BUTTON1 0x01000000
Mouse button 1 is pushed.

• #define FL_BUTTON2 0x02000000
Mouse button 2 is pushed.

• #define FL_BUTTON3 0x04000000
Mouse button 3 is pushed.

• #define FL_BUTTONS 0x7f000000
Any mouse button is pushed.

• #define FL_CAPS_LOCK 0x00020000
The caps lock is on.

• #define FL_COMMAND FL_CTRL
An alias for FL_CTRL on WIN32 and X11, or FL_META on MacOS X.

904 File Documentation

• #define FL_CONTROL FL_META
An alias for FL_META on WIN32 and X11, or FL_META on MacOS X.

• #define FL_CTRL 0x00040000
One of the ctrl keys is down.

• #define FL_KEY_MASK 0x0000ffff
All keys are 16 bit for now.

• #define FL_META 0x00400000
One of the meta/Windows keys is down.

• #define FL_NUM_LOCK 0x00100000
The num lock is on.

• #define FL_SCROLL_LOCK 0x00800000
The scroll lock is on.

• #define FL_SHIFT 0x00010000
One of the shift keys is down.

Mouse and Keyboard Events
This and the following constants define the non-ASCII keys on the keyboard for FL_KEYBOARD and
FL_SHORTCUT events.

Todo

FL_Button and FL_key... constants could be structured better (use an enum or some doxygen
grouping ?)

See also:

Fl::event_key() and Fl::get_key(int) (use ascii letters for all other keys):

• #define FL_Alt_L 0xffe9
The left alt key.

• #define FL_Alt_R 0xffea
The right alt key.

• #define FL_BackSpace 0xff08
The backspace key.

• #define FL_Button 0xfee8
A mouse button; use Fl_Button + n for mouse button n.

• #define FL_Caps_Lock 0xffe5
The caps lock key.

• #define FL_Control_L 0xffe3
The lefthand control key.

• #define FL_Control_R 0xffe4
The righthand control key.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 905

• #define FL_Delete 0xffff
The delete key.

• #define FL_Down 0xff54
The down arrow key.

• #define FL_End 0xff57
The end key.

• #define FL_Enter 0xff0d
The enter key.

• #define FL_Escape 0xff1b
The escape key.

• #define FL_F 0xffbd
One of the function keys; use FL_F + n for function key n.

• #define FL_F_Last 0xffe0
The last function key; use to range-check function keys.

• #define FL_Help 0xff68
The ’help’ key on Mac keyboards.

• #define FL_Home 0xff50
The home key.

• #define FL_Insert 0xff63
The insert key.

• #define FL_KP 0xff80
One of the keypad numbers; use FL_KP + n for number n.

• #define FL_KP_Enter 0xff8d
The enter key on the keypad, same as Fl_KP+’\r’.

• #define FL_KP_Last 0xffbd
The last keypad key; use to range-check keypad.

• #define FL_Left 0xff51
The left arrow key.

• #define FL_Menu 0xff67
The menu key.

• #define FL_Meta_L 0xffe7
The left meta/Windows key.

• #define FL_Meta_R 0xffe8
The right meta/Windows key.

• #define FL_Num_Lock 0xff7f

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

906 File Documentation

The num lock key.

• #define FL_Page_Down 0xff56
The page-down key.

• #define FL_Page_Up 0xff55
The page-up key.

• #define FL_Pause 0xff13
The pause key.

• #define FL_Print 0xff61
The print (or print-screen) key.

• #define FL_Right 0xff53
The right arrow key.

• #define FL_Scroll_Lock 0xff14
The scroll lock key.

• #define FL_Shift_L 0xffe1
The lefthand shift key.

• #define FL_Shift_R 0xffe2
The righthand shift key.

• #define FL_Tab 0xff09
The tab key.

• #define FL_Up 0xff52
The up arrow key.

Mouse Buttons
These constants define the button numbers for FL_PUSH and FL_RELEASE events.

See also:

Fl::event_button()

• #define FL_LEFT_MOUSE 1
The left mouse button.

• #define FL_MIDDLE_MOUSE 2
The middle mouse button.

• #define FL_RIGHT_MOUSE 3
The right mouse button.

Version Numbers
FLTK defines some constants to help the programmer to find out, for which FLTK version a program is
compiled.

The following constants are defined:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 907

• #define FL_MAJOR_VERSION 1
The major release version of this FLTK library.

• #define FL_MINOR_VERSION 3
The minor release version for this library.

• #define FL_PATCH_VERSION 0
The patch version for this library.

• #define FL_VERSION
The FLTK version number as a double.

Typedefs

• typedef int Fl_Fontsize
Size of a font in pixels.

Enumerations

• enum Fl_Event {

FL_NO_EVENT = 0, FL_PUSH = 1, FL_RELEASE = 2, FL_ENTER = 3,

FL_LEAVE = 4, FL_DRAG = 5, FL_FOCUS = 6, FL_UNFOCUS = 7,

FL_KEYDOWN = 8, FL_KEYBOARD = 8, FL_KEYUP = 9, FL_CLOSE = 10,

FL_MOVE = 11, FL_SHORTCUT = 12, FL_DEACTIVATE = 13, FL_ACTIVATE = 14,

FL_HIDE = 15, FL_SHOW = 16, FL_PASTE = 17, FL_SELECTIONCLEAR = 18,

FL_MOUSEWHEEL = 19, FL_DND_ENTER = 20, FL_DND_DRAG = 21, FL_DND_LEAVE =
22,

FL_DND_RELEASE = 23 }
Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application.

• enum Fl_Labeltype {

FL_NORMAL_LABEL = 0, FL_NO_LABEL, _FL_SHADOW_LABEL, _FL_ENGRAVED_-
LABEL,

_FL_EMBOSSED_LABEL, _FL_MULTI_LABEL, _FL_ICON_LABEL, _FL_IMAGE_LABEL,

FL_FREE_LABELTYPE }
The labeltype() method sets the type of the label.

When Conditions

• enum Fl_When {
FL_WHEN_NEVER = 0, FL_WHEN_CHANGED = 1, FL_WHEN_NOT_CHANGED = 2, FL_-
WHEN_RELEASE = 4,
FL_WHEN_RELEASE_ALWAYS = 6, FL_WHEN_ENTER_KEY = 8, FL_WHEN_ENTER_-
KEY_ALWAYS = 10, FL_WHEN_ENTER_KEY_CHANGED = 11 }

These constants determine when a callback is performed.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

908 File Documentation

Variables

• FL_EXPORT Fl_Fontsize FL_NORMAL_SIZE

normal font size

31.1.1 Detailed Description

This file contains type definitions and general enumerations.

31.1.2 Define Documentation

31.1.2.1 #define FL_MAJOR_VERSION 1

The major release version of this FLTK library.

See also:

FL_VERSION

31.1.2.2 #define FL_MINOR_VERSION 3

The minor release version for this library.

FLTK remains mostly source-code compatible between minor version changes.

31.1.2.3 #define FL_PATCH_VERSION 0

The patch version for this library.

FLTK remains binary compatible between patches.

31.1.2.4 #define FL_VERSION

Value:

((double)FL_MAJOR_VERSION + \
(double)FL_MINOR_VERSION * 0.01 + \
(double)FL_PATCH_VERSION * 0.0001)

The FLTK version number as a double.

This is changed slightly from the beta versions because the old "const double" definition would not allow
for conditional compilation...

FL_VERSION is a double that describes the major and minor version numbers. Version 1.1 is actually
stored as 1.01 to allow for more than 9 minor releases.

The FL_MAJOR_VERSION, FL_MINOR_VERSION, and FL_PATCH_VERSION constants give the in-
tegral values for the major, minor, and patch releases respectively.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 909

31.1.3 Typedef Documentation

31.1.3.1 typedef unsigned Fl_Align

Flags to control the label alignment.

This controls how the label is displayed next to or inside the widget. The default value is FL_ALIGN_-
CENTER for most widgets, which centers the label inside the widget.

Flags can be or’d to achieve a combination of alignments.

Outside alignments:

TOP_LEFT TOP TOP_RIGHT
LEFT_TOP+---------------------------------+RIGHT_TOP

| |
LEFT| |RIGHT

| |
LEFT_BOTTOM+---------------------------------+RIGHT_BOTTOM

BOTTOM_RIGHT BOTTOM BOTTOM_LEFT

Inside alignments:
\code

+---------------------------------+
|TOP_LEFT TOP TOP_RIGHT|
| |
|LEFT RIGHT|
| |
|BOTTOM_RIGHT BOTTOM BOTTOM_LEFT|
+---------------------------------+

See also:

FL_ALIGN_CENTER, etc.

31.1.3.2 typedef unsigned int Fl_Color

The Fl_Color type holds an FLTK color value.

Colors are either 8-bit indexes into a virtual colormap or 24-bit RGB color values.

Color indices occupy the lower 8 bits of the value, while RGB colors occupy the upper 24 bits, for a byte
organization of RGBI.

Fl_Color => 0xrrggbbii
| | | |
| | | +--- index between 0 and 255
| | +----- blue color component (8 bit)
| +------- green component (8 bit)
+--------- red component (8 bit)

A color can have either an index or an rgb value. Colors with rgb set and an index >0 are reserved for
special use.

31.1.3.3 typedef int Fl_Font

A font number is an index into the internal font table.

The following constants define the standard FLTK fonts:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

910 File Documentation

31.1.3.4 typedef int Fl_Fontsize

Size of a font in pixels.

This is the approximate height of a font in pixels.

31.1.4 Enumeration Type Documentation

31.1.4.1 enum Fl_Boxtype

Enumerator:

FL_NO_BOX nothing is drawn at all, this box is invisible

FL_FLAT_BOX a flat box

FL_UP_BOX see figure 1

FL_DOWN_BOX see figure 1

FL_UP_FRAME see figure 1

FL_DOWN_FRAME see figure 1

FL_THIN_UP_BOX see figure 1

FL_THIN_DOWN_BOX see figure 1

FL_THIN_UP_FRAME see figure 1

FL_THIN_DOWN_FRAME see figure 1

FL_ENGRAVED_BOX see figure 1

FL_EMBOSSED_BOX see figure 1

FL_ENGRAVED_FRAME see figure 1

FL_EMBOSSED_FRAME see figure 1

FL_BORDER_BOX see figure 1

_FL_SHADOW_BOX see figure 1

FL_BORDER_FRAME see figure 1

_FL_SHADOW_FRAME see figure 1

_FL_ROUNDED_BOX see figure 1

_FL_RSHADOW_BOX see figure 1

_FL_ROUNDED_FRAME see figure 1

_FL_RFLAT_BOX see figure 1

_FL_ROUND_UP_BOX see figure 1

_FL_ROUND_DOWN_BOX see figure 1

_FL_DIAMOND_UP_BOX see figure 1

_FL_DIAMOND_DOWN_BOX see figure 1

_FL_OVAL_BOX see figure 1

_FL_OSHADOW_BOX see figure 1

_FL_OVAL_FRAME see figure 1

_FL_OFLAT_BOX see figure 1

_FL_PLASTIC_UP_BOX plastic version of FL_UP_BOX

_FL_PLASTIC_DOWN_BOX plastic version of FL_DOWN_BOX

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 911

_FL_PLASTIC_UP_FRAME plastic version of FL_UP_FRAME

_FL_PLASTIC_DOWN_FRAME plastic version of FL_DOWN_FRAME

_FL_PLASTIC_THIN_UP_BOX plastic version of FL_THIN_UP_BOX

_FL_PLASTIC_THIN_DOWN_BOX plastic version of FL_THIN_DOWN_BOX

_FL_PLASTIC_ROUND_UP_BOX plastic version of FL_ROUND_UP_BOX

_FL_PLASTIC_ROUND_DOWN_BOX plastic version of FL_ROUND_DOWN_BOX

_FL_GTK_UP_BOX gtk+ version of FL_UP_BOX

_FL_GTK_DOWN_BOX gtk+ version of FL_DOWN_BOX

_FL_GTK_UP_FRAME gtk+ version of FL_UP_FRAME

_FL_GTK_DOWN_FRAME gtk+ version of FL_DOWN_RAME

_FL_GTK_THIN_UP_BOX gtk+ version of FL_THIN_UP_BOX

_FL_GTK_THIN_DOWN_BOX gtk+ version of FL_THIN_DOWN_BOX

_FL_GTK_THIN_UP_FRAME gtk+ version of FL_UP_FRAME

_FL_GTK_THIN_DOWN_FRAME gtk+ version of FL_THIN_DOWN_FRAME

_FL_GTK_ROUND_UP_BOX gtk+ version of FL_ROUND_UP_BOX

_FL_GTK_ROUND_DOWN_BOX gtk+ version of FL_ROUND_DOWN_BOX

FL_FREE_BOXTYPE the first free box type for creation of new box types

31.1.4.2 enum Fl_Event

Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application.

Events can also come from other programs like the window manager.

Events are identified by the integer argument passed to the Fl_Widget::handle() virtual method. Other
information about the most recent event is stored in static locations and acquired by calling the Fl::event_-
∗() methods. This static information remains valid until the next event is read from the window system, so
it is ok to look at it outside of the handle() method.

See also:

Fl::event_text(), Fl::event_key(), class Fl::

Enumerator:

FL_NO_EVENT No event.

FL_PUSH A mouse button has gone down with the mouse pointing at this widget.
You can find out what button by calling Fl::event_button(). You find out the mouse position by
calling Fl::event_x() and Fl::event_y().
A widget indicates that it "wants" the mouse click by returning non-zero from its Fl_-
Widget::handle() method. It will then become the Fl::pushed() widget and will get FL_DRAG
and the matching FL_RELEASE events. If Fl_Widget::handle() returns zero then FLTK will try
sending the FL_PUSH to another widget.

FL_RELEASE A mouse button has been released.
You can find out what button by calling Fl::event_button().
In order to receive the FL_RELEASE event, the widget must return non-zero when handling
FL_PUSH.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

912 File Documentation

FL_ENTER The mouse has been moved to point at this widget.
This can be used for highlighting feedback. If a widget wants to highlight or otherwise track
the mouse, it indicates this by returning non-zero from its handle() method. It then becomes the
Fl::belowmouse() widget and will receive FL_MOVE and FL_LEAVE events.

FL_LEAVE The mouse has moved out of the widget.
In order to receive the FL_LEAVE event, the widget must return non-zero when handling FL_-
ENTER.

FL_DRAG The mouse has moved with a button held down.
The current button state is in Fl::event_state(). The mouse position is in Fl::event_x() and
Fl::event_y().
In order to receive FL_DRAG events, the widget must return non-zero when handling FL_PUSH.

FL_FOCUS This indicates an attempt to give a widget the keyboard focus.
If a widget wants the focus, it should change itself to display the fact that it has the focus, and
return non-zero from its handle() method. It then becomes the Fl::focus() widget and gets FL_-
KEYDOWN, FL_KEYUP, and FL_UNFOCUS events.
The focus will change either because the window manager changed which window gets the focus,
or because the user tried to navigate using tab, arrows, or other keys. You can check Fl::event_-
key() to figure out why it moved. For navigation it will be the key pressed and interaction with
the window manager it will be zero.

FL_UNFOCUS This event is sent to the previous Fl::focus() widget when another widget gets the
focus or the window loses focus.

FL_KEYDOWN A key was pressed or released.
The key can be found in Fl::event_key(). The text that the key should insert can be found with
Fl::event_text() and its length is in Fl::event_length(). If you use the key handle() should return
1. If you return zero then FLTK assumes you ignored the key and will then attempt to send it to
a parent widget. If none of them want it, it will change the event into a FL_SHORTCUT event.
To receive FL_KEYBOARD events you must also respond to the FL_FOCUS and FL_-
UNFOCUS events.
If you are writing a text-editing widget you may also want to call the Fl::compose() function to
translate individual keystrokes into foreign characters.
FL_KEYUP events are sent to the widget that currently has focus. This is not necessarily the
same widget that received the corresponding FL_KEYDOWN event because focus may have
changed between events.

FL_KEYBOARD Equvalent to FL_KEYDOWN.
See also:

FL_KEYDOWN

FL_KEYUP Key release event.
See also:

FL_KEYDOWN

FL_CLOSE The user clicked the close button of a window.
This event is used internally only to trigger the callback of Fl_Window derived classed. The
default callback closes the window calling Fl_Window::hide().

FL_MOVE The mouse has moved without any mouse buttons held down.
This event is sent to the Fl::belowmouse() widget.
In order to receive FL_MOVE events, the widget must return non-zero when handling FL_-
ENTER.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 913

FL_SHORTCUT If the Fl::focus() widget is zero or ignores an FL_KEYBOARD event then FLTK
tries sending this event to every widget it can, until one of them returns non-zero.
FL_SHORTCUT is first sent to the Fl::belowmouse() widget, then its parents and siblings, and
eventually to every widget in the window, trying to find an object that returns non-zero. FLTK
tries really hard to not to ignore any keystrokes!
You can also make "global" shortcuts by using Fl::add_handler(). A global shortcut will work no
matter what windows are displayed or which one has the focus.

FL_DEACTIVATE This widget is no longer active, due to Fl_Widget::deactivate() being called on
it or one of its parents.
Fl_Widget::active() may still be true after this, the widget is only active if Fl_Widget::active() is
true on it and all its parents (use Fl_Widget::active_r() to check this).

FL_ACTIVATE This widget is now active, due to Fl_Widget::activate() being called on it or one of
its parents.

FL_HIDE This widget is no longer visible, due to Fl_Widget::hide() being called on it or one of its
parents, or due to a parent window being minimized.
Fl_Widget::visible() may still be true after this, but the widget is visible only if visible() is true
for it and all its parents (use Fl_Widget::visible_r() to check this).

FL_SHOW This widget is visible again, due to Fl_Widget::show() being called on it or one of its
parents, or due to a parent window being restored.
Child Fl_Windows respond to this by actually creating the window if not done already, so if you
subclass a window, be sure to pass FL_SHOW to the base class Fl_Widget::handle() method!

FL_PASTE You should get this event some time after you call Fl::paste().
The contents of Fl::event_text() is the text to insert and the number of characters is in Fl::event_-
length().

FL_SELECTIONCLEAR The Fl::selection_owner() will get this event before the selection is
moved to another widget.
This indicates that some other widget or program has claimed the selection. Motif programs used
this to clear the selection indication. Most modern programs ignore this.

FL_MOUSEWHEEL The user has moved the mouse wheel.
The Fl::event_dx() and Fl::event_dy() methods can be used to find the amount to scroll horizon-
tally and vertically.

FL_DND_ENTER The mouse has been moved to point at this widget.
A widget that is interested in receiving drag’n’drop data must return 1 to receive FL_DND_-
DRAG, FL_DND_LEAVE and FL_DND_RELEASE events.

FL_DND_DRAG The mouse has been moved inside a widget while dragging data.
A widget that is interested in receiving drag’n’drop data should indicate the possible drop posi-
tion.

FL_DND_LEAVE The mouse has moved out of the widget.

FL_DND_RELEASE The user has released the mouse button dropping data into the widget.
If the widget returns 1, it will receive the data in the immediately following FL_PASTE event.

31.1.4.3 enum Fl_Labeltype

The labeltype() method sets the type of the label.

The following standard label types are included:

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

914 File Documentation

Todo

The doxygen comments are incomplete, and some labeltypes are starting with an underscore. Also,
there are three external functions undocumented (yet):

• fl_define_FL_SHADOW_LABEL()

• fl_define_FL_ENGRAVED_LABEL()

• fl_define_FL_EMBOSSED_LABEL()

Enumerator:

FL_NORMAL_LABEL draws the text (0)

FL_NO_LABEL does nothing

_FL_SHADOW_LABEL draws a drop shadow under the text

_FL_ENGRAVED_LABEL draws edges as though the text is engraved

_FL_EMBOSSED_LABEL draws edges as thought the text is raised

_FL_MULTI_LABEL ?

_FL_ICON_LABEL draws the icon associated with the text

_FL_IMAGE_LABEL ?

FL_FREE_LABELTYPE first free labeltype to use for creating own labeltypes

31.1.4.4 enum Fl_When

These constants determine when a callback is performed.

See also:

Fl_Widget::when();

Todo

doxygen comments for values are incomplete and maybe wrong or unclear

Enumerator:

FL_WHEN_NEVER Never call the callback.

FL_WHEN_CHANGED Do the callback only when the widget value changes.

FL_WHEN_NOT_CHANGED Do the callback whenever the user interacts with the widget.

FL_WHEN_RELEASE Do the callback when the button or key is released and the value changes.

FL_WHEN_RELEASE_ALWAYS Do the callback when the button or key is released, even if the
value doesn’t change.

FL_WHEN_ENTER_KEY Do the callback when the user presses the ENTER key and the value
changes.

FL_WHEN_ENTER_KEY_ALWAYS Do the callback when the user presses the ENTER key, even
if the value doesn’t change.

FL_WHEN_ENTER_KEY_CHANGED ?

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.1 Enumerations.H File Reference 915

31.1.5 Function Documentation

31.1.5.1 Fl_Boxtype fl_box (Fl_Boxtype b) [inline]

Get the filled version of a frame.

If no filled version of a given frame exists, the behavior of this function is undefined and some random box
or frame is returned,

31.1.5.2 Fl_Boxtype fl_down (Fl_Boxtype b) [inline]

Get the "pressed" or "down" version of a box.

If no "down" version of a given box exists, the behavior of this function is undefined and some random box
or frame is returned,

31.1.5.3 Fl_Boxtype fl_frame (Fl_Boxtype b) [inline]

Get the unfilled, frame only version of a box.

If no frame version of a given box exists, the behavior of this function is undefined and some random box
or frame is returned,

31.1.5.4 Fl_Color fl_rgb_color (uchar r, uchar g, uchar b) [inline]

return 24-bit color value closest to r, g, b.

31.1.6 Variable Documentation

31.1.6.1 const Fl_Align FL_ALIGN_BOTTOM = (Fl_Align)2

Align the label at the bottom of the widget.

31.1.6.2 const Fl_Align FL_ALIGN_CENTER = (Fl_Align)0

Align the label horizontally in the middle.

31.1.6.3 const Fl_Align FL_ALIGN_CLIP = (Fl_Align)64

All parts of the label that are lager than the widget will not be drawn .

31.1.6.4 const Fl_Align FL_ALIGN_IMAGE_BACKDROP = (Fl_Align)0x0200

If the label contains an image, draw the image or deimage in the backgroup.

31.1.6.5 const Fl_Align FL_ALIGN_IMAGE_NEXT_TO_TEXT = (Fl_Align)0x0100

If the label contains an image, draw the text to the right of the image.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

916 File Documentation

31.1.6.6 const Fl_Align FL_ALIGN_IMAGE_OVER_TEXT = (Fl_Align)0x0000

If the label contains an image, draw the text below the image.

31.1.6.7 const Fl_Align FL_ALIGN_INSIDE = (Fl_Align)16

Draw the label inside of the widget.

31.1.6.8 const Fl_Align FL_ALIGN_LEFT = (Fl_Align)4

Align the label at the left of the widget.

Inside labels appear left-justified starting at the left side of the widget, outside labels are right-justified and
drawn to the left of the widget.

31.1.6.9 const Fl_Align FL_ALIGN_RIGHT = (Fl_Align)8

Align the label to the right of the widget.

31.1.6.10 const Fl_Align FL_ALIGN_TEXT_NEXT_TO_IMAGE = (Fl_Align)0x0120

If the label contains an image, draw the text to the left of the image.

31.1.6.11 const Fl_Align FL_ALIGN_TEXT_OVER_IMAGE = (Fl_Align)0x0020

If the label contains an image, draw the text on top of the image.

31.1.6.12 const Fl_Align FL_ALIGN_TOP = (Fl_Align)1

Align the label at the top of the widget.

Inside labels appear below the top, outside labels are drawn on top of the widget.

31.1.6.13 const Fl_Align FL_ALIGN_WRAP = (Fl_Align)128

Wrap text that does not fit the width of the widget.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.2 Fl_Abstract_Printer.cxx File Reference 917

31.2 Fl_Abstract_Printer.cxx File Reference

implementation of class Fl_Abstract_Printer.

#include <FL/Fl.H>

#include <FL/Fl_Printer.H>

31.2.1 Detailed Description

implementation of class Fl_Abstract_Printer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

918 File Documentation

31.3 Fl_Abstract_Printer.H File Reference

declaration of class Fl_Abstract_Printer.

#include <FL/Fl_Device.H>

Classes

• class Fl_Abstract_Printer
A virtual class for print support with several platform-specific implementations.

31.3.1 Detailed Description

declaration of class Fl_Abstract_Printer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.4 fl_arc.cxx File Reference 919

31.4 fl_arc.cxx File Reference

Utility functions for drawing arcs and circles.

#include <FL/fl_draw.H>

#include <FL/math.h>

31.4.1 Detailed Description

Utility functions for drawing arcs and circles.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

920 File Documentation

31.5 fl_arci.cxx File Reference

Utility functions for drawing circles using integers.

#include <FL/fl_draw.H>

#include <FL/x.H>

#include <config.h>

31.5.1 Detailed Description

Utility functions for drawing circles using integers.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.6 fl_boxtype.cxx File Reference 921

31.6 fl_boxtype.cxx File Reference

drawing code for common box types.

#include <FL/Fl.H>

#include <FL/Fl_Widget.H>

#include <FL/fl_draw.H>

#include <config.h>

Defines

• #define D1 BORDER_WIDTH
• #define D2 (BORDER_WIDTH+BORDER_WIDTH)
• #define fl_border_box fl_rectbound

allow consistent naming

Functions

• void fl_border_frame (int x, int y, int w, int h, Fl_Color c)

Draws a frame of type FL_BORDER_FRAME.

• void fl_down_box (int x, int y, int w, int h, Fl_Color c)

Draws a box of type FL_DOWN_BOX.

• void fl_down_frame (int x, int y, int w, int h, Fl_Color)

Draws a frame of type FL_DOWN_FRAME.

• void fl_draw_box (Fl_Boxtype t, int x, int y, int w, int h, Fl_Color c)

Draws a box using given type, position, size and color.

• void fl_embossed_box (int x, int y, int w, int h, Fl_Color c)

Draws a box of type FL_EMBOSSED_BOX.

• void fl_embossed_frame (int x, int y, int w, int h, Fl_Color)

Draws a frame of type FL_EMBOSSED_FRAME.

• void fl_engraved_box (int x, int y, int w, int h, Fl_Color c)

Draws a box of type FL_ENGRAVED_BOX.

• void fl_engraved_frame (int x, int y, int w, int h, Fl_Color)

Draws a frame of type FL_ENGRAVED_FRAME.

• void fl_frame (const char ∗s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

• void fl_frame2 (const char ∗s, int x, int y, int w, int h)

Draws a series of line segments around the given box.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

922 File Documentation

• uchar ∗ fl_gray_ramp ()
• void fl_internal_boxtype (Fl_Boxtype t, Fl_Box_Draw_F ∗f)

Sets the drawing function for a given box type.

• void fl_no_box (int, int, int, int, Fl_Color)
Draws a box of type FL_NO_BOX.

• void fl_rectbound (int x, int y, int w, int h, Fl_Color bgcolor)
Draws a bounded rectangle with a given position, size and color.

• void fl_thin_down_box (int x, int y, int w, int h, Fl_Color c)
Draws a box of type FL_THIN_DOWN_BOX.

• void fl_thin_down_frame (int x, int y, int w, int h, Fl_Color)
Draws a frame of type FL_THIN_DOWN_FRAME.

• void fl_thin_up_box (int x, int y, int w, int h, Fl_Color c)
Draws a box of type FL_THIN_UP_BOX.

• void fl_thin_up_frame (int x, int y, int w, int h, Fl_Color)
Draws a frame of type FL_THIN_UP_FRAME.

• void fl_up_box (int x, int y, int w, int h, Fl_Color c)
Draws a box of type FL_UP_BOX.

• void fl_up_frame (int x, int y, int w, int h, Fl_Color)
Draws a frame of type FL_UP_FRAME.

31.6.1 Detailed Description

drawing code for common box types.

31.6.2 Function Documentation

31.6.2.1 void fl_internal_boxtype (Fl_Boxtype t, Fl_Box_Draw_F ∗ f)

Sets the drawing function for a given box type.

Parameters:

← t box type
← f box drawing function

31.6.2.2 void fl_rectbound (int x, int y, int w, int h, Fl_Color bgcolor)

Draws a bounded rectangle with a given position, size and color.

Equivalent to drawing a box of type FL_BORDER_BOX.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.7 fl_color.cxx File Reference 923

31.7 fl_color.cxx File Reference

Color handling.

#include "Fl_XColor.H"

#include <FL/Fl.H>

#include <FL/x.H>

#include <FL/fl_draw.H>

#include "fl_cmap.h"

Defines

• #define fl_overlay 0
HAVE_OVERLAY determines whether fl_overlay is variable or defined as 0.

Functions

• Fl_Color fl_color_average (Fl_Color color1, Fl_Color color2, float weight)
Returns the weighted average color between the two given colors.

• Fl_Color fl_contrast (Fl_Color fg, Fl_Color bg)
Returns a color that contrasts with the background color.

• Fl_Color fl_inactive (Fl_Color c)
Returns the inactive, dimmed version of the given color.

• ulong fl_xpixel (Fl_Color i)
Returns the X pixel number used to draw the given FLTK color index.

• ulong fl_xpixel (uchar r, uchar g, uchar b)
Returns the X pixel number used to draw the given rgb color.

Variables

• uchar fl_bluemask
color mask used in current color map handling

• int fl_blueshift
color shift used in current color map handling

• Fl_Color fl_color_
Current color for drawing operations.

• int fl_extrashift
color shift used in current color map handling

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

924 File Documentation

• uchar fl_greenmask
color mask used in current color map handling

• int fl_greenshift
color shift used in current color map handling

• uchar fl_redmask
color mask used in current color map handling

• int fl_redshift
color shift used in current color map handling

• Fl_XColor fl_xmap [1][256]
HAVE_OVERLAY determines whether fl_xmap is one or two planes.

31.7.1 Detailed Description

Color handling.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.8 Fl_Color_Chooser.H File Reference 925

31.8 Fl_Color_Chooser.H File Reference

Fl_Color_Chooser widget .

#include <FL/Fl_Group.H>

#include <FL/Fl_Box.H>

#include <FL/Fl_Return_Button.H>

#include <FL/Fl_Choice.H>

#include <FL/Fl_Value_Input.H>

Classes

• class Fl_Color_Chooser
The Fl_Color_Chooser widget provides a standard RGB color chooser.

31.8.1 Detailed Description

Fl_Color_Chooser widget .

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

926 File Documentation

31.9 fl_curve.cxx File Reference

Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_vertex/fl_end path.

#include <FL/fl_draw.H>

#include <math.h>

31.9.1 Detailed Description

Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_vertex/fl_end path.

Incremental math implementation: I very much doubt this is optimal! From Foley/vanDam page 511. If
anybody has a better algorithm, please send it!

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.10 Fl_Device.H File Reference 927

31.10 Fl_Device.H File Reference

declaration of classes Fl_Device, Fl_Display.

#include <FL/x.H>

#include <FL/Fl_Plugin.H>

#include <FL/Fl_Image.H>

#include <FL/Fl_Bitmap.H>

#include <FL/Fl_Pixmap.H>

#include <FL/Fl_RGB_Image.H>

#include <stdio.h>

Classes

• class Fl_Device

A pure virtual class subclassed to send the output of drawing functions to display, printers, or local files.

• class Fl_Display

A virtual class subclassed for OS-specific display graphics.

• class Fl_GDI_Display

The MSWindows-specific display graphics class.

• class Fl_Quartz_Display

The Mac OS X-specific display graphics class.

• class Fl_Xlib_Display

The X11-specific display graphics class.

Typedefs

• typedef void(∗ Fl_Draw_Image_Cb)(void ∗data, int x, int y, int w, uchar ∗buf)

signature of image generation callback function.

Variables

• FL_EXPORT Fl_Device ∗ fl_device

Points to the device that currently receives all graphics requests.

• FL_EXPORT Fl_Display ∗ fl_display_device

Points to the platform’s display device.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

928 File Documentation

31.10.1 Detailed Description

declaration of classes Fl_Device, Fl_Display.

31.10.2 Typedef Documentation

31.10.2.1 typedef void(∗ Fl_Draw_Image_Cb)(void ∗data, int x, int y, int w, uchar ∗buf)

signature of image generation callback function.

Parameters:

← data user data passed to function

← x,y,w position and width of scan line in image

→ buf buffer for generated image data. You must copy w pixels from scanline y, starting at pixel x to
this buffer.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.11 fl_draw.H File Reference 929

31.11 fl_draw.H File Reference

utility header to pull drawing functions together

#include "Enumerations.H"

#include "Fl_Window.H"

#include "Fl_Device.H"

Defines

• #define fl_clip fl_push_clip
The fl_clip() name is deprecated and will be removed from future releases.

Enumerations

• enum {

FL_SOLID = 0, FL_DASH = 1, FL_DOT = 2, FL_DASHDOT = 3,

FL_DASHDOTDOT = 4, FL_CAP_FLAT = 0x100, FL_CAP_ROUND = 0x200, FL_CAP_-
SQUARE = 0x300,

FL_JOIN_MITER = 0x1000, FL_JOIN_ROUND = 0x2000, FL_JOIN_BEVEL = 0x3000 }

Functions

• FL_EXPORT int fl_add_symbol (const char ∗name, void(∗drawit)(Fl_Color), int scalable)
Adds a symbol to the system.

• void fl_arc (double x, double y, double r, double start, double end)
Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using scale
and rotate before calling fl_arc().

• void fl_arc (int x, int y, int w, int h, double a1, double a2)
Draw ellipse sections using integer coordinates.

• void fl_begin_complex_polygon ()
Starts drawing a complex filled polygon.

• void fl_begin_line ()
Starts drawing a list of lines.

• void fl_begin_loop ()
Starts drawing a closed sequence of lines.

• void fl_begin_points ()
Starts drawing a list of points.

• void fl_begin_polygon ()
Starts drawing a convex filled polygon.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

930 File Documentation

• FL_EXPORT char fl_can_do_alpha_blending ()

Checks whether platform supports true alpha blending for RGBA images.

• FL_EXPORT void fl_chord (int x, int y, int w, int h, double a1, double a2)

fl_chord declaration is a place holder - the function does not yet exist

• void fl_circle (double x, double y, double r)

fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.

• int fl_clip_box (int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersects the rectangle with the current clip region and returns the bounding box of the result.

• Fl_Region fl_clip_region ()

returns the current clipping region.

• FL_EXPORT void fl_clip_region (Fl_Region r)

Replaces the top of the clipping stack with a clipping region of any shape.

• Fl_Color fl_color ()

Returns the last fl_color() that was set.

• void fl_color (uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations.

• void fl_color (int c)

for back compatibility - use fl_color(Fl_Color c) instead

• void fl_color (Fl_Color c)

Sets the color for all subsequent drawing operations.

• FL_EXPORT void fl_cursor (Fl_Cursor, Fl_Color fg=FL_BLACK, Fl_Color bg=FL_WHITE)

Sets the cursor for the current window to the specified shape and colors.

• void fl_curve (double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3,
double Y3)

Add a series of points on a Bezier curve to the path.

• FL_EXPORT int fl_descent ()

Returns the recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align,
void(∗callthis)(const char ∗, int, int, int), Fl_Image ∗img=0, int draw_symbols=1)

The same as fl_draw(const char∗,int,int,int,int,Fl_Align,Fl_Image∗,int) with the addition of the callthis
parameter, which is a pointer to a text drawing function such as fl_draw(const char∗, int, int, int) to do the
real work.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y, int w, int h, Fl_Align align, Fl_Image ∗img=0,
int draw_symbols=1)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.11 fl_draw.H File Reference 931

Fancy string drawing function which is used to draw all the labels.

• void fl_draw (int angle, const char ∗str, int n, int x, int y)
Draws an array of n characters starting at the given location, rotating angle degrees counterclockwise.

• void fl_draw (const char ∗str, int n, int x, int y)
Draws an array of n characters starting at the given location.

• FL_EXPORT void fl_draw (int angle, const char ∗str, int x, int y)
Draws a nul-terminated string starting at the given location and rotating angle degrees counterclockwise.

• FL_EXPORT void fl_draw (const char ∗str, int x, int y)
Draws a nul-terminated string starting at the given location.

• FL_EXPORT void fl_draw_box (Fl_Boxtype, int x, int y, int w, int h, Fl_Color)
Draws a box using given type, position, size and color.

• void fl_draw_image (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int H, int D=3)
Draw image using callback function to generate image data.

• void fl_draw_image (const uchar ∗buf, int X, int Y, int W, int H, int D=3, int L=0)
Draw an 8-bit per color RGB or luminance image.

• FL_EXPORT void fl_draw_image_mono (Fl_Draw_Image_Cb cb, void ∗data, int X, int Y, int W, int
H, int D=1)

Draw gray-scale image using callback function to generate image data.

• void fl_draw_image_mono (const uchar ∗buf, int X, int Y, int W, int H, int D=1, int L=0)
Draw a gray-scale (1 channel) image.

• FL_EXPORT int fl_draw_pixmap (const char ∗const ∗cdata, int x, int y, Fl_Color=FL_GRAY)
Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_pixmap (char ∗const ∗data, int x, int y, Fl_Color=FL_GRAY)
Draw XPM image data, with the top-left corner at the given position.

• FL_EXPORT int fl_draw_symbol (const char ∗label, int x, int y, int w, int h, Fl_Color)
Draw the named symbol in the given rectangle using the given color.

• void fl_end_complex_polygon ()
Ends complex filled polygon, and draws.

• void fl_end_line ()
Ends list of lines, and draws.

• void fl_end_loop ()
Ends closed sequence of lines, and draws.

• void fl_end_points ()
Ends list of points, and draws.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

932 File Documentation

• void fl_end_polygon ()
Ends convex filled polygon, and draws.

• FL_EXPORT const char ∗ fl_expand_text (const char ∗from, char ∗buf, int maxbuf, double maxw,
int &n, double &width, int wrap, int draw_symbols=0)

Copy from to buf, replacing unprintable characters with ∧X and \nnn.

• Fl_Font fl_font ()
Returns the face set by the most recent call to fl_font().

• void fl_font (Fl_Font face, Fl_Fontsize size)
Sets the current font, which is then used in various drawing routines.

• FL_EXPORT void fl_frame (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• FL_EXPORT void fl_frame2 (const char ∗s, int x, int y, int w, int h)
Draws a series of line segments around the given box.

• void fl_gap ()
Call fl_gap() to separate loops of the path.

• FL_EXPORT int fl_height (int font, int size)
This function returns the actual height of the specified font and size.

• FL_EXPORT int fl_height ()
Returns the recommended minimum line spacing for the current font.

• FL_EXPORT const char ∗ fl_latin1_to_local (const char ∗t, int n=-1)
convert text from Windows/X11 latin1 charcter set to local encoding.

• void fl_line (int x, int y, int x1, int y1, int x2, int y2)
Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2).

• void fl_line (int x, int y, int x1, int y1)
Draws a line from (x,y) to (x1,y1).

• void fl_line_style (int style, int width=0, char ∗dashes=0)
Sets how to draw lines (the "pen").

• FL_EXPORT const char ∗ fl_local_to_latin1 (const char ∗t, int n=-1)
convert text from local encoding to Windowx/X11 latin1 character set.

• FL_EXPORT const char ∗ fl_local_to_mac_roman (const char ∗t, int n=-1)
convert text from local encoding to Mac Roman character set.

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Outlines a 4-sided polygon with lines.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.11 fl_draw.H File Reference 933

• void fl_loop (int x, int y, int x1, int y1, int x2, int y2)
Outlines a 3-sided polygon with lines.

• FL_EXPORT const char ∗ fl_mac_roman_to_local (const char ∗t, int n=-1)
convert text from Mac Roman charcter set to local encoding.

• FL_EXPORT void fl_measure (const char ∗str, int &x, int &y, int draw_symbols=1)
Measure how wide and tall the string will be when printed by the fl_draw() function with align parameter.

• FL_EXPORT int fl_measure_pixmap (const char ∗const ∗cdata, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT int fl_measure_pixmap (char ∗const ∗data, int &w, int &h)
Get the dimensions of a pixmap.

• FL_EXPORT void fl_mult_matrix (double a, double b, double c, double d, double x, double y)
Concatenates another transformation onto the current one.

• int fl_not_clipped (int x, int y, int w, int h)
Does the rectangle intersect the current clip region?

• FL_EXPORT void fl_overlay_clear ()
Erase a selection rectangle without drawing a new one.

• FL_EXPORT void fl_overlay_rect (int x, int y, int w, int h)
Draws a selection rectangle, erasing a previous one by XOR’ing it first.

• void fl_pie (int x, int y, int w, int h, double a1, double a2)
Draw filled ellipse sections using integer coordinates.

• void fl_point (int x, int y)
Draws a single pixel at the given coordinates.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
Fills a 4-sided polygon.

• void fl_polygon (int x, int y, int x1, int y1, int x2, int y2)
Fills a 3-sided polygon.

• void fl_pop_clip ()
Restores the previous clip region.

• FL_EXPORT void fl_pop_matrix ()
Restores the current transformation matrix from the stack.

• void fl_push_clip (int x, int y, int w, int h)
Intersects the current clip region with a rectangle and pushes this new region onto the stack.

• FL_EXPORT void fl_push_matrix ()
Saves the current transformation matrix on the stack.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

934 File Documentation

• void fl_push_no_clip ()
Pushes an empty clip region onto the stack so nothing will be clipped.

• FL_EXPORT uchar ∗ fl_read_image (uchar ∗p, int X, int Y, int W, int H, int alpha=0)
Read an RGB(A) image from the current window or off-screen buffer.

• void fl_rect (int x, int y, int w, int h, Fl_Color c)
Draws with passed color a 1-pixel border inside the given bounding box.

• void fl_rect (int x, int y, int w, int h)
Draws a 1-pixel border inside the given bounding box.

• FL_EXPORT void fl_rectf (int x, int y, int w, int h, uchar r, uchar g, uchar b)
Color a rectangle with "exactly" the passed r,g,b color.

• void fl_rectf (int x, int y, int w, int h, Fl_Color c)
Colors with passsed color a rectangle that exactly fills the given bounding box.

• void fl_rectf (int x, int y, int w, int h)
Colors with current color a rectangle that exactly fills the given bounding box.

• FL_EXPORT void fl_reset_spot (void)
• void fl_restore_clip ()

Undoes any clobbering of clip done by your program.

• FL_EXPORT void fl_rotate (double d)
Concatenates rotation transformation onto the current one.

• FL_EXPORT void fl_rtl_draw (const char ∗, int n, int x, int y)
Draws an array of n characters right to left starting at given location.

• FL_EXPORT void fl_scale (double x)
Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scale (double x, double y)
Concatenates scaling transformation onto the current one.

• FL_EXPORT void fl_scroll (int X, int Y, int W, int H, int dx, int dy, void(∗draw_area)(void ∗, int,
int, int, int), void ∗data)

Scroll a rectangle and draw the newly exposed portions.

• FL_EXPORT void fl_set_spot (int font, int size, int X, int Y, int W, int H, Fl_Window ∗win=0)
• FL_EXPORT void fl_set_status (int X, int Y, int W, int H)
• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut, const char ∗∗eom)

Get a human-readable string from a shortcut value.

• FL_EXPORT const char ∗ fl_shortcut_label (unsigned int shortcut)
Get a human-readable string from a shortcut value.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.11 fl_draw.H File Reference 935

• Fl_Fontsize fl_size ()
Returns the size set by the most recent call to fl_font().

• FL_EXPORT void fl_text_extents (const char ∗, int n, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a sequence of n characters.

• FL_EXPORT void fl_text_extents (const char ∗, int &dx, int &dy, int &w, int &h)
Determine the minimum pixel dimensions of a nul-terminated string.

• FL_EXPORT double fl_transform_dx (double x, double y)
Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_dy (double x, double y)
Transforms distance using current transformation matrix.

• FL_EXPORT double fl_transform_x (double x, double y)
Transforms coordinate using the current transformation matrix.

• FL_EXPORT double fl_transform_y (double x, double y)
Transform coordinate using the current transformation matrix.

• void fl_transformed_vertex (double xf, double yf)
Adds coordinate pair to the vertex list without further transformations.

• FL_EXPORT void fl_translate (double x, double y)
Concatenates translation transformation onto the current one.

• void fl_vertex (double x, double y)
Adds a single vertex to the current path.

• FL_EXPORT double fl_width (unsigned int)
Return the typographical width of a single character :.

• FL_EXPORT double fl_width (const char ∗txt, int n)
Return the typographical width of a sequence of n characters.

• FL_EXPORT double fl_width (const char ∗txt)
Return the typographical width of a nul-terminated string.

• void fl_xyline (int x, int y, int x1, int y2, int x3)
Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2) and then another horizontal
from (x1,y2) to (x3,y2).

• void fl_xyline (int x, int y, int x1, int y2)
Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).

• void fl_xyline (int x, int y, int x1)
Draws a horizontal line from (x,y) to (x1,y).

• void fl_yxline (int x, int y, int y1, int x2, int y3)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

936 File Documentation

Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1) to (x2,y1), then another vertical from
(x2,y1) to (x2,y3).

• void fl_yxline (int x, int y, int y1, int x2)
Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).

• void fl_yxline (int x, int y, int y1)
Draws a vertical line from (x,y) to (x,y1).

Variables

• FL_EXPORT Fl_Color fl_color_
The current color.

• FL_EXPORT char fl_draw_shortcut
• FL_EXPORT Fl_Font fl_font_

current font index

• FL_EXPORT Fl_Fontsize fl_size_
current font size

31.11.1 Detailed Description

utility header to pull drawing functions together

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.12 fl_line_style.cxx File Reference 937

31.12 fl_line_style.cxx File Reference

Line style drawing utility hiding different platforms.

#include <FL/Fl.H>

#include <FL/fl_draw.H>

#include <FL/x.H>

#include "flstring.h"

#include <stdio.h>

31.12.1 Detailed Description

Line style drawing utility hiding different platforms.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

938 File Documentation

31.13 Fl_Printer.H File Reference

declaration of classes Fl_Printer, Fl_Device_Plugin.

#include <FL/Fl_Abstract_Printer.H>

#include <FL/fl_draw.H>

#include <FL/Fl_Pixmap.H>

#include <FL/Fl_RGB_Image.H>

#include <FL/Fl_Bitmap.H>

#include <stdio.h>

Classes

• class Fl_Device_Plugin
This plugin socket allows the integration of new device drivers for special window or screen types.

• class Fl_Printer
Provides an OS-independent interface to printing.

31.13.1 Detailed Description

declaration of classes Fl_Printer, Fl_Device_Plugin.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.14 fl_rect.cxx File Reference 939

31.14 fl_rect.cxx File Reference

Drawing and clipping routines for rectangles.

#include <config.h>

#include <FL/Fl.H>

#include <FL/Fl_Widget.H>

#include <FL/fl_draw.H>

#include <FL/x.H>

Defines

• #define STACK_MAX (STACK_SIZE - 1)
• #define STACK_SIZE 10

Functions

• Fl_Region fl_clip_region ()
returns the current clipping region.

• void fl_clip_region (Fl_Region r)
Replaces the top of the clipping stack with a clipping region of any shape.

• void fl_restore_clip ()
Undoes any clobbering of clip done by your program.

• Fl_Region XRectangleRegion (int x, int y, int w, int h)

Variables

• int fl_clip_state_number = 0

31.14.1 Detailed Description

Drawing and clipping routines for rectangles.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

940 File Documentation

31.15 Fl_Tree.H File Reference

This file contains the definitions of the Fl_Tree class.

#include <FL/Fl.H>

#include <FL/Fl_Group.H>

#include <FL/Fl_Scrollbar.H>

#include <FL/fl_draw.H>

#include <FL/Fl_Tree_Item.H>

#include <FL/Fl_Tree_Prefs.H>

Classes

• class Fl_Tree
Tree widget.

31.15.1 Detailed Description

This file contains the definitions of the Fl_Tree class.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.16 Fl_Tree_Item.H File Reference 941

31.16 Fl_Tree_Item.H File Reference

This file contains the definitions for Fl_Tree_Item.

#include <FL/Fl.H>

#include <FL/Fl_Widget.H>

#include <FL/Fl_Image.H>

#include <FL/fl_draw.H>

#include <FL/Fl_Tree_Item_Array.H>

#include <FL/Fl_Tree_Prefs.H>

Classes

• class Fl_Tree_Item
Tree item.

31.16.1 Detailed Description

This file contains the definitions for Fl_Tree_Item.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

942 File Documentation

31.17 Fl_Tree_Item_Array.H File Reference

This file defines a class that manages an array of Fl_Tree_Item pointers.

Classes

• class Fl_Tree_Item_Array
Manages an array of Fl_Tree_Item pointers.

31.17.1 Detailed Description

This file defines a class that manages an array of Fl_Tree_Item pointers.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.18 Fl_Tree_Prefs.H File Reference 943

31.18 Fl_Tree_Prefs.H File Reference

This file contains the definitions for Fl_Tree’s preferences.

Classes

• class Fl_Tree_Prefs

Tree widget’s preferences.

Enumerations

• enum Fl_Tree_Connector { FL_TREE_CONNECTOR_NONE = 0, FL_TREE_CONNECTOR_-
DOTTED = 1, FL_TREE_CONNECTOR_SOLID = 2 }

Defines the style of connection lines between items.

• enum Fl_Tree_Select { FL_TREE_SELECT_NONE = 0, FL_TREE_SELECT_SINGLE, FL_-
TREE_SELECT_MULTI }

Tree selection style.

• enum Fl_Tree_Sort { FL_TREE_SORT_NONE = 0, FL_TREE_SORT_ASCENDING = 1, FL_-
TREE_SORT_DESCENDING = 2 }

Sort order options for items added to the tree.

31.18.1 Detailed Description

This file contains the definitions for Fl_Tree’s preferences.

Fl_Tree_Prefs
:

.....:.......
: :

Fl_Tree :
|_____ Fl_Tree_Item

31.18.2 Enumeration Type Documentation

31.18.2.1 enum Fl_Tree_Connector

Defines the style of connection lines between items.

Enumerator:

FL_TREE_CONNECTOR_NONE Use no lines connecting items.

FL_TREE_CONNECTOR_DOTTED Use dotted lines connecting items (default).

FL_TREE_CONNECTOR_SOLID Use solid lines connecting items.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

944 File Documentation

31.18.2.2 enum Fl_Tree_Select

Tree selection style.

Enumerator:

FL_TREE_SELECT_NONE Nothing selected when items are clicked.

FL_TREE_SELECT_SINGLE Single item selected when item is clicked (default).

FL_TREE_SELECT_MULTI Multiple items can be selected by clicking with.
SHIFT or CTRL or mouse drags.

31.18.2.3 enum Fl_Tree_Sort

Sort order options for items added to the tree.

Enumerator:

FL_TREE_SORT_NONE No sorting; items are added in the order defined (default).

FL_TREE_SORT_ASCENDING Add items in ascending sort order.

FL_TREE_SORT_DESCENDING Add items in descending sort order.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.19 fl_types.h File Reference 945

31.19 fl_types.h File Reference

This file contains simple "C"-style type definitions.

Typedefs

Miscellaneous

• typedef unsigned int Fl_Char
24-bit Unicode character - upper 8-bits are unused

• typedef const char ∗ Fl_CString
Flexible length utf8 Unicode read-only string.

• typedef unsigned int Fl_Shortcut
24-bit Unicode character + 8-bit indicator for keyboard flags

• typedef char ∗ Fl_String
Flexible length utf8 Unicode text.

• typedef unsigned char uchar
unsigned char

• typedef unsigned long ulong
unsigned long

31.19.1 Detailed Description

This file contains simple "C"-style type definitions.

31.19.2 Typedef Documentation

31.19.2.1 typedef const char∗ Fl_CString

Flexible length utf8 Unicode read-only string.

See also:

Fl_String

31.19.2.2 typedef char∗ Fl_String

Flexible length utf8 Unicode text.

Todo

FIXME: temporary (?) typedef to mark UTF8 and Unicode conversions

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

946 File Documentation

31.20 fl_utf8.h File Reference

header for Unicode and UTF8 chracter handling

#include "FL/Fl_Export.H"

#include "FL/fl_types.h"

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include "Xutf8.h"

#include <X11/Xlocale.h>

#include <X11/Xlib.h>

#include <locale.h>

Defines

• #define xchar unsigned short

Functions

• FL_EXPORT int fl_access (const char ∗f, int mode)
• FL_EXPORT int fl_chmod (const char ∗f, int mode)
• FL_EXPORT int fl_execvp (const char ∗file, char ∗const ∗argv)
• FL_EXPORT FILE ∗ fl_fopen (const char ∗f, const char ∗mode)
• FL_EXPORT char ∗ fl_getcwd (char ∗buf, int maxlen)
• FL_EXPORT char ∗ fl_getenv (const char ∗name)
• FL_EXPORT char fl_make_path (const char ∗path)
• FL_EXPORT void fl_make_path_for_file (const char ∗path)
• FL_EXPORT int fl_mkdir (const char ∗f, int mode)
• FL_EXPORT unsigned int fl_nonspacing (unsigned int ucs)

returns true if the character is non-spacing.

• FL_EXPORT int fl_open (const char ∗f, int o,...)
• FL_EXPORT int fl_rename (const char ∗f, const char ∗t)
• FL_EXPORT int fl_rmdir (const char ∗f)
• FL_EXPORT int fl_stat (const char ∗path, struct stat ∗buffer)
• FL_EXPORT int fl_system (const char ∗f)
• FL_EXPORT int fl_tolower (unsigned int ucs)

return the Unicode lower case value of ucs

• FL_EXPORT int fl_toupper (unsigned int ucs)
return the Unicode upper case value of ucs

• FL_EXPORT int fl_unlink (const char ∗f)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.20 fl_utf8.h File Reference 947

• FL_EXPORT char ∗ fl_utf2mbcs (const char ∗s)
converts UTF8 to a local multi-byte character string.

• FL_EXPORT const char ∗ fl_utf8back (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8bytes (unsigned ucs)

Return the number of bytes needed to encode the given UCS4 character in UTF8.

• FL_EXPORT unsigned fl_utf8decode (const char ∗p, const char ∗end, int ∗len)
• FL_EXPORT int fl_utf8encode (unsigned ucs, char ∗buf)
• FL_EXPORT unsigned fl_utf8from_mb (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)
• FL_EXPORT unsigned fl_utf8froma (char ∗dst, unsigned dstlen, const char ∗src, unsigned srclen)
• FL_EXPORT unsigned fl_utf8fromwc (char ∗dst, unsigned dstlen, const wchar_t ∗src, unsigned

srclen)
• FL_EXPORT const char ∗ fl_utf8fwd (const char ∗p, const char ∗start, const char ∗end)
• FL_EXPORT int fl_utf8len (char c)

return the byte length of the UTF-8 sequence with first byte c, or -1 if c is not valid.

• FL_EXPORT int fl_utf8locale ()
• FL_EXPORT int fl_utf8test (const char ∗src, unsigned len)
• FL_EXPORT unsigned fl_utf8to_mb (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)
• FL_EXPORT unsigned fl_utf8toa (const char ∗src, unsigned srclen, char ∗dst, unsigned dstlen)
• FL_EXPORT unsigned fl_utf8toUtf16 (const char ∗src, unsigned srclen, unsigned short ∗dst, un-

signed dstlen)
• FL_EXPORT unsigned fl_utf8towc (const char ∗src, unsigned srclen, wchar_t ∗dst, unsigned

dstlen)
Converts a UTF-8 string into a wide character string.

• FL_EXPORT int fl_utf_nb_char (const unsigned char ∗buf, int len)
returns the number of Unicode chars in the UTF-8 string

• FL_EXPORT int fl_utf_strcasecmp (const char ∗s1, const char ∗s2)
UTF-8 aware strcasecmp - converts to Unicode and tests.

• FL_EXPORT int fl_utf_strncasecmp (const char ∗s1, const char ∗s2, int n)
UTF-8 aware strncasecmp - converts to lower case Unicode and tests.

• FL_EXPORT int fl_utf_tolower (const unsigned char ∗str, int len, char ∗buf)
converts the str string to the lower case equivalent into buf.

• FL_EXPORT int fl_utf_toupper (const unsigned char ∗str, int len, char ∗buf)
converts the str string to the upper case equivalent into buf.

31.20.1 Detailed Description

header for Unicode and UTF8 chracter handling

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

948 File Documentation

31.21 fl_vertex.cxx File Reference

Portable drawing code for drawing arbitrary shapes with simple 2D transformations.

#include <config.h>

#include <FL/fl_draw.H>

#include <FL/x.H>

#include <FL/Fl.H>

#include <FL/math.h>

#include <stdlib.h>

Defines

• #define XPOINT XPoint

Typedefs

• typedef short COORD_T

Enumerations

• enum { LINE, LOOP, POLYGON, POINT_ }

Functions

• void fl_mult_matrix (double a, double b, double c, double d, double x, double y)
Concatenates another transformation onto the current one.

• void fl_pop_matrix ()
Restores the current transformation matrix from the stack.

• void fl_push_matrix ()
Saves the current transformation matrix on the stack.

• void fl_rotate (double d)
Concatenates rotation transformation onto the current one.

• void fl_scale (double x)
Concatenates scaling transformation onto the current one.

• void fl_scale (double x, double y)
Concatenates scaling transformation onto the current one.

• double fl_transform_dx (double x, double y)
Transforms distance using current transformation matrix.

• double fl_transform_dy (double x, double y)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.21 fl_vertex.cxx File Reference 949

Transforms distance using current transformation matrix.

• double fl_transform_x (double x, double y)
Transforms coordinate using the current transformation matrix.

• double fl_transform_y (double x, double y)
Transform coordinate using the current transformation matrix.

• void fl_translate (double x, double y)
Concatenates translation transformation onto the current one.

Variables

• matrix ∗ fl_matrix = &m

31.21.1 Detailed Description

Portable drawing code for drawing arbitrary shapes with simple 2D transformations.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

950 File Documentation

31.22 gl.h File Reference

This file defines wrapper functions for OpenGL in FLTK.

#include "Enumerations.H"

#include <GL/gl.h>

Functions

• void gl_color (int c)
back compatability

• FL_EXPORT void gl_color (Fl_Color i)
Sets the curent OpenGL color to an FLTK color.

• FL_EXPORT int gl_descent ()
Returns the current font’s descent.

• FL_EXPORT void gl_draw (const char ∗, int x, int y, int w, int h, Fl_Align)
Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed to
∧X.

• FL_EXPORT void gl_draw (const char ∗, int n, float x, float y)
Draws n characters of the string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, int n, int x, int y)
Draws n characters of the string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, float x, float y)
Draws a nul-terminated string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, int x, int y)
Draws a nul-terminated string in the current font at the given position.

• FL_EXPORT void gl_draw (const char ∗, int n)
Draws an array of n characters of the string in the current font at the current position.

• FL_EXPORT void gl_draw (const char ∗)
Draws a nul-terminated string in the current font at the current position.

• FL_EXPORT void gl_draw_image (const uchar ∗, int x, int y, int w, int h, int d=3, int ld=0)
• FL_EXPORT void gl_finish ()

Releases an OpenGL context.

• FL_EXPORT void gl_font (int fontid, int size)
Sets the current OpenGL font to the same font as calling fl_font().

• FL_EXPORT int gl_height ()
Returns the current font’s height.

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

31.22 gl.h File Reference 951

• FL_EXPORT void gl_measure (const char ∗, int &x, int &y)

• FL_EXPORT void gl_rect (int x, int y, int w, int h)

Outlines the given rectangle with the current color.

• void gl_rectf (int x, int y, int w, int h)

Fills the given rectangle with the current color.

• FL_EXPORT void gl_start ()

Creates an OpenGL context.

• FL_EXPORT double gl_width (uchar)

Returns the width of the character in the current font.

• FL_EXPORT double gl_width (const char ∗, int n)

Returns the width of n characters of the string in the current font.

• FL_EXPORT double gl_width (const char ∗)

Returns the width of the string in the current fnt.

31.22.1 Detailed Description

This file defines wrapper functions for OpenGL in FLTK.

To use OpenGL from within an FLTK application you MUST use gl_visual() to select the default visual
before doing show() on any windows. Mesa will crash if yoy try to use a visual not returned by glxChoo-
seVidual.

This does not work with Fl_Double_Window’s! It will try to draw into the front buffer. Depending on the
system this will either crash or do nothing (when pixmaps are being used as back buffer and GL is being
done by hardware), work correctly (when GL is done with software, such as Mesa), or draw into the front
buffer and be erased when the buffers are swapped (when double buffer hardware is being used)

31.22.2 Function Documentation

31.22.2.1 FL_EXPORT void gl_color (Fl_Color i)

Sets the curent OpenGL color to an FLTK color.

For color-index modes it will use fl_xpixel(c), which is only right if the window uses the default colormap!

31.22.2.2 FL_EXPORT void gl_draw (const char ∗ str, int x, int y, int w, int h, Fl_Align align)

Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed to
∧X.

and aligned with the edges or center. Exactly the same output as fl_draw().

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

952 File Documentation

31.22.2.3 FL_EXPORT void gl_rect (int x, int y, int w, int h)

Outlines the given rectangle with the current color.

If Fl_Gl_Window::ortho() has been called, then the rectangle will exactly fill the given pixel rectangle.

31.22.2.4 void gl_rectf (int x, int y, int w, int h) [inline]

Fills the given rectangle with the current color.

See also:

gl_rect(int x, int y, int w, int h)

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

Index

∼Fl_Check_Browser
Fl_Check_Browser, 401

∼Fl_Double_Window
Fl_Double_Window, 452

∼Fl_File_Chooser
Fl_File_Chooser, 463

∼Fl_Group
Fl_Group, 504

∼Fl_Help_View
Fl_Help_View, 522

∼Fl_Input_
Fl_Input_, 541

∼Fl_Menu_Window
Fl_Menu_Window, 596

∼Fl_Native_File_Chooser
Fl_Native_File_Chooser, 603

∼Fl_Plugin_Manager
Fl_Plugin_Manager, 621

∼Fl_Preferences
Fl_Preferences, 634

∼Fl_RGB_Image
Fl_RGB_Image, 663

∼Fl_Scrollbar
Fl_Scrollbar, 679

∼Fl_Shared_Image
Fl_Shared_Image, 686

∼Fl_Table
Fl_Table, 711

∼Fl_Table_Row
Fl_Table_Row, 720

∼Fl_Text_Display
Fl_Text_Display, 761

∼Fl_Widget
Fl_Widget, 858

∼Fl_Window
Fl_Window, 889

_FL_DIAMOND_DOWN_BOX
Enumerations.H, 910

_FL_DIAMOND_UP_BOX
Enumerations.H, 910

_FL_EMBOSSED_LABEL
Enumerations.H, 914

_FL_ENGRAVED_LABEL
Enumerations.H, 914

_FL_GTK_DOWN_BOX

Enumerations.H, 911
_FL_GTK_DOWN_FRAME

Enumerations.H, 911
_FL_GTK_ROUND_DOWN_BOX

Enumerations.H, 911
_FL_GTK_ROUND_UP_BOX

Enumerations.H, 911
_FL_GTK_THIN_DOWN_BOX

Enumerations.H, 911
_FL_GTK_THIN_DOWN_FRAME

Enumerations.H, 911
_FL_GTK_THIN_UP_BOX

Enumerations.H, 911
_FL_GTK_THIN_UP_FRAME

Enumerations.H, 911
_FL_GTK_UP_BOX

Enumerations.H, 911
_FL_GTK_UP_FRAME

Enumerations.H, 911
_FL_ICON_LABEL

Enumerations.H, 914
_FL_IMAGE_LABEL

Enumerations.H, 914
_FL_MULTI_LABEL

Enumerations.H, 914
_FL_OFLAT_BOX

Enumerations.H, 910
_FL_OSHADOW_BOX

Enumerations.H, 910
_FL_OVAL_BOX

Enumerations.H, 910
_FL_OVAL_FRAME

Enumerations.H, 910
_FL_PLASTIC_DOWN_BOX

Enumerations.H, 910
_FL_PLASTIC_DOWN_FRAME

Enumerations.H, 911
_FL_PLASTIC_ROUND_DOWN_BOX

Enumerations.H, 911
_FL_PLASTIC_ROUND_UP_BOX

Enumerations.H, 911
_FL_PLASTIC_THIN_DOWN_BOX

Enumerations.H, 911
_FL_PLASTIC_THIN_UP_BOX

Enumerations.H, 911

954 INDEX

_FL_PLASTIC_UP_BOX
Enumerations.H, 910

_FL_PLASTIC_UP_FRAME
Enumerations.H, 910

_FL_RFLAT_BOX
Enumerations.H, 910

_FL_ROUNDED_BOX
Enumerations.H, 910

_FL_ROUNDED_FRAME
Enumerations.H, 910

_FL_ROUND_DOWN_BOX
Enumerations.H, 910

_FL_ROUND_UP_BOX
Enumerations.H, 910

_FL_RSHADOW_BOX
Enumerations.H, 910

_FL_SHADOW_BOX
Enumerations.H, 910

_FL_SHADOW_FRAME
Enumerations.H, 910

_FL_SHADOW_LABEL
Enumerations.H, 914

_remove
Fl_Browser, 351

activate
Fl_Menu_Item, 588
Fl_Tree_Item, 817
Fl_Widget, 858

active
Fl_Menu_Item, 588
Fl_Widget, 859

active_r
Fl_Widget, 859

activevisible
Fl_Menu_Item, 589

add
Fl_Browser, 351
Fl_Chart, 395
Fl_Check_Browser, 402
Fl_File_Icon, 469
Fl_Input_Choice, 556
Fl_Menu_, 569
Fl_Menu_Item, 589
Fl_Sys_Menu_Bar, 702
Fl_Tree, 804
Fl_Tree_Item, 817, 818
Fl_Tree_Item_Array, 823

add_awake_handler_
Fl, 319

add_check
Fl, 319

add_color
Fl_File_Icon, 469

add_default_key_bindings
Fl_Text_Editor, 775

add_extra
Fl_File_Chooser, 463

add_fd
Fl, 320

add_handler
fl_events, 237

add_idle
Fl, 320

add_modify_callback
Fl_Text_Buffer, 735

add_predelete_callback
Fl_Text_Buffer, 735

add_timeout
Fl, 320

add_vertex
Fl_File_Icon, 469

addPlugin
Fl_Plugin_Manager, 621

align
Fl_Widget, 859

ALWAYS_ON
Fl_Browser_, 372

angle1
Fl_Dial, 448

append
Fl_Text_Buffer, 735

appendfile
Fl_Text_Buffer, 735

arc
Fl_Device, 434

arg
Fl, 321

args
Fl, 321

argument
Fl_Menu_Item, 589
Fl_Widget, 860

array
Fl_Group, 504

as_gl_window
Fl_Gl_Window, 492
Fl_Widget, 860

as_group
Fl_Group, 504
Fl_Widget, 860

as_window
Fl_Widget, 860
Fl_Window, 890

atclose
fl_windows, 233

autosize
Fl_Chart, 395

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 955

awake
fl_multithread, 280

b
Fl_Color_Chooser, 419

background
Fl, 322

background2
Fl, 322

bbox
Fl_Browser_, 373
Fl_Scroll, 674

begin
Fl_Group, 505
Fl_Table, 711

begin_complex_polygon
Fl_Device, 434

begin_line
Fl_Device, 434

begin_loop
Fl_Device, 434

begin_points
Fl_Device, 434

begin_polygon
Fl_Device, 434

belowmouse
fl_events, 237

bitmap
Fl_FormsBitmap, 480

border
Fl_Window, 890

BOTH
Fl_Browser_, 372

BOTH_ALWAYS
Fl_Browser_, 373

bottomline
Fl_Browser, 351

bound_key_function
Fl_Text_Editor, 775

bounds
Fl_Chart, 396
Fl_Slider, 694
Fl_Valuator, 832

box
Fl_Widget, 861

box_dh
Fl, 322

box_dw
Fl, 323

box_dx
Fl, 323

box_dy
Fl, 323

BROWSE_DIRECTORY

Fl_Native_File_Chooser, 603
BROWSE_FILE

Fl_Native_File_Chooser, 603
BROWSE_MULTI_DIRECTORY

Fl_Native_File_Chooser, 603
BROWSE_MULTI_FILE

Fl_Native_File_Chooser, 603
BROWSE_SAVE_DIRECTORY

Fl_Native_File_Chooser, 603
BROWSE_SAVE_FILE

Fl_Native_File_Chooser, 603
buffer

Fl_Text_Display, 761

Cairo support functions and classes, 286
cairo_autolink_context

group_cairo, 286
cairo_cc

group_cairo, 287
calc_line_starts

Fl_Text_Display, 761
call_modify_callbacks

Fl_Text_Buffer, 736
call_predelete_callbacks

Fl_Text_Buffer, 736
callback

Fl_Menu_Item, 589
Fl_Widget, 861, 862

Callback function typedefs, 229
callback_col

Fl_Table, 711
callback_context

Fl_Table, 712
callback_row

Fl_Table, 712
can_do

Fl_Gl_Window, 492
can_do_overlay

Fl_Gl_Window, 492
CHANGED

Fl_Widget, 857
changed

Fl_Input_Choice, 556
Fl_Widget, 862

character
Fl_Text_Buffer, 736

character_width
Fl_Text_Buffer, 737

check
Fl, 323
Fl_Menu_Item, 589

check_all
Fl_Check_Browser, 402

check_none

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

956 INDEX

Fl_Check_Browser, 402
checkbox

Fl_Menu_Item, 589
checked

Fl_Check_Browser, 402
Fl_Menu_Item, 589

child
Fl_Group, 505
Fl_Table, 712
Fl_Tree_Item, 818

children
Fl_Table, 712

circle
Fl_Device, 434

clamp
Fl_Valuator, 832

clear
Fl_Browser, 351
Fl_Button, 387
Fl_Check_Browser, 402
Fl_File_Icon, 469
Fl_Group, 505
Fl_Input_Choice, 556
Fl_Menu_, 571
Fl_Menu_Item, 590
Fl_Scroll, 674
Fl_Table, 712
Fl_Table_Row, 721
Fl_Tree, 804
Fl_Tree_Item_Array, 823

clear_border
Fl_Window, 890

clear_changed
Fl_Input_Choice, 556
Fl_Widget, 863

clear_damage
Fl_Widget, 863

clear_output
Fl_Widget, 863

clear_overlay
Fl_Menu_Window, 596

clear_rectangular
Fl_Text_Buffer, 737

clear_selection
Fl_Help_View, 522

clear_visible
Fl_Widget, 863

clear_visible_focus
Fl_Widget, 863

clear_widget_pointer
fl_del_widget, 283

CLIP_CHILDREN
Fl_Widget, 857

clip_box

Fl_Device, 434
clip_children

Fl_Group, 505
close

Fl_Tree, 804, 805
closeicon

Fl_Tree, 805
Fl_Tree_Prefs, 828

col
FL_CHART_ENTRY, 399

col_header
Fl_Table, 713

col_resize
Fl_Table, 713

col_resize_min
Fl_Table, 713

col_width
Fl_Table, 713

col_width_all
Fl_Table, 713

color
Fl_Device, 434
Fl_File_Chooser, 463, 464
Fl_Tooltip, 796
Fl_Widget, 864

Color & Font functions, 251
color2

Fl_Widget, 864, 865
color_average

Fl_Image, 530
Fl_Pixmap, 615
Fl_RGB_Image, 663
Fl_Shared_Image, 686
Fl_Tiled_Image, 789

column_char
Fl_Browser, 352

column_widths
Fl_Browser, 352

Common Dialogs classes and functions, 296
compose

fl_events, 237
compose_reset

fl_events, 238
contains

Fl_Widget, 865
context

Fl_Gl_Window, 492
context_valid

Fl_Gl_Window, 493
COPIED_LABEL

Fl_Widget, 857
copy

Fl_Bitmap, 341
fl_clipboard, 246

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 957

Fl_Image, 530
Fl_Input_, 541
Fl_Menu_, 571
Fl_Pixmap, 616
Fl_RGB_Image, 663
Fl_Shared_Image, 686, 687
Fl_Text_Buffer, 737
Fl_Tiled_Image, 789

copy_cuts
Fl_Input_, 541

copy_label
Fl_Widget, 865
Fl_Window, 890

count
Fl_File_Chooser, 464
Fl_Image, 530
Fl_Native_File_Chooser, 604

count_displayed_characters
Fl_Text_Buffer, 737

count_lines
Fl_Text_Buffer, 738
Fl_Text_Display, 761

current
Fl_Group, 505
Fl_Tooltip, 796
Fl_Window, 890

current_
Fl_Window, 897

cursor
Fl_Window, 891

cursor_color
Fl_Input_, 542
Fl_Text_Display, 761, 762
Fl_Value_Input, 838

cursor_style
Fl_Text_Display, 762

curve
Fl_Device, 435

cut
Fl_Input_, 542, 543

d
Fl_Image, 530, 531

damage
Fl, 324
Fl_Widget, 865, 866

damage_resize
Fl_Widget, 866

data
Fl_Browser, 353
Fl_Image, 531

deactivate
Fl_Menu_Item, 590
Fl_Repeat_Button, 657

Fl_Tree_Item, 818
Fl_Widget, 866

default_atclose
fl_windows, 232

default_callback
Fl_Widget, 867

default_cursor
Fl_Window, 891

default_key_function
Fl_Text_Editor, 775

deimage
Fl_Widget, 867

delay
Fl_Tooltip, 796, 797

delete_widget
fl_del_widget, 283

deleted
Fl_Widget_Tracker, 884

deleteEntry
Fl_Preferences, 634

deleteGroup
Fl_Preferences, 634

deleting
Fl_Browser_, 373

depth
Fl_Tree_Item, 818

desaturate
Fl_Image, 531
Fl_Pixmap, 616
Fl_RGB_Image, 664
Fl_Shared_Image, 687
Fl_Tiled_Image, 789

deselect
Fl_Browser_, 373
Fl_Tree, 805

deselect_all
Fl_Tree, 805
Fl_Tree_Item, 818

device_types
Fl_Device, 433

direction
Fl_Timer, 792

directory
Fl_File_Chooser, 464
Fl_Help_View, 522
Fl_Native_File_Chooser, 604

disable
Fl_Tooltip, 797

display
Fl, 324
Fl_Browser, 353
Fl_Browser_, 373

display_insert
Fl_Text_Display, 762

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

958 INDEX

displayed
Fl_Browser, 353
Fl_Browser_, 374

dnd
fl_clipboard, 246

dnd_text_ops
Fl, 324

do_callback
Fl_Menu_Item, 590
Fl_Widget, 867, 868

do_widget_deletion
fl_del_widget, 283

down_box
Fl_Button, 387
Fl_File_Input, 474
Fl_Menu_, 571

draw
Fl_Adjuster, 338
Fl_Bitmap, 341
Fl_Box, 345
Fl_Button, 387
Fl_Chart, 396
Fl_Choice, 408
Fl_Clock_Output, 414
Fl_Counter, 424
Fl_Device, 435
Fl_Dial, 448
Fl_File_Icon, 469
Fl_FormsBitmap, 480
Fl_FormsPixmap, 483
Fl_Free, 485
Fl_Gl_Window, 493
Fl_Glut_Window, 499
Fl_Group, 506
Fl_Image, 531
Fl_Input, 535
Fl_Label, 562
Fl_Light_Button, 564
Fl_Menu_Bar, 578
Fl_Menu_Button, 581
Fl_Menu_Item, 590
Fl_Pack, 613
Fl_Pixmap, 616
Fl_Positioner, 626
Fl_Progress, 652
Fl_Return_Button, 660
Fl_RGB_Image, 664
Fl_Roller, 667
Fl_Scroll, 675
Fl_Scrollbar, 679
Fl_Shared_Image, 687
Fl_Slider, 694
Fl_Sys_Menu_Bar, 702
Fl_Table, 713

Fl_Tabs, 725
Fl_Text_Display, 762
Fl_Tiled_Image, 789, 790
Fl_Timer, 792
Fl_Value_Input, 838
Fl_Value_Output, 844
Fl_Value_Slider, 847
Fl_Widget, 868
Fl_Window, 891

draw_box
Fl_Widget, 869

draw_box_active
Fl, 324

draw_cell
Fl_Table, 714

draw_child
Fl_Group, 506

draw_children
Fl_Group, 506

draw_empty
Fl_Image, 531

draw_image
Fl_Device, 435

draw_image_mono
Fl_Device, 436

draw_label
Fl_Widget, 869

draw_line_numbers
Fl_Text_Display, 762

draw_outside_label
Fl_Group, 506

draw_overlay
Fl_Glut_Window, 499

draw_range
Fl_Text_Display, 762

draw_string
Fl_Text_Display, 763

draw_text
Fl_Text_Display, 763

Drawing functions, 260
drawtext

Fl_Input_, 543

enable
Fl_Tooltip, 797

enabled
Fl_Tooltip, 797

end
Fl_Group, 506
Fl_Table, 715
Fl_Text_Selection, 781

end_complex_polygon
Fl_Device, 436

end_line

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 959

Fl_Device, 436
end_loop

Fl_Device, 436
end_page

Fl_Abstract_Printer, 333
Fl_Printer, 647

end_points
Fl_Device, 436

end_polygon
Fl_Device, 436

enter_area
Fl_Tooltip, 797

entries
Fl_Preferences, 634

entry
Fl_Preferences, 634

entryExists
Fl_Preferences, 635

Enumerations.H, 903
_FL_DIAMOND_DOWN_BOX, 910
_FL_DIAMOND_UP_BOX, 910
_FL_EMBOSSED_LABEL, 914
_FL_ENGRAVED_LABEL, 914
_FL_GTK_DOWN_BOX, 911
_FL_GTK_DOWN_FRAME, 911
_FL_GTK_ROUND_DOWN_BOX, 911
_FL_GTK_ROUND_UP_BOX, 911
_FL_GTK_THIN_DOWN_BOX, 911
_FL_GTK_THIN_DOWN_FRAME, 911
_FL_GTK_THIN_UP_BOX, 911
_FL_GTK_THIN_UP_FRAME, 911
_FL_GTK_UP_BOX, 911
_FL_GTK_UP_FRAME, 911
_FL_ICON_LABEL, 914
_FL_IMAGE_LABEL, 914
_FL_MULTI_LABEL, 914
_FL_OFLAT_BOX, 910
_FL_OSHADOW_BOX, 910
_FL_OVAL_BOX, 910
_FL_OVAL_FRAME, 910
_FL_PLASTIC_DOWN_BOX, 910
_FL_PLASTIC_DOWN_FRAME, 911
_FL_PLASTIC_ROUND_DOWN_BOX, 911
_FL_PLASTIC_ROUND_UP_BOX, 911
_FL_PLASTIC_THIN_DOWN_BOX, 911
_FL_PLASTIC_THIN_UP_BOX, 911
_FL_PLASTIC_UP_BOX, 910
_FL_PLASTIC_UP_FRAME, 910
_FL_RFLAT_BOX, 910
_FL_ROUNDED_BOX, 910
_FL_ROUNDED_FRAME, 910
_FL_ROUND_DOWN_BOX, 910
_FL_ROUND_UP_BOX, 910
_FL_RSHADOW_BOX, 910

_FL_SHADOW_BOX, 910
_FL_SHADOW_FRAME, 910
_FL_SHADOW_LABEL, 914
FL_ACTIVATE, 913
FL_BORDER_BOX, 910
FL_BORDER_FRAME, 910
FL_CLOSE, 912
FL_DEACTIVATE, 913
FL_DND_DRAG, 913
FL_DND_ENTER, 913
FL_DND_LEAVE, 913
FL_DND_RELEASE, 913
FL_DOWN_BOX, 910
FL_DOWN_FRAME, 910
FL_DRAG, 912
FL_EMBOSSED_BOX, 910
FL_EMBOSSED_FRAME, 910
FL_ENGRAVED_BOX, 910
FL_ENGRAVED_FRAME, 910
FL_ENTER, 911
FL_FLAT_BOX, 910
FL_FOCUS, 912
FL_FREE_BOXTYPE, 911
FL_FREE_LABELTYPE, 914
FL_HIDE, 913
FL_KEYBOARD, 912
FL_KEYDOWN, 912
FL_KEYUP, 912
FL_LEAVE, 912
FL_MOUSEWHEEL, 913
FL_MOVE, 912
FL_NO_BOX, 910
FL_NO_EVENT, 911
FL_NO_LABEL, 914
FL_NORMAL_LABEL, 914
FL_PASTE, 913
FL_PUSH, 911
FL_RELEASE, 911
FL_SELECTIONCLEAR, 913
FL_SHORTCUT, 912
FL_SHOW, 913
FL_THIN_DOWN_BOX, 910
FL_THIN_DOWN_FRAME, 910
FL_THIN_UP_BOX, 910
FL_THIN_UP_FRAME, 910
FL_UNFOCUS, 912
FL_UP_BOX, 910
FL_UP_FRAME, 910
FL_WHEN_CHANGED, 914
FL_WHEN_ENTER_KEY, 914
FL_WHEN_ENTER_KEY_ALWAYS, 914
FL_WHEN_ENTER_KEY_CHANGED, 914
FL_WHEN_NEVER, 914
FL_WHEN_NOT_CHANGED, 914

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

960 INDEX

FL_WHEN_RELEASE, 914
FL_WHEN_RELEASE_ALWAYS, 914
Fl_Align, 909
FL_ALIGN_BOTTOM, 915
FL_ALIGN_CENTER, 915
FL_ALIGN_CLIP, 915
FL_ALIGN_IMAGE_BACKDROP, 915
FL_ALIGN_IMAGE_NEXT_TO_TEXT, 915
FL_ALIGN_IMAGE_OVER_TEXT, 915
FL_ALIGN_INSIDE, 916
FL_ALIGN_LEFT, 916
FL_ALIGN_RIGHT, 916
FL_ALIGN_TEXT_NEXT_TO_IMAGE, 916
FL_ALIGN_TEXT_OVER_IMAGE, 916
FL_ALIGN_TOP, 916
FL_ALIGN_WRAP, 916
fl_box, 915
Fl_Boxtype, 910
Fl_Color, 909
fl_down, 915
Fl_Event, 911
Fl_Font, 909
Fl_Fontsize, 909
fl_frame, 915
Fl_Labeltype, 913
FL_MAJOR_VERSION, 908
FL_MINOR_VERSION, 908
FL_PATCH_VERSION, 908
fl_rgb_color, 915
FL_VERSION, 908
Fl_When, 914

errmsg
Fl_Native_File_Chooser, 604

error
group_comdlg, 303

errorcolor
Fl_File_Input, 474

event
fl_events, 238

event_alt
fl_events, 238

event_button
fl_events, 238

event_button1
fl_events, 238

event_button2
fl_events, 238

event_button3
fl_events, 238

event_buttons
fl_events, 239

event_clicks
fl_events, 239

event_command

fl_events, 239
event_ctrl

fl_events, 239
event_dx

fl_events, 239
event_dy

fl_events, 240
event_inside

fl_events, 240
event_is_click

fl_events, 240
event_key

fl_events, 240, 241
event_length

fl_events, 241
event_original_key

fl_events, 241
event_shift

fl_events, 241
event_state

fl_events, 241
event_text

fl_events, 242
event_x_root

fl_events, 242
event_y_root

fl_events, 242
Events handling functions, 234
exists

Fl_Widget_Tracker, 884
expand_character

Fl_Text_Buffer, 738

fatal
group_comdlg, 303

File names and URI utility functions, 304
filename

Fl_Help_View, 522
Fl_Native_File_Chooser, 604

filenames
Fl_File_Sort_F, 304
fl_filename_absolute, 305
fl_filename_expand, 305
fl_filename_ext, 305
fl_filename_isdir, 306
fl_filename_match, 306
fl_filename_name, 307
fl_filename_relative, 307
fl_filename_setext, 307

filetype
Fl_File_Browser, 456

filter
Fl_File_Browser, 456
Fl_File_Chooser, 464

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 961

Fl_Native_File_Chooser, 604, 605
filter_value

Fl_File_Chooser, 464
Fl_Native_File_Chooser, 605

find
Fl_File_Icon, 470
Fl_Group, 506
Fl_Help_View, 522
Fl_Table, 715

find_child
Fl_Tree_Item, 818

find_clicked
Fl_Tree, 806
Fl_Tree_Item, 818, 819

find_item
Fl_Browser_, 374
Fl_Menu_, 571, 572
Fl_Tree, 806
Fl_Tree_Item, 819

find_line
Fl_Browser, 354

find_line_end
Fl_Text_Display, 763

find_shortcut
Fl_Menu_Item, 590

find_wrap_range
Fl_Text_Display, 763

findchar_backward
Fl_Text_Buffer, 738

findchar_forward
Fl_Text_Buffer, 739

findchars_backward
Fl_Text_Buffer, 739

findchars_forward
Fl_Text_Buffer, 739

first
Fl_File_Icon, 470
Fl_Menu_Item, 590, 591
Fl_Tree, 806

first_window
fl_windows, 232

Fl, 309
add_awake_handler_, 319
add_check, 319
add_fd, 320
add_idle, 320
add_timeout, 320
arg, 321
args, 321
background, 322
background2, 322
box_dh, 322
box_dw, 323
box_dx, 323

box_dy, 323
check, 323
damage, 324
display, 324
dnd_text_ops, 324
draw_box_active, 324
flush, 324
foreground, 324
get_awake_handler_, 324
get_boxtype, 325
get_system_colors, 325
gl_visual, 325
help, 329
idle, 329
own_colormap, 325
ready, 325
release, 325
reload_scheme, 326
remove_check, 326
remove_fd, 326
remove_timeout, 326
repeat_timeout, 326
run, 327
scheme, 327
scrollbar_size, 327
set_boxtype, 327
set_idle, 327
set_labeltype, 328
version, 328
visible_focus, 328
visual, 328
wait, 329

FL_ACTIVATE
Enumerations.H, 913

FL_BORDER_BOX
Enumerations.H, 910

FL_BORDER_FRAME
Enumerations.H, 910

Fl_Browser_
ALWAYS_ON, 372
BOTH, 372
BOTH_ALWAYS, 373
HORIZONTAL, 372
HORIZONTAL_ALWAYS, 372
VERTICAL, 372
VERTICAL_ALWAYS, 373

FL_CAP_FLAT
fl_drawings, 266

FL_CAP_ROUND
fl_drawings, 266

FL_CAP_SQUARE
fl_drawings, 266

FL_CLOSE
Enumerations.H, 912

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

962 INDEX

FL_DASH
fl_drawings, 266

FL_DASHDOT
fl_drawings, 266

FL_DASHDOTDOT
fl_drawings, 266

FL_DEACTIVATE
Enumerations.H, 913

Fl_Device
gdi_display, 433
gdi_printer, 433
postscript_device, 433
quartz_display, 433
quartz_printer, 433
xlib_display, 433

FL_DND_DRAG
Enumerations.H, 913

FL_DND_ENTER
Enumerations.H, 913

FL_DND_LEAVE
Enumerations.H, 913

FL_DND_RELEASE
Enumerations.H, 913

FL_DOT
fl_drawings, 266

FL_DOWN_BOX
Enumerations.H, 910

FL_DOWN_FRAME
Enumerations.H, 910

FL_DRAG
Enumerations.H, 912

fl_drawings
FL_CAP_FLAT, 266
FL_CAP_ROUND, 266
FL_CAP_SQUARE, 266
FL_DASH, 266
FL_DASHDOT, 266
FL_DASHDOTDOT, 266
FL_DOT, 266
FL_JOIN_BEVEL, 266
FL_JOIN_MITER, 266
FL_JOIN_ROUND, 266
FL_SOLID, 266

FL_EMBOSSED_BOX
Enumerations.H, 910

FL_EMBOSSED_FRAME
Enumerations.H, 910

FL_ENGRAVED_BOX
Enumerations.H, 910

FL_ENGRAVED_FRAME
Enumerations.H, 910

FL_ENTER
Enumerations.H, 911

FL_FLAT_BOX

Enumerations.H, 910
FL_FOCUS

Enumerations.H, 912
FL_FREE_BOXTYPE

Enumerations.H, 911
FL_FREE_LABELTYPE

Enumerations.H, 914
FL_HIDE

Enumerations.H, 913
FL_JOIN_BEVEL

fl_drawings, 266
FL_JOIN_MITER

fl_drawings, 266
FL_JOIN_ROUND

fl_drawings, 266
FL_KEYBOARD

Enumerations.H, 912
FL_KEYDOWN

Enumerations.H, 912
FL_KEYUP

Enumerations.H, 912
FL_LEAVE

Enumerations.H, 912
FL_MOUSEWHEEL

Enumerations.H, 913
FL_MOVE

Enumerations.H, 912
Fl_Native_File_Chooser

BROWSE_DIRECTORY, 603
BROWSE_FILE, 603
BROWSE_MULTI_DIRECTORY, 603
BROWSE_MULTI_FILE, 603
BROWSE_SAVE_DIRECTORY, 603
BROWSE_SAVE_FILE, 603
NEW_FOLDER, 603
NO_OPTIONS, 603
PREVIEW, 603
SAVEAS_CONFIRM, 603

FL_NO_BOX
Enumerations.H, 910

FL_NO_EVENT
Enumerations.H, 911

FL_NO_LABEL
Enumerations.H, 914

FL_NORMAL_LABEL
Enumerations.H, 914

FL_PASTE
Enumerations.H, 913

Fl_Preferences
SYSTEM, 632
USER, 632

FL_PUSH
Enumerations.H, 911

FL_RELEASE

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 963

Enumerations.H, 911
FL_SELECTIONCLEAR

Enumerations.H, 913
FL_SHORTCUT

Enumerations.H, 912
FL_SHOW

Enumerations.H, 913
FL_SOLID

fl_drawings, 266
FL_THIN_DOWN_BOX

Enumerations.H, 910
FL_THIN_DOWN_FRAME

Enumerations.H, 910
FL_THIN_UP_BOX

Enumerations.H, 910
FL_THIN_UP_FRAME

Enumerations.H, 910
FL_TREE_CONNECTOR_DOTTED

Fl_Tree_Prefs.H, 943
FL_TREE_CONNECTOR_NONE

Fl_Tree_Prefs.H, 943
FL_TREE_CONNECTOR_SOLID

Fl_Tree_Prefs.H, 943
Fl_Tree_Prefs.H

FL_TREE_CONNECTOR_DOTTED, 943
FL_TREE_CONNECTOR_NONE, 943
FL_TREE_CONNECTOR_SOLID, 943
FL_TREE_SELECT_MULTI, 944
FL_TREE_SELECT_NONE, 944
FL_TREE_SELECT_SINGLE, 944
FL_TREE_SORT_ASCENDING, 944
FL_TREE_SORT_DESCENDING, 944
FL_TREE_SORT_NONE, 944

FL_TREE_SELECT_MULTI
Fl_Tree_Prefs.H, 944

FL_TREE_SELECT_NONE
Fl_Tree_Prefs.H, 944

FL_TREE_SELECT_SINGLE
Fl_Tree_Prefs.H, 944

FL_TREE_SORT_ASCENDING
Fl_Tree_Prefs.H, 944

FL_TREE_SORT_DESCENDING
Fl_Tree_Prefs.H, 944

FL_TREE_SORT_NONE
Fl_Tree_Prefs.H, 944

FL_UNFOCUS
Enumerations.H, 912

FL_UP_BOX
Enumerations.H, 910

FL_UP_FRAME
Enumerations.H, 910

FL_WHEN_CHANGED
Enumerations.H, 914

FL_WHEN_ENTER_KEY

Enumerations.H, 914
FL_WHEN_ENTER_KEY_ALWAYS

Enumerations.H, 914
FL_WHEN_ENTER_KEY_CHANGED

Enumerations.H, 914
FL_WHEN_NEVER

Enumerations.H, 914
FL_WHEN_NOT_CHANGED

Enumerations.H, 914
FL_WHEN_RELEASE

Enumerations.H, 914
FL_WHEN_RELEASE_ALWAYS

Enumerations.H, 914
Fl_Widget

CHANGED, 857
CLIP_CHILDREN, 857
COPIED_LABEL, 857
FORCE_POSITION, 857
GROUP_RELATIVE, 858
INACTIVE, 857
INVISIBLE, 857
MENU_WINDOW, 858
MODAL, 858
NO_OVERLAY, 858
NOBORDER, 857
NON_MODAL, 857
OUTPUT, 857
OVERRIDE, 857
SHORTCUT_LABEL, 857
TOOLTIP_WINDOW, 858
USERFLAG1, 858
USERFLAG2, 858
USERFLAG3, 858
VISIBLE_FOCUS, 857

Fl_Abstract_Printer, 331
end_page, 333
margins, 333
origin, 333
print_widget, 333
print_window_part, 334
printable_rect, 334
rotate, 334
scale, 335
set_current, 335
start_job, 335
start_page, 335
translate, 336

Fl_Abstract_Printer.cxx, 917
Fl_Abstract_Printer.H, 918
fl_add_symbol

fl_drawings, 266
Fl_Adjuster, 337

draw, 338
Fl_Adjuster, 338

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

964 INDEX

Fl_Adjuster, 338
handle, 338
soft, 339

fl_alert
group_comdlg, 297

Fl_Align
Enumerations.H, 909

FL_ALIGN_BOTTOM
Enumerations.H, 915

FL_ALIGN_CENTER
Enumerations.H, 915

FL_ALIGN_CLIP
Enumerations.H, 915

FL_ALIGN_IMAGE_BACKDROP
Enumerations.H, 915

FL_ALIGN_IMAGE_NEXT_TO_TEXT
Enumerations.H, 915

FL_ALIGN_IMAGE_OVER_TEXT
Enumerations.H, 915

FL_ALIGN_INSIDE
Enumerations.H, 916

FL_ALIGN_LEFT
Enumerations.H, 916

FL_ALIGN_RIGHT
Enumerations.H, 916

FL_ALIGN_TEXT_NEXT_TO_IMAGE
Enumerations.H, 916

FL_ALIGN_TEXT_OVER_IMAGE
Enumerations.H, 916

FL_ALIGN_TOP
Enumerations.H, 916

FL_ALIGN_WRAP
Enumerations.H, 916

fl_arc
Fl_Device, 439
fl_drawings, 266

fl_arc.cxx, 919
fl_arci.cxx, 920
fl_ask

group_comdlg, 297
fl_attributes

fl_color, 253
fl_color_average, 254
fl_contrast, 254
fl_font, 254
fl_height, 254, 255
fl_latin1_to_local, 255
fl_local_to_latin1, 255
fl_local_to_mac_roman, 255
fl_mac_roman_to_local, 256
fl_size, 256
fl_text_extents, 256
fl_width, 256
fl_xpixel, 257

free_color, 257
get_color, 257
get_font, 258
get_font_name, 258
get_font_sizes, 258
set_color, 258
set_font, 259
set_fonts, 259

fl_begin_complex_polygon
Fl_Device, 440
fl_drawings, 267

fl_begin_points
Fl_Device, 440
fl_drawings, 267

Fl_Bitmap, 340
copy, 341
draw, 341
Fl_Bitmap, 341
Fl_Bitmap, 341
label, 342
uncache, 342

Fl_BMP_Image, 343
Fl_BMP_Image, 343
Fl_BMP_Image, 343

Fl_Box, 344
draw, 345
Fl_Box, 344
Fl_Box, 344
handle, 345

fl_box
Enumerations.H, 915

Fl_Boxtype
Enumerations.H, 910

fl_boxtype.cxx, 921
fl_internal_boxtype, 922
fl_rectbound, 922

Fl_Browser, 346
_remove, 351
add, 351
bottomline, 351
clear, 351
column_char, 352
column_widths, 352
data, 353
display, 353
displayed, 353
find_line, 354
Fl_Browser, 350
Fl_Browser, 350
format_char, 354
full_height, 355
hide, 355
icon, 356
incr_height, 356

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 965

insert, 356, 357
item_at, 357
item_draw, 357
item_first, 358
item_height, 358
item_last, 358
item_next, 359
item_prev, 359
item_select, 359
item_selected, 360
item_swap, 360
item_text, 360
item_width, 360
lineno, 361
lineposition, 361
load, 361
make_visible, 362
middleline, 362
move, 362
remove, 362
remove_icon, 363
replace, 363
select, 363
selected, 363
show, 364
size, 364
swap, 364, 365
text, 365
topline, 365, 366
value, 366
visible, 366

Fl_Browser_, 368
bbox, 373
deleting, 373
deselect, 373
display, 373
displayed, 374
find_item, 374
Fl_Browser_, 373
Fl_Browser_, 373
full_height, 374
full_width, 374
handle, 375
has_scrollbar, 375
hposition, 375, 376
hscrollbar, 384
incr_height, 376
inserting, 376
item_at, 376
item_first, 377
item_height, 377
item_last, 377
item_next, 377
item_prev, 378

item_quick_height, 378
item_select, 378
item_selected, 378
item_swap, 379
item_text, 379
item_width, 379
leftedge, 379
new_list, 380
position, 380
redraw_line, 380
redraw_lines, 381
replacing, 381
resize, 381
scrollbar, 384
scrollbar_left, 381
scrollbar_right, 381
scrollbar_size, 381, 382
scrollbar_width, 382
select, 383
select_only, 383
selection, 383
sort, 383
swapping, 384
textfont, 384

Fl_Button, 385
clear, 387
down_box, 387
draw, 387
Fl_Button, 387
Fl_Button, 387
handle, 388
set, 388
shortcut, 388, 389
value, 389

Fl_Cairo_State, 390
Fl_Cairo_Window, 391

set_draw_cb, 392
fl_can_do_alpha_blending

fl_drawings, 267
Fl_Chart, 393

add, 395
autosize, 395
bounds, 396
draw, 396
Fl_Chart, 395
Fl_Chart, 395
insert, 396
maxsize, 396
replace, 397
size, 397
textcolor, 397
textfont, 397
textsize, 397

FL_CHART_ENTRY, 399

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

966 INDEX

col, 399
str, 399
val, 399

Fl_Check_Browser, 400
∼Fl_Check_Browser, 401
add, 402
check_all, 402
check_none, 402
checked, 402
clear, 402
Fl_Check_Browser, 401
Fl_Check_Browser, 401
handle, 402
nchecked, 402
nitems, 402
remove, 403
set_checked, 403
text, 403
value, 403

Fl_Check_Button, 404
Fl_Check_Button, 405
Fl_Check_Button, 405

Fl_Choice, 406
draw, 408
Fl_Choice, 407
Fl_Choice, 407
handle, 408
value, 408, 409

fl_choice
group_comdlg, 298

fl_circle
Fl_Device, 440
fl_drawings, 267

fl_clip_box
Fl_Device, 440
fl_drawings, 268

fl_clip_region
fl_drawings, 268

fl_clipboard
copy, 246
dnd, 246
paste, 247
selection, 247
selection_owner, 247

Fl_Clock, 410
Fl_Clock, 411
Fl_Clock, 411
handle, 412

Fl_Clock_Output, 413
draw, 414
Fl_Clock_Output, 414
Fl_Clock_Output, 414
hour, 415
minute, 415

second, 415
value, 415

Fl_Color
Enumerations.H, 909

fl_color
fl_attributes, 253
Fl_Device, 440, 441

fl_color.cxx, 923
fl_color_average

fl_attributes, 254
Fl_Color_Chooser, 417

b, 419
Fl_Color_Chooser, 419
Fl_Color_Chooser, 419
g, 419
hsv, 419
hsv2rgb, 419
hue, 420
r, 420
rgb, 420
rgb2hsv, 420
saturation, 420
value, 420

fl_color_chooser
group_comdlg, 298, 299

Fl_Color_Chooser.H, 925
fl_contrast

fl_attributes, 254
Fl_Counter, 422

draw, 424
Fl_Counter, 424
Fl_Counter, 424
handle, 424
lstep, 424
step, 425

Fl_CString
fl_types.h, 945

fl_cursor
fl_drawings, 268

fl_curve
Fl_Device, 441
fl_drawings, 268

fl_curve.cxx, 926
fl_del_widget

clear_widget_pointer, 283
delete_widget, 283
do_widget_deletion, 283
release_widget_pointer, 283
watch_widget_pointer, 284

Fl_Device, 426
arc, 434
begin_complex_polygon, 434
begin_line, 434
begin_loop, 434

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 967

begin_points, 434
begin_polygon, 434
circle, 434
clip_box, 434
color, 434
curve, 435
device_types, 433
draw, 435
draw_image, 435
draw_image_mono, 436
end_complex_polygon, 436
end_line, 436
end_loop, 436
end_points, 436
end_polygon, 436
fl_arc, 439
fl_begin_complex_polygon, 440
fl_begin_points, 440
fl_circle, 440
fl_clip_box, 440
fl_color, 440, 441
fl_curve, 441
fl_draw_image, 441, 442
fl_draw_image_mono, 442, 443
fl_font, 443
fl_gap, 443
fl_line_style, 443
fl_not_clipped, 444
fl_pie, 444
fl_polygon, 444
fl_pop_clip, 444
fl_push_clip, 444
fl_rect, 445
fl_transformed_vertex, 445
fl_vertex, 445
font, 436
gap, 436
line, 436, 437
line_style, 437
loop, 437
not_clipped, 437
pie, 437
point, 437
polygon, 437
pop_clip, 437
push_clip, 438
push_no_clip, 438
rect, 438
rectf, 438
set_current, 438
transformed_vertex, 438
type, 438
vertex, 438
xyline, 438, 439

yxline, 439
Fl_Device.H, 927

Fl_Draw_Image_Cb, 928
Fl_Device_Plugin, 446

print, 446
Fl_Dial, 447

angle1, 448
draw, 448
Fl_Dial, 448
Fl_Dial, 448
handle, 449

fl_dir_chooser
group_comdlg, 300

Fl_Display, 450
Fl_Double_Window, 451

∼Fl_Double_Window, 452
flush, 452
hide, 452
resize, 453
show, 453

fl_down
Enumerations.H, 915

fl_draw
fl_drawings, 269

fl_draw.H, 929
fl_draw_box

fl_drawings, 269
fl_draw_image

Fl_Device, 441, 442
fl_drawings, 269, 270

Fl_Draw_Image_Cb
Fl_Device.H, 928

fl_draw_image_mono
Fl_Device, 442, 443
fl_drawings, 270, 271

fl_draw_pixmap
fl_drawings, 271

fl_draw_symbol
fl_drawings, 271

fl_drawings
fl_add_symbol, 266
fl_arc, 266
fl_begin_complex_polygon, 267
fl_begin_points, 267
fl_can_do_alpha_blending, 267
fl_circle, 267
fl_clip_box, 268
fl_clip_region, 268
fl_cursor, 268
fl_curve, 268
fl_draw, 269
fl_draw_box, 269
fl_draw_image, 269, 270
fl_draw_image_mono, 270, 271

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

968 INDEX

fl_draw_pixmap, 271
fl_draw_symbol, 271
fl_expand_text, 272
fl_frame, 272
fl_frame2, 272
fl_gap, 272
fl_line_style, 272
fl_measure, 273
fl_measure_pixmap, 273
fl_mult_matrix, 274
fl_not_clipped, 274
fl_pie, 274
fl_polygon, 274, 275
fl_pop_clip, 275
fl_push_clip, 275
fl_push_matrix, 275
fl_read_image, 275
fl_rect, 275
fl_rectf, 276
fl_reset_spot, 276
fl_rotate, 276
fl_scale, 276
fl_scroll, 276
fl_set_spot, 277
fl_set_status, 277
fl_shortcut_label, 277
fl_transform_dx, 277
fl_transform_dy, 278
fl_transform_x, 278
fl_transform_y, 278
fl_transformed_vertex, 278
fl_translate, 278
fl_vertex, 278

Fl_End, 454
Fl_Event

Enumerations.H, 911
fl_eventnames

fl_events, 244
fl_events

add_handler, 237
belowmouse, 237
compose, 237
compose_reset, 238
event, 238
event_alt, 238
event_button, 238
event_button1, 238
event_button2, 238
event_button3, 238
event_buttons, 239
event_clicks, 239
event_command, 239
event_ctrl, 239
event_dx, 239

event_dy, 240
event_inside, 240
event_is_click, 240
event_key, 240, 241
event_length, 241
event_original_key, 241
event_shift, 241
event_state, 241
event_text, 242
event_x_root, 242
event_y_root, 242
fl_eventnames, 244
fl_fontnames, 245
focus, 243
get_key, 243
get_mouse, 243
handle, 243
pushed, 243, 244
test_shortcut, 244

fl_expand_text
fl_drawings, 272

Fl_File_Browser, 455
filetype, 456
filter, 456
Fl_File_Browser, 456
Fl_File_Browser, 456
iconsize, 456
load, 457

Fl_File_Chooser, 458
∼Fl_File_Chooser, 463
add_extra, 463
color, 463, 464
count, 464
directory, 464
filter, 464
filter_value, 464
Fl_File_Chooser, 463
Fl_File_Chooser, 463
hide, 464
iconsize, 464
label, 465
preview, 465
rescan, 465
show, 465
textcolor, 465
textfont, 465
textsize, 465, 466
type, 466
value, 466
visible, 466

fl_file_chooser
group_comdlg, 300

fl_file_chooser_callback
group_comdlg, 301

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 969

fl_file_chooser_ok_label
group_comdlg, 301

Fl_File_Icon, 467
add, 469
add_color, 469
add_vertex, 469
clear, 469
draw, 469
find, 470
first, 470
Fl_File_Icon, 468
Fl_File_Icon, 468
label, 470
labeltype, 470
load, 470
load_fti, 471
load_image, 471
load_system_icons, 471
next, 471
pattern, 471
size, 471
type, 472
value, 472

Fl_File_Input, 473
down_box, 474
errorcolor, 474
Fl_File_Input, 474
Fl_File_Input, 474
handle, 475
value, 475

Fl_File_Sort_F
filenames, 304

fl_filename_absolute
filenames, 305

fl_filename_expand
filenames, 305

fl_filename_ext
filenames, 305

fl_filename_isdir
filenames, 306

fl_filename_match
filenames, 306

fl_filename_name
filenames, 307

fl_filename_relative
filenames, 307

fl_filename_setext
filenames, 307

Fl_Fill_Dial, 476
Fl_Fill_Dial, 476
Fl_Fill_Dial, 476

Fl_Fill_Slider, 477
Fl_Fill_Slider, 477
Fl_Fill_Slider, 477

Fl_Float_Input, 478
Fl_Float_Input, 478
Fl_Float_Input, 478

Fl_Font
Enumerations.H, 909

fl_font
fl_attributes, 254
Fl_Device, 443

Fl_Font_Descriptor, 479
fl_fontnames

fl_events, 245
Fl_Fontsize

Enumerations.H, 909
Fl_FormsBitmap, 480

bitmap, 480
draw, 480
set, 481

Fl_FormsPixmap, 482
draw, 483
Fl_FormsPixmap, 482
Fl_FormsPixmap, 482
Pixmap, 483
set, 483

fl_frame
Enumerations.H, 915
fl_drawings, 272

fl_frame2
fl_drawings, 272

Fl_Free, 484
draw, 485
Fl_Free, 485
Fl_Free, 485
handle, 485

fl_gap
Fl_Device, 443
fl_drawings, 272

Fl_GDI_Display, 487
Fl_GIF_Image, 488

Fl_GIF_Image, 488
Fl_GIF_Image, 488

Fl_Gl_Window, 489
as_gl_window, 492
can_do, 492
can_do_overlay, 492
context, 492
context_valid, 493
draw, 493
Fl_Gl_Window, 491
Fl_Gl_Window, 491
flush, 493
hide_overlay, 493
make_current, 493
make_overlay_current, 493
mode, 494

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

970 INDEX

ortho, 494
redraw_overlay, 494
resize, 494
show, 495
swap_buffers, 495
valid, 495

Fl_Glut_Bitmap_Font, 497
Fl_Glut_Window, 498

draw, 499
draw_overlay, 499
Fl_Glut_Window, 499
Fl_Glut_Window, 499
handle, 500
make_current, 500

Fl_Group, 501
∼Fl_Group, 504
array, 504
as_group, 504
begin, 505
child, 505
clear, 505
clip_children, 505
current, 505
draw, 506
draw_child, 506
draw_children, 506
draw_outside_label, 506
end, 506
find, 506
Fl_Group, 504
Fl_Group, 504
focus, 507
handle, 507
init_sizes, 507
insert, 508
remove, 508
resizable, 508
resize, 509
sizes, 509
update_child, 510

fl_height
fl_attributes, 254, 255

Fl_Help_Dialog, 511
Fl_Help_Dialog, 512
Fl_Help_Dialog, 512
h, 512
hide, 512
load, 513
position, 513
resize, 513
show, 513
textsize, 513
value, 513
visible, 513

w, 514
x, 514
y, 514

Fl_Help_Font_Style, 515
Fl_Help_Link, 516
Fl_Help_Target, 517
Fl_Help_View, 518

∼Fl_Help_View, 522
clear_selection, 522
directory, 522
filename, 522
find, 522
leftline, 522
link, 522
load, 523
resize, 523
scrollbar_size, 523
select_all, 524
size, 524
textcolor, 524
textfont, 524
textsize, 525
title, 525
topline, 525
value, 525

Fl_Hold_Browser, 527
Fl_Hold_Browser, 527
Fl_Hold_Browser, 527

Fl_Image, 528
color_average, 530
copy, 530
count, 530
d, 530, 531
data, 531
desaturate, 531
draw, 531
draw_empty, 531
Fl_Image, 530
Fl_Image, 530
h, 531
inactive, 532
label, 532
ld, 532
uncache, 532
w, 532

Fl_Input, 533
draw, 535
Fl_Input, 535
Fl_Input, 535
handle, 535

fl_input
group_comdlg, 302

Fl_Input_, 537
∼Fl_Input_, 541

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 971

copy, 541
copy_cuts, 541
cursor_color, 542
cut, 542, 543
drawtext, 543
Fl_Input_, 541
Fl_Input_, 541
handle_mouse, 543
handletext, 543
index, 543
input_type, 544
insert, 544
line_end, 544
line_start, 545
mark, 545
maximum_size, 545
position, 546
readonly, 547
replace, 547
resize, 547
shortcut, 548
size, 548
static_value, 549
textcolor, 549, 550
textfont, 550
textsize, 550
undo, 550
up_down_position, 551
value, 551, 552
word_end, 552
word_start, 552
wrap, 553

Fl_Input_Choice, 554
add, 556
changed, 556
clear, 556
clear_changed, 556
Fl_Input_Choice, 556
Fl_Input_Choice, 556
input, 556
menu, 556, 557
menubutton, 557
resize, 557
set_changed, 557
value, 557

Fl_Int_Input, 558
Fl_Int_Input, 558
Fl_Int_Input, 558

fl_internal_boxtype
fl_boxtype.cxx, 922

Fl_JPEG_Image, 559
Fl_JPEG_Image, 559
Fl_JPEG_Image, 559

Fl_Label, 561

draw, 562
measure, 562
type, 562

Fl_Labeltype
Enumerations.H, 913

fl_latin1_to_local
fl_attributes, 255

Fl_Light_Button, 563
draw, 564
Fl_Light_Button, 564
Fl_Light_Button, 564
handle, 564

fl_line_style
Fl_Device, 443
fl_drawings, 272

fl_line_style.cxx, 937
fl_local_to_latin1

fl_attributes, 255
fl_local_to_mac_roman

fl_attributes, 255
fl_mac_roman_to_local

fl_attributes, 256
fl_mac_set_about

group_macosx, 295
FL_MAJOR_VERSION

Enumerations.H, 908
fl_measure

fl_drawings, 273
fl_measure_pixmap

fl_drawings, 273
Fl_Menu_, 566

add, 569
clear, 571
copy, 571
down_box, 571
find_item, 571, 572
Fl_Menu_, 569
Fl_Menu_, 569
global, 572
item_pathname, 572
menu, 573
mode, 573
mvalue, 574
picked, 574
remove, 574
replace, 574
shortcut, 574
size, 574
test_shortcut, 575
text, 575
textcolor, 575
textfont, 575
textsize, 575
value, 575, 576

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

972 INDEX

Fl_Menu_Bar, 577
draw, 578
Fl_Menu_Bar, 578
Fl_Menu_Bar, 578
handle, 578

Fl_Menu_Button, 580
draw, 581
Fl_Menu_Button, 581
Fl_Menu_Button, 581
handle, 582
popup, 582

Fl_Menu_Item, 583
activate, 588
active, 588
activevisible, 589
add, 589
argument, 589
callback, 589
check, 589
checkbox, 589
checked, 589
clear, 590
deactivate, 590
do_callback, 590
draw, 590
find_shortcut, 590
first, 590, 591
hide, 591
label, 591
labelcolor, 591
labelfont, 591
labelsize, 591
labeltype, 591, 592
measure, 592
next, 592
popup, 592
pulldown, 592
radio, 593
set, 593
setonly, 593
shortcut, 593
show, 593
submenu, 593
test_shortcut, 594
uncheck, 594
value, 594
visible, 594

Fl_Menu_Window, 595
∼Fl_Menu_Window, 596
clear_overlay, 596
Fl_Menu_Window, 596
Fl_Menu_Window, 596
flush, 596
hide, 596

set_overlay, 596
show, 596

fl_message
group_comdlg, 302

FL_MINOR_VERSION
Enumerations.H, 908

fl_mult_matrix
fl_drawings, 274

Fl_Multi_Browser, 598
Fl_Multi_Browser, 598
Fl_Multi_Browser, 598

Fl_Multiline_Input, 599
Fl_Multiline_Input, 599
Fl_Multiline_Input, 599

Fl_Multiline_Output, 600
Fl_Multiline_Output, 600
Fl_Multiline_Output, 600

fl_multithread
awake, 280
lock, 281
thread_message, 281
unlock, 281

Fl_Native_File_Chooser, 601
∼Fl_Native_File_Chooser, 603
count, 604
directory, 604
errmsg, 604
filename, 604
filter, 604, 605
filter_value, 605
Fl_Native_File_Chooser, 603
Fl_Native_File_Chooser, 603
Option, 603
options, 605
preset_file, 605
show, 605
title, 606
Type, 603

fl_nonspacing
fl_unicode, 289

fl_not_clipped
Fl_Device, 444
fl_drawings, 274

Fl_Output, 607
Fl_Output, 608
Fl_Output, 608

Fl_Overlay_Window, 609
Fl_Overlay_Window, 610
Fl_Overlay_Window, 610
hide, 610
redraw_overlay, 610
resize, 610
show, 611

Fl_Pack, 612

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 973

draw, 613
Fl_Pack, 613
Fl_Pack, 613

fl_password
group_comdlg, 302

FL_PATCH_VERSION
Enumerations.H, 908

fl_pie
Fl_Device, 444
fl_drawings, 274

Fl_Pixmap, 614
color_average, 615
copy, 616
desaturate, 616
draw, 616
Fl_Pixmap, 615
Fl_Pixmap, 615
label, 616, 617
uncache, 617

Fl_Plugin, 618
Fl_Plugin, 619
Fl_Plugin, 619

Fl_Plugin_Manager, 620
∼Fl_Plugin_Manager, 621
addPlugin, 621
load, 621
removePlugin, 621

Fl_PNG_Image, 622
Fl_PNG_Image, 622
Fl_PNG_Image, 622

Fl_PNM_Image, 623
Fl_PNM_Image, 623
Fl_PNM_Image, 623

fl_polygon
Fl_Device, 444
fl_drawings, 274, 275

fl_pop_clip
Fl_Device, 444
fl_drawings, 275

Fl_Positioner, 624
draw, 626
Fl_Positioner, 626
Fl_Positioner, 626
handle, 626
value, 626
xbounds, 627
xstep, 627
xvalue, 627
ybounds, 627
ystep, 627
yvalue, 627

Fl_Preferences, 628
∼Fl_Preferences, 634
deleteEntry, 634

deleteGroup, 634
entries, 634
entry, 634
entryExists, 635
Fl_Preferences, 632, 633
Fl_Preferences, 632, 633
flush, 635
get, 635–637
getUserdataPath, 637
group, 638
groupExists, 638
groups, 638
ID, 632
newUUID, 639
Root, 632
set, 639–641
size, 641

Fl_Preferences::Name, 642
Name, 642

Fl_Printer, 644
end_page, 647
margins, 647
origin, 647
print_widget, 648
print_window_part, 648
printable_rect, 648
rotate, 648
scale, 649
start_job, 649
start_page, 649
translate, 649

Fl_Printer.H, 938
Fl_Progress, 651

draw, 652
Fl_Progress, 652
Fl_Progress, 652
maximum, 652
minimum, 652
value, 652

Fl_PSfile_Device, 653
start_job, 654

fl_push_clip
Fl_Device, 444
fl_drawings, 275

fl_push_matrix
fl_drawings, 275

Fl_Quartz_Display, 656
fl_read_image

fl_drawings, 275
fl_rect

Fl_Device, 445
fl_drawings, 275

fl_rect.cxx, 939
fl_rectbound

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

974 INDEX

fl_boxtype.cxx, 922
fl_rectf

fl_drawings, 276
Fl_Repeat_Button, 657

deactivate, 657
Fl_Repeat_Button, 657
Fl_Repeat_Button, 657
handle, 658

fl_reset_spot
fl_drawings, 276

Fl_Return_Button, 659
draw, 660
Fl_Return_Button, 660
Fl_Return_Button, 660
handle, 660

fl_rgb_color
Enumerations.H, 915

Fl_RGB_Image, 662
∼Fl_RGB_Image, 663
color_average, 663
copy, 663
desaturate, 664
draw, 664
Fl_RGB_Image, 663
Fl_RGB_Image, 663
label, 664
uncache, 664

Fl_Roller, 666
draw, 667
Fl_Roller, 667
Fl_Roller, 667
handle, 667

fl_rotate
fl_drawings, 276

Fl_Round_Button, 669
Fl_Round_Clock, 671

Fl_Round_Clock, 671
Fl_Round_Clock, 671

fl_scale
fl_drawings, 276

fl_screen
h, 249
screen_xywh, 249, 250
w, 250
x, 250
y, 250

Fl_Scroll, 672
bbox, 674
clear, 674
draw, 675
Fl_Scroll, 674
Fl_Scroll, 674
handle, 675
resize, 675

scroll_to, 676
scrollbar_size, 676
xposition, 676
yposition, 676

fl_scroll
fl_drawings, 276

Fl_Scrollbar, 678
∼Fl_Scrollbar, 679
draw, 679
Fl_Scrollbar, 679
Fl_Scrollbar, 679
handle, 680
linesize, 680
value, 680, 681

Fl_Secret_Input, 682
Fl_Secret_Input, 682
Fl_Secret_Input, 682

Fl_Select_Browser, 683
Fl_Select_Browser, 683
Fl_Select_Browser, 683

fl_set_spot
fl_drawings, 277

fl_set_status
fl_drawings, 277

Fl_Shared_Image, 684
∼Fl_Shared_Image, 686
color_average, 686
copy, 686, 687
desaturate, 687
draw, 687
Fl_Shared_Image, 686
Fl_Shared_Image, 686
get, 687
num_images, 687
refcount, 688
release, 688
uncache, 688

fl_shortcut_label
fl_drawings, 277

Fl_Simple_Counter, 689
Fl_Single_Window, 690

flush, 691
make_current, 691
show, 691

fl_size
fl_attributes, 256

Fl_Slider, 692
bounds, 694
draw, 694
Fl_Slider, 693
Fl_Slider, 693
handle, 694
scrollvalue, 694
slider, 695

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 975

slider_size, 695
Fl_Spinner, 696

Fl_Spinner, 698
Fl_Spinner, 698
format, 698
handle, 698
maximum, 698
maxinum, 698
minimum, 699
mininum, 699
range, 699
resize, 699
step, 699
textcolor, 699, 700
textfont, 700
textsize, 700
type, 700
value, 700

Fl_String
fl_types.h, 945

Fl_Sys_Menu_Bar, 701
add, 702
draw, 702
Fl_Sys_Menu_Bar, 702
Fl_Sys_Menu_Bar, 702
menu, 702
remove, 702
replace, 703

Fl_Table, 704
∼Fl_Table, 711
begin, 711
callback_col, 711
callback_context, 712
callback_row, 712
child, 712
children, 712
clear, 712
col_header, 713
col_resize, 713
col_resize_min, 713
col_width, 713
col_width_all, 713
draw, 713
draw_cell, 714
end, 715
find, 715
Fl_Table, 711
Fl_Table, 711
handle, 715
init_sizes, 716
insert, 716
is_interactive_resize, 716
remove, 716
row_header, 717

row_height, 717
row_height_all, 717
row_resize, 717
row_resize_min, 717
table_box, 717
top_row, 717, 718
visible_cells, 718

Fl_Table_Row, 719
∼Fl_Table_Row, 720
clear, 721
Fl_Table_Row, 720
Fl_Table_Row, 720
handle, 721
row_selected, 721
select_all_rows, 721
select_row, 721
type, 722

Fl_Tabs, 723
draw, 725
Fl_Tabs, 724
Fl_Tabs, 724
handle, 725
value, 725

Fl_Text_Buffer, 727
add_modify_callback, 735
add_predelete_callback, 735
append, 735
appendfile, 735
call_modify_callbacks, 736
call_predelete_callbacks, 736
character, 736
character_width, 737
clear_rectangular, 737
copy, 737
count_displayed_characters, 737
count_lines, 738
expand_character, 738
findchar_backward, 738
findchar_forward, 739
findchars_backward, 739
findchars_forward, 739
Fl_Text_Buffer, 735
Fl_Text_Buffer, 735
highlight, 739, 740
highlight_position, 740
highlight_rectangular, 740
highlight_text, 740
insert, 740
insert_, 741
insert_column, 741
insert_column_, 741
insertfile, 741
length, 742
line_end, 742

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

976 INDEX

line_start, 742
line_text, 742
loadfile, 742
mModifyProcs, 752
move_gap, 742
mPredeleteProcs, 752
mTabDist, 752
outputfile, 743
overlay_rectangular, 743
overlay_rectangular_, 743
reallocate_with_gap, 743
rectangular_selection_boundaries, 743
redisplay_selection, 744
remove, 744
remove_, 744
remove_modify_callback, 744
remove_predelete_callback, 744
remove_rectangular, 745
remove_rectangular_, 745
remove_secondary_selection, 745
remove_selection, 745
remove_selection_, 745
replace, 746
replace_rectangular, 746
replace_secondary_selection, 746
replace_selection, 746
replace_selection_, 746
rewind_lines, 747
savefile, 747
search_backward, 747
search_forward, 747
secondary_select, 747
secondary_select_rectangular, 748
secondary_selection_position, 748
secondary_selection_text, 748
secondary_unselect, 748
select, 748
select_rectangular, 749
selection_position, 749
selection_text, 749
skip_displayed_characters, 749
skip_lines, 750
tab_distance, 750
text, 750
text_in_rectangle, 751
text_range, 751
undo, 751
unhighlight, 751
unselect, 751
update_selections, 752
word_end, 752
word_start, 752

Fl_Text_Display, 754
∼Fl_Text_Display, 761

buffer, 761
calc_line_starts, 761
count_lines, 761
cursor_color, 761, 762
cursor_style, 762
display_insert, 762
draw, 762
draw_line_numbers, 762
draw_range, 762
draw_string, 763
draw_text, 763
find_line_end, 763
find_wrap_range, 763
Fl_Text_Display, 761
Fl_Text_Display, 761
get_absolute_top_line_number, 763
handle, 763
highlight_data, 764
insert, 764
line_end, 764
maintain_absolute_top_line_number, 765
measure_deleted_lines, 765
measure_proportional_character, 765
move_down, 765
move_left, 765
move_right, 766
move_up, 766
next_word, 766
offset_line_starts, 766
overstrike, 766
position_style, 766
position_to_line, 766
position_to_linecol, 766
position_to_xy, 767
previous_word, 767
redisplay_range, 767
reset_absolute_top_line_number, 767
scroll, 767
scrollbar_width, 767
shortcut, 767
show_insert_position, 768
skip_lines, 768
textcolor, 768
textfont, 768
textsize, 768
word_end, 768
word_start, 768
wrap_mode, 769
wrap_uses_character, 769
wrapped_column, 769
wrapped_line_counter, 769
wrapped_row, 769
xy_to_position, 770
xy_to_rowcol, 770

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 977

Fl_Text_Display::Style_Table_Entry, 771
Fl_Text_Editor, 772

add_default_key_bindings, 775
bound_key_function, 775
default_key_function, 775
Fl_Text_Editor, 775
Fl_Text_Editor, 775
handle, 775
insert_mode, 776
kf_backspace, 776
kf_c_s_move, 776
kf_copy, 776
kf_cut, 776
kf_delete, 777
kf_down, 777
kf_end, 777
kf_home, 777
kf_insert, 777
kf_left, 777
kf_m_s_move, 777
kf_move, 777
kf_page_down, 777
kf_page_up, 777
kf_paste, 777
kf_right, 778
kf_select_all, 778
kf_shift_move, 778
kf_undo, 778
kf_up, 778
remove_all_key_bindings, 778
remove_key_binding, 778

Fl_Text_Editor::Key_Binding, 779
fl_text_extents

fl_attributes, 256
Fl_Text_Selection, 780

end, 781
position, 781, 782
rect_end, 782
rect_start, 782
rectangular, 782
selected, 782, 783
set, 783
set_rectangular, 783
start, 783
update, 783

Fl_Tile, 785
Fl_Tile, 786
Fl_Tile, 786
handle, 786
position, 787
resize, 787

Fl_Tiled_Image, 788
color_average, 789
copy, 789

desaturate, 789
draw, 789, 790
Fl_Tiled_Image, 789
Fl_Tiled_Image, 789

Fl_Timer, 791
direction, 792
draw, 792
Fl_Timer, 792
Fl_Timer, 792
handle, 792
suspended, 793

Fl_Toggle_Button, 794
Fl_Toggle_Button, 794
Fl_Toggle_Button, 794

Fl_Tooltip, 795
color, 796
current, 796
delay, 796, 797
disable, 797
enable, 797
enabled, 797
enter_area, 797
font, 797
hoverdelay, 797
size, 798
textcolor, 798

fl_transform_dx
fl_drawings, 277

fl_transform_dy
fl_drawings, 278

fl_transform_x
fl_drawings, 278

fl_transform_y
fl_drawings, 278

fl_transformed_vertex
Fl_Device, 445
fl_drawings, 278

fl_translate
fl_drawings, 278

Fl_Tree, 799
add, 804
clear, 804
close, 804, 805
closeicon, 805
deselect, 805
deselect_all, 805
find_clicked, 806
find_item, 806
first, 806
insert, 806
insert_above, 806
is_close, 807
is_open, 807
is_selected, 807, 808

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

978 INDEX

item_clicked, 808
labelfont, 808
labelsize, 808
last, 809
open, 809
openicon, 809
parent, 809
remove, 810
root_label, 810
select, 810
select_all, 810
select_only, 810
select_toggle, 810
selectbox, 811
show_self, 811
showcollapse, 811
showroot, 811
sortorder, 811
usericon, 811, 812

Fl_Tree.H, 940
Fl_Tree_Connector

Fl_Tree_Prefs.H, 943
Fl_Tree_Item, 813

activate, 817
add, 817, 818
child, 818
deactivate, 818
depth, 818
deselect_all, 818
find_child, 818
find_clicked, 818, 819
find_item, 819
Fl_Tree_Item, 817
Fl_Tree_Item, 817
hide_widgets, 819
next, 819
parent, 820
prev, 820
remove_child, 820
select, 820
select_all, 820
show_self, 820
show_widgets, 821
swap_children, 821

Fl_Tree_Item.H, 941
Fl_Tree_Item_Array, 822

add, 823
clear, 823
Fl_Tree_Item_Array, 823
Fl_Tree_Item_Array, 823
insert, 823
remove, 823

Fl_Tree_Item_Array.H, 942
Fl_Tree_Prefs, 825

closeicon, 828
labelfont, 828
openicon, 828
selectmode, 828
showcollapse, 828, 829
showroot, 829
sortorder, 829

Fl_Tree_Prefs.H, 943
Fl_Tree_Connector, 943
Fl_Tree_Select, 943
Fl_Tree_Sort, 944

Fl_Tree_Select
Fl_Tree_Prefs.H, 943

Fl_Tree_Sort
Fl_Tree_Prefs.H, 944

fl_types.h, 945
Fl_CString, 945
Fl_String, 945

fl_unicode
fl_nonspacing, 289
fl_utf8back, 289
fl_utf8bytes, 290
fl_utf8decode, 290
fl_utf8encode, 290
fl_utf8from_mb, 291
fl_utf8froma, 291
fl_utf8fromwc, 291
fl_utf8fwd, 292
fl_utf8locale, 292
fl_utf8test, 292
fl_utf8to_mb, 292
fl_utf8toa, 293
fl_utf8toUtf16, 293
fl_utf8towc, 293
fl_utf_strcasecmp, 293
fl_utf_strncasecmp, 294
fl_utf_tolower, 294
fl_utf_toupper, 294

fl_utf8.h, 946
fl_utf8back

fl_unicode, 289
fl_utf8bytes

fl_unicode, 290
fl_utf8decode

fl_unicode, 290
fl_utf8encode

fl_unicode, 290
fl_utf8from_mb

fl_unicode, 291
fl_utf8froma

fl_unicode, 291
fl_utf8fromwc

fl_unicode, 291
fl_utf8fwd

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 979

fl_unicode, 292
fl_utf8locale

fl_unicode, 292
fl_utf8test

fl_unicode, 292
fl_utf8to_mb

fl_unicode, 292
fl_utf8toa

fl_unicode, 293
fl_utf8toUtf16

fl_unicode, 293
fl_utf8towc

fl_unicode, 293
fl_utf_strcasecmp

fl_unicode, 293
fl_utf_strncasecmp

fl_unicode, 294
fl_utf_tolower

fl_unicode, 294
fl_utf_toupper

fl_unicode, 294
Fl_Valuator, 830

bounds, 832
clamp, 832
Fl_Valuator, 832
Fl_Valuator, 832
format, 833
handle_drag, 833
handle_release, 833
increment, 833
maximum, 833
minimum, 833
precision, 833
range, 834
round, 834
set_value, 834
step, 834
value, 834

Fl_Value_Input, 836
cursor_color, 838
draw, 838
Fl_Value_Input, 838
Fl_Value_Input, 838
handle, 839
resize, 839
shortcut, 840
soft, 840
textcolor, 840
textfont, 840
textsize, 840

Fl_Value_Output, 842
draw, 844
Fl_Value_Output, 843
Fl_Value_Output, 843

handle, 844
soft, 844
textcolor, 845
textfont, 845
textsize, 845

Fl_Value_Slider, 846
draw, 847
Fl_Value_Slider, 847
Fl_Value_Slider, 847
handle, 847
textcolor, 848
textfont, 848
textsize, 848

FL_VERSION
Enumerations.H, 908

fl_vertex
Fl_Device, 445
fl_drawings, 278

fl_vertex.cxx, 948
Fl_When

Enumerations.H, 914
Fl_Widget, 849

∼Fl_Widget, 858
activate, 858
active, 859
active_r, 859
align, 859
argument, 860
as_gl_window, 860
as_group, 860
as_window, 860
box, 861
callback, 861, 862
changed, 862
clear_changed, 863
clear_damage, 863
clear_output, 863
clear_visible, 863
clear_visible_focus, 863
color, 864
color2, 864, 865
contains, 865
copy_label, 865
damage, 865, 866
damage_resize, 866
deactivate, 866
default_callback, 867
deimage, 867
do_callback, 867, 868
draw, 868
draw_box, 869
draw_label, 869
Fl_Widget, 858
Fl_Widget, 858

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

980 INDEX

h, 869
handle, 869
hide, 870
image, 870, 871
inside, 871
label, 871, 872
label_shortcut, 872
labelcolor, 872
labelfont, 872, 873
labelsize, 873
labeltype, 873, 874
measure_label, 874
output, 874
parent, 874
position, 875
redraw, 875
redraw_label, 875
resize, 875
selection_color, 876
set_changed, 876
set_output, 876
set_visible, 877
set_visible_focus, 877
show, 877
size, 877
take_focus, 878
takesevents, 878
test_shortcut, 878
tooltip, 878
type, 879
user_data, 879
visible, 879
visible_focus, 880
visible_r, 880
w, 880
when, 881
window, 881
x, 882
y, 882

Fl_Widget_Tracker, 883
deleted, 884
exists, 884
widget, 884

fl_width
fl_attributes, 256

Fl_Window, 885
∼Fl_Window, 889
as_window, 890
border, 890
clear_border, 890
copy_label, 890
current, 890
current_, 897
cursor, 891

default_cursor, 891
draw, 891
Fl_Window, 889
Fl_Window, 889
flush, 891
force_position, 891, 892
free_position, 892
fullscreen, 892
handle, 892
hide, 893
hotspot, 893
icon, 893
iconize, 893
iconlabel, 894
label, 894
make_current, 894
menu_window, 894
modal, 894
non_modal, 894
override, 894
resize, 894
set_menu_window, 895
set_modal, 895
set_non_modal, 895
set_tooltip_window, 895
show, 896
shown, 896
size_range, 896
tooltip_window, 897
xclass, 897

fl_windows
atclose, 233
default_atclose, 232
first_window, 232
grab, 232
modal, 232
next_window, 232
set_atclose, 233

Fl_Wizard, 898
Fl_Wizard, 898
Fl_Wizard, 898
next, 899
prev, 899
value, 899

Fl_XBM_Image, 900
Fl_XBM_Image, 900
Fl_XBM_Image, 900

Fl_Xlib_Display, 901
fl_xpixel

fl_attributes, 257
Fl_XPM_Image, 902

Fl_XPM_Image, 902
Fl_XPM_Image, 902

flush

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 981

Fl, 324
Fl_Double_Window, 452
Fl_Gl_Window, 493
Fl_Menu_Window, 596
Fl_Preferences, 635
Fl_Single_Window, 691
Fl_Window, 891

focus
fl_events, 243
Fl_Group, 507

font
Fl_Device, 436
Fl_Tooltip, 797

FORCE_POSITION
Fl_Widget, 857

force_position
Fl_Window, 891, 892

foreground
Fl, 324

format
Fl_Spinner, 698
Fl_Valuator, 833

format_char
Fl_Browser, 354

free_color
fl_attributes, 257

free_position
Fl_Window, 892

full_height
Fl_Browser, 355
Fl_Browser_, 374

full_width
Fl_Browser_, 374

fullscreen
Fl_Window, 892

g
Fl_Color_Chooser, 419

gap
Fl_Device, 436

gdi_display
Fl_Device, 433

gdi_printer
Fl_Device, 433

get
Fl_Preferences, 635–637
Fl_Shared_Image, 687

get_absolute_top_line_number
Fl_Text_Display, 763

get_awake_handler_
Fl, 324

get_boxtype
Fl, 325

get_color

fl_attributes, 257
get_font

fl_attributes, 258
get_font_name

fl_attributes, 258
get_font_sizes

fl_attributes, 258
get_key

fl_events, 243
get_mouse

fl_events, 243
get_system_colors

Fl, 325
getUserdataPath

Fl_Preferences, 637
gl.h, 950

gl_color, 951
gl_draw, 951
gl_rect, 951
gl_rectf, 952

gl_color
gl.h, 951

gl_draw
gl.h, 951

gl_rect
gl.h, 951

gl_rectf
gl.h, 952

gl_visual
Fl, 325

global
Fl_Menu_, 572

grab
fl_windows, 232

group
Fl_Preferences, 638

GROUP_RELATIVE
Fl_Widget, 858

group_cairo
cairo_autolink_context, 286
cairo_cc, 287

group_comdlg
error, 303
fatal, 303
fl_alert, 297
fl_ask, 297
fl_choice, 298
fl_color_chooser, 298, 299
fl_dir_chooser, 300
fl_file_chooser, 300
fl_file_chooser_callback, 301
fl_file_chooser_ok_label, 301
fl_input, 302
fl_message, 302

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

982 INDEX

fl_password, 302
warning, 303

group_macosx
fl_mac_set_about, 295

groupExists
Fl_Preferences, 638

groups
Fl_Preferences, 638

h
Fl_Help_Dialog, 512
Fl_Image, 531
fl_screen, 249
Fl_Widget, 869

handle
Fl_Adjuster, 338
Fl_Box, 345
Fl_Browser_, 375
Fl_Button, 388
Fl_Check_Browser, 402
Fl_Choice, 408
Fl_Clock, 412
Fl_Counter, 424
Fl_Dial, 449
fl_events, 243
Fl_File_Input, 475
Fl_Free, 485
Fl_Glut_Window, 500
Fl_Group, 507
Fl_Input, 535
Fl_Light_Button, 564
Fl_Menu_Bar, 578
Fl_Menu_Button, 582
Fl_Positioner, 626
Fl_Repeat_Button, 658
Fl_Return_Button, 660
Fl_Roller, 667
Fl_Scroll, 675
Fl_Scrollbar, 680
Fl_Slider, 694
Fl_Spinner, 698
Fl_Table, 715
Fl_Table_Row, 721
Fl_Tabs, 725
Fl_Text_Display, 763
Fl_Text_Editor, 775
Fl_Tile, 786
Fl_Timer, 792
Fl_Value_Input, 839
Fl_Value_Output, 844
Fl_Value_Slider, 847
Fl_Widget, 869
Fl_Window, 892

handle_drag

Fl_Valuator, 833
handle_mouse

Fl_Input_, 543
handle_release

Fl_Valuator, 833
handletext

Fl_Input_, 543
has_scrollbar

Fl_Browser_, 375
help

Fl, 329
hide

Fl_Browser, 355
Fl_Double_Window, 452
Fl_File_Chooser, 464
Fl_Help_Dialog, 512
Fl_Menu_Item, 591
Fl_Menu_Window, 596
Fl_Overlay_Window, 610
Fl_Widget, 870
Fl_Window, 893

hide_overlay
Fl_Gl_Window, 493

hide_widgets
Fl_Tree_Item, 819

highlight
Fl_Text_Buffer, 739, 740

highlight_data
Fl_Text_Display, 764

highlight_position
Fl_Text_Buffer, 740

highlight_rectangular
Fl_Text_Buffer, 740

highlight_text
Fl_Text_Buffer, 740

HORIZONTAL
Fl_Browser_, 372

HORIZONTAL_ALWAYS
Fl_Browser_, 372

hotspot
Fl_Window, 893

hour
Fl_Clock_Output, 415

hoverdelay
Fl_Tooltip, 797

hposition
Fl_Browser_, 375, 376

hscrollbar
Fl_Browser_, 384

hsv
Fl_Color_Chooser, 419

hsv2rgb
Fl_Color_Chooser, 419

hue

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 983

Fl_Color_Chooser, 420

icon
Fl_Browser, 356
Fl_Window, 893

iconize
Fl_Window, 893

iconlabel
Fl_Window, 894

iconsize
Fl_File_Browser, 456
Fl_File_Chooser, 464

ID
Fl_Preferences, 632

idle
Fl, 329

image
Fl_Widget, 870, 871

INACTIVE
Fl_Widget, 857

inactive
Fl_Image, 532

incr_height
Fl_Browser, 356
Fl_Browser_, 376

increment
Fl_Valuator, 833

index
Fl_Input_, 543

init_sizes
Fl_Group, 507
Fl_Table, 716

input
Fl_Input_Choice, 556

input_type
Fl_Input_, 544

insert
Fl_Browser, 356, 357
Fl_Chart, 396
Fl_Group, 508
Fl_Input_, 544
Fl_Table, 716
Fl_Text_Buffer, 740
Fl_Text_Display, 764
Fl_Tree, 806
Fl_Tree_Item_Array, 823

insert_
Fl_Text_Buffer, 741

insert_above
Fl_Tree, 806

insert_column
Fl_Text_Buffer, 741

insert_column_
Fl_Text_Buffer, 741

insert_mode
Fl_Text_Editor, 776

insertfile
Fl_Text_Buffer, 741

inserting
Fl_Browser_, 376

inside
Fl_Widget, 871

INVISIBLE
Fl_Widget, 857

is_close
Fl_Tree, 807

is_interactive_resize
Fl_Table, 716

is_open
Fl_Tree, 807

is_selected
Fl_Tree, 807, 808

item_at
Fl_Browser, 357
Fl_Browser_, 376

item_clicked
Fl_Tree, 808

item_draw
Fl_Browser, 357

item_first
Fl_Browser, 358
Fl_Browser_, 377

item_height
Fl_Browser, 358
Fl_Browser_, 377

item_last
Fl_Browser, 358
Fl_Browser_, 377

item_next
Fl_Browser, 359
Fl_Browser_, 377

item_pathname
Fl_Menu_, 572

item_prev
Fl_Browser, 359
Fl_Browser_, 378

item_quick_height
Fl_Browser_, 378

item_select
Fl_Browser, 359
Fl_Browser_, 378

item_selected
Fl_Browser, 360
Fl_Browser_, 378

item_swap
Fl_Browser, 360
Fl_Browser_, 379

item_text

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

984 INDEX

Fl_Browser, 360
Fl_Browser_, 379

item_width
Fl_Browser, 360
Fl_Browser_, 379

kf_backspace
Fl_Text_Editor, 776

kf_c_s_move
Fl_Text_Editor, 776

kf_copy
Fl_Text_Editor, 776

kf_cut
Fl_Text_Editor, 776

kf_delete
Fl_Text_Editor, 777

kf_down
Fl_Text_Editor, 777

kf_end
Fl_Text_Editor, 777

kf_home
Fl_Text_Editor, 777

kf_insert
Fl_Text_Editor, 777

kf_left
Fl_Text_Editor, 777

kf_m_s_move
Fl_Text_Editor, 777

kf_move
Fl_Text_Editor, 777

kf_page_down
Fl_Text_Editor, 777

kf_page_up
Fl_Text_Editor, 777

kf_paste
Fl_Text_Editor, 777

kf_right
Fl_Text_Editor, 778

kf_select_all
Fl_Text_Editor, 778

kf_shift_move
Fl_Text_Editor, 778

kf_undo
Fl_Text_Editor, 778

kf_up
Fl_Text_Editor, 778

label
Fl_Bitmap, 342
Fl_File_Chooser, 465
Fl_File_Icon, 470
Fl_Image, 532
Fl_Menu_Item, 591
Fl_Pixmap, 616, 617

Fl_RGB_Image, 664
Fl_Widget, 871, 872
Fl_Window, 894

label_shortcut
Fl_Widget, 872

labelcolor
Fl_Menu_Item, 591
Fl_Widget, 872

labelfont
Fl_Menu_Item, 591
Fl_Tree, 808
Fl_Tree_Prefs, 828
Fl_Widget, 872, 873

labelsize
Fl_Menu_Item, 591
Fl_Tree, 808
Fl_Widget, 873

labeltype
Fl_File_Icon, 470
Fl_Menu_Item, 591, 592
Fl_Widget, 873, 874

last
Fl_Tree, 809

ld
Fl_Image, 532

leftedge
Fl_Browser_, 379

leftline
Fl_Help_View, 522

length
Fl_Text_Buffer, 742

line
Fl_Device, 436, 437

line_end
Fl_Input_, 544
Fl_Text_Buffer, 742
Fl_Text_Display, 764

line_start
Fl_Input_, 545
Fl_Text_Buffer, 742

line_style
Fl_Device, 437

line_text
Fl_Text_Buffer, 742

lineno
Fl_Browser, 361

lineposition
Fl_Browser, 361

linesize
Fl_Scrollbar, 680

link
Fl_Help_View, 522

load
Fl_Browser, 361

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 985

Fl_File_Browser, 457
Fl_File_Icon, 470
Fl_Help_Dialog, 513
Fl_Help_View, 523
Fl_Plugin_Manager, 621

load_fti
Fl_File_Icon, 471

load_image
Fl_File_Icon, 471

load_system_icons
Fl_File_Icon, 471

loadfile
Fl_Text_Buffer, 742

lock
fl_multithread, 281

loop
Fl_Device, 437

lstep
Fl_Counter, 424

Mac OS X-specific functions, 295
maintain_absolute_top_line_number

Fl_Text_Display, 765
make_current

Fl_Gl_Window, 493
Fl_Glut_Window, 500
Fl_Single_Window, 691
Fl_Window, 894

make_overlay_current
Fl_Gl_Window, 493

make_visible
Fl_Browser, 362

margins
Fl_Abstract_Printer, 333
Fl_Printer, 647

mark
Fl_Input_, 545

maximum
Fl_Progress, 652
Fl_Spinner, 698
Fl_Valuator, 833

maximum_size
Fl_Input_, 545

maxinum
Fl_Spinner, 698

maxsize
Fl_Chart, 396

measure
Fl_Label, 562
Fl_Menu_Item, 592

measure_deleted_lines
Fl_Text_Display, 765

measure_label
Fl_Widget, 874

measure_proportional_character
Fl_Text_Display, 765

menu
Fl_Input_Choice, 556, 557
Fl_Menu_, 573
Fl_Sys_Menu_Bar, 702

MENU_WINDOW
Fl_Widget, 858

menu_window
Fl_Window, 894

menubutton
Fl_Input_Choice, 557

middleline
Fl_Browser, 362

minimum
Fl_Progress, 652
Fl_Spinner, 699
Fl_Valuator, 833

mininum
Fl_Spinner, 699

minute
Fl_Clock_Output, 415

mModifyProcs
Fl_Text_Buffer, 752

MODAL
Fl_Widget, 858

modal
Fl_Window, 894
fl_windows, 232

mode
Fl_Gl_Window, 494
Fl_Menu_, 573

move
Fl_Browser, 362

move_down
Fl_Text_Display, 765

move_gap
Fl_Text_Buffer, 742

move_left
Fl_Text_Display, 765

move_right
Fl_Text_Display, 766

move_up
Fl_Text_Display, 766

mPredeleteProcs
Fl_Text_Buffer, 752

mTabDist
Fl_Text_Buffer, 752

Multithreading support functions, 280
mvalue

Fl_Menu_, 574

Name
Fl_Preferences::Name, 642

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

986 INDEX

nchecked
Fl_Check_Browser, 402

NEW_FOLDER
Fl_Native_File_Chooser, 603

new_list
Fl_Browser_, 380

newUUID
Fl_Preferences, 639

next
Fl_File_Icon, 471
Fl_Menu_Item, 592
Fl_Tree_Item, 819
Fl_Wizard, 899

next_window
fl_windows, 232

next_word
Fl_Text_Display, 766

nitems
Fl_Check_Browser, 402

NO_OPTIONS
Fl_Native_File_Chooser, 603

NO_OVERLAY
Fl_Widget, 858

NOBORDER
Fl_Widget, 857

NON_MODAL
Fl_Widget, 857

non_modal
Fl_Window, 894

not_clipped
Fl_Device, 437

num_images
Fl_Shared_Image, 687

offset_line_starts
Fl_Text_Display, 766

open
Fl_Tree, 809

openicon
Fl_Tree, 809
Fl_Tree_Prefs, 828

Option
Fl_Native_File_Chooser, 603

options
Fl_Native_File_Chooser, 605

origin
Fl_Abstract_Printer, 333
Fl_Printer, 647

ortho
Fl_Gl_Window, 494

OUTPUT
Fl_Widget, 857

output
Fl_Widget, 874

outputfile
Fl_Text_Buffer, 743

overlay_rectangular
Fl_Text_Buffer, 743

overlay_rectangular_
Fl_Text_Buffer, 743

OVERRIDE
Fl_Widget, 857

override
Fl_Window, 894

overstrike
Fl_Text_Display, 766

own_colormap
Fl, 325

parent
Fl_Tree, 809
Fl_Tree_Item, 820
Fl_Widget, 874

paste
fl_clipboard, 247

pattern
Fl_File_Icon, 471

picked
Fl_Menu_, 574

pie
Fl_Device, 437

Pixmap
Fl_FormsPixmap, 483

point
Fl_Device, 437

polygon
Fl_Device, 437

pop_clip
Fl_Device, 437

popup
Fl_Menu_Button, 582
Fl_Menu_Item, 592

position
Fl_Browser_, 380
Fl_Help_Dialog, 513
Fl_Input_, 546
Fl_Text_Selection, 781, 782
Fl_Tile, 787
Fl_Widget, 875

position_style
Fl_Text_Display, 766

position_to_line
Fl_Text_Display, 766

position_to_linecol
Fl_Text_Display, 766

position_to_xy
Fl_Text_Display, 767

postscript_device

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 987

Fl_Device, 433
precision

Fl_Valuator, 833
preset_file

Fl_Native_File_Chooser, 605
prev

Fl_Tree_Item, 820
Fl_Wizard, 899

PREVIEW
Fl_Native_File_Chooser, 603

preview
Fl_File_Chooser, 465

previous_word
Fl_Text_Display, 767

print
Fl_Device_Plugin, 446

print_widget
Fl_Abstract_Printer, 333
Fl_Printer, 648

print_window_part
Fl_Abstract_Printer, 334
Fl_Printer, 648

printable_rect
Fl_Abstract_Printer, 334
Fl_Printer, 648

pulldown
Fl_Menu_Item, 592

push_clip
Fl_Device, 438

push_no_clip
Fl_Device, 438

pushed
fl_events, 243, 244

quartz_display
Fl_Device, 433

quartz_printer
Fl_Device, 433

r
Fl_Color_Chooser, 420

radio
Fl_Menu_Item, 593

range
Fl_Spinner, 699
Fl_Valuator, 834

readonly
Fl_Input_, 547

ready
Fl, 325

reallocate_with_gap
Fl_Text_Buffer, 743

rect
Fl_Device, 438

rect_end
Fl_Text_Selection, 782

rect_start
Fl_Text_Selection, 782

rectangular
Fl_Text_Selection, 782

rectangular_selection_boundaries
Fl_Text_Buffer, 743

rectf
Fl_Device, 438

redisplay_range
Fl_Text_Display, 767

redisplay_selection
Fl_Text_Buffer, 744

redraw
Fl_Widget, 875

redraw_label
Fl_Widget, 875

redraw_line
Fl_Browser_, 380

redraw_lines
Fl_Browser_, 381

redraw_overlay
Fl_Gl_Window, 494
Fl_Overlay_Window, 610

refcount
Fl_Shared_Image, 688

release
Fl, 325
Fl_Shared_Image, 688

release_widget_pointer
fl_del_widget, 283

reload_scheme
Fl, 326

remove
Fl_Browser, 362
Fl_Check_Browser, 403
Fl_Group, 508
Fl_Menu_, 574
Fl_Sys_Menu_Bar, 702
Fl_Table, 716
Fl_Text_Buffer, 744
Fl_Tree, 810
Fl_Tree_Item_Array, 823

remove_
Fl_Text_Buffer, 744

remove_all_key_bindings
Fl_Text_Editor, 778

remove_check
Fl, 326

remove_child
Fl_Tree_Item, 820

remove_fd
Fl, 326

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

988 INDEX

remove_icon
Fl_Browser, 363

remove_key_binding
Fl_Text_Editor, 778

remove_modify_callback
Fl_Text_Buffer, 744

remove_predelete_callback
Fl_Text_Buffer, 744

remove_rectangular
Fl_Text_Buffer, 745

remove_rectangular_
Fl_Text_Buffer, 745

remove_secondary_selection
Fl_Text_Buffer, 745

remove_selection
Fl_Text_Buffer, 745

remove_selection_
Fl_Text_Buffer, 745

remove_timeout
Fl, 326

removePlugin
Fl_Plugin_Manager, 621

repeat_timeout
Fl, 326

replace
Fl_Browser, 363
Fl_Chart, 397
Fl_Input_, 547
Fl_Menu_, 574
Fl_Sys_Menu_Bar, 703
Fl_Text_Buffer, 746

replace_rectangular
Fl_Text_Buffer, 746

replace_secondary_selection
Fl_Text_Buffer, 746

replace_selection
Fl_Text_Buffer, 746

replace_selection_
Fl_Text_Buffer, 746

replacing
Fl_Browser_, 381

rescan
Fl_File_Chooser, 465

reset_absolute_top_line_number
Fl_Text_Display, 767

resizable
Fl_Group, 508

resize
Fl_Browser_, 381
Fl_Double_Window, 453
Fl_Gl_Window, 494
Fl_Group, 509
Fl_Help_Dialog, 513
Fl_Help_View, 523

Fl_Input_, 547
Fl_Input_Choice, 557
Fl_Overlay_Window, 610
Fl_Scroll, 675
Fl_Spinner, 699
Fl_Tile, 787
Fl_Value_Input, 839
Fl_Widget, 875
Fl_Window, 894

rewind_lines
Fl_Text_Buffer, 747

rgb
Fl_Color_Chooser, 420

rgb2hsv
Fl_Color_Chooser, 420

Root
Fl_Preferences, 632

root_label
Fl_Tree, 810

rotate
Fl_Abstract_Printer, 334
Fl_Printer, 648

round
Fl_Valuator, 834

row_header
Fl_Table, 717

row_height
Fl_Table, 717

row_height_all
Fl_Table, 717

row_resize
Fl_Table, 717

row_resize_min
Fl_Table, 717

row_selected
Fl_Table_Row, 721

run
Fl, 327

Safe widget deletion support functions, 282
saturation

Fl_Color_Chooser, 420
SAVEAS_CONFIRM

Fl_Native_File_Chooser, 603
savefile

Fl_Text_Buffer, 747
scale

Fl_Abstract_Printer, 335
Fl_Printer, 649

scheme
Fl, 327

Screen functions, 249
screen_xywh

fl_screen, 249, 250

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 989

scroll
Fl_Text_Display, 767

scroll_to
Fl_Scroll, 676

scrollbar
Fl_Browser_, 384

scrollbar_left
Fl_Browser_, 381

scrollbar_right
Fl_Browser_, 381

scrollbar_size
Fl, 327
Fl_Browser_, 381, 382
Fl_Help_View, 523
Fl_Scroll, 676

scrollbar_width
Fl_Browser_, 382
Fl_Text_Display, 767

scrollvalue
Fl_Slider, 694

search_backward
Fl_Text_Buffer, 747

search_forward
Fl_Text_Buffer, 747

second
Fl_Clock_Output, 415

secondary_select
Fl_Text_Buffer, 747

secondary_select_rectangular
Fl_Text_Buffer, 748

secondary_selection_position
Fl_Text_Buffer, 748

secondary_selection_text
Fl_Text_Buffer, 748

secondary_unselect
Fl_Text_Buffer, 748

select
Fl_Browser, 363
Fl_Browser_, 383
Fl_Text_Buffer, 748
Fl_Tree, 810
Fl_Tree_Item, 820

select_all
Fl_Help_View, 524
Fl_Tree, 810
Fl_Tree_Item, 820

select_all_rows
Fl_Table_Row, 721

select_only
Fl_Browser_, 383
Fl_Tree, 810

select_rectangular
Fl_Text_Buffer, 749

select_row

Fl_Table_Row, 721
select_toggle

Fl_Tree, 810
selectbox

Fl_Tree, 811
selected

Fl_Browser, 363
Fl_Text_Selection, 782, 783

selection
Fl_Browser_, 383
fl_clipboard, 247

Selection & Clipboard functions, 246
selection_color

Fl_Widget, 876
selection_owner

fl_clipboard, 247
selection_position

Fl_Text_Buffer, 749
selection_text

Fl_Text_Buffer, 749
selectmode

Fl_Tree_Prefs, 828
set

Fl_Button, 388
Fl_FormsBitmap, 481
Fl_FormsPixmap, 483
Fl_Menu_Item, 593
Fl_Preferences, 639–641
Fl_Text_Selection, 783

set_atclose
fl_windows, 233

set_boxtype
Fl, 327

set_changed
Fl_Input_Choice, 557
Fl_Widget, 876

set_checked
Fl_Check_Browser, 403

set_color
fl_attributes, 258

set_current
Fl_Abstract_Printer, 335
Fl_Device, 438

set_draw_cb
Fl_Cairo_Window, 392

set_font
fl_attributes, 259

set_fonts
fl_attributes, 259

set_idle
Fl, 327

set_labeltype
Fl, 328

set_menu_window

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

990 INDEX

Fl_Window, 895
set_modal

Fl_Window, 895
set_non_modal

Fl_Window, 895
set_output

Fl_Widget, 876
set_overlay

Fl_Menu_Window, 596
set_rectangular

Fl_Text_Selection, 783
set_tooltip_window

Fl_Window, 895
set_value

Fl_Valuator, 834
set_visible

Fl_Widget, 877
set_visible_focus

Fl_Widget, 877
setonly

Fl_Menu_Item, 593
shortcut

Fl_Button, 388, 389
Fl_Input_, 548
Fl_Menu_, 574
Fl_Menu_Item, 593
Fl_Text_Display, 767
Fl_Value_Input, 840

SHORTCUT_LABEL
Fl_Widget, 857

show
Fl_Browser, 364
Fl_Double_Window, 453
Fl_File_Chooser, 465
Fl_Gl_Window, 495
Fl_Help_Dialog, 513
Fl_Menu_Item, 593
Fl_Menu_Window, 596
Fl_Native_File_Chooser, 605
Fl_Overlay_Window, 611
Fl_Single_Window, 691
Fl_Widget, 877
Fl_Window, 896

show_insert_position
Fl_Text_Display, 768

show_self
Fl_Tree, 811
Fl_Tree_Item, 820

show_widgets
Fl_Tree_Item, 821

showcollapse
Fl_Tree, 811
Fl_Tree_Prefs, 828, 829

shown

Fl_Window, 896
showroot

Fl_Tree, 811
Fl_Tree_Prefs, 829

size
Fl_Browser, 364
Fl_Chart, 397
Fl_File_Icon, 471
Fl_Help_View, 524
Fl_Input_, 548
Fl_Menu_, 574
Fl_Preferences, 641
Fl_Tooltip, 798
Fl_Widget, 877

size_range
Fl_Window, 896

sizes
Fl_Group, 509

skip_displayed_characters
Fl_Text_Buffer, 749

skip_lines
Fl_Text_Buffer, 750
Fl_Text_Display, 768

slider
Fl_Slider, 695

slider_size
Fl_Slider, 695

soft
Fl_Adjuster, 339
Fl_Value_Input, 840
Fl_Value_Output, 844

sort
Fl_Browser_, 383

sortorder
Fl_Tree, 811
Fl_Tree_Prefs, 829

start
Fl_Text_Selection, 783

start_job
Fl_Abstract_Printer, 335
Fl_Printer, 649
Fl_PSfile_Device, 654

start_page
Fl_Abstract_Printer, 335
Fl_Printer, 649

static_value
Fl_Input_, 549

step
Fl_Counter, 425
Fl_Spinner, 699
Fl_Valuator, 834

str
FL_CHART_ENTRY, 399

submenu

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 991

Fl_Menu_Item, 593
suspended

Fl_Timer, 793
swap

Fl_Browser, 364, 365
swap_buffers

Fl_Gl_Window, 495
swap_children

Fl_Tree_Item, 821
swapping

Fl_Browser_, 384
SYSTEM

Fl_Preferences, 632

tab_distance
Fl_Text_Buffer, 750

table_box
Fl_Table, 717

take_focus
Fl_Widget, 878

takesevents
Fl_Widget, 878

test_shortcut
fl_events, 244
Fl_Menu_, 575
Fl_Menu_Item, 594
Fl_Widget, 878

text
Fl_Browser, 365
Fl_Check_Browser, 403
Fl_Menu_, 575
Fl_Text_Buffer, 750

text_in_rectangle
Fl_Text_Buffer, 751

text_range
Fl_Text_Buffer, 751

textcolor
Fl_Chart, 397
Fl_File_Chooser, 465
Fl_Help_View, 524
Fl_Input_, 549, 550
Fl_Menu_, 575
Fl_Spinner, 699, 700
Fl_Text_Display, 768
Fl_Tooltip, 798
Fl_Value_Input, 840
Fl_Value_Output, 845
Fl_Value_Slider, 848

textfont
Fl_Browser_, 384
Fl_Chart, 397
Fl_File_Chooser, 465
Fl_Help_View, 524
Fl_Input_, 550

Fl_Menu_, 575
Fl_Spinner, 700
Fl_Text_Display, 768
Fl_Value_Input, 840
Fl_Value_Output, 845
Fl_Value_Slider, 848

textsize
Fl_Chart, 397
Fl_File_Chooser, 465, 466
Fl_Help_Dialog, 513
Fl_Help_View, 525
Fl_Input_, 550
Fl_Menu_, 575
Fl_Spinner, 700
Fl_Text_Display, 768
Fl_Value_Input, 840
Fl_Value_Output, 845
Fl_Value_Slider, 848

thread_message
fl_multithread, 281

title
Fl_Help_View, 525
Fl_Native_File_Chooser, 606

tooltip
Fl_Widget, 878

TOOLTIP_WINDOW
Fl_Widget, 858

tooltip_window
Fl_Window, 897

top_row
Fl_Table, 717, 718

topline
Fl_Browser, 365, 366
Fl_Help_View, 525

transformed_vertex
Fl_Device, 438

translate
Fl_Abstract_Printer, 336
Fl_Printer, 649

Type
Fl_Native_File_Chooser, 603

type
Fl_Device, 438
Fl_File_Chooser, 466
Fl_File_Icon, 472
Fl_Label, 562
Fl_Spinner, 700
Fl_Table_Row, 722
Fl_Widget, 879

uncache
Fl_Bitmap, 342
Fl_Image, 532
Fl_Pixmap, 617

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

992 INDEX

Fl_RGB_Image, 664
Fl_Shared_Image, 688

uncheck
Fl_Menu_Item, 594

undo
Fl_Input_, 550
Fl_Text_Buffer, 751

unhighlight
Fl_Text_Buffer, 751

Unicode and UTF-8 functions, 288
unlock

fl_multithread, 281
unselect

Fl_Text_Buffer, 751
up_down_position

Fl_Input_, 551
update

Fl_Text_Selection, 783
update_child

Fl_Group, 510
update_selections

Fl_Text_Buffer, 752
USER

Fl_Preferences, 632
user_data

Fl_Widget, 879
USERFLAG1

Fl_Widget, 858
USERFLAG2

Fl_Widget, 858
USERFLAG3

Fl_Widget, 858
usericon

Fl_Tree, 811, 812

val
FL_CHART_ENTRY, 399

valid
Fl_Gl_Window, 495

value
Fl_Browser, 366
Fl_Button, 389
Fl_Check_Browser, 403
Fl_Choice, 408, 409
Fl_Clock_Output, 415
Fl_Color_Chooser, 420
Fl_File_Chooser, 466
Fl_File_Icon, 472
Fl_File_Input, 475
Fl_Help_Dialog, 513
Fl_Help_View, 525
Fl_Input_, 551, 552
Fl_Input_Choice, 557
Fl_Menu_, 575, 576

Fl_Menu_Item, 594
Fl_Positioner, 626
Fl_Progress, 652
Fl_Scrollbar, 680, 681
Fl_Spinner, 700
Fl_Tabs, 725
Fl_Valuator, 834
Fl_Wizard, 899

version
Fl, 328

vertex
Fl_Device, 438

VERTICAL
Fl_Browser_, 372

VERTICAL_ALWAYS
Fl_Browser_, 373

visible
Fl_Browser, 366
Fl_File_Chooser, 466
Fl_Help_Dialog, 513
Fl_Menu_Item, 594
Fl_Widget, 879

VISIBLE_FOCUS
Fl_Widget, 857

visible_cells
Fl_Table, 718

visible_focus
Fl, 328
Fl_Widget, 880

visible_r
Fl_Widget, 880

visual
Fl, 328

w
Fl_Help_Dialog, 514
Fl_Image, 532
fl_screen, 250
Fl_Widget, 880

wait
Fl, 329

warning
group_comdlg, 303

watch_widget_pointer
fl_del_widget, 284

when
Fl_Widget, 881

widget
Fl_Widget_Tracker, 884

window
Fl_Widget, 881

Windows handling functions, 231
word_end

Fl_Input_, 552

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

INDEX 993

Fl_Text_Buffer, 752
Fl_Text_Display, 768

word_start
Fl_Input_, 552
Fl_Text_Buffer, 752
Fl_Text_Display, 768

wrap
Fl_Input_, 553

wrap_mode
Fl_Text_Display, 769

wrap_uses_character
Fl_Text_Display, 769

wrapped_column
Fl_Text_Display, 769

wrapped_line_counter
Fl_Text_Display, 769

wrapped_row
Fl_Text_Display, 769

x
Fl_Help_Dialog, 514
fl_screen, 250
Fl_Widget, 882

xbounds
Fl_Positioner, 627

xclass
Fl_Window, 897

xlib_display
Fl_Device, 433

xposition
Fl_Scroll, 676

xstep
Fl_Positioner, 627

xvalue
Fl_Positioner, 627

xy_to_position
Fl_Text_Display, 770

xy_to_rowcol
Fl_Text_Display, 770

xyline
Fl_Device, 438, 439

y
Fl_Help_Dialog, 514
fl_screen, 250
Fl_Widget, 882

ybounds
Fl_Positioner, 627

yposition
Fl_Scroll, 676

ystep
Fl_Positioner, 627

yvalue
Fl_Positioner, 627

yxline
Fl_Device, 439

Generated on Sun Apr 11 21:02:45 2010 for FLTK by Doxygen

	FLTK Programming Manual
	Preface
	Organization
	Conventions
	Abbreviations
	Copyrights and Trademarks

	Introduction to FLTK
	History of FLTK
	Features
	Licensing
	What Does `¨FLTK`¨ Mean?
	Building and Installing FLTK Under UNIX and MacOS X
	Building FLTK Under Microsoft Windows
	Building FLTK Under OS/2
	Internet Resources
	Reporting Bugs

	FLTK Basics
	Writing Your First FLTK Program
	Compiling Programs with Standard Compilers
	Compiling Programs with Makefiles
	Compiling Programs with Microsoft Visual C++
	Naming
	Header Files

	Common Widgets and Attributes
	Buttons
	Text
	Valuators
	Groups
	Setting the Size and Position of Widgets
	Colors
	Box Types
	Labels and Label Types
	Callbacks
	Shortcuts

	Designing a Simple Text Editor
	Determining the Goals of the Text Editor
	Designing the Main Window
	Variables
	Menubars and Menus
	Editing the Text
	The Replace Dialog
	Callbacks
	Other Functions
	The main() Function
	Compiling the Editor
	The Final Product
	Advanced Features

	Drawing Things in FLTK
	When Can You Draw Things in FLTK?
	Drawing Functions
	Colors
	Drawing Images

	Handling Events
	The FLTK Event Model
	Mouse Events
	Focus Events
	Keyboard Events
	Widget Events
	Clipboard Events
	Drag and Drop Events
	Fl::event_() methods
	Event Propagation
	FLTK Compose-Character Sequences

	Adding and Extending Widgets
	Subclassing
	Making a Subclass of Fl_Widget
	The Constructor
	Protected Methods of Fl_Widget
	Handling Events
	Drawing the Widget
	Resizing the Widget
	Making a Composite Widget
	Cut and Paste Support
	Drag And Drop Support
	Making a subclass of Fl_Window

	Using OpenGL
	Using OpenGL in FLTK
	Making a Subclass of Fl_Gl_Window
	Using OpenGL in Normal FLTK Windows
	OpenGL Drawing Functions
	Speeding up OpenGL
	Using OpenGL Optimizer with FLTK

	Programming with FLUID
	What is FLUID?
	Running FLUID Under UNIX
	Running FLUID Under Microsoft Windows
	Compiling .fl files
	A Short Tutorial
	FLUID Reference
	GUI Attributes
	Selecting and Moving Widgets
	Image Labels
	Internationalization with FLUID
	Known limitations

	Advanced FLTK
	Multithreading

	Unicode and UTF-8 Support
	About Unicode, ISO 10646 and UTF-8
	Unicode in FLTK
	FLTK Unicode and UTF8 functions
	FLTK Unicode versions of system calls

	FLTK Enumerations
	Version Numbers
	Events
	Callback `¨When`¨ Conditions
	Fl::event_button() Values
	Fl::event_key() Values
	Fl::event_state() Values
	Alignment Values
	Fonts
	Colors
	Cursors
	FD `¨When`¨ Conditions
	Damage Masks

	GLUT Compatibility
	Using the GLUT Compatibility Header File
	Known Problems
	Mixing GLUT and FLTK Code
	class Fl_Glut_Window

	Forms Compatibility
	Importing Forms Layout Files
	Using the Compatibility Header File
	Problems You Will Encounter
	Additional Notes

	Operating System Issues
	Accessing the OS Interfaces
	The UNIX (X11) Interface
	The Windows (WIN32) Interface
	The Mac OS Interface

	Migrating Code from FLTK 1.0 to 1.1
	Color Values
	Cut and Paste Support
	File Chooser
	Function Names
	Image Support
	Keyboard Navigation

	Migrating Code from FLTK 1.1 to 1.3
	Migrating From FLTK 1.0
	Fl_Scroll Widget
	Unicode (UTF-8)
	Widget Coordinate Representation

	Developer Information
	Non-ASCII characters
	Document Structure
	Creating Links
	Paragraph Layout
	Hack for missing `¨tiny.gif`¨ file
	Navigation Elements

	Software License
	Example Source Code
	Example Applications

	Deprecated List
	Todo List
	Module Index
	Modules

	Class Index
	Class Hierarchy

	Class Index
	Class List

	File Index
	File List

	Module Documentation
	Callback function typedefs
	Windows handling functions
	Events handling functions
	Selection & Clipboard functions
	Screen functions
	Color & Font functions
	Drawing functions
	Multithreading support functions
	Safe widget deletion support functions
	Cairo support functions and classes
	Unicode and UTF-8 functions
	Mac OS X-specific functions
	Common Dialogs classes and functions
	File names and URI utility functions

	Class Documentation
	Fl Class Reference
	Fl_Abstract_Printer Class Reference
	Fl_Adjuster Class Reference
	Fl_Bitmap Class Reference
	Fl_BMP_Image Class Reference
	Fl_Box Class Reference
	Fl_Browser Class Reference
	Fl_Browser_ Class Reference
	Fl_Button Class Reference
	Fl_Cairo_State Class Reference
	Fl_Cairo_Window Class Reference
	Fl_Chart Class Reference
	FL_CHART_ENTRY Struct Reference
	Fl_Check_Browser Class Reference
	Fl_Check_Button Class Reference
	Fl_Choice Class Reference
	Fl_Clock Class Reference
	Fl_Clock_Output Class Reference
	Fl_Color_Chooser Class Reference
	Fl_Counter Class Reference
	Fl_Device Class Reference
	Fl_Device_Plugin Class Reference
	Fl_Dial Class Reference
	Fl_Display Class Reference
	Fl_Double_Window Class Reference
	Fl_End Class Reference
	Fl_File_Browser Class Reference
	Fl_File_Chooser Class Reference
	Fl_File_Icon Class Reference
	Fl_File_Input Class Reference
	Fl_Fill_Dial Class Reference
	Fl_Fill_Slider Class Reference
	Fl_Float_Input Class Reference
	Fl_Font_Descriptor Class Reference
	Fl_FormsBitmap Class Reference
	Fl_FormsPixmap Class Reference
	Fl_Free Class Reference
	Fl_GDI_Display Class Reference
	Fl_GIF_Image Class Reference
	Fl_Gl_Window Class Reference
	Fl_Glut_Bitmap_Font Struct Reference
	Fl_Glut_Window Class Reference
	Fl_Group Class Reference
	Fl_Help_Dialog Class Reference
	Fl_Help_Font_Style Struct Reference
	Fl_Help_Link Struct Reference
	Fl_Help_Target Struct Reference
	Fl_Help_View Class Reference
	Fl_Hold_Browser Class Reference
	Fl_Image Class Reference
	Fl_Input Class Reference
	Fl_Input_ Class Reference
	Fl_Input_Choice Class Reference
	Fl_Int_Input Class Reference
	Fl_JPEG_Image Class Reference
	Fl_Label Struct Reference
	Fl_Light_Button Class Reference
	Fl_Menu_ Class Reference
	Fl_Menu_Bar Class Reference
	Fl_Menu_Button Class Reference
	Fl_Menu_Item Struct Reference
	Fl_Menu_Window Class Reference
	Fl_Multi_Browser Class Reference
	Fl_Multiline_Input Class Reference
	Fl_Multiline_Output Class Reference
	Fl_Native_File_Chooser Class Reference
	Fl_Output Class Reference
	Fl_Overlay_Window Class Reference
	Fl_Pack Class Reference
	Fl_Pixmap Class Reference
	Fl_Plugin Class Reference
	Fl_Plugin_Manager Class Reference
	Fl_PNG_Image Class Reference
	Fl_PNM_Image Class Reference
	Fl_Positioner Class Reference
	Fl_Preferences Class Reference
	Fl_Preferences::Name Class Reference
	Fl_Printer Class Reference
	Fl_Progress Class Reference
	Fl_PSfile_Device Class Reference
	Fl_Quartz_Display Class Reference
	Fl_Repeat_Button Class Reference
	Fl_Return_Button Class Reference
	Fl_RGB_Image Class Reference
	Fl_Roller Class Reference
	Fl_Round_Button Class Reference
	Fl_Round_Clock Class Reference
	Fl_Scroll Class Reference
	Fl_Scrollbar Class Reference
	Fl_Secret_Input Class Reference
	Fl_Select_Browser Class Reference
	Fl_Shared_Image Class Reference
	Fl_Simple_Counter Class Reference
	Fl_Single_Window Class Reference
	Fl_Slider Class Reference
	Fl_Spinner Class Reference
	Fl_Sys_Menu_Bar Class Reference
	Fl_Table Class Reference
	Fl_Table_Row Class Reference
	Fl_Tabs Class Reference
	Fl_Text_Buffer Class Reference
	Fl_Text_Display Class Reference
	Fl_Text_Display::Style_Table_Entry Struct Reference
	Fl_Text_Editor Class Reference
	Fl_Text_Editor::Key_Binding Struct Reference
	Fl_Text_Selection Class Reference
	Fl_Tile Class Reference
	Fl_Tiled_Image Class Reference
	Fl_Timer Class Reference
	Fl_Toggle_Button Class Reference
	Fl_Tooltip Class Reference
	Fl_Tree Class Reference
	Fl_Tree_Item Class Reference
	Fl_Tree_Item_Array Class Reference
	Fl_Tree_Prefs Class Reference
	Fl_Valuator Class Reference
	Fl_Value_Input Class Reference
	Fl_Value_Output Class Reference
	Fl_Value_Slider Class Reference
	Fl_Widget Class Reference
	Fl_Widget_Tracker Class Reference
	Fl_Window Class Reference
	Fl_Wizard Class Reference
	Fl_XBM_Image Class Reference
	Fl_Xlib_Display Class Reference
	Fl_XPM_Image Class Reference

	File Documentation
	Enumerations.H File Reference
	Fl_Abstract_Printer.cxx File Reference
	Fl_Abstract_Printer.H File Reference
	fl_arc.cxx File Reference
	fl_arci.cxx File Reference
	fl_boxtype.cxx File Reference
	fl_color.cxx File Reference
	Fl_Color_Chooser.H File Reference
	fl_curve.cxx File Reference
	Fl_Device.H File Reference
	fl_draw.H File Reference
	fl_line_style.cxx File Reference
	Fl_Printer.H File Reference
	fl_rect.cxx File Reference
	Fl_Tree.H File Reference
	Fl_Tree_Item.H File Reference
	Fl_Tree_Item_Array.H File Reference
	Fl_Tree_Prefs.H File Reference
	fl_types.h File Reference
	fl_utf8.h File Reference
	fl_vertex.cxx File Reference
	gl.h File Reference

