1. Introduction 1
2. The character set i 17
3. Input and output 25
4. String handling 38
5. On-line and off-line printing 54
6. Reporting errors 76
7. Arithmetic with scaled dimensions 103
7b. Random numbers i 114
8. Packed data 132
9. Dynamic memory allocation 137
10. Data structures for boxes and their friends 155
11. Memory layout i 187
12. Displaying boxesc.ouiiiiiiiii i 199
13. Destroying boxesc.iiiiiiiiiii i 225
14. Copying boXesttt 229
15. The command codes, 233
16. The semanticnest i 237
17. The table of equivalents 246
18. The hash table 282
19. Saving and restoring equivalents 298
20. Token LiStsot 319
21. Introduction to the syntactic routines 327
22. Input stacks and states i 330
23. Maintaining the input stacks L. 351
24. Getting the next token i 362
25. Expanding the next token 396
26. Basic scanning subroutines L. 436
27. Building token lists 499
28. Conditional processing i, 522
29. File nameso . 546
30. Font metric data i 574
31. Device-independent file format 619
32. Shipping pages out ... 628
32b. pdfTEX output low-level subroutines (equivalents) 682
33. Packaging 683
34. Data structures for math mode 722
35. Subroutines for math mode 741
36. Typesetting math formulas, 762
37. Alignment 816
38. Breaking paragraphs into lines 861
39. Breaking paragraphs into lines, continued 910
40. Pre-hyphenation i i 939
41. Post-hyphenation i 953
42. Hyphenation i 973
43. Initializing the hyphenation tables 996
44. Breaking vertical lists into pages 1021
45. The page builder i 1034
46. The chief executive i 1083
47. Building boxes and lists oL 1109
48. Building math lists i 1190
49. Mode-independent processing 1262
50. Dumping and undumping the tables 1353
51. The main programc.ccoeuiiinieinninnenn.. 1384
52. Debugging 1392
53. EXtensionsiiiii 1394
53a. The extended features of e-TEX 1451
54. System-dependent changes, 1678
B55. Index . ..ot 1679

101
125
135
142
146
149
159
162
174
186
213
226
234
243
262
269
293
294
306
316
333
361
378
398
411
418
429
435
445
451
468
484
508
530
555
565
570
o972
995
668
669

61 XgTEX PART 1: INTRODUCTION 3

August 12, 2024 at 13:29

1. Introduction. This is XHIEX, a program derived from and extending the capabilities of TEX, a
document compiler intended to produce typesetting of high quality. The Pascal program that follows is the
definition of TEX82, a standard version of TEX that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers.

The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. As
a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated
it into a particular machine language. However, the program has been written so that it can be tuned to run
efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility
is possible because the documentation that follows is written in the WEB language, which is at a higher level
than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary
refinements. Semi-automatic translation to other languages is also feasible, because the program below does
not make extensive use of features that are peculiar to Pascal.

A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level of
difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the
algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by
providing the cross-references that connect different parts. Detailed comments about what is going on, and
about why things were done in certain ways, have been liberally sprinkled throughout the program. These
comments explain features of the implementation, but they rarely attempt to explain the TEX language
itself, since the reader is supposed to be familiar with The TEXbook.

4 PART 1: INTRODUCTION XATEX §2

2. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author had
made in May of that year. This original protoTEX included macro definitions and elementary manipulations
on boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignment
routines, error recovery, or the present semantic nest; furthermore, it used character lists instead of token
lists, so that a control sequence like \halign was represented by a list of seven characters. A complete version
of TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,
was written in the SAIL language, for which an excellent debugging system was available. Preliminary plans
to convert the SAIL code into a form somewhat like the present “web” were developed by Luis Trabb Pardo
and the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala
in 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981
and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA that
was written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research
Center. Several hundred refinements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been substantially improved. After
the appearance of “Version 0” in September 1982, this program benefited greatly from the comments of
many other people, notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEX82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘XHITEX’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

A similar test suite called the “e-TRIP test” is available for helping to determine whether a particular
implementation deserves to be known as ‘c-TEX’.

«

define eTeX version =2 { \eTeXversion }

define eTeX revision =".6" { \eTeXrevision }

define eTeX version_string = ~-2.6~ { current e-TEX version }
define XeTeX version =0 { \XeTeXversion }

define XeTeX revision = ".999996" { \XeTeXrevision }

define XeTeX version_string = “-0.999996 " { current X{IEX version }

define XeTeX _banner = “This is XeTeX, Version ,3.141592653°, eTeX version_string,
XeTeX version_string { printed when XHTEX starts }

define banner = “This_isTeX, Version;3.141592653 " {printed when TEX starts }
define TEX = XETEX {change program name into XETEX }

define TeXXeT_code =0 {the TEX--XET feature is optional }

define XeTeX_dash_break-code =1 {non-zero to enable breaks after en- and em-dashes }

define XeTeX upwards_code =2 {non-zero if the main vertical list is being built upwards }

define XeTeX use_glyph-metrics_.code =3 {non-zero to use exact glyph height/depth }

define XeTeX inter_char_tokens_code =4 {non-zero to enable \XeTeXinterchartokens insertion }
define XeTeX_input_normalization_code =5 {normalization mode:, 1 for NFC, 2 for NFD, else none }

define XeTeX_default_input_mode_code = 6 {input mode for newly opened files }
define XeTeX input_mode_auto =0

62 XgTEX PART 1: INTRODUCTION 5

define XeTeX input_mode_utf8 =1

define XeTeX_input_mode_utfi6be = 2
define XeTeX input_mode_utf16le = 3
define XeTeX_input-mode_raw = 4

define XeTeX_input-mode_icu-mapping = 5

define XeTeX _default_input_encoding_code =7 { str_number of encoding name if mode = ICU }

define XeTeX tracing_fonts_code =8 {non-zero to log native fonts used }

define XeTeX_interword_space_shaping-code =9 { controls shaping of space chars in context when
using native fonts; set to 1 for contextual adjustment of space width only, and 2 for full
cross-space shaping (e.g. multi-word ligatures) }

define XeTeX_generate_actual_text_code = 10 { controls output of /ActualText for native-word nodes }

define XeTeX_hyphenatable_length_code = 11 { sets maximum hyphenatable word length }

define eTeX states = 12 {number of e-TEX state variables in eqtb }

3. Different Pascals have slightly different conventions, and the present program expresses TEX in terms
of the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,
which we shall call Pascal-H, should help the reader see how to make an appropriate interface for other
systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10 that
was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6 (1976), 29—
42. The TEX program below is intended to be adaptable, without extensive changes, to most other versions
of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the code
can be translated mechanically into other high-level languages. For example, the ‘with’ and ‘new’ features
are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’ parameters,
except in the case of files — e-TEX, however, does use ‘var’ parameters for the reverse function; there are
no tag fields on variant records; there are no assignments real < integer; no procedures are declared local
to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

Incidentally, Pascal’s standard round function can be problematical, because it disagrees with the IEEE
floating-point standard. Many implementors have therefore chosen to substitute their own home-grown
rounding procedure.

6 PART 1: INTRODUCTION XATEX 4

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ¢{ Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

Actually the heading shown here is not quite normal: The program line does not mention any output
file, because Pascal-H would ask the TEX user to specify a file name if output were specified here.

define mitype = t@&y@&p@&e {this is a WEB coding trick: }
format mitype = type {‘mtype’ will be equivalent to ‘type’}
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)
program TEX; {all file names are defined dynamically }
label (Labels in the outer block 6)
const (Constants in the outer block 11)
mtype (Types in the outer block 18)
var (Global variables 13)

procedure initialize; { this procedure gets things started properly }
var (Local variables for initialization 19)
begin (Initialize whatever TEX might access 8)
end;

(Basic printing procedures 57)

(Error handling procedures 82)

5. The overall TEX program begins with the heading just shown, after which comes a bunch of procedure
declarations and function declarations. Finally we will get to the main program, which begins with the
comment ‘start_here’. If you want to skip down to the main program now, you can look up ‘start_here’
in the index. But the author suggests that the best way to understand this program is to follow pretty
much the order of TEX’s components as they appear in the WEB description you are now reading, since the
present ordering is intended to combine the advantages of the “bottom up” and “top down” approaches to
the problem of understanding a somewhat complicated system.

6. Three labels must be declared in the main program, so we give them symbolic names.
define start_of TEX =1 {go here when TEX’s variables are initialized }
define end_of TEX = 9998 {go here to close files and terminate gracefully }
define final_end = 9999 { this label marks the ending of the program }
(Labels in the outer block 6) =
start_of TEX, end_of-TEX, final_end; {key control points }

This code is used in section 4.

87 XHTEX PART 1: INTRODUCTION 7

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug ... gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ... tats’ that is intended for use when statistics
are to be kept about TEX’s memory usage. The stat ... tats code also implements diagnostic information
for \tracingparagraphs, \tracingpages, and \tracingrestores.

define debug = @{ {change this to ‘debug =’ when debugging }

define gubed =@} {change this to ‘gubed =’ when debugging }

format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat =’ when gathering usage statistics }
define tats = @} {change this to ‘tats =’ when gathering usage statistics }
format stat = begin

format tats = end

8. This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘init ... tini’.

define init = {change this to ‘init = @{’ in the production version }

define tini = {change this to ‘tini = @}’ in the production version }

format init = begin

format tini = end
(Initialize whatever TEX might access 8) =

(Set initial values of key variables 23)

init (Initialize table entries (done by INITEX only) 189) tini

This code is used in section 4.

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when TEX is being debugged, but
they cause range checking and other redundant code to be eliminated when the production system is being
generated. Arithmetic overflow will be detected in all cases.
(Compiler directives 9) =

@{e&$C—, A+, D—@} {no range check, catch arithmetic overflow, no debug overhead }

debug 0{0&$C+, D+0} gubed {but turn everything on when debugging }

This code is used in section 4.

8 PART 1: INTRODUCTION XHTEX §10

10. This TEX implementation conforms to the rules of the Pascal User Manual published by Jensen and
Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case z of

1: (code for x =1);

3: (code for z = 3);

othercases (code for z # 1 and x # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others:’ as a default label, and other Pascals
allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’; etc. The definitions of othercases and endcases
should be changed to agree with local conventions. Note that no semicolon appears before endcases in this
program, so the definition of endcases should include a semicolon if the compiler wants one. (Of course,
if no default mechanism is available, the case statements of TEX will have to be laboriously extended by
listing all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but
not happily!)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }

format othercases = else

format endcases = end

611 XyIpX PART 1: INTRODUCTION 9

11. The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

(Constants in the outer block 11) =

mem_max = 30000;
{ greatest index in TEX’s internal mem array; must be strictly less than maz_halfword; must be
equal to mem_top in INITEX, otherwise > mem_top }

mem_min = 0; {smallest index in TEX’s internal mem array; must be min_halfword or more; must be
equal to mem_bot in INITEX, otherwise < mem_bot }

buf-size = 500; { maximum number of characters simultaneously present in current lines of open files
and in control sequences between \csname and \endcsname; must not exceed maz_halfword }

error_line = 72; { width of context lines on terminal error messages }

half_error_line = 42; { width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15}

maz_print_line = 79; { width of longest text lines output; should be at least 60 }

stack_size = 200; { maximum number of simultaneous input sources }

max_in_open = 6;
{ maximum number of input files and error insertions that can be going on simultaneously }

font_maz = 75; {maximum internal font number; must not exceed maz_quarterword and must be at
most font_base + 256 }

font_mem_size = 20000; { number of words of font_info for all fonts }

param_size = 60; { maximum number of simultaneous macro parameters }

nest_size = 40; { maximum number of semantic levels simultaneously active }

maz_strings = 3000; {maximum number of strings; must not exceed maz_halfword }

string-vacancies = 8000; { the minimum number of characters that should be available for the user’s
control sequences and font names, after TEX’s own error messages are stored }

pool_size = 32000; {maximum number of characters in strings, including all error messages and help
texts, and the names of all fonts and control sequences; must exceed string_vacancies by the total
length of TEX’s own strings, which is currently about 23000 }

save_size = 600; {space for saving values outside of current group; must be at most maz_halfword }

trie_size = 8000; {space for hyphenation patterns; should be larger for INITEX than it is in production
versions of TEX }

trie_op_size = 500; { space for “opcodes” in the hyphenation patterns }

dvi_buf_size = 800; {size of the output buffer; must be a multiple of 8 }

file_name_size = 40; {file names shouldn’t be longer than this }

pool,name = "TeXformats:TEX.POOL_ L uouoosoooooooso |‘;
{ string of length file_name_size; tells where the string pool appears }

This code is used in section 4.

10 PART 1: INTRODUCTION XHTEX §12

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into Pascal’s const list, in order to emphasize this
distinction.

define mem_bot =0
{ smallest index in the mem array dumped by INITEX; must not be less than mem_min }

define mem_top = 30000 {largest index in the mem array dumped by INITEX; must be substantially
larger than mem_bot and not greater than mem_maz }

define font_base =0 {smallest internal font number; must not be less than min_quarterword }

define hash_size = 2100 { maximum number of control sequences; it should be at most about
(mem_max — mem_min)/10 }

define hash_prime = 1777 { a prime number equal to about 85% of hash_size }

define hyph_size = 307 {another prime; the number of \hyphenation exceptions }

define biggest_char = 65535 { the largest allowed character number; must be < maz_quarterword, this
refers to UTF16 codepoints that we store in strings, etc; actual character codes can exceed
this range, up to biggest_usv }

define too_big_char = 65536 { biggest_char + 1}

define biggest_usv = "10FFFF { the largest Unicode Scalar Value }

define too_big_-usv = "110000 { biggest_usv + 1}

define number_usvs = "110000 { biggest_usv + 1}

define special_char = "110001 { biggest_usv + 2 }

define biggest_-reg = 255 { the largest allowed register number; must be < maz_quarterword }

define number_regs = 256 { biggest_reg + 1}

define font_biggest = 255 { the real biggest font }

define number_fonts = font_biggest — font_base + 2

define number_math_families = 256

define number_math_fonts = number_math_families + number_math_families + number_math_families

define math_font_biggest = number_math_fonts — 1

define text_size =0 {size code for the largest size in a family }

define script_size = number_math_families {size code for the medium size in a family }

define script_script_size = number_math_families + number_math_families
{size code for the smallest size in a family }

define biggest_lang = 255 { the largest hyphenation language }

define too_big_lang = 256 { biggest_lang + 1}

define hyphenatable_length_limit = 4095
{ hard limit for hyphenatable length; runtime value is maz_hyphenatable_length }

13. In case somebody has inadvertently made bad settings of the “constants,” TEX checks them using a
global variable called bad.
This is the first of many sections of TEX where global variables are defined.

(Global variables 13) =

bad: integer; {is some “constant” wrong? }

See also sections 20, 26, 30, 32, 39, 50, 54, 61, 77, 80, 83, 100, 108, 114, 121, 137, 138, 139, 140, 146, 181, 190, 199, 207, 239,
272, 279, 282, 283, 301, 316, 327, 331, 334, 335, 338, 339, 340, 363, 391, 397, 416, 421, 422, 444, 472, 481, 515, 524, 528,
547, 548, 555, 562, 567, 574, 584, 585, 590, 628, 631, 641, 652, 682, 685, 686, 695, 703, 726, 762, 767, 812, 818, 862, 869,
871, 873, 876, 881, 887, 895, 920, 940, 953, 959, 961, 975, 980, 997, 1001, 1004, 1025, 1034, 1036, 1043, 1086, 1128, 1320,
1335, 1353, 1359, 1385, 1396, 1400, 1429, 1449, 1462, 1470, 1515, 1561, 1584, 1625, 1627, 1646, 1653, 1669, and 1670.

This code is used in section 4.

614 XyIpX PART 1: INTRODUCTION 11

14. Later on we will say ‘if mem_-maz > maz_halfword then bad < 14’, or something similar. (We can’t
do that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad + 0;
if (half-error_line < 30) V (half-error_line > error_line — 15) then bad « 1;
if maz_print_line < 60 then bad < 2;
if dvi_buf_size mod 8 # 0 then bad <« 3;
if mem_bot + 1100 > mem_top then bad < 4;
if hash_prime > hash_size then bad «+ 5;
if max_in_open > 128 then bad < 6;
if mem_top < 256 4 11 then bad < 7; {we will want null_list > 255}
See also sections 133, 320, 557, and 1303.

This code is used in section 1386.

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and
they are sometimes repeated by going to ‘continue’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit =10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 { go here to start a case statement again }

define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define done! =31 {like done, when there is more than one loop }

define done2 =32 {for exiting the second loop in a long block }

define done3 =33 {for exiting the third loop in a very long block }

define donej =34 {for exiting the fourth loop in an extremely long block }
define done5 =35 {for exiting the fifth loop in an immense block }

define done6 = 36 {for exiting the sixth loop in a block }

define found =40 {go here when you’ve found it }

define found! =41 {like found, when there’s more than one per routine }
define found2 =42 {like found, when there’s more than two per routine }
define not_found = 45 {go here when you’ve found nothing }

define not_found! =46 {like not_found, when there’s more than one }
define not_found2 =47 {like not_found, when there’s more than two }
define not_found3 =48 {like not_found, when there’s more than three }
define not_foundj =49 {like not_found, when there’s more than four }
define common_ending = 50 {go here when you want to merge with another branch }

12 PART 1: INTRODUCTION XHTEX 816

16. Here are some macros for common programming idioms.

define incr(#) =# <« #+ 1 {increase a variable by unity }

define decr(#) =#+ #—1 {decrease a variable by unity }

define negate(#) = # + —# {change the sign of a variable }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’}

define do_nothing = {empty statement }

define return = goto erit {terminate a procedure call }

format return = nil

define empty =0 {symbolic name for a null constant }

617 XoIpX PART 2: THE CHARACTER SET 13

17. The character set. In order to make TEX readily portable to a wide variety of computers, all of its
input text is converted to an internal eight-bit code that includes standard ASCII, the “American Standard
Code for Information Interchange.” This conversion is done immediately when each character is read in.
Conversely, characters are converted from ASCII to the user’s external representation just before they are
output to a text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = ‘101, and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEX’s internal code also defines the value of constants that begin with a reverse apostrophe; and it provides
an index to the \catcode, \mathcode, \uccode, \1lccode, and \delcode tables.

18. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII_code,
which is a subrange of the integers. For xetex, we rename ASCII_code as UTF16_code. But we also have a
new type UTF8_code, used when we construct filenames to pass to the system libraries.

define ASCII_code = UTF16_code
define packed_ASCII_code = packed_UTF16_code

(Types in the outer block 18) =
ASCII code =0 .. biggest_char; {16-bit numbers }
UTF8_code =0 .. 255; {8-bit numbers }
UnicodeScalar = 0 .. biggest_usv; { Unicode scalars }
See also sections 25, 38, 105, 113, 135, 174, 238, 299, 330, 583, 630, 974, 979, and 1488.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 40 through “176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first-text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }

define last_text_char = biggest_char {ordinal number of the largest element of text_char }

(Local variables for initialization 19) =
it integer;
See also sections 188 and 981.

This code is used in section 4.

14 PART 2: THE CHARACTER SET XHTEX §20

20. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.

{ Global variables 13) +=
xchr: array [ASCIL code] of text_char; {specifies conversion of output characters }

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

22. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

define null_code = 0 { ASCII code that might disappear }
define carriage_return = ‘15 { ASCII code used at end of line }
define invalid_code = 177 { ASCII code that many systems prohibit in text files }

23. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. “37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of zchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘#’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than /0. To get the

most “permissive” character set, change “|,” on the right of these assignment statements to chr (7).

(Set initial values of key variables 23) =
for i < 0to 37 do xchrli] + "u;
for i < 177 to 377 do zchr|i] < "u7;
See also sections 24, 62, 78, 81, 84, 101, 122, 191, 241, 280, 284, 302, 317, 398, 417, 473, 516, 525, 556, 586, 591, 629, 632, 642,
687, 696, 704, 727, 819, 941, 982, 1044, 1087, 1321, 1336, 1354, 1397, 1412, 1516, 1562, 1628, 1647, and 1671.

This code is used in section 8.

24. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = xchr[j] where i < j < “177, the value of zord [zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.

(Set initial values of key variables 23) +=
for i + 0to 176 do xzord[zchr[i]] + i;

625 XyIEX PART 3: INPUT AND OUTPUT 15

25. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached.

TEX needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains textual
data, and the term byte_file for a file that contains eight-bit binary information. These two types turn out
to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful
to distinguish between them. Standard protocols for transferring such files from computer to computer, via
high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and reloading
base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
alpha_file = packed file of text_char; {files that contain textual data }
byte_file = packed file of eight_bits; {files that contain binary data }

26. Most of what we need to do with respect to input and output can be handled by the I/0O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of-file.

(Global variables 13) +=
name_of-file: packed array [1 .. file_name_size] of char;
{ on some systems this may be a record variable }
name_of-file16: array [1 .. file_name_size] of UTF16_code;
{ but sometimes we need a UTF16 version of the name }
name_length: 0 .. file_name_size;
{ this many characters are actually relevant in name_of_file (the rest are blank) }
name_length16: 0 .. file_name_size;

16 PART 3: INPUT AND OUTPUT XHTEX §27

27. The Pascal-H compiler with which the present version of TEX was prepared has extended the rules of
Pascal in a very convenient way. To open file f, we can write

reset(f,name, "/07) for input;
rewrite(f, name, "/07) for output.

The ‘name’ parameter, which is of type ‘packed array [(any)] of char’, stands for the name of the external
file that is being opened for input or output. Blank spaces that might appear in name are ignored.

The ‘/0’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat (f) # 0 after an unsuccessful reset
or rewrite. This allows TEX to undertake appropriate corrective action.

TEX’s file-opening procedures return false if no file identified by name_of-file could be opened.

define reset_OK (#) = erstat(#) =0
define rewrite_OK (#) = erstat(#) =0

function a_open_in(var f : alpha_file): boolean; {open a text file for input }
begin reset(f, name_of_file, */07); a_open_in + reset_ OK (f);
end;

function a_open_out(var f : alpha_file): boolean; {open a text file for output }
begin rewrite (f, name_of_file, */07); a_open_out < rewrite_OK (f);
end;

function b_open_in(var f : byte_file): boolean; {open a binary file for input }
begin res